CyPari2 Documentation
Release 2.1.3

Many People

Mar 23, 2023

7

CONTENTS:

Interface to the PARI library
1.1 Guide to real precision in the PARI interface

The Gen class wrapping PARI’s GEN type

Memory management for Gens on the PARI stack or the heap
Convert Python functions to PARI closures

Handling PARI errors

Convert PARI objects to/from Python/C native types

Indices and tables

Python Module Index

Index

383

769

771

773

775

781

783

785

CHAPTER
ONE

INTERFACE TO THE PARI LIBRARY

AUTHORS:
* William Stein (2006-03-01): updated to work with PARI 2.2.12-beta
* William Stein (2006-03-06): added newtonpoly
* Justin Walker: contributed some of the function definitions
* Gonzalo Tornaria: improvements to conversions; much better error handling.
* Robert Bradshaw, Jeroen Demeyer, William Stein (2010-08-15): Upgrade to PARI 2.4.3 (Sage ticket #9343)

* Jeroen Demeyer (2011-11-12): rewrite various conversion routines (Sage ticket #11611, Sage ticket #11854,
Sage ticket #11952)

 Peter Bruin (2013-11-17): split off this file from gen.pyx (Sage ticket #15185)
¢ Jeroen Demeyer (2014-02-09): upgrade to PARI 2.7 (Sage ticket #15767)
 Jeroen Demeyer (2014-09-19): upgrade to PARI 2.8 (Sage ticket #16997)

 Jeroen Demeyer (2015-03-17): automatically generate methods from pari.desc (Sage ticket #1 7631 and Sage
ticket #17860)

* Luca De Feo (2016-09-06): Separate Sage-specific components from generic C-interface in Pari (Sage ticket
#20241)

Examples:

>>> import cypari?2

>>> pari = cypari2.Pari()

>>> pari('5! + 10/x")

(120*x + 10)/x

>>> pari('intnum(x=0,13,sin(x)+sin(x*2) + x)")
85.6215190762676

>>> f = pari('x*3 - 1")

>>> v = f.factor(Q); v

[x -1, 1; x*2 + x + 1, 1]

>>> v[0] # indexing is 0-based unlike in GP.
[x -1, x22 + x + 1]~

>>> v[1]

[1, 11~

For most functions, you can call the function as method of pari or you can first create a Gen object and then call the
function as method of that. In other words, the following two commands do the same:

https://trac.sagemath.org/9343
https://trac.sagemath.org/11611
https://trac.sagemath.org/11854
https://trac.sagemath.org/11952
https://trac.sagemath.org/15185
https://trac.sagemath.org/15767
https://trac.sagemath.org/16997
https://trac.sagemath.org/17631
https://trac.sagemath.org/17860
https://trac.sagemath.org/17860
https://trac.sagemath.org/20241
https://trac.sagemath.org/20241

CyPari2 Documentation, Release 2.1.3

>>> pari('x*3 - 1').factor()
[x -1, 1; x22 + x + 1, 1]
>>> pari.factor('x*3 - 1')
[x -1, 1; x*2 + x + 1, 1]

Arithmetic operations cause all arguments to be converted to PARI:

>>> type(pari(l) + 1)

<... 'cypari2.gen.Gen'>
>>> type(l + pari(l))
<... 'cypari2.gen.Gen'>

1.1 Guide to real precision in the PARI interface

In the PARI interface, “real precision” refers to the precision of real numbers, so it is the floating-point precision. This
is a non-trivial issue, since there are various interfaces for different things.

1.1.1 Internal representation of floating-point numbers in PARI

Real numbers in PARI have a precision associated to them, which is always a multiple of the CPU wordsize. So, it is a
multiple of 32 of 64 bits. When converting a f1oat from Python to PARI, the float has 53 bits of precision which is
rounded up to 64 bits in PARI:

>>>x = 1.0

>>> pari(x)
1.00000000000000

>>> pari(x).bitprecision()
64

It is possible to change the precision of a PARI object with the Gen.bitprecision() method:

>>> p = pari(1.0)

>>> p.bitprecision()

64

>>> p = p.bitprecision(100)

>>> p.bitprecision() # Rounded up to a multiple of the wordsize
128

Beware that these extra bits are just bogus. For example, this will not magically give a more precise approximation of
math.pi:

>>> import math

>>> p = pari(math.pi)

>>> pari("Pi") - p
1.225148... E-16

>>> p = p.bitprecision(1000)
>>> pari("Pi") - p
1.225148... E-16

Another way to create numbers with many bits is to use a string with many digits:

2 Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

>>> p = pari("3.1415926535897932384626433832795028842")
>>> p.bitprecision()
128

1.1.2 Output precision for printing

Even though PARI reals have a precision, not all significant bits are printed by default. The maximum number
of digits when printing a PARI real can be set using the methods Pari.set_real_precision_bits() or Pari.
set_real_precision(). Note that this will also change the input precision for strings, see Input precision for func-
tion calls.

We create a very precise approximation of pi and see how it is printed in PARI:

>>> pi = pari.pi(precision=1024)

The default precision is 15 digits:

>>> pi
3.14159265358979

With a different precision, we see more digits. Note that this does not affect the object pi at all, it only affects how it
is printed:

>>> _ = pari.set_real_precision(50)
>>> pi
3.1415926535897932384626433832795028841971693993751

Back to the default:
>>> _ = pari.set_real_precision(15)
>>> pi

3.14159265358979

1.1.3 Input precision for function calls

When we talk about precision for PARI functions, we need to distinguish three kinds of calls:
1. Using the string interface, for example pari("sin(1)").
2. Using the library interface with exact inputs, for example pari.sin(1).
3. Using the library interface with inexact inputs, for example pari.sin(1.0).

In the first case, the relevant precision is the one set by the methods Pari.set_real_precision_bits() or Pari.
set_real_precision():

>>> pari.set_real_precision_bits(150)

>>> pari("sin(1)")
0.841470984807896506652502321630298999622563061
>>> pari.set_real_precision_bits(53)

>>> pari("sin(1)")

0.841470984807897

1.1. Guide to real precision in the PARI interface 3

CyPari2 Documentation, Release 2.1.3

In the second case, the precision can be given as the argument precision in the function call, with a default of 53 bits.
The real precision set by Pari.set_real_precision_bits() or Pari.set_real_precision() does not affect
the call (but it still affects printing).

As explained before, the precision increases to a multiple of the wordsize (and you should not assume that the extra
bits are meaningful):

>>> a = pari.sin(l, precision=180); a
0.841470984807897

>>> a.bitprecision()

192

>>> b = pari.sin(l, precision=40); b
0.841470984807897

>>> b.bitprecision()

64

>>> ¢ = pari.sin(l); c
0.841470984807897

>>> c.bitprecision()

64

>>> pari.set_real_precision_bits(90)
>>> print(a); print(b); print(c)
0.841470984807896506652502322
0.8414709848078965067
0.8414709848078965067

In the third case, the precision is determined only by the inexact inputs and the precision argument is ignored:

>>> pari.sin(1.0, precision=180) .bitprecision()

64

>>> pari.sin(l.0, precision=40).bitprecision()

64

>>> pari.sin("1.0000000000000000000000000000000000000") .bitprecision()
128

Tests:

Check that the documentation is generated correctly:

>>> from inspect import getdoc
>>> getdoc(pari.Pi)
'The constant :math: \\pi’

Check that output from PARI’s print command is actually seen by Python (Sage ticket #9636):

>>> pari('print("test")")
test

Verify that nfroots() (which has an unusual signature with a non-default argument following a default argument)
works:

>>> pari.nfroots(x="x*4 - 1")

[-1, 1]

>>> pari.nfroots(pari.nfinit('tA 2 + 1'), "x*4 - 1)
[-1, 1, Mod(-t, t*2 + 1), Mod(t, t*2 + 1)]

Reset default precision for the following tests:

4 Chapter 1. Interface to the PARI library

https://trac.sagemath.org/9636

CyPari2 Documentation, Release 2.1.3

>>> pari.set_real_precision_bits(53)

Test that interrupts work properly:

>>> pari.allocatemem(8000000, 2%%29)
PARI stack size set to 8000000 bytes, maximum size set to ...
>>> from cysignals.alarm import alarm, AlarmInterrupt
>>> for i in range(l, 11):
try:
alarm(i/11.0)
pari.binomial (2**100, 2%%22)
except AlarmInterrupt:
pass

Test that changing the stack size using default works properly:

>>> pari.default('parisizemax", 2%%23)
>>> pari = cypari2.Pari() # clear stack
>>> a = pari(l)

>>> pari.default("parisizemax", 2%%29)
>>> a + a

2

>>> pari.default("parisizemax")
536870912

class cypari2.pari_instance.Pari
List(x)
Create an empty list or convert x to a list.

Examples:

>>> import cypari?2

>>> pari = cypari2.Pari()
>>> pari.List(range(5))
List([®, 1, 2, 3, 4])
>>> L = pari.List()

>>> L

List([D)

>>> L.listput(42, 1)

42

>>> L

List([42])

>>> L.listinsert(24, 1)
24

>>> L

List([24, 42])

allocatemem (s, sizemax, *, silent)
Change the PARI stack space to the given size s (or double the current size if s is 0) and change the
maximum stack size to sizemax.

PARI tries to use only its current stack (the size which is set by s), but it will increase its stack if needed
up to the maximum size which is set by sizemax.

1.1. Guide to real precision in the PARI interface 5

CyPari2 Documentation, Release 2.1.3

The PARI stack is never automatically shrunk. You can use the command pari.allocatemem(1046) to
reset the size to /0"6, which is the default size at startup. Note that the results of computations using cypari
are copied to the Python heap, so they take up no space in the PARI stack. The PARI stack is cleared after
every computation.

It does no real harm to set this to a small value as the PARI stack will be automatically enlarged when we
run out of memory.

INPUT:

* s - aninteger (default: 0). A non-zero argument is the size in bytes of the new PARI stack. If s is zero,
double the current stack size.

e sizemax - an integer (default: 0). A non-zero argument is the maximum size in bytes of the PARI
stack. If sizemax is 0, the maximum of the current maximum and s is taken.

Examples:

>>> import cypari?2

>>> pari = cypari2.Pari()

>>> pari.allocatemem(10%*7, 10%*7)

PARI stack size set to 10000000 bytes, maximum size set to 100...
>>> pari.allocatemem() # Double the current size

PARI stack size set to 20000000 bytes, maximum size set to 200...
>>> pari.stacksize()

20000000

>>> pari.allocatemem(10%*6)

PARI stack size set to 1000000 bytes, maximum size set to 200...

The following computation will automatically increase the PARI stack size:

>>> a = pari('22100000000")

a is now a Python variable on the Python heap and does not take up any space on the PARI stack. The PARI
stack is still large because of the computation of a:

>>> pari.stacksize() > 10%%6
True

Setting a small maximum size makes this fail:

>>> pari.allocatemem(10%*6, 2%%22)

PARI stack size set to 1000000 bytes, maximum size set to 4194304
>>> a = pari('22100000000')

Traceback (most recent call last):

PariError: _*s: the PARI stack overflows (current size: 1000000; maximum size:.
—4194304)
You can use pari.allocatemem() to change the stack size and try again

Tests:

Do the same without using the string interface and starting from a very small stack size:

>>> pari.allocatemem(l, 2%%26)
PARI stack size set to 1024 bytes, maximum size set to 67108864
>>> a = pari(2)**100000000

(continues on next page)

6 Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

>>> pari.stacksize() > 10%%6
True

We do not allow sizemax less than s:

>>> pari.allocatemem(10%*7, 10%*6)
Traceback (most recent call last):

ValueError: the maximum size (10000000) should be at least the stack size.
—(1000000)

complex(re, im)
Create a new complex number, initialized from re and im.
debugstack()

Print the internal PARI variables top (top of stack), avma (available memory address, think of this as the
stack pointer), bot (bottom of stack).

euler (precision)

Euler’s constant v = 0.57721.... Note that Euler is one of the few reserved names which cannot be used
for user variables.

factorial_int(n)

Return the factorial of the integer n as a PARI gen. Give result as an integer.

Examples:

>>> import cypari?2

>>> pari = cypari2.Pari()
>>> pari.factorial_int(0)
1

>>> pari.factorial_int(1)
1

>>> pari.factorial_int(5)
120

>>> pari.factorial_int(25)
15511210043330985984000000

genus2red (P, p)

Let P be a polynomial with integer coefficients. Determines the reduction of the (proper, smooth) genus 2
curve C/QQ, defined by the hyperelliptic equation y*2 = P. The special syntax genus2red([P,Q]) is also
allowed, where the polynomials P and Q have integer coeflicients, to represent the model y*2 + Q(x)y =
P(x).

If the second argument p is specified, it must be a prime. Then only the local information at p is computed
and returned.

Examples:

>>> import cypari2

>>> pari = cypari2.Pari()

>>> x = pari('x")

>>> pari.genus2red([-5%x**5, x**3 - 2%x**2 - 2%x + 1])

[1416875, [2, -1; 5, 4; 2267, 1], ..., [[2, [2, [Mod(1, 2)11, [11, [5, [1, [1],-

(continues on next page)

1.1. Guide to real precision in the PARI interface 7

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

—["[V] page 156", [3111, [2267, [2, [Mod(432, 2267)]], ["[I{1-0-0}] page 170",.
~[11111

>>> pari.genus2red([-5%x**5, Xx**3 - 2%x**2 - 2%*x + 1],2267)

[2267, Mat([2267, 11), ..., [2267, [2, [Mod(432, 2267)]1]1, ["[I{1-0-0}] page 170
<", [111]

get_debug_level O
Set the debug PARI C library variable.

get_real_precision()

Returns the current PARI default real precision.

This is used both for creation of new objects from strings and for printing. It is the number of digits IN
DECIMAL in which real numbers are printed. It also determines the precision of objects created by parsing
strings (e.g. pari(‘1.2’)), which is not the normal way of creating new PARI objects in CyPari2. It has no
effect on the precision of computations within the pari library.

See also:
get_real_precision_bits() to get the precision in bits.

Examples:

>>> import cypari?2

>>> pari = cypari2.Pari()
>>> pari.get_real_precision()
15

get_real_precision_bits()

Return the current PARI default real precision in bits.

This is used both for creation of new objects from strings and for printing. It determines the number of
digits in which real numbers numbers are printed. It also determines the precision of objects created by
parsing strings (e.g. pari(‘1.2”)), which is not the normal way of creating new PARI objects using cypari.
It has no effect on the precision of computations within the PARI library.

See also:
get_real_precision() to get the precision in decimal digits.

Examples:

>>> import cypari?2

>>> pari = cypari2.Pari()

>>> pari.get_real_precision_bits()
53

init_primes(M)

Recompute the primes table including at least all primes up to M (but possibly more).

Examples:

>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari.init_primes(200000)

‘We make sure that ticket Sage ticket #1174 1 has been fixed:

8 Chapter 1. Interface to the PARI library

https://trac.sagemath.org/11741

CyPari2 Documentation, Release 2.1.3

>>> pari.init_primes(2%*30)
Traceback (most recent call last):

ValueError: Cannot compute primes beyond 436273290

matrix(m, n, entries)

matrix(long m, long n, entries=None): Create and return the m x n PARI matrix with given list of entries.

Examples:

>>> import cypari2

>>> pari = cypari2.Pari()

>>> pari.matrix(3, 3, range(9))
[®, 1, 2; 3, 4, 5; 6, 7, 8]

new_with_bits_prec(s, precision)

pari.new_with_bits_prec(self, s, precision) creates s as a PARI Gen with (at most) precision bits of preci-

sion.

one()
Examples:

>>> import cypari2

>>> pari = cypari2.Pari()
>>> pari.one()

1

static pari_version()
Return a string describing the version of PARI/GP.

>>> from cypari2 import Pari
>>> Pari.pari_version()
'GP/PARI CALCULATOR Version ...'

pi(precision)

The constant 7 (3.14159...). Note that Pi is one of the few reserved names which cannot be used for user

variables.

polchebyshev(n, v)

Chebyshev polynomial of the first kind of degree n, in the variable v.

Examples:

>>> import cypari2

>>> pari = cypari2.Pari()

>>> pari.polchebyshev(7)

64%xA7 - 112*xA5 + 56%xA3 - 7%x
>>> pari.polchebyshev(7, 'z'")
64*zA7 - 112*%zA5 + 56%zA3 - 7%z
>>> pari.polchebyshev(0)

1

polsubcyclo(n, d, v=x): return the pari list of polynomial(s)

defining the sub-abelian extensions of degree d of the cyclotomic field QQ(zeta_n), where d divides phi(n).

Examples:

1.1. Guide to real precision in the PARI interface

CyPari2 Documentation, Release 2.1.3

>>> import cypari2
>>> pari cypari2.Pari()

>>> pari.polsubcyclo(8, 4)
[x2r4 + 1]

>>> pari.polsubcyclo(8, 2,
[zA2 + 2, zA2 - 2, zA2 + 1]

IZI)

>>> pari.polsubcyclo(8, 1)
[x - 1]

>>> pari.polsubcyclo(8, 3)
(]

primes (n, end)

Return a pari vector containing the first n primes, the primes in the interval [n, end], or the primes up to

end.
INPUT:
Either
* n—integer

or

e n—list or tuple [a, b] defining an interval of primes

or

* n, end - start and end point of an interval of primes

or
 end — end point for the list of primes
OUTPUT: a PARI list of prime numbers

Examples:

>>>

>>>

>>>

[2,

>>>

[2,

>>>

[z,

>>>

1000
>>> pari.primes(11,29)

[11, 13, 17, 19, 23, 29]

>>> pari.primes((11,29))

[11, 13, 17, 19, 23, 29]

>>> pari.primes(end=29)

[2, 3, 5, 7, 11, 13, 17, 19, 23,

>>> pari.primes(10**30, 10**30 +
[1000000000000000000000000000057,

import cypari2

pari cypari2.Pari()
pari.primes(3)
3, 5]
pari.primes(10)
3, 5, 7, 11, 13,
pari.primes(20)
3, 5, 7, 11, 13, 17, 19, 23,
len(pari.primes(1000))

17, 19, 23,

29]

29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71]

29]
100)
1000000000000000000000000000099]

Tests:

10

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

>>> pari.primes(0)

[]

>>> pari.primes(-1)

[]

>>> pari.primes(end=1)
[]

>>> pari.primes(end=-1)
[]

>>> pari.primes(3,2)

(]

set_debug_level (level)
Set the debug PARI C library variable.

set_real_precision(n)
Sets the PARI default real precision in decimal digits.

This is used both for creation of new objects from strings and for printing. It is the number of digits IN
DECIMAL in which real numbers are printed. It also determines the precision of objects created by parsing
strings (e.g. pari(‘1.2”)), which is not the normal way of creating new PARI objects in CyPari2. It has no
effect on the precision of computations within the pari library.

Returns the previous PARI real precision.
See also:
set_real_precision_bits() to set the precision in bits.

Examples:

>>> import cypari?2

>>> pari = cypari2.Pari()

>>> pari.set_real_precision(60)

15

>>> pari('1.2")
1.200
>>> pari.set_real_precision(15)

60

set_real_precision_bits(n)
Sets the PARI default real precision in bits.

This is used both for creation of new objects from strings and for printing. It determines the number of
digits in which real numbers numbers are printed. It also determines the precision of objects created by
parsing strings (e.g. pari(‘1.2”)), which is not the normal way of creating new PARI objects using cypari.
It has no effect on the precision of computations within the PARI library.

See also:
set_real_precision() to set the precision in decimal digits.

Examples:

>>> import cypari2

>>> pari = cypari2.Pari()

>>> pari.set_real_precision_bits(200)
>>> pari('1.2")

(continues on next page)

1.1. Guide to real precision in the PARI interface 11

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

1.200
>>> pari.set_real_precision_bits(53)

setrand(seed)
Sets PARI’s current random number seed.

INPUT:
* seed - either a strictly positive integer or a GEN of type t_VECSMALL as output by getrand()

Examples:

>>> import cypari2

>>> pari = cypari2.Pari()
>>> pari.setrand(50)

>>> a = pari.getrand()
>>> pari.setrand(a)

>>> a == pari.getrand()
True

Tests:

Check that invalid inputs are handled properly:

>>> pari.setrand("foobar")
Traceback (most recent call last):

PariError: incorrect type in setrand (t_POL)

stacksize()

Return the current size of the PARI stack, which is /10”6 by default. However, the stack size is automatically
increased when needed up to the given maximum stack size.

See also:

* stacksizemax() to get the maximum stack size

e allocatemem() to change the current or maximum stack size

Examples:

>>> import cypari2

>>> pari = cypari2.Pari()

>>> pari.stacksize()

8000000

>>> pari.allocatemem(2%*18, silent=True)
>>> pari.stacksize()

262144

stacksizemax()

Return the maximum size of the PARI stack, which is determined at startup in terms of available memory.
Usually, the PARI stack size is (much) smaller than this maximum but the stack will be increased up to this
maximum if needed.

See also:

12 Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

» stacksize() to get the current stack size

* allocatemem() to change the current or maximum stack size

Examples:

>>> import cypari?2

>>> pari = cypari2.Pari()

>>> pari.allocatemem(2**18, 2**26, silent=True)
>>> pari.stacksizemax()

67108864

vector (n, entries)

vector(long n, entries=None): Create and return the length n PARI vector with given list of entries.

Examples:

>>> import cypari2

>>> pari = cypari2.Pari()

>>> pari.vector(5, [1, 2, 5, 4, 3])
[1, 2, 5, 4, 3]

>>> pari.vector(2, ['x', 1])

[x, 1]

>>> pari.vector(2, ['x', 1, 51)
Traceback (most recent call last):

IndexError: length of entries (=3) must equal n (=2)

version()

Return the PARI version as tuple with 3 or 4 components: (major, minor, patch) or (major, minor, patch,
VCSversion).

Examples:

>>> from cypari2 import Pari
>>> Pari().version() >= (2, 9, 0)
True

zero()
Examples:

>>> import cypari2

>>> pari = cypari2.Pari()
>>> pari.zero()

0

class cypari2.pari_instance.Pari_auto
Part of the Pari class containing auto-generated functions.
You must never use this class directly (in fact, Python may crash if you do), use the derived class Pari instead.

Catalan(precision)

Catalan’s constant G = Y . _((—=1)")/((2n + 1)?) = 0.91596.... Note that Catalan is one of the few
reserved names which cannot be used for user variables.

1.1. Guide to real precision in the PARI interface 13

CyPari2 Documentation, Release 2.1.3

Col(x, n)
Transforms the object = into a column vector. The dimension of the resulting vector can be optionally

specified via the extra parameter n.

If n is omitted or 0, the dimension depends on the type of x; the vector has a single component, except
when z is

* avector or a quadratic form (in which case the resulting vector is simply the initial object considered
as a row vector),

* a polynomial or a power series. In the case of a polynomial, the coefficients of the vector start with
the leading coefficient of the polynomial, while for power series only the significant coefficients are
taken into account, but this time by increasing order of degree. In this last case, Vec is the reciprocal
function of Pol and Ser respectively,

* a matrix (the column of row vector comprising the matrix is returned),
* acharacter string (a vector of individual characters is returned).

In the last two cases (matrix and character string), n is meaningless and must be omitted or an error is
raised. Otherwise, if n is given, O entries are appended at the end of the vector if n > 0, and prepended at
the beginning if n < 0. The dimension of the resulting vector is ||n||.

See ?7?Vec for examples.

Colrev(x, n)
As Col(x,—n), then reverse the result. In particular, Colrev is the reciprocal function of Polrev: the
coefficients of the vector start with the constant coefficient of the polynomial and the others follow by
increasing degree.

Euler (precision)

Euler’s constant v = 0.57721.... Note that Euler is one of the few reserved names which cannot be used
for user variables.

I0
The complex number v/ —1.
List(x)

Transforms a (row or column) vector x into a list, whose components are the entries of x. Similarly for a
list, but rather useless in this case. For other types, creates a list with the single element .

Map (x)

A “Map” is an associative array, or dictionary: a data type composed of a collection of (key, value)
pairs, such that each key appears just once in the collection. This function converts the matrix
[a1,b1; ag,b2; ...; an, by] tothe map a; : — — — > b;.

? M = Map(factor(13!));
? mapget(M,3)
%2 =5

If the argument x is omitted, creates an empty map, which may be filled later via mapput.

Mat (x)

Transforms the object x into a matrix. If z is already a matrix, a copy of x is created. If x is a row (resp.
column) vector, this creates a 1-row (resp. 1-column) matrix, unless all elements are column (resp. row)
vectors of the same length, in which case the vectors are concatenated sideways and the attached big matrix
is returned. If x is a binary quadratic form, creates the attached 222 matrix. Otherwise, this creates a 1z1
matrix containing x.

14

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

? Mat(x + 1)

%1 =

[x + 1]

? Vec(matid(3))

%2 = [[1, 0, 0]~, [0, 1, O]~, [0, O, 1]~]
? Mat (%)

%3 =

[1 0 0]

[0 1 0]

[0 0 1]

? Col([1,2; 3,41)

%4 = [[1, 2], [3, 411~
? Mat (%)

%5 =

[1 2]

[3 4]
? Mat(Qfb(1,2,3))
%6 =
(1 1]

[1 3]

Mod(a, b)

In its basic form, create an intmod or a polmod (amodb); b must be an integer or a polynomial. We then
obtain a t_INTMOD and a t_POLMOD respectively:

? t = Mod(2,17); tA8
%1 = Mod(1, 17)

? t = Mod(x,xA2+1); tA2
%2 = Mod(-1, xA2+1)

If a%b makes sense and yields a result of the appropriate type (t_INT or scalar/t_POL), the operation
succeeds as well:

? Mod(1/2, 5)

%3 = Mod(3, 5)

? Mod(7 + 0(3%6), 3)

%4 = Mod(1, 3)

? Mod(Mod(1,12), 9

%5 = Mod(1l, 3)

? Mod(1/x, x*2+1)

%6 = Mod(-x, xA2+1)

? Mod(exp(x), x*4)

%7 = Mod(1/6%xA3 + 1/2*xX22 + X + 1, x*4)

If a is a complex object, “base change” it to Z/bZ or K|[z]/(b), which is equivalent to, but faster than,
multiplying it by Mod(1,b):

? Mod([1,2;3,4], 2)
%8 =

(continues on next page)

1.1. Guide to real precision in the PARI interface 15

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

[Mod(1, 2) Mod(0®, 2)]

[Mod(1, 2) Mod(®, 2)]

? Mod(3*x+5, 2)

%9 = Mod(1, 2)*x + Mod(1l, 2)

? Mod(xA2 + y*x + y*3, yr2+1)

%10 = Mod(1l, y*2 + 1)*xA2 + Mod(y, y*2 + 1)*x + Mod(-y, y*2 + 1)

This function is not the same as x % y, the result of which has no knowledge of the intended modulus y.
Compare

?7x=4%5; x+1

%11 =5
? x = Mod(4,5); x + 1
%12 = Mod(0,5)

Note that such “modular” objects can be lifted via 1ift or centerlift. The modulus of a t_INTMOD or
t_POLMOD z can be recovered via :math: z.mod".

Pi (precision)

The constant 7 (3.14159...). Note that Pi is one of the few reserved names which cannot be used for user
variables.

Pol (s, v)

Transforms the object ¢ into a polynomial with main variable v. If ¢ is a scalar, this gives a constant
polynomial. If ¢ is a power series with nonnegative valuation or a rational function, the effect is similar
to truncate, i.e. we chop off the O(X*) or compute the Euclidean quotient of the numerator by the
denominator, then change the main variable of the result to v.

The main use of this function is when ¢ is a vector: it creates the polynomial whose coefficients are given by
t, with ¢[1] being the leading coefficient (which can be zero). It is much faster to evaluate Pol on a vector
of coefficients in this way, than the corresponding formal expression a,, X™ + ... 4+ ag, which is evaluated
naively exactly as written (linear versus quadratic time in n). Polrev can be used if one wants z[1] to be
the constant coefficient:

? Pol([1,2,3])

%l = XA2 + 2%*x + 3

? Polrev([1,2,3])
%2 = 3%xA2 + 2%x + 1

The reciprocal function of Pol (resp. Polrev) is Vec (resp. Vecrev).

? Vec(Pol([1,2,3]))

%l = [1, 2, 3]

? Vecrev(Polrev([1,2,3]))
%2 = [1, 2, 3]

Warning. This is not a substitution function. It will not transform an object containing variables of higher
priority than v.

? Pol(x + vy, y)

Tehk

at top-level: Pol(x+y,y)

#%% Pol: variable must have higher priority in gtopoly.

16

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

Polrev(z, v)
Transform the object ¢ into a polynomial with main variable v. If ¢ is a scalar, this gives a constant polyno-
mial. If ¢ is a power series, the effect is identical to truncate, i.e. it chops off the O(X k).

The main use of this function is when ¢ is a vector: it creates the polynomial whose coeflicients are given
by t, with ¢[1] being the constant term. Pol can be used if one wants ¢[1] to be the leading coefficient:

? Polrev([1,2,3])
%L = 3%xA2 + 2%x + 1
? Pol([1,2,3])

%2 = XA2 + 2%x + 3

The reciprocal function of Pol (resp. Polrev) is Vec (resp. Vecrev).

Qfb(a, b, ¢, D, precision)
Creates the binary quadratic form ax? + bay + cy?. If b2 — 4ac > 0, initialize Shanks’ distance function
to D. Negative definite forms are not implemented, use their positive definite counterpart instead.

Ser(s, v, d, serprec)
Transforms the object s into a power series with main variable v (x by default) and precision (number of
significant terms) equal to d >= 0 (d = seriesprecision by default). If s is a scalar, this gives a constant
power series in v with precision d. If s is a polynomial, the polynomial is truncated to d terms if needed

? \ps
seriesprecision = 16 significant terms
? Ser(1) \\ 16 terms by default
%l =1 + 0(x716)
? Ser(l, 'y, 5)
%2 = 1 + 0(y*5)
? Ser(x*2,, 5)
%3 = xA2 + 0(xXA7)
? T = polcyclo(100)
%4 = xM0 - xA30 + x220 - xA10 + 1
? Ser(T, 'x, 11)
%5 =1 - x210 + 0(xA11)

The function is more or less equivalent with multiplication by 1 + O(v?) in theses cases, only faster.

For the remaining types, vectors and power series, we first explain what occurs if d is omitted. In this case,
the function uses exactly the amount of information given in the input:

* If s is already a power series in v, we return it verbatim;

* If s is a vector, the coefficients of the vector are understood to be the coefficients of the power series
starting from the constant term (as in Polrev(z)); in other words we convert t_VEC / t_COL to the
power series whose significant terms are exactly given by the vector entries.

On the other hand, if d is explicitly given, we abide by its value and return a series, truncated or extended
with zeros as needed, with d significant terms.

?v=1[1,2,3];

? Ser(v, t) \\ 3 terms: seriesprecision is ignored!
%7 = 1 + 2%t + 3*tA2 + 0(t*3)

? Ser(v, t, 7) \\ 7 terms as explicitly requested
%8 =1 + 2%t + 3*%tA2 + 0(tA7)

? s = 1+x+0(x*2);

? Ser(s)

(continues on next page)

1.1. Guide to real precision in the PARI interface 17

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

%10 = 1 + x + 0(x*2) \\ 2 terms: seriesprecision is ignored
? Ser(s, x, 7) \\ extend to 7 terms

%11 =1 + x + 0(xA7)

? Ser(s, x, 1) \\ truncate to 1 term

%12 = 1 + 0(x)

The warning given for Pol also applies here: this is not a substitution function.

Set(x)

Converts x into a set, i.e. into a row vector, with strictly increasing entries with respect to the (some-
what arbitrary) universal comparison function cmp. Standard container types t_VEC, t_COL, t_LIST and
t_VECSMALL are converted to the set with corresponding elements. All others are converted to a set with
one element.

? Set([1,2,4,2,1,3])
%l = [1, 2, 3, 4]

? Set(x)
%2 = [x]

? Set(Vecsmall([1,3,2,1,31))
%3 = [1, 2, 3]

Strchr (x)

Deprecated alias for strchr.

Vec(x, n)

Transforms the object x into a row vector. The dimension of the resulting vector can be optionally specified
via the extra parameter n. If n is omitted or 0, the dimension depends on the type of x; the vector has a
single component, except when is

* avector or a quadratic form: returns the initial object considered as a row vector,

 a polynomial or a power series: returns a vector consisting of the coefficients. In the case of a poly-
nomial, the coefficients of the vector start with the leading coefficient of the polynomial, while for
power series only the significant coefficients are taken into account, but this time by increasing order
of degree. In particular the valuation is ignored (which makes the function useful for series of negative
valuation):

? Vec(3*x22 + Xx)

%l = [3, 1, 0]

? Vec(x*2 + 3*xA3 + 0(x75))
%2 = [1, 3, 0]

? Vec(x*-2 + 3*xA-1 + 0(x))
%3 = [1, 3, 0]

Vec is the reciprocal function of Pol for a polynomial and of Ser for power series of valuation 0.

e amatrix: returns the vector of columns comprising the matrix,

?m=[1,2,3;4,5,6]
%4 =
[1 2 3]

[4 5 6]
? Vec(m)
%5 = [[11 4:|~1 [21 5:|~1 [31 6:|~:|

18

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

* acharacter string: returns the vector of individual characters,

? Vec("PARI")
%6 - [HPII, llAll’ llRll’ llIll]

e amap: returns the vector of the domain of the map,

* an error context (t_ERROR): returns the error components, see iferr.

In the last four cases (matrix, character string, map, error), n is meaningless and must be omitted or an error
is raised. Otherwise, if n is given, O entries are appended at the end of the vector if n > 0, and prepended
at the beginning if n < 0. The dimension of the resulting vector is ||n||. This allows to write a conversion
function for series that takes positive valuations into account:

? serVec(s) = Vec(s, -serprec(s,variable(s)));
? Vec(x*2 + 3*xA3 + 0(x75))
%2 = [0, 0, 1, 3, 0]

(That function is not intended for series of negative valuation.)

Vecrev(x, n)

As Vec(x, —n), then reverse the result. In particular, Vecrev is the reciprocal function of Polrev: the
coeflicients of the vector start with the constant coefficient of the polynomial and the others follow by
increasing degree.

Vecsmall (x, n)
Transforms the object x into a row vector of type t_VECSMALL. The dimension of the resulting vector can

be optionally specified via the extra parameter n.

This acts as Vec(z, n), but only on a limited set of objects: the result must be representable as a vector of
small integers. If x is a character string, a vector of individual characters in ASCII encoding is returned
(strchr yields back the character string).

abs (x, precision)

Absolute value of x (modulus if = is complex). Rational functions are not allowed. Contrary to most
transcendental functions, an exact argument is not converted to a real number before applying abs and an
exact result is returned if possible.

? abs(-1)

%l =1

? abs(3/7 + 4/7%I)

%2 = 5/7

? abs(1l + I)

%3 = 1.414213562373095048801688724

If x is a polynomial, returns —z if the leading coefficient is real and negative else returns x. For a power
series, the constant coefficient is considered instead.
acos (x, precision)

Principal branch of cos™!(z) = —ilog(z + iv/1 — x2). In particular, R(acos(x)) € [0,7] and if z € R
and ||z|| > 1, then acos(x) is complex. The branch cut is in two pieces: | — oo, —1] , continuous with
quadrant II, and [1, +0o0], continuous with quadrant IV. We have acos(z) = 7/2 — asin(x) for all .

acosh (x, precision)

Principal branch of cosh™ ' (z) = 2log(y/(z + 1)/2 + \/(z — 1)/2). In particular, R(acosh(zx)) >= 0
and S(acosh(z)) €] — m,7w]; if v € Rand z < 1, then acosh(x) is complex.

1.1.

Guide to real precision in the PARI interface 19

CyPari2 Documentation, Release 2.1.3

addhelp (sym, str)

Changes the help message for the symbol sym. The string str is expanded on the spot and stored as the online
help for sym. It is recommended to document global variables and user functions in this way, although gp
will not protest if you don’t.

You can attach a help text to an alias, but it will never be shown: aliases are expanded by the ? help operator
and we get the help of the symbol the alias points to. Nothing prevents you from modifying the help of
built-in PARI functions. But if you do, we would like to hear why you needed it!

Without addhelp, the standard help for user functions consists of its name and definition.

gp> £(x) = x2;
gp> ?f

f =

(x)->x72

Once addhelp is applied to f, the function code is no longer included. It can still be consulted by typing
the function name:

gp> addhelp(f, "Square")
gp> ?f
Square

gp> f
%2 = (X)->xA2

addprimes (x)

Adds the integers contained in the vector = (or the single integer x) to a special table of “user-defined
primes”, and returns that table. Whenever factor is subsequently called, it will trial divide by the elements
in this table. If « is empty or omitted, just returns the current list of extra primes.

? addprimes(37975227936943673922808872755445627854565536638199)
? factor(15226050279225333605356183781326374297180681149613806\
88657908494580122963258952897654000350692006139)

%2 =

[37975227936943673922808872755445627854565536638199 1]

[40094690950920881030683735292761468389214899724061 1]
? ##
#*%* Jlast result computed in 0 ms.

The entries in must be primes: there is no internal check, even if the factor_proven default is set. To
remove primes from the list use removeprimes.
agm(x, y, precision)

Arithmetic-geometric mean of x and y. In the case of complex or negative numbers, the optimal AGM is
returned (the largest in absolute value over all choices of the signs of the square roots). p-adic or power
series arguments are also allowed. Note that a p-adic agm exists only if 2:/y is congruent to 1 modulo p
(modulo 16 for p = 2). x and y cannot both be vectors or matrices.

airy(z, precision)

Airy [Ai, Bi] functions of argument z.

? [A,B] = airy(D);
? A

(continues on next page)

20 Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

%2 = 0.13529241631288141552414742351546630617
7B
%3 = 1.2074235949528712594363788170282869954

algadd(al, x, y)
Given two elements x and y in al, computes their sum z + y in the algebra al.

? A = alginit(nfinit(y),[-1,1]);
? algadd(a,[1,0]~,[1,2]~)
%2 = [2, 2]~

Also accepts matrices with coefficients in al.

algalgtobasis(al, x)

Given an element x in the central simple algebra al output by alginit, transforms it to a column vector
on the integral basis of al. This is the inverse function of algbasistoalg.

? A = alginit(nfinit(y*2-5),[2,y]);

? algalgtobasis(A, [y, 1]~)

%2 = [0, 2, 0, -1, 2, 0, 0, O]~

? algbasistoalg(A,algalgtobasis(A, [y,1]~))
%3 = [Mod(Mod(y, y*2 - 5), x42 - 2), 1]~

algaut(al)
Given a cyclic algebra al = (L/K, 0,b) output by alginit, returns the automorphism o.

nf = nfinit(y);

p = idealprimedec(nf,7)[1];

p2 = idealprimedec(nf,11)[1];

A = alginit(nf,[3,[[p,p2],[1/3,2/31]1,[011);
algaut (A)

%5 = -1/3%xA2 + 1/3*x + 26/3

NN N N N

algb(al)
Given a cyclic algebra al = (L/K, 0, b) output by alginit, returns the element b € K.

nf = nfinit(y);

? p = idealprimedec(nf,7)[1];

? p2 = idealprimedec(nf,11)[1];

? A = alginit(nf, [3,[[p,p2]1,[1/3,2/311,[01D);
? algb(A)

%5 = Mod(-77, y)

algbasis(al)

Given a central simple algebra a/ output by alginit, returns a Z-basis of the order Oy stored in al with
respect to the natural order in al. It is a maximal order if one has been computed.

A = alginit(nfinit(y), [-1,-11);
? algbasis(A)

%2 =

[1 060 1/2]

(continues on next page)

1.1.

Guide to real precision in the PARI interface 21

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

[0 10 1/2]

[0 0 11/2]

[0 0 0 1/2]

algbasistoalg(al, x)

Given an element x in the central simple algebra al output by alginit, transforms it to its algebraic repre-
sentation in al. This is the inverse function of algalgtobasis.

? A alginit(nfinit(y*2-5),[2,y]1);

? z = algbasistoalg(A,[0,1,0,0,2,-3,0,0]~);

? liftall(z)

%3 = [(-1/2*y - 2)*x + (-1/4*y + 5/4), -3/4%y + 7/4]~
7 algalgtobasis(A,z)

% = [0, 1, 0, 0, 2, -3, 0, 0]~

algcenter(al)

If al is a table algebra output by algtableinit, returns a basis of the center of the algebra al over its prime
field (Q or IF,,). If al is a central simple algebra output by alginit, returns the center of al, which is stored
inal.

A simple example: the 22:2 upper triangular matrices over Q, generated by I, a = [0,1;0,0] and b =
[0, 0;0, 1], such that a? =0, ab = a, ba = 0, b> = b: the diagonal matrices form the center.

? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt);

? algcenter(A) \\ = (I_2)

%3 =

[1]

(0]

[0]

An example in the central simple case:

? nf = nfinit(y*3-y+1);

? A = alginit(nf, [-1,-1]1);
? algcenter(A) .pol

%3 =yr3 -y +1

algcentralproj (al, z, maps)

Given a table algebra al output by algtableinit and a t_VEC z = [zy, ..., 2,] of orthogonal central
idempotents, returns a t_VEC [aly, ..., al,,] of algebras such that al; = z;al. If maps = 1, each al; is a
t_VEC [quo, proj, li ft] where quo is the quotient algebra, proj is a t_MAT representing the projection onto
this quotient and /ift is a t_MAT representing a lift.

A simple example: FoxF,, generated by 1 = (1,1), e = (1,0) and x such that 2% + x + 1 = 0. We
have ez = e, 22 =z + 1 and ex = 0.

? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]1]1;
? A = algtableinit(mt,2);

(continues on next page)

22

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

e = [0,1,0]~;

e2 = algsub(A,[1,0,0]~,e);

[a,a2] = algcentralproj(A,[e,e2]);
algdim(a)

% = 1

? algdim(a2)

%7 = 2

NN N

=~

algchar (al)

Given an algebra al output by alginit or algtableinit, returns the characteristic of al.

? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]1];
? A = algtableinit(mt,13);

? algchar(A)

%3 = 13

algcharpoly(al, b, v, abs)

Given an element b in al, returns its characteristic polynomial as a polynomial in the variable v. If al is
a table algebra output by algtableinit or if abs = 1, returns the absolute characteristic polynomial of
b, which is an element of F,[v] or Q[v]; if al is a central simple algebra output by alginit and abs = 0,
returns the reduced characteristic polynomial of b, which is an element of K[v] where K is the center of
al.

? al = alginit(finit(y), [-1,-11); \\ (-1,-1_Q

? algcharpoly(al, [0,1]~)

%2 = x22 + 1

? algcharpoly(al, [0,1]~,,1)

%3 = XM+ 2%xA2 + 1

? nf = nfinit(y*2-5);

? al alginit(nf,[-1,y]1);

? a = [y,1+x]~*Mod(1,yA2-5)*Mod(1,xA2+1);

? P = lift(algcharpoly(al,a))

%7 = x72 - 2*y*x + (-2%y + 5)

? algcharpoly(al,a,,l)

%8 = x78 - 20*xA6 - 80*xA5 + 110*x24 + 800%xA3 + 1500*x42 - 400*x + 25
? lift(P*subst(P,y,-y)*Mod(1,y*2-5))A2

%9 = xA8 - 20%xA6 - 80*xA5 + 110%x24 + 800%x23 + 1500%x42 - 400%x + 25

Also accepts a square matrix with coefficients in al.

algdegree(al)

Given a central simple algebra al output by alginit, returns the degree of al.

? nf = nfinit(y*3-y+1);

? A = alginit(nf, [-1,-11);
? algdegree(d)

%3 = 2

algdep(z, k, flag)
z being real/complex, or p-adic, finds a polynomial (in the variable 'x) of degree at most k, with integer
coefficients, having z as approximate root. Note that the polynomial which is obtained is not necessarily
the “correct” one. In fact it is not even guaranteed to be irreducible. One can check the closeness either by

1.1.

Guide to real precision in the PARI interface 23

CyPari2 Documentation, Release 2.1.3

a polynomial evaluation (use subst), or by computing the roots of the polynomial given by algdep (use
polroots or polrootspadic).

Internally, lindep([1, 2, ..., 2¥], flag) is used. A nonzero value of flag may improve on the default behav-
ior if the input number is known to a huge accuracy, and you suspect the last bits are incorrect: if flag > 0
the computation is done with an accuracy of flag decimal digits; to get meaningful results, the parameter
flag should be smaller than the number of correct decimal digits in the input. But default values are usually
sufficient, so try without flag first:

? \p200

? z = 270(1/6)+34(1/5);

? algdep(z, 30); \\ right in 280ms

? algdep(z, 30, 100); \\ wrong in 169ms

? algdep(z, 30, 170); \\ right in 288ms

? algdep(z, 30, 200); \\ wrong in 320ms

? \p250

? z = 272(1/6)+3~(1/5); \\ recompute to new, higher, accuracy !
? algdep(z, 30); \\ right in 329ms

? algdep(z, 30, 200); \\ right in 324ms

? \p500

? algdep(2A(1/6)+34(1/5), 30); \\ right in 677ms
? \p1000O

?

algdep(2A(1/6)+34(1/5), 30); \\ right in 1.5s

The changes in realprecision only affect the quality of the initial approximation to 2'/¢ + 31/5, algdep
itself uses exact operations. The size of its operands depend on the accuracy of the input of course: more
accurate input means slower operations.

Proceeding by increments of 5 digits of accuracy, algdep with default flag produces its first correct result
at 195 digits, and from then on a steady stream of correct results:

\\ assume T contains the correct result, for comparison
forstep(d=100, 250, 5, localprec(d);\
print(d, " ", algdep(22(1/6)+3A(1/5),30) == T))

The above example is the test case studied in a 2000 paper by Borwein and Lisonek: Applications of
integer relation algorithms, Discrete Math., 217, p. 65-82. The version of PARI tested there was 1.39,
which succeeded reliably from precision 265 on, in about 200 as much time as the current version.

algdim(al, abs)

If al is a table algebra output by algtableinit or if abs = 1, returns the dimension of al over its prime
subfield (Q or IF). If al is a central simple algebra output by alginit and abs = 0, returns the dimension
of al over its center.

? nf = nfinit(y*3-y+1);

? A = alginit(nf, [-1,-11);
? algdim(A)

%3 = 4

? algdim(A,1)

%4 = 12

algdisc(al)

Given a central simple algebra a/ output by alginit, computes the discriminant of the order Oy stored in
al, that is the determinant of the trace form Tr : OgxOy — Z.

24

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

? nf = nfinit(y*2-5);

? A = alginit(mf, [-3,1-yD);

? [PR,h] = alghassef(A)

%3 = [[[2, [2, ®]~, 1, 2, 1], [3, [3, ®]~, 1, 2, 1]], Vecsmall([®, 1])]
?n algdegree(A);

?D algdim(A,1);

? h = vector(#h, i, n - gcd(n,h[i]));

? nAD * nf.discA(n*2) * idealnorm(nf, idealfactorback(nf,PR,h))*n
%4 = 12960000

? algdisc(A)

%5 = 12960000

algdivl(al, x, y)
Given two elements x and y in al, computes their left quotient 2\ y in the algebra al: an element z such that
xz = y (such an element is not unique when = is a zerodivisor). If x is invertible, this is the same as .
Assumes that y is left divisible by x (i.e. that z exists). Also accepts matrices with coefficients in al.
algdivr(al, x, y)
Given two elements x and ¥ in al, returns 2y~ !. Also accepts matrices with coefficients in al.
alggroup (gal, p)
Initializes the group algebra K[G] over K = Q (p omitted) or F,, where G is the underlying group of the

galoisinit structure gal. The input gal is also allowed to be a t_VEC of permutations that is closed under
products.

Example:

K = nfsplitting(x*3-x+1);

gal = galoisinit(K);

al = alggroup(gal);

algissemisimple(al)

%4 =1

? G = [Vecsmall([1,2,3]), Vecsmall([1,3,2])];
? al2 = alggroup(G, 2);

? algissemisimple(al2)

%8 =0

N N N N

alggroupcenter (gal, p, cc)

Initializes the center Z (K [G]) of the group algebra K [G] over K = Q (p = 0 or omitted) or IF,, where G
is the underlying group of the galoisinit structure gal. The input gal is also allowed to be a t_VEC
of permutations that is closed under products. Sets cc to a t_VEC [elts, conjclass, rep, flag] where elts
is a sorted t_VEC containing the list of elements of G, conjclass is a t_VECSMALL of the same length
as elts containing the index of the conjugacy class of the corresponding element (an integer between 1 and
the number of conjugacy classes), and rep is a t_VECSMALL of length the number of conjugacy classes
giving for each conjugacy class the index in elts of a representative of this conjugacy class. Finally flag
is 1 if and only if the permutation representation of G is transitive, in which case the i-th element of elts
is characterized by g[1] = i; this is always the case when gal is a galoisinit structure. The basis
of Z(K|[G]) as output consists of the indicator functions of the conjugacy classes in the ordering given
by cc. Example:

? K = nfsplitting(x*4+x+1);

? gal = galoisinit(K); \\ S4

? al = alggroupcenter(gal, ,&cc);
? algiscommutative(al)

(continues on next page)

1.1. Guide to real precision in the PARI interface 25

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

%4 =1
? #cc[3] \\ number of conjugacy classes of S4
%5 =5

? gal = [Vecsmall([1,2,3]),Vecsmall([1,3,2])]; \\ C2
? al = alggroupcenter(gal, ,&cc);

? cc[3]

%8 = Vecsmall([1, 2])

? cc[4]

% =0

alghasse(al, pl)

Given a central simple algebra al output by alginit and a prime ideal or an integer between 1 and) + 12,
returns a t_FRAC h : the local Hasse invariant of a/ at the place specified by pl.

? nf = nfinit(y*2-5);
? A = alginit(nf, [-1,y]);
? alghasse(A, 1)
%3 = 1/2
? alghasse(A, 2)
%4 =0
? alghasse(A, idealprimedec(nf,2)[1])
%5 = 1/2
? alghasse(A, idealprimedec(nf,5)[1])
% = 0
alghassef (al)

Given a central simple algebra al output by alginit, returns a t_VEC [PR, hy] describing the local Hasse
invariants at the finite places of the center: PR is a t_VEC of primes and h; is a t_VECSMALL of integers
modulo the degree d of al. The Hasse invariant of al at the primes outside PR is 0, but PR can include
primes at which the Hasse invariant is 0.

? nf = nfinit(y*2-5);

? A = alginit(nf, [-1,2*%y-1]1);

? [PR,hf] = alghassef(A);

? PR

%4 = [[19, [10, 2]~, 1, 1, [-8, 2; 2, -10]1]1, [2, [2, ®]~, 1, 2, 1]]
? hf

%5 = Vecsmall([1, 0])

alghassei (al)

Given a central simple algebra al/ output by alginit, returns a t_VECSMALL h; of r; integers modulo the
degree d of al, where 7; is the number of real places of the center: the local Hasse invariants of a/ at infinite
places.

? nf = nfinit(y*2-5);

? A = alginit(nf, [-1,y]);
? alghassei(A)

%3 = Vecsmall([1, 0])

algindex(al, pl)

Returns the index of the central simple algebra A over K (as output by alginit), that is the degree e of the
unique central division algebra D over K such that A is isomorphic to some matrix algebra My (D). If pl

26 Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

is set, it should be a prime ideal of K or an integer between 1 and r; + 75, and in that case return the local
index at the place p/ instead.

? nf = nfinit(y*2-5);

? A = alginit(mf, [-1,y]);

? algindex(A, 1)

%3 = 2

? algindex(A, 2)

% =1

? algindex(A, idealprimedec(nf,2)[1])
%5 = 2

? algindex(A, idealprimedec(nf,5)[1])
%6 =1

? algindex(A)

%7 = 2

alginit(B, C, v, maxord)

Initializes the central simple algebra defined by data B, C' and variable v, as follows.

¢ (multiplication table) B is the base number field K in nfinit form, C'is a “multiplication table” over
K. As a K-vector space, the algebra is generated by a basis (e¢; = 1, ..., e,,); the table is given as a
t_VEC of n matrices in M,,(K), giving the left multiplication by the basis elements e;, in the given
basis. Assumes that e; = 1, that the multiplication table is integral, and that (D, Ke;, C') describes
a central simple algebra over K.

{mi=1[0,-1,0, 0;

|5 22 =
(SR

|
[— I — R —]

5 or
w-
SR Il R |l @2

I
(=)

S 2 =

b e —]

alginit(nfinit(y), [matid{4), mi,mj,mk], 0); }

represents (in a complicated way) the quaternion algebra (—1, —1)g. See below for a simpler solution.

* (cyclic algebra) B is an rnf structure attached to a cyclic number field extension L/K of degree d,
Cis a t_VEC [sigma,b] with 2 components: sigma is a t_POLMOD representing an automorphism
generating Gal(L/K), bis an element in K *. This represents the cyclic algebra (L/K, o, b). Currently
the element b has to be integral.

? Q = nfinit(y); T = polcyclo(5, 'x); F = rnfinit(Q, T);
? A = alginit(F, [Mod(x*2,T), 31);
defines the cyclic algebra (L/Q, 7, 3), where L = Q({s) and o : (: — — — > (? generates Gal(L/Q).

* (quaternion algebra, special case of the above) B is an nf structure attached to a number field K,
C' = [a,] is a vector containing two elements of K * with a not a square in K, returns the quaternion
algebra (a,b) . The variable v (' x by default) must have higher priority than the variable of K .pol

and is used to represent elements in the splitting field L = K[x]/(z% — a).

1.1.

Guide to real precision in the PARI interface 27

CyPari2 Documentation, Release 2.1.3

? Q = nfinit(y); A = alginit(Q, [-1,-11); \\ (-1,-1)_Q

¢ (algebra/K defined by local Hasse invariants) B is an nf structure attached to a number field K, C =
[d,[PR, hy], h;] is a triple containing an integer d > 1, a pair [PR, hy] describing the Hasse invariants
at finite places, and h; the Hasse invariants at archimedean (real) places. A local Hasse invariant
belongs to (1/d)Z/Z C Q/Z, and is given either as a t_FRAC (lift to (1/d)Z), a t_INT or t_INTMOD
modulo d (lift to Z/dZ); a whole vector of local invariants can also be given as a t_VECSMALL, whose
entries are handled as t_INT s. PRis a list of prime ideals (prid structures), and A is a vector of the
same length giving the local invariants at those maximal ideals. The invariants at infinite real places
are indexed by the real roots K .roots: if the Archimedean place v is attached to the j-th root, the
value of h,, is given by h;[j], must be 0 or 1/2 (or d/2 modulo d), and can be nonzero only if d is even.

By class field theory, provided the local invariants h,, sum to 0, up to Brauer equivalence, there is a unique
central simple algebra over K with given local invariants and trivial invariant elsewhere. In particular, up
to isomorphism, there is a unique such algebra A of degree d.

We realize A as a cyclic algebra through class field theory. The variable v (' x by default) must have higher
priority than the variable of K . pol and is used to represent elements in the (cyclic) splitting field extension
L/K for A.

? nf = nfinit(y*2+1);

? PR = idealprimedec(nf,5); #PR
%2 = 2

? hi = [1;

? hf = [PR, [1/3,-1/311;

? A = alginit(nf, [3,hf,hi]);
? algsplittingfield(A).pol
%6 = xA3 - 21*x + 7

 (matrix algebra, toy example) B is an nf structure attached to a number field K, C' = d is a positive
integer. Returns a cyclic algebra isomorphic to the matrix algebra My (K).

In all cases, this function computes a maximal order for the algebra by default, which may require a lot of
time. Setting maxord = 0 prevents this computation.
The pari object representing such an algebra A is a t_VEC with the following data:

* A splitting field L of A of the same degree over K as A, in rnfinit format, accessed with
algsplittingfield.

» The Hasse invariants at the real places of K, accessed with alghassei.

¢ The Hasse invariants of A at the finite primes of K that ramify in the natural order of A, accessed with
alghassef.

* A basis of an order Oy expressed on the basis of the natural order, accessed with algbasis.
* A basis of the natural order expressed on the basis of Oy, accessed with alginvbasis.

¢ The left multiplication table of Oy on the previous basis, accessed with algmultable.

* The characteristic of A (always 0), accessed with algchar.

 The absolute traces of the elements of the basis of O.

* If A was constructed as a cyclic algebra (L/K, o, b) of degree d, a t_VEC [0, 02, ..., 0@~ !]. The func-
tion algaut returns o.

* If A was constructed as a cyclic algebra (L/ K, o, b), the element b, accessed with algb.

28

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

 If A was constructed with its multiplication table mt over K, the t_VEC of t_MAT m¢t, accessed with
algrelmultable.

o If A was constructed with its multiplication table mt¢ over K, a t_VEC with three components: a
t_COL representing an element of A generating the splitting field L as a maximal subfield of A, a
t_MAT representing an L-basis B of A expressed on the Z-basis of Oy, and a t_MAT representing the
Z-basis of Og expressed on B. This data is accessed with algsplittingdata.
alginv(al, x)

Given an element x in al, computes its inverse 2! in the algebra al. Assumes that x is invertible.

? A = alginit(finit(y), [-1,-11);
? alginv(A,[1,1,0,0]~)
%2 = [1/2, 1/2, 0, O]~

Also accepts matrices with coefficients in al.
alginvbasis(al)

Given an central simple algebra al output by alginit, returns a Z-basis of the natural order in al with
respect to the order Oy stored in al.

A = alginit(nfinit(y), [-1,-11);
? alginvbasis(A)

%2 =

[100 -1]

[0 10 -1]

[0 0 1 -1]

[0 0 0 2]

algisassociative (mt, p)

Returns 1 if the multiplication table mt is suitable for algtableinit(mt,p), O otherwise. More pre-
cisely, mt should be a t_VEC of n matrices in M,,(K), giving the left multiplications by the basis elements
€1, ..., én (structure constants). We check whether the first basis element e; is 1 and e;(ejer) = (e;€;)ex
for all 4, j, k.

? mt = [matid(3),[9,0,0;1,0,1;0,0,0]1,[0,0,06;0,0,0;1,0,1]];
7 algisassociative(mt)
%2 =1

May be used to check a posteriori an algebra: we also allow mt as output by algtableinit (p is ignored
in this case).

algiscommutative(al)

al being a table algebra output by algtableinit or a central simple algebra output by alginit, tests
whether the algebra al is commutative.

? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]1];

? A = algtableinit(mt);

? algiscommutative(A)

%3 =0

? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);

(continues on next page)

1.1. Guide to real precision in the PARI interface 29

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

? algiscommutative(A)
%6 =1

algisdivision(al, pl)

Given a central simple algebra al output by alginit, tests whether al is a division algebra. If pl is set, it
should be a prime ideal of K or an integer between 1 and r; + 2, and in that case tests whether al is locally
a division algebra at the place p! instead.

? nf = nfinit(y*2-5);

? A = alginit(nf, [-1,y]);

? algisdivision(A, 1)

%3 =1

? algisdivision(A, 2)

% = 0

? algisdivision(A, idealprimedec(nf,2)[1])
%5 =1

? algisdivision(A, idealprimedec(nf,5)[1])
% = 0

? algisdivision(A)

%7 =1

algisdivl(al, x, y, 2)

Given two elements z and y in al, tests whether y is left divisible by x, that is whether there exists z in al
such that zz = y, and sets z to this element if it exists.

? A = alginit(finit(y), [-1,11);
? algisdivl(A, [x+2,-x-2]~,[x,1]~)

%2 =0

? algisdivl(A, [x+2,-x-2]~,[-X,x]~,&Z)
%3 =1

?z

%4 = [Mod(-2/5*x - 1/5, x*2 + 1), 0]~

Also accepts matrices with coefficients in al.

algisinv(al x, ix)

Given an element x in al, tests whether x is invertible, and sets ix to the inverse of x.

? A = alginit(finit(y), [-1,11);

? algisinv(A,[-1,1]~)

%2 =0

? algisinv(A,[1,2]~,&ix)

%3 =1

? ix

%4 = [Mod(Mod(-1/3, y), x22 + 1), Mod(Mod(2/3, y), x*2 + 1)]~

Also accepts matrices with coefficients in al.

algisramified(al, pl)
Given a central simple algebra al output by alginit, tests whether al is ramified, i.e. not isomorphic to a
matrix algebra over its center. If p/ is set, it should be a prime ideal of K or an integer between 1 and 1 + 13,
and in that case tests whether al is locally ramified at the place p! instead.

30 Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

? nf = nfinit(y*2-5);

? A = alginit(mf, [-1,yD);

? algisramified(A, 1)

%3 =

? algisramified(A, 2)

% =0

? algisramified(A, idealprimedec(nf,2)[1])
%5 =

? algisramified(A, idealprimedec(nf,5)[1])
%6 = 0

? algisramified(A)

%7 =1

algissemisimple (al)

al being a table algebra output by algtableinit or a central simple algebra output by alginit, tests
whether the algebra al is semisimple.

? mt = [matid(3),[9,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];

? A = algtableinit(mt);

? algissemisimple(A)

%3 =0

m_i=[0,-1,0,0;1,0

m_j=[0,0,-1,0;0,0,0,1;1,0,0,0;0,

m_k=[0,0,0,-1;0,0,-1,0;0,1,0,0;1,
= [matid(4), m_i, m_j]

A = algtableinit(mt);

algissemisimple(A)

%9 =

; \\ quaternion algebra (-1,-1)

NN N N N N

algissimple(al, ss)

al being a table algebra output by algtableinit or a central simple algebra output by alginit, tests
whether the algebra al is simple. If ss = 1, assumes that the algebra al is semisimple without testing it.

? mt = [matid(3),[9,90,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt); \\ matrices [*,*; 0,%]
? algissimple(A)

%3 =0

? algissimple(A,1) \\ incorrectly assume that A is semisimple
%4 =

? m_i=[0,-1,0,0;1,0,0,0;0,0,0,-1;0,0,1,0];

? m_j=[0,0,-1,0;0,0,0,1;1,0,0,0;0,-1,0,0];

? m_k=[0,0,0,-1;0,0,b,0; 0,1,@,0,1,0, ,0];

? = [matid(4), m_i, m_j, m_k];

? A = algtableinit(mt); \\ quaternion algebra (-1,-1)

? algissimple(A)

%10 =1

? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]1];
? A = algtableinit(mt,2); \\ direct product F_4 x F_2

? algissimple(A)

%13 =0

algissplit(al, pl)

Given a central simple algebra al output by alginit, tests whether al is split, i.e. isomorphic to a matrix

1.1. Guide to real precision in the PARI interface 31

CyPari2 Documentation, Release 2.1.3

algebra over its center. If pl is set, it should be a prime ideal of K or an integer between 1 and r; + r5, and
in that case tests whether al is locally split at the place p! instead.

? nf = nfinit(y*2-5);

? A = alginit(nf, [-1,y1);

? algissplit(A, 1)

%3 =0

? algissplit(A, 2)

% =1

? algissplit(A, idealprimedec(nf,2)[1])
%5 =0

? algissplit(A, idealprimedec(nf,5)[1])
%6 =1

? algissplit(A)

%7 = 0

alglatadd(al, latl, lat2, ptinter)

Given an algebra al and two lattices lat] and lat2 in al, computes the sum latl + lat2. If ptinter is present,
set it to the intersection latl N lat2.

al = alginit(nfinit(y+2+7), [-1,-11);

latl = alglathnf(al,[1,1,0,0,0,0,0,0]~);
lat2 alglathnf(al,[1,0,1,0,0,0,0,0]~);
latsum = alglatadd(al,latl,lat2,&latinter);
matdet(latsum[1])

%5 = 4

? matdet(latinter([1])

%6 = 64

NN N N

=~

alglatcontains(al, lat, x, ptc)

Given an algebra al, a lattice lat and x in al, tests whether x € lat. If ptc is present, sets it to the t_COL of
coordinates of x in the basis of lat.

? al = alginit(nfinit(y*2+7), [-1,-11);
? al = [1,-1,0,1,2,0,1,2]~;

? latl = alglathnf(al,al);

? alglatcontains(al,latl,al,&c)

% =1

?C
% = [-1, -2, -1, 1, 2, O, 1, 1]~

alglatelement (al, lat, ¢)

Given an algebra al, a lattice lat and a t_COL c, returns the element of al whose coordinates on the
mathbb{Z}-basis of lat are given by c.

al = alginit(nfinit(y*2+7), [-1,-11);
al = [1,-1,0,1,2,0,1,2]~;

latl = alglathnf(al,al);

c = [1..8]~;

elt = alglatelement(al,latl,c);
alglatcontains(al,latl,elt,&c2)

% =1

? c==c2

%7 =1

NN N N N N

32 Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

alglathnf (al, m, d)

Given an algebra al and a matrix m with columns representing elements of al, returns the lattice L generated
by the columns of m. If provided, d must be a rational number such that L contains d times the natural
basis of al. The argument m is also allowed to be a t_VEC of t_MAT, in which case m is replaced by the
concatenation of the matrices, or a t_COL, in which case m is replaced by its left multiplication table as an
element of al.

? al = alginit(nfinit(y*2+7), [-1,-11);
?a=1[1,1,-1/2,1,1/3,-1,1,1]~;

? mt = algtomatrix(al,a,l);

? lat = alglathnf(al,mt);

? lat[2]

%5 = 1/6

alglatindex(al, latl, lat2)

Given an algebra al and two lattices lat/ and lat2 in al, computes the generalized index of lat! relative
to lat2, i.e. ||lat2/lat]l Nlat2||/||latl/lat]l N lat2||.

? al = alginit(nfinit(y*2+7), [-1,-11);

? latl = alglathnf(al,[1,1,0,0,0,0,0,0]~);
? lat2 = alglathnf(al,[1,0,1,0,0,0,0,0]~);
? alglatindex(al,latl,lat2)

% =1

? latl==lat2

%5 =0

alglatinter(al, latl, lat2, ptsum)

Given an algebra al and two lattices /at] and lat2 in al, computes the intersection latl N lat2. If ptsum is
present, sets it to the sum latl + lat2.

? al = alginit(nfinit(y*2+7), [-1,-11);

? latl = alglathnf(al,[1,1,0,0,0,0,0,0]~);

? lat2 = alglathnf(al,[1,0,1,0,0,0,0,0]~);

? latinter = alglatinter(al,latl,lat2,&latsum);
? matdet(latsum[1])

%5 = 4

? matdet(latinter([1])

%6 = 64

alglatlefttransporter(al, latl, lat2)

Given an algebra al and two lattices lat] and lat2 in al, computes the left transporter from lat! to lat2, i.e.
the set of « € al such that z.latl C lat2.

al = alginit(nfinit(y*2+7), [-1,-11);

latl = alglathnf(al,[1,-1,0,1,2,0,5,2]~);
lat2 = alglathnf(al,[0,1,-2,-1,0,0,3,1]~);
tr = alglatlefttransporter(al,latl,lat2);

a = alglatelement(al,tr,[0,0,0,0,0,0,1,0]~);
alglatsubset(al,alglatmul(al,a,latl),lat2)
% =1

? alglatsubset(al,alglatmul(al,latl,a),lat2)
%7 =0

NN N N N N

1.1. Guide to real precision in the PARI interface 33

CyPari2 Documentation, Release 2.1.3

alglatmul (al, latl, lar2)

Given an algebra al and two lattices lat] and lat2 in al, computes the lattice generated by the products of
elements of lat] and lat2. One of lat] and lat2 is also allowed to be an element of a/; in this case, computes
the product of the element and the lattice.

? al = alginit(nfinit(y*2+7), [-1,-11);
? al =[1,-1,0,1,2,0,1,2]~;

? a2 = [0,1,2,-1,0,0,3,1]~;

? latl = alglathnf(al,al);

? lat2 = alglathnf(al,a2);

? lat3 = alglatmul(al,latl,lat2);

? matdet(lat3[1])

%7 = 29584

? lat3 == alglathnf(al, algmul(al,al,a2))
%8 =0

? lat3 == alglatmul(al, latl, a2)

% =0

? lat3 == alglatmul(al, al, lat2)

%10 = 0

alglatrighttransporter(al, latl, lat2)

Given an algebra al and two lattices lat] and laz2 in al, computes the right transporter from lat! to lat2, i.e.
the set of z € al such that latl.x C lat2.

al = alginit(nfinit(y*2+7), [-1,-11);

latl = alglathnf(al,matdiagonal([1,3,7,1,2,8,5,2]));
lat2 = alglathnf(al,matdiagonal([5,3,8,1,9,8,7,1]1));
tr = alglatrighttransporter(al,latl,lat2);

a = alglatelement(al,tr,[0,0,0,0,0,0,0,1]~);

? alglatsubset(al,alglatmul(al,latl,a),lat2)

%6 =1

? alglatsubset(al,alglatmul(al,a,latl),lat2)

%7 = 0

NN N N N N

alglatsubset (al, latl, lat2, ptindex)

Given an algebra al and two lattices lat! and lat2 in al, tests whether lat1 C lat2. If it is true and ptindex
is present, sets it to the index of lat! in lat2.

al = alginit(nfinit(y*2+7), [-1,-11);
latl = alglathnf(al,[1,1,0,0,0,0,0,0]~);
lat2 = alglathnf(al,[1,0,1,0,0,0,0,0]~);
? alglatsubset(al,latl,lat2)

% =0

? latsum = alglatadd(al,latl,lat2);

? alglatsubset(al,latl,latsum,&index)

N N N

%6 = 1
? index
%7 = 4

algmakeintegral (mt, maps)

mt being a multiplication table over Q in the same format as the input of algtableinit, computes an
integral multiplication table m#2 for an isomorphic algebra. When maps = 1, returns a t_VEC [m¢2, S, T
where S and T are matrices respectively representing the map from the algebra defined by mz to the one
defined by m#2 and its inverse.

34 Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

? mt = [matid(2),[0,-1/4;1,01];
? algtableinit(mt);

Fekk

at top-level: algtableinit(mt)

#** algtableinit: domain error in algtableinit: denominator(mt) != 1
? mt2 = algmakeintegral (mt);

? al = algtableinit(mt2);

? algisassociative(al)

%4 =1

? [mt2, S, T] = algmakeintegral(mt,1);

?S

%6 =

[1 0]

[0 1/4]
? T
%7 =
[1 0]

[0 4]
? vector(#mt, i, S * (mt * T[,i]) * T) == mt2
%8 =1

algmul (al, x, y)

Given two elements x and y in al/, computes their product zy in the algebra al.

? A = alginit(nfinit(y), [-1,-11);
? algmul(A,[1,1,0,0]~,[0,0,2,1]~)
%2 = [2, 3, 5, -4]~

Also accepts matrices with coefficients in al.

algmultable(al)

Returns a multiplication table of al over its prime subfield (Q or F),), as a t_VEC of t_MAT: the left multi-
plication tables of basis elements. If al was output by algtableinit, returns the multiplication table used
to define al. If al was output by alginit, returns the multiplication table of the order Oy stored in al.

?7 A
?M
? #M
%3 =4

? M[1] \\ multiplication by e_1 =1
%4 =

[1 00 0]

alginit(nfinit(y), [-1,-11);
algmultable(A);

[0 10 0]

[0 0 1 0]

[0 0 0 1]

? M[2]
%5 =

(continues on next page)

1.1. Guide to real precision in the PARI interface 35

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

[0 -1 1 0]
[1011]
[0 01 1]

[0 0 -2 -1]

algneg(al, x)
Given an element x in al, computes its opposite —z in the algebra al.

? A = alginit(nfinit(y), [-1,-11);
? algneg(A1[1111®1®]~)
%2 =[-1, -1, 0, 0]~

Also accepts matrices with coefficients in al.

algnorm(al, x, abs)
Given an element x in al, computes its norm. If a/ is a table algebra output by algtableinit orif abs = 1,
returns the absolute norm of x, which is an element of IF,, of Q; if al is a central simple algebra output by
alginit and abs = 0 (default), returns the reduced norm of x, which is an element of the center of al.

? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]1];
? A = algtableinit(mt,19);

? algnorm(A, [0,-2,3]~)

%3 = 18

? nf = nfinit(y*2-5);

? B = alginit(nf,[-1,y]);

?b [x,1]~;

? n = algnorm(B,b)

%7 = Mod(-y + 1, y*2 - 5)

? algnorm(B,b,1)

%8 = 16
? nfeltnorm(nf,n)*algdegree(B)
%9 = 16

Also accepts a square matrix with coefficients in al.

algpoleval (al, T, b)

Given an element b in al and a polynomial 7" in K[X], computes T'(b) in al. Also accepts as input a
t_VEC [b, mb] where mb is the left multiplication table of b.

nf = nfinit(y*2-5);

al = alginit(nf,[y,-11);

b = [1..8]~;

pol = algcharpoly(al,b,,1);
algpoleval(al,pol,b)==0

% =1

? mb = algtomatrix(al,b,1);

? algpoleval(al,pol, [b,mb])==0
%7 =1

N N N N

=~

algpow(al, x, n)

Given an element 2z in al and an integer n, computes the power =" in the algebra al.

36 Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

? A = alginit(finit(y), [-1,-11);
? alngW(A![1!11®!®]~l7)
%2 = [8, -8, 0, 0]~

Also accepts a square matrix with coefficients in al.

algprimesubalg(al)

al being the output of algtableinit representing a semisimple algebra of positive characteristic, returns
a basis of the prime subalgebra of al. The prime subalgebra of al is the subalgebra fixed by the Frobenius
automorphism of the center of al. It is abstractly isomorphic to a product of copies of IF),.

? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);

? algprimesubalg(A)

%3 =

[1 0]

[0 1]

[0 0]

algquotient (al, I, maps)

al being a table algebra output by algtableinit and / being a basis of a two-sided ideal of al represented
by a matrix, returns the quotient al/I. When maps = 1, returns a t_VEC [al/I, proj, li ft] where proj and
lift are matrices respectively representing the projection map and a section of it.

? mt = [matid(3), [0,60,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);

? AQ = algquotient(A,[0;1;0]);

? algdim(AQ)

%4 = 2

algradical (al)

al being a table algebra output by algtableinit, returns a basis of the Jacobson radical of the algebra a/
over its prime field (Q or IF)).

Here is an example with A = Q[z]/(2?), with the basis (1, z):

? mt = [matid(2),[0,0;1,0]1];
? A = algtableinit(mt);

? algradical(A) \\ = x)

%3 =

[0]

(1]

Another one with 22:2 upper triangular matrices over Q, with basis I, a = [0,1;0,0] and b = [0, 0;0, 1],
such that a2 = 0, ab = a, ba = 0, b2 = b:

? mt = [matid(3),[9,0,0;1,0,1;0,0,0],[60,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt);

? algradical(A) \\ = ()

%6 =

[0]

(continues on next page)

1.1. Guide to real precision in the PARI interface 37

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

[1]

(0]

algramifiedplaces(al)

Given a central simple algebra al output by alginit, returns a t_VEC containing the list of places of the
center of al that are ramified in al. Each place is described as an integer between 1 and r; or as a prime
ideal.

? nf = nfinit(y*2-5);

? A = alginit(mf, [-1,y]);

? algramifiedplaces(A)

%3 = [1, [2, [2, 0]~, 1, 2, 1]]

algrandom(al, b)

Given an algebra a/ and an integer b, returns a random element in al with coefficients in [—b, b].

algrelmultable(al)

Given a central simple algebra al output by alginit defined by a multiplication table over its center (a
number field), returns this multiplication table.

? nf = nfinit(y*3-5); a = y; b = yA2;
? {m._i = [®,a1®1®;

1,0,0,0;

0,0,0,a;

0,0,1,0];}
? {m_j = [0, 0,b, 0;

0, 0,0,-b;

1, 0,0, 0;

0,-1,0, 0];}2

? {m_k = [0, 0,0,-a*b;
0, 0,b, 0;

0,-a,0, 0;

1, 0,0, 0];}

? mt = [matid(4), m_i, m_j, m_Kk];
? A = alginit(nf,mt, 'x);
? M = algrelmultable(A);
? M[2] == m_i
%8 =1

? M[3] == m_j
% =1

? M[4] == m_k
%10 = 1

algsimpledec(al, maps)

al being the output of algtableinit, returnsa t_VEC [J, [aly, ala, ..., al,]] where J is a basis of the Jacob-
son radical of al and al/J is isomorphic to the direct product of the simple algebras al;. When maps = 1,
each al; is replaced with a t_VEC [al;, proj;, li ft;] where proj; and li ft; are matrices respectively repre-
senting the projection map al — al; and a section of it. Modulo .J, the images of the lift; form a direct
sum in al/.J, so that the images of 1; under li f¢; are central primitive idempotents of al/.J. The factors are
sorted by increasing dimension, then increasing dimension of the center. This ensures that the ordering of
the isomorphism classes of the factors is deterministic over finite fields, but not necessarily over Q.

38

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

algsplit(al, v)

If al is a table algebra over I, output by algtableinit that represents a simple algebra, computes an
isomorphism between al and a matrix algebra M, (F,») where N = nd? is the dimension of al. Returns a
t_VEC [map, mapi|, where:

* map is a t_VEC of N matrices of size dzd with t_FFELT coefficients using the variable v, representing
the image of the basis of al under the isomorphism.

e mapi is an Nz N matrix with t_INT coefficients, representing the image in al by the inverse isomor-
phism of the basis (b;) of My(Fp[c]) (where o has degree n over F,) defined as follows: let E; ; be
the matrix having all coeflicients 0 except the (4, j)-th coefficient equal to 1, and define

byt n(iotdin)+1 = Fiy 11,110,
where : math : ‘0 <=1i1,iy < d‘and : math : ‘0 <=1i3 < n'.

Example:

al® = alginit(nfinit(y*2+7), [-1,-11);

al = algtableinit(algmultable(al®), 3); \\ isomorphic to M_2(F_9)
[map,mapi] = algsplit(al, 'a);

x = [1,2,1,0,0,0,0,0]~; fx = map*x

%4 =

[2*a 0]

N N N N

[0 2]

?y=1[0,0,0,0,1,0,0,1]~; fy = map*y
%5 =

[1 2*a]

[2 a + 2]

? map*algmul (al,x,y) == fx*fy
% =1

? map*mapil,6]

%7 =

[0 0]

[a 0]

Warning. If al is not simple, algsplit(al) can trigger an error, but can also run into an infinite loop.
Example:

? al = alginit(finit(y),[-1,-11); \\ ramified at 2
? al2 = algtableinit(algmultable(al),2); \\ maximal order modulo 2
? algsplit(al2); \\ not semisimple, infinite loop

algsplittingdata(al)

Given a central simple algebra al output by alginit defined by a multiplication table over its center /&
(a number field), returns data stored to compute a splitting of a/ over an extension. This data is a t_VEC
[t,Lbas,Lbasinv] with 3 components:

* an element ¢ of al such that L = K (t) is a maximal subfield of al;

* a matrix Lbas expressing a L-basis of al (given an L-vector space structure by multiplication on the
right) on the integral basis of al;

* amatrix Lbasinv expressing the integral basis of al on the previous L-basis.

1.1.

Guide to real precision in the PARI interface 39

CyPari2 Documentation, Release 2.1.3

? nf = nfinit(y*3-5); a = y; b = yA2;
? {m_i = [0,a,0,0;
1,0,0,0;
0,0,0,a;
0,0,1,0];}
? {m_j = [0, 0,b, 0;
0, 0,0,-b;
1, 0,0, 0;
0,-1,0, 0];}
? {m_k = [0, 0,0,-a*b;
0, 0,b, 0;
0,-a,0, 0;
1, 0,0, 0];}
? mt = [matid(4), m_i, m_j, m_k];
? A = alginit(nf,mt, 'x);
? [t,Lb,Lbi] = algsplittingdata(A);
?7t
%8 = [0, 0, 0, 1, O, O, O, O, O, 0, 0, 0]~;
? matsize(Lb)
% = [12, 2]
? matsize(Lbi)
%10 = [2, 12]

algsplittingfield(al)

Given a central simple algebra al output by alginit, returns an rnf structure: the splitting field of a/ that

is stored in al, as a relative extension of the center.

nf = nfinit(y*3-5);
a=y; b=y"2;
[0,a,0,0;

mt = [matid(4), m_i, m_j, m_k];
A = alginit(nf,mt, 'x);
algsplittingfield(A) .pol

%8 = Xr2 -y

algsqr(al, x)
Given an element x in al, computes its square 22 in the algebra al.

? A = alginit(nfinit(y),
? algsqr(A,[1,0,2,0]~)
%2 = [-3, 0, 4, 0]~

[-1,-11);

Also accepts a square matrix with coefficients in al.

40 Chapter 1.

Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

algsub(al, x, y)

Given two elements x and y in al, computes their difference x — y in the algebra al.

?7 A = alginit(afinit(y), [-1,-11);
? algsub(A,[1,1,0,0]~,[1,0,1,0]~)
%2 = [0, 1, -1, 0]~

Also accepts matrices with coefficients in al.

algsubalg(al, B)

al being a table algebra output by algtableinit and B being a basis of a subalgebra of a/ represented by
a matrix, computes an algebra al2 isomorphic to B.

Returns [al2, B2] where B2 is a possibly different basis of the subalgebra al2, with respect to which the
multiplication table of al2 is defined.

mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]1];
A = algtableinit(mt,2);

B = algsubalg(A,[1,0; 0,0; 0,1]);
algdim(A)

%4 = 3

? algdim(B[1])

%5 = 2

? m = matcompanion(x*4+1);

mt = [m*i | 1 <- [0..3]1]1;

al = algtableinit(mt);
B=1[1,0;0,0;0,1/2;0,0];

al2 = algsubalg(al,B);
algdim(al2[1])

? al2[2]

%13 =

[1 0]

NN N N

NN N N N

[0 0]
[0 1]

[0 0]

algtableinit (mt, p)

Initializes the associative algebra over K = Q (p omitted) or [F,, defined by the multiplication table mt. As
a K -vector space, the algebra is generated by a basis (e; = 1, ea, ..., €,); the table is given as a t_VEC of
n matrices in M,, (K), giving the left multiplication by the basis elements e;, in the given basis. Assumes
that e; = 1, that Ke; @ ... ® Ke,,] describes an associative algebra over K, and in the case K = Q that
the multiplication table is integral. If the algebra is already known to be central and simple, then the case
K =T, is useless, and one should use alginit directly.

The point of this function is to input a finite dimensional K -algebra, so as to later compute its radical, then
to split the quotient algebra as a product of simple algebras over K.

The pari object representing such an algebra A is a t_VEC with the following data:
¢ The characteristic of A, accessed with algchar.
 The multiplication table of A, accessed with algmultable.

¢ The traces of the elements of the basis.

1.1. Guide to real precision in the PARI interface 41

CyPari2 Documentation, Release 2.1.3

A simple example: the 22:2 upper triangular matrices over Q, generated by I, a = [0,1;0,0] and b =
[0,0;0, 1], such that a®> = 0, ab = a, ba = 0, b*> = b:

? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt);

? algradical(A) \\ = (a)

%6 =

[0]

[1]

[0]

? algcenter(A) \\ = (I_2)
%7 =

[1]

[0]

(0]

algtensor(all, al2, maxord)

Given two algebras all and al2, computes their tensor product. Computes a maximal order by default.
Prevent this computation by setting maxord = 0.

Currently only implemented for cyclic algebras of coprime degree over the same center K, and the tensor
product is over K.

algtomatrix(al, x, abs)

Given an element x in al, returns the image of x under a homomorphism to a matrix algebra. If al is a table
algebra output by algtableinit or if abs = 1, returns the left multiplication table on the integral basis;
if al is a central simple algebra and abs = 0, returns ¢(z) where ¢ : A @ L — My(L) (where d is the
degree of the algebra and L is an extension of L with [L : K] = d) is an isomorphism stored in al. Also
accepts a square matrix with coefficients in al.

? A = alginit(finit(y), [-1,-11);

? algtomatrix(A,[0,0,0,2]~)

%2 =

[Mod(x + 1, x*2 + 1) Mod(Mod(1l, y)*x + Mod(-1, y), x22 + 1)]

[Mod(x + 1, x*2 + 1) Mod(-x + 1, x*2 + 1)]
? algtomatrix(A,[0,1,0,0]~,1)

%2 =

[0 -1 1 0]

[10611]

[0 01 1]

[®@ 0 -2 -1]

? algtomatrix(A,[0,x]~,1)
%3 =

[-1 0 0 -1]

[-1 01 0]

(continues on next page)

42

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

[-1 -1 0 -1]

[2001]

Also accepts matrices with coefficients in al.

algtrace(al, x, abs)

Given an element x in a/, computes its trace. If al is a table algebra output by algtableinit orifabs = 1,
returns the absolute trace of x, which is an element of I, or Q; if al is the output of alginit and abs = 0
(default), returns the reduced trace of x, which is an element of the center of al.

? A = alginit(finit(y), [-1,-11);
? algtrace(A,[5,0,0,1]~)

%2 = 11
? algtrace(A,[5,0,0,1]~,1)
%3 = 22

? nf = nfinit(y*2-5);

? A = alginit(nf,[-1,y]);
? a = [1+x+y,2*%y]~*Mod(1,y*2-5)*Mod(1,x*2+1);
? t = algtrace(A,a)

%7 = Mod(2*y + 2, y*2 - 5)
? algtrace(A,a,l)

%8 = 8
? algdegree(A)*nfelttrace(nf,t)
% = 8

Also accepts a square matrix with coefficients in al.

algtype(al)

Given an algebra al output by alginit or by algtableinit, returns an integer indicating the type of
algebra:

* 0: not a valid algebra.
* 1: table algebra output by algtableinit.
 2: central simple algebra output by alginit and represented by a multiplication table over its center.

* 3: central simple algebra output by alginit and represented by a cyclic algebra.

? algtype([D)

%L =0

? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);

? algtype(A)

% =1

? nf = nfinit(y*3-5);

?a=y; b=y

? {m_i = [0,a,0,0;

(continues on next page)

1.1. Guide to real precision in the PARI interface 43

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

? mt = [matid(4), m_i, m_j, m_k];
? A = alginit(nf,mt, 'x);

? algtype(A)

%12 = 2

? A = alginit(finit(y), [-1,-11);
? algtype(A)

%14 = 3

apply (f, A)

Apply the t_CLOSURE f to the entries of A.
e If Ais ascalar, return £(A).

* If A is a polynomial or power series S a;zt (+0(zN)), apply £ on all coefficients and return
> flai)a’ (+O0(z™)).

o If Ais a vector or list [ay, ..., a,], return the vector or list [f(a1), ..., f(an)]. If A is a matrix, return the
matrix whose entries are the f(A[i,]).

? apply(x->x*2, [1,2,3,4])
%l = [1, 4, 9, 16]

? apply(x->x+2, [1,2;3,4])
%2 =

[1 4]

[9 16]

? apply(x->xA2, 4%xA2 + 3%x+ 2)

%3 = 16%x72 + 9%*x + 4

? apply(sign, 2 - 3* x + 4*x22 + 0(x*3))
% =1 - x + %22 + 0(x*3)

Note that many functions already act componentwise on vectors or matrices, but they almost never act on
lists; in this case, apply is a good solution:

? L = List([Mod(1,3), Mod(2,4)1);
? 1lift(L)

*%% at top-level: 1lift(L)

Fedd A

#%% 1ift: incorrect type in lift.
? apply(1ift, L);
%2 = List([1, 2])

Remark. For v a t_VEC, t_COL, t_VECSMALL, t_LIST or t_MAT, the alternative set-notations

[gx) | x <- v, £(X)]
[x | x <- v, f(x)]
[gx) | x <= v]

are available as shortcuts for

44

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

apply(g, select(f, Vec(v)))
select(£f, Vec(v))
apply(g, Vec(v))

respectively:

? L = List([Mod(1,3), Mod(2,4)1);
? [lift(x) | x<-L]
%2 = [1, 2]

arg(x, precision)

Argument of the complex number z, such that —7m < arg(z) <= .
arity(C)

Return the arity of the closure C, i.e., the number of its arguments.

? f1(x,y=0)=x+y;

? arity(£f1)

%l = 2

? f2(t,s[..])=print(t,":",s);
? arity(£2)

%2 = 2

Note that a variadic argument, such as s in £2 above, is counted as a single argument.

asin(x, precision)
Principal branch of sin™'(z) = —ilog(iz + v/1 — 22). In particular, R(asin(z)) € [~7/2,7/2] and if
x € Rand ||z|| > 1 then asin(z) is complex. The branch cut is in two pieces: | — 0o, —1], continuous with
quadrant II, and [1, +00] continuous with quadrant IV. The function satisfies iasin(x) = asinh(iz).
asinh(x, precision)

Principal branch of sinh ™' (z) = log(z + v/1+ z2). In particular $(asinh(z)) € [-n/2,7/2]. The
branch cut is in two pieces: | — i0o, —i], continuous with quadrant IIT and [+, +i00[, continuous with
quadrant I.
asympnum (expr, alpha, precision)
Asymptotic expansion of expr, corresponding to a sequence u(n), assuming it has the shape
u(n) Z ain "
i>=0

with rational coefficients a; with reasonable height; the algorithm is heuristic and performs repeated calls
to limitnum, with alpha as in limitnum. As in limitnum, u(n) may be given either by a closure n :
———> u(n)orasaclosure N : — — — > [u(1), ..., u(N)], the latter being often more efficient.

? f(n) = n! / (m*n*exp(-n)*sqrt(n));

? asympnum(f)

%2 = []1 \\ failure !

? localprec(57); 1 = limitnum(£f)

%3 = 2.5066282746310005024157652848110452530

? asympnum(n->f(n)/1) \\ normalize

%4 = [1, 1/12, 1/288, -139/51840, -571/2488320, 163879/209018880,
5246819/75246796800]

and we indeed get a few terms of Stirling’s expansion. Note that it definitely helps to normalize with a limit
computed to higher accuracy (as a rule of thumb, multiply the bit accuracy by 1.612):

1.1.

Guide to real precision in the PARI interface 45

CyPari2 Documentation, Release 2.1.3

? 1 = limitnum(£)
? asympnum(n->f(n) / 1) \\ failure again !!!
%6 = [1]

We treat again the example of the Motzkin numbers M,, given in 1imitnum:

\\ [M_k, M_{k*2}, ..., M_{k*N}] / (3*n / nA(3/2))

? VM(N, k = 1) =

{ my(q = k*N, V);

if (q == 1, return ([1/31));

V = vector(q); V[1] = V[2] = 1;

forn = 2, q - 1,

VIn+1] = ((2*n + D*V[n] + 3*(n - D*V[n-11) / (n + 2));
f = (n -> 3%n / nr(3/2));

return (vector(N, n, V[n*k] / £(n*k)));

}

? localprec(100); 1 = limitnum(n->vM(n,10)); \\ 3/sqrt(12*Pi)

? \p38

? asympnum(n->vM(n, 10) /1)

%2 = [1, -3/32, 101/10240, -1617/1638400, 505659/5242880000, ...]

If alpha is not a rational number, loss of accuracy is expected, so it should be precomputed to double
accuracy, say:

? \p38

? asympnum(n->log(1l+1/nAPi),Pi)

%l = [0, 1, -1/2, 1/3, -1/4, 1/5]

? localprec(76); a = Pi;

? asympnum(n->log(l+1/nAPi), a) \\ more terms

%3 =100, 1, -1/2, 1/3, -1/4, 1/5, -1/6, 1/7, -1/8, 1/9, -1/10, 1/11, -1/12]
? asympnum(n->log(l+1/sqrt(n)),1/2) \\ many more terms

%4 = 49

The expression is evaluated for n = 1,2, ..., N foran N = O(B) if the current bit accuracy is B. If it is
not defined for one of these values, translate or rescale accordingly:

? asympnum(n->log(l-1/n)) \\ can't evaluate at n =1 !
**% at top-level: asympnum(n->log(l-1/n))

**% log: domain error in log: argument = 0
? asympnum(n->-log(1-1/(2*n)))

%5 = [0, 1/2, 1/8, 1/24, ...]

? asympnum(n->-log(1l-1/(n+1)))

% = [0, 1, -1/2, 1/3, -1/4, ...]

asympnumraw (expr, N, alpha, precision)

Return the N + 1 first terms of asymptotic expansion of expr, corresponding to a sequence u(n), as floating
point numbers. Assume that the expansion has the shape

u(n) Z an”
i>=0

and return approximation of [ag, ay, ...,an]. The algorithm is heuristic and performs repeated calls to

46 Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

limitnum, with alpha as in limitnum. As in limitnum, u(n) may be given either by a closure n :
———> wu(n)orasaclosure N : — — — > [u(1), ..., u(N)], the latter being often more efficient. This
function is related to, but more flexible than, asympnum, which requires rational asymptotic expansions.

? f(n) = n! / (m*n*exp(-n)*sqrt(n));

? asympnum(f)

%2 = []1 \\ failure !

? v = asympnumraw(f, 10);

? v[1] - sqrt(2*Pi)

%4 = 0.E-37

? bestappr(v / v[1], 2460)

%5 = [1, 1/12, 1/288, -139/51840, -571/2488320, 163879/209018880,...]

and we indeed get a few terms of Stirling’s expansion (the first 9 terms are correct). If u(n) has an asymptotic
expansion in n~% with « not an integer, the default alpha = 1 is inaccurate:

? f(n) = (1+1/nr(7/2))2(*(7/2));
? vl = asympnumraw(f, 10);

? v1[1] - exp(1l)

%8 = 4.62... E-12

? v2 = asympnumraw(£f,10,7/2);

? v2[1] - exp(1)

%7 0.E-37

As in asympnum, if alpha is not a rational number, loss of accuracy is expected, so it should be precomputed
to double accuracy, say.

atan(x, precision)
Principal branch of tan ™! (z) = log((1 + iz)/(1 — ix))/2i. In particular the real part of atan(x) belongs
to] — /2, 7/2[. The branch cut is in two pieces: | — 00, —i[, continuous with quadrant IV, and |, +i00]
continuous with quadrant II. The function satisfies atan(z) = —iatanh(iz) for all z! = i.

atanh(x, precision)
Principal branch of tanh~!(x) = log((1 + 2)/(1 — z))/2. In particular the imaginary part of atanh(z)
belongs to [—7/2,7/2]; if € R and ||z|| > 1 then atanh(z) is complex.

bernfrac(n)
Bernoulli number B,,, where By = 1, By = —1/2, Bs = 1/6,..., expressed as a rational number. The
argument n should be a nonnegative integer. The function bervec creates a cache of successive Bernoulli
numbers which greatly speeds up later calls to bernfrac:

? bernfrac(20000);

time = 107 ms.

? bernvec(10000); \\ cache B_®, B_2, ..., B_20000
time = 35,957 ms.

? bernfrac(20000); \\ now instantaneous
?

bernpol (n, v)
Bernoulli polynomial B,, in variable v.

? bernpol(l)
%l =x - 1/2
? bernpol(3)
%2 = xA3 - 3/2%xA2 + 1/2%x

1.1.

Guide to real precision in the PARI interface 47

CyPari2 Documentation, Release 2.1.3

bernreal (n, precision)

Bernoulli number B,,, as bernfrac, but B,, is returned as a real number (with the current precision). The
argument n should be a nonnegative integer. The function slows down as the precision increases:

? \pl1l000O

? bernreal (200000);
time = 5 ms.

? \pl0OOO0O

? bernreal (200000);
time = 18 ms.

? \pl00000O

? bernreal (200000);
time = 84 ms.

bernvec (n)

Returns a vector containing, as rational numbers, the Bernoulli numbers By, Bs,..., Ba,:

? bernvec(5) \\ B_®, B_2..., B_10

%l = [1, 1/6, -1/30, 1/42, -1/30, 5/66]
? bernfrac(10)

%2 = 5/66

This routine uses a lot of memory but is much faster than repeated calls to bernfrac:

? forstep(n = 2, 10000, 2, bernfrac(n))
time = 18,245 ms.
? bernvec(5000);
time = 1,338 ms.

The computed Bernoulli numbers are stored in an incremental cache which makes later calls to bernfrac
and bernreal instantaneous in the cache range: re-running the same previous bernfrac s after the
bernvec call gives:

? forstep(n = 2, 10000, 2, bernfrac(n))
time = 1 ms.

The time and space complexity of this function are O(n?); in the feasible range n <= 105 (requires about
two hours), the practical time complexity is closer to O(n!°829).

besselhl (nu, x, precision)

H'-Bessel function of index nu and argument .
besselh2 (nu, x, precision)

H?-Bessel function of index nu and argument .
besseli (nu, x, precision)

I-Bessel function of index nu and argument x. If x converts to a power series, the initial factor
(z/2)” /T'(v + 1) is omitted (since it cannot be represented in PARI when v is not integral).

besselj (nu, x, precision)

J-Bessel function of index nu and argument x. If z converts to a power series, the initial factor
(x/2)” /T'(v + 1) is omitted (since it cannot be represented in PARI when v is not integral).

besseljh(n, x, precision)

J-Bessel function of half integral index. More precisely, besseljh(n,) computes .J,, 1 /2(x) where n

48

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

must be of type integer, and z is any element of C. In the present version 2.13.3, this function is not very
accurate when x is small.

besselk (nu, x, precision)
K -Bessel function of index nu and argument .

besseln(nu, x, precision)

Deprecated alias for bessely.
bessely (nu, x, precision)
Y -Bessel function of index nu and argument x.

bestappr (x, B)

Using variants of the extended Euclidean algorithm, returns a rational approximation a/b to x, whose
denominator is limited by B, if present. If B is omitted, returns the best approximation affordable given
the input accuracy; if you are looking for true rational numbers, presumably approximated to sufficient
accuracy, you should first try that option. Otherwise, B must be a positive real scalar (impose 0 < b <= B).

e If x is a t_REAL or a t_FRAC, this function uses continued fractions.

? bestappr(Pi, 100)

%1 = 22/7
? bestappr(0.1428571428571428571428571429)
%2 = 1/7

? bestappr([Pi, sqrt(2) + 'x], 1043)
%3 = [355/113, x + 1393/985]

By definition, a/b is the best rational approximation to z if |bx — a|| < ||vx — u|| for all integers (u, v)
with 0 < v <= B. (Which implies that n/d is a convergent of the continued fraction of x.)

o If 2 is a t_INTMOD modulo N or a t_PADIC of precision N = pF, this function performs rational
modular reconstruction modulo N. The routine then returns the unique rational number a/b in coprime
integers ||a|| < N/2B and b <= B which is congruent to z modulo N. Omitting B amounts to
choosing it of the order of /N /2. If rational reconstruction is not possible (no suitable a/b exists),

returns [|.
? bestappr(Mod(18526731858, 11210))
%l = 1/7
? bestappr(Mod(18526731858, 11420))
%2 = [1
? bestappr(3 + 5 + 3%542 + 543 + 3%*5A4 + 5A5 + 3%*5A6 + 0(5A7))
%2 = -1/3

In most concrete uses, B is a prime power and we performed Hensel lifting to obtain z.

The function applies recursively to components of complex objects (polynomials, vectors,...). If rational
reconstruction fails for even a single entry, returns [].

bestapprPade(x, B)

Using variants of the extended Euclidean algorithm (Padé approximants), returns a rational function ap-
proximation a/b to x, whose denominator is limited by B, if present. If B is omitted, return the best ap-
proximation affordable given the input accuracy; if you are looking for true rational functions, presumably
approximated to sufficient accuracy, you should first try that option. Otherwise, B must be a nonnegative
real (impose 0 <= degree(b) <= B).

e If z is a t_POLMOD modulo N this function performs rational modular reconstruction modulo N. The
routine then returns the unique rational function a/b in coprime polynomials, with degree(b) <= B
and degree(a) minimal, which is congruent to z modulo N. Omitting B amounts to choosing it equal

1.1. Guide to real precision in the PARI interface 49

CyPari2 Documentation, Release 2.1.3

to the floor of degree(N) /2. If rational reconstruction is not possible (no suitable a/b exists), returns

It

? T = Mod(x*3 + x*2 + X + 3, X% - 2);

? bestapprPade(T)

%2 = (2%x - 1)/(x - 1D

? U =Mod(l + X + XA2 + XA3 + xA5, xXA9);

? bestapprPade(U) \\ internally chooses B = 4

%3 = [1

? bestapprPade(U, 5) \\ with B = 5, a solution exists
%4 = (2%xr + %23 - x - 1)/(-XA5 + XA3 + X422 - 1)

o If z is a t_SER, we implicitly convert the input to a t_POLMOD modulo N = t* where k is the series
absolute precision.

?T=1+1t+ th2 + tA3 + t* + tA5 + t26 + 0(tA7); \\ mod tA7
? bestapprPade(T)
%l = 1/(-t + 1)

« If 2 is a t_RFRAC, we implicitly convert the input to a t_POLMOD modulo N = t* where k = 2B + 1.
If B was omitted, we return x:

? T = (4%tA2 + 2%t + 3)/(t+1)A10;

? bestapprPade(T, 1)

%2 = [] \\ impossible

? bestapprPade(T,2)

%3 = 27/(337%tA2 + 84*t + 9)

? bestapprPade(T,3)

%4 = (4253*%t - 3345)/(-39007*tA3 - 28519*t+2 - 8989*t - 1115)

The function applies recursively to components of complex objects (polynomials, vectors,...). If rational
reconstruction fails for even a single entry, return [].

bestapprnf (V, T, rootT, precision)

T being an integral polynomial and V' being a scalar, vector, or matrix with complex coefficients, return a
reasonable approximation of V' with polmods modulo 7T'. T" can also be any number field structure, in which
case the minimal polynomial attached to the structure (:math: T .pol) is used. The rootT argument, if
present, must be an element of polroots(:math: T) (or :math: T .pol),i.e. acomplex root of T fixing
an embedding of Q[x]/(T) into C.

? bestapprnf(sqrt(5), polcyclo(5))

%1 = Mod(-2%xA3 - 2%x42 - 1, x* + XA3 + X2 + x + 1)
? bestapprnf(sqrt(5), polcyclo(5), exp(4*I*Pi/5))

%2 = Mod(2*xA3 + 2*x22 + 1, X" + XA3 + XA2 + x + 1)

When the output has huge rational coefficients, try to increase the working realbitprecision: if the
answer does not stabilize, consider that the reconstruction failed. Beware that if 7" is not Galois over Q,
some embeddings may not allow to reconstruct V':

? T = x*3-2; VT = polroots(T); z = 3*2~(1/3)+1;
? bestapprnf(z, T, vT[1])
%2 = Mod(3*x + 1, x*3 - 2)

(continues on next page)

50 Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

? bestapprnf(z, T, vT[2])
%3 = 4213714286230872/186454048314072 \\ close to 3%2A(1/3) + 1

bezout (x, y)
Deprecated alias for gcdext

bezoutres(A, B, v)
Deprecated alias for polresultantext
bigomega (x)
Number of prime divisors of the integer ||z|| counted with multiplicity:

? factor(392)
%1 =
[2 3]

[7 2]

? bigomega(392)

%2 = 5; \\ = 3+2

? omega(392)

%3 = 2; \\ without multiplicity

binary(x)
Outputs the vector of the binary digits of ||z||. Here = can be an integer, a real number (in which case the
result has two components, one for the integer part, one for the fractional part) or a vector/matrix.

? binary(10)
%l = [1, 0, 1, 0]

? binary(3.14)
%2 = [[1, 1], [0, O, 1, O, O, O, [...]]

? binary([1,2])
%3 = [[11, [1, 0]]

For integer >= 1, the number of bits is logint(x,2) + 1. By convention, 0 has no digits:

? binary(0)
%4 = []

binomial (x, k)
binomial coefficient binomak. Here k must be an integer, but = can be any PARI object.

? binomial(4,2)

%L =6

? n=4; vector(n+l, k, binomial(n,k-1))
%2 = [1, 4, 6, 4, 1]

The argument k£ may be omitted if x = n is a nonnegative integer; in this case, return the vector with n + 1
components whose k + 1-th entry is binomial(n, k)

1.1.

Guide to real precision in the PARI interface 51

CyPari2 Documentation, Release 2.1.3

? binomial (4)
%3 = [1, 4, 6, 4, 1]

bitand(x, y)
Bitwise and of two integers x and y, that is the integer
Z(% and y;)2'
i

Negative numbers behave 2-adically, i.e. the result is the 2-adic limit of bitand(z,, y,), where x,, and
4, are nonnegative integers tending to x and y respectively. (The result is an ordinary integer, possibly
negative.)

? bitand(5, 3)
%l =1

? bitand(-5, 3)
%2 = 3

? bitand(-5, -3)
%3 = -7

bitneg(x, n)

bitwise negation of an integer x, truncated to n bits, n >= 0, that is the integer

n—1
Z not(x;)2".
i=0

The special case n = —1 means no truncation: an infinite sequence of leading 1 is then represented as a
negative number.

See bitand (in the PARI manual) for the behavior for negative arguments.
bitnegimply(x, y)

Bitwise negated imply of two integers « and y (or not (z ==> y)), that is the integer

Z (z; andnot(y;))2

See bitand (in the PARI manual) for the behavior for negative arguments.
bitor(x, y)

bitwise (inclusive) or of two integers = and y, that is the integer

Z(xl or y;)2°
See bitand (in the PARI manual) for the behavior for negative arguments.
bitprecision(x, n)

The function behaves differently according to whether n is present or not. If n is missing, the function
returns the (floating point) precision in bits of the PARI object z.

If = is an exact object, the function returns +oo.

? bitprecision(exp(le-100))

%1 = 512 \\ 512 bits

? bitprecision([exp(le-100), 0.5 1)

%2 = 128 \\ minimal accuracy among components
? bitprecision(2 + x)

%3 = +00 \\ exact object

52 Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

Use getlocalbitprec() to retrieve the working bit precision (as modified by possible localbitprec
statements).

If n is present and positive, the function creates a new object equal to x with the new bit-precision roughly
n. In fact, the smallest multiple of 64 (resp. 32 on a 32-bit machine) larger than or equal to n.

For x a vector or a matrix, the operation is done componentwise; for series and polynomials, the operation
is done coeflicientwise. For real x, n is the number of desired significant bits. If n is smaller than the
precision of x, x is truncated, otherwise x is extended with zeros. For exact or non-floating-point types, no
change.

? bitprecision(Pi, 10) \\ actually 64 bits ~ 19 decimal digits
%1 = 3.141592653589793239

? bitprecision(l, 10)

%2 =1

? bitprecision(l + 0(x), 10)

%3 =1+ 0(x)

? bitprecision(2 + 0(3%25), 10)

%4 = 2 + 0(345)

bittest(x, n)

Outputs the n — th bit of z starting from the right (i.e. the coefficient of 2" in the binary expansion of x).
The result is 0 or 1. For x >= 1, the highest 1-bit is at n = logint(z) (and bigger n gives 0).

? bittest(7, 0®)
%1 = 1 \\ the bit 0 is 1
? bittest(7, 2)
%2 = 1 \\ the bit 2 is 1
? bittest(7, 3)
%3 = 0 \\ the bit 3 is 0

See bitand (in the PARI manual) for the behavior at negative arguments.

bitxor(x, y)

Bitwise (exclusive) or of two integers x and y, that is the integer

Z(mZ zor y;)2"
See bitand (in the PARI manual) for the behavior for negative arguments.

bnfcertify (bnf, flag)

bn f being as output by bnfinit, checks whether the result is correct, i.e. whether it is possible to remove
the assumption of the Generalized Riemann Hypothesis. It is correct if and only if the answer is 1. If it is
incorrect, the program may output some error message, or loop indefinitely. You can check its progress by
increasing the debug level. The bnf structure must contain the fundamental units:

? K = bnfinit(xA3+24243+1); bnfcertify(K)
**% at top-level: K=bnfinit(xA3+24243+1);bnfcertify(K)

KRR

#*% phnfcertify: precision too low in makeunits [use bnfinit(,1)].
? K = bnfinit(xA3+24243+1, 1); \\ include units

? bnfcertify(K)

%3 =1

If flag is present, only certify that the class group is a quotient of the one computed in bnf (much simpler
in general); likewise, the computed units may form a subgroup of the full unit group. In this variant, the
units are no longer needed:

1.1. Guide to real precision in the PARI interface 53

CyPari2 Documentation, Release 2.1.3

? K = bnfinit(x*3+24243+1); bnfcertify(K, 1)
%4 = 1

bnfdecodemodule (nf, m)

If m is a module as output in the first component of an extension given by bnrdisclist, outputs the true
module.

? K = bnfinit(x*2+23); L = bnrdisclist(K, 10); s = L[2]

%1 = [[[Vecsmall([8]), Vecsmall([11)]1, [[6, ®, 0111,
[[Vecsmall([9]), Vecsmall([1])], [[®, O, 0]]11]

? bnfdecodemodule(K, s[1][1])

%2 =

[2 0]

[0 1]
? bnfdecodemodule(K,s[2][1])
%3 =
[2 1]

[0 1]

bnfinit (P, flag, tech, precision)

Initializes a bnf structure. Used in programs such as bnfisprincipal, bnfisunit or bnfnarrow. By
default, the results are conditional on the GRH, see GRHbnf (in the PARI manual). The result is a 10-
component vector bnf.

This implements Buchmann’s sub-exponential algorithm for computing the class group, the regulator and a
system of fundamental units of the general algebraic number field K defined by the irreducible polynomial
P with integer coefficients. The meaning of flag is as follows:

¢ flag = 0 (default). This is the historical behavior, kept for compatibility reasons and speed. It has
severe drawbacks but is likely to be a little faster than the alternative, twice faster say, so only use it
if speed is paramount, you obtain a useful speed gain for the fields under consideration, and you are
only interested in the field invariants such as the classgroup structure or its regulator. The computations
involve exact algebraic numbers which are replaced by floating point embeddings for the sake of speed.
If the precision is insufficient, gp may not be able to compute fundamental units, nor to solve some
discrete logarithm problems. It may be possible to increase the precision of the bnf structure using
nfnewprec but this may fail, in particular when fundamental units are large. In short, the resulting
bnf structure is correct and contains useful information but later function calls to bnfisprincpal or
bnrclassfield may fail.

When flag = 1, we keep an exact algebraic version of all floating point data and this allows to guarantee that
functions using the structure will always succeed, as well as to compute the fundamental units exactly. The
units are computed in compact form, as a product of small S-units, possibly with huge exponents. This flag
also allows bnfisprincipal to compute generators of principal ideals in factored form as well. Be warned
that expanding such products explicitly can take a very long time, but they can easily be mapped to floating
point or /-adic embeddings of bounded accuracy, or to K*/(K*), and this is enough for applications. In
short, this flag should be used by default, unless you have a very good reason for it, for instance building
massive tables of class numbers, and you do not care about units or the effect large units would have on
your computation.

tech is a technical vector (empty by default, see GRHbnf (in the PARI manual)). Careful use of this param-
eter may speed up your computations, but it is mostly obsolete and you should leave it alone.

The components of a bnf are technical. In fact: never access a component directly, always use a proper
member function. However, for the sake of completeness and internal documentation, their description is

54

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

as follows. We use the notations explained in the book by H. Cohen, A Course in Computational Algebraic
Number Theory, Graduate Texts in Maths 138, Springer-Verlag, 1993, Section 6.5, and subsection 6.5.5 in
particular.

bn f[1] contains the matrix W, i.e. the matrix in Hermite normal form giving relations for the class group
on prime ideal generators (p;)1<—i<—.

bn f[2] contains the matrix B, i.e. the matrix containing the expressions of the prime ideal factorbase in
terms of the p;. It is an rzc matrix.

bn f[3] contains the complex logarithmic embeddings of the system of fundamental units which has been
found. Itis an (11 + r2)x(r; + ro — 1) matrix.

bn f[4] contains the matrix M” & of Archimedean components of the relations of the matrix (W|| B).

(4]
bn f[5] contains the prime factor base, i.e. the list of prime ideals used in finding the relations.
bn f[6] contains a dummy 0.

(7]

bn f[7] or :emphasis: bnf.nf" is equal to the number field data n f as would be given by nfinit.

bn f[8] is a vector containing the classgroup : emphasis: “bnf.clgp’ as a finite abelian group, the regulator
:emphasis: “bnf.reg’, the number of roots of unity and a generator :emphasis: bnf.tu", the funda-
mental units in expanded form :emphasis: bnf.fu'. If the fundamental units were omitted in the bnf,
remphasis: “bnf.fu" returns the sentinel value 0. If flag = 1, this vector contain also algebraic data
corresponding to the fundamental units and to the discrete logarithm problem (see bnfisprincipal). In
particular, if flag = 1 we may only know the units in factored form: the first call to :emphasis: "bnf.fu’
expands them, which may be very costly, then caches the result.

bn f[9] is a vector used in bnfisprincipal only and obtained as follows. Let D = UWV obtained by
applying the Smith normal form algorithm to the matrix W (= bnf[1]) and let U, be the reduction of U
modulo D. The first elements of the factorbase are given (in terms of bnf.gen) by the columns of U,,
with Archimedean component g,; let also GD, be the Archimedean components of the generators of the
(principal) ideals defined by the bnf.gen[i]*bnf.cyc[i]. Then bnf[9] = [U;, ga, GD,), followed by
technical exact components which allow to recompute g, and G D,, to higher accuracy.

bn f[10] is by default unused and set equal to 0. This field is used to store further information about the field
as it becomes available, which is rarely needed, hence would be too expensive to compute during the initial
bnfinit call. For instance, the generators of the principal ideals bnf.gen[i]Abnf.cyc[i] (during a call
tobnrisprincipal), or those corresponding to the relations in W and B (when the bnf internal precision
needs to be increased).

bnfisintnorm(bnf, x)

Computes a complete system of solutions (modulo units of positive norm) of the absolute norm equation
Norm(a) = z, where a is an integer in bnf. If bnf has not been certified, the correctness of the result
depends on the validity of GRH.

See also bnfisnorm.

bnfisnorm(bnf, x, flag)

Tries to tell whether the rational number z is the norm of some element y in bn f. Returns a vector [a, b]
where © = Norm(a) * b. Looks for a solution which is an S-unit, with S a certain set of prime ideals
containing (among others) all primes dividing x. If bn f is known to be Galois, you may set flag = 0 (in
this case, = is a norm iff b = 1). If flag is nonzero the program adds to S the following prime ideals,
depending on the sign of flag. If flag > 0, the ideals of norm less than flag. And if flag < 0 the ideals
dividing flag.

Assuming GRH, the answer is guaranteed (i.e. « is a norm iff b = 1), if S contains all primes less than
12log(disc(Bnf))2, where Bnf is the Galois closure of bn f.

See also bnfisintnorm.

1.1. Guide to real precision in the PARI interface 55

CyPari2 Documentation, Release 2.1.3

bnfisprincipal (bnf, x, flag)

bn f being the number field data output by bnfinit, and x being an ideal, this function tests whether the
ideal is principal or not. The result is more complete than a simple true/false answer and solves a general
discrete logarithm problem. Assume the class group is ©(Z/d;Z)g; (where the generators g; and their
orders d; are respectively given by bnf.gen and bnf.cyc). The routine returns a row vector [e, t], where
e is a vector of exponents 0 <= e; < d;, and ¢ is a number field element such that

v=®]]a

For given g; (i.e. for a given bnf), the e; are unique, and ¢ is unique modulo units.

In particular, x is principal if and only if e is the zero vector. Note that the empty vector, which is returned
when the class number is 1, is considered to be a zero vector (of dimension 0).

? K = bnfinit(yA2+23);

? K.cyc

%2 = [3]

? K.gen

%3 = [[2, 0; 0, 1]1] \\ a prime ideal above 2

? P = idealprimedec(K,3)[1]; \\ a prime ideal above 3
? v bnfisprincipal (K, P)

%5 = [[2]~, [3/4, 1/4]1~]

? idealmul (K, v[2], idealfactorback(K, K.gen, v[1]))
%6 =

[3 0]

[0 1]
? % == idealhnf(K, P)
%7 =1

The binary digits of flag mean:

* 1: If set, outputs [e, t] as explained above, otherwise returns only e, which is much easier to compute.
The following idiom only tests whether an ideal is principal:

is_principal (bnf, x) = !bnfisprincipal (bnf,x,0);

« 2: It may not be possible to recover ¢, given the initial accuracy to which the bnf structure was com-
puted. In that case, a warning is printed and ¢ is set equal to the empty vector []~. If this bit is set,
increase the precision and recompute needed quantities until £ can be computed. Warning: setting this
may induce lengthy computations and you should consider using flag 4 instead.

 4: Return ¢ in factored form (compact representation), as a small product of S-units for a small set of
finite places .S, possibly with huge exponents. This kind of result can be cheaply mapped to K* /(K *)*
or to C or Q, to bounded accuracy and this is usually enough for applications. Explicitly expanding
such a compact representation is possible using nffactorback but may be very costly. The algorithm
is guaranteed to succeed if the bnf was computed using bnfinit(, 1). If not, the algorithm may fail
to compute a huge generator in this case (and replace it by []~). This is orders of magnitude faster
than flag 2 when the generators are indeed large.

bnfissunit (bnf, sfu, x)

This function is obsolete, use bnfisunit.

56

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

bnfisunit(bnf, x, U)

bnf being the number field data output by bnfinit and x being an algebraic number (type integer, rational
or polmod), this outputs the decomposition of = on the fundamental units and the roots of unity if x is a
unit, the empty vector otherwise. More precisely, if u1,...,;math:u_r are the fundamental units, and (is
the generator of the group of roots of unity (bnf.tu), the output is a vector [z, ..., Zs, ;1] such that
x = uyt..ufr.(*+1. The z; are integers but the last one (¢ = r + 1) is only defined modulo the order w
of ¢ and is guaranteed to be in [0, w].

Note that bnf need not contain the fundamental units explicitly: it may contain the placeholder 0 instead:

? setrand(1l); bnf = bnfinit(x*2-x-100000);

? bnf. fu

%2 =0

? u = [119836165644250789990462835950022871665178127611316131167, \
379554884019013781006303254896369154068336082609238336]~;

? bnfisunit(bnf, u)

%3 = [-1, 0]~

The given w is 1/uq, where u4 is the fundamental unit implicitly stored in bnf. In this case, u; was not com-
puted and stored in algebraic form since the default accuracy was too low. Re-run the bnfinit command
at \g1 or higher to see such diagnostics.

This function allows x to be given in factored form, but it then assumes that x is an actual unit. (Because
it is general too costly to check whether this is the case.)

? {v=1[2, 8; 5, -71; 13, -162; 17, -76; 23, -37; 29, -104; [224, 1]~, -66;
[-86, 1]~, 86; [-241, 1]~, -20; [44, 1]~, 30; [124, 1]~, 11; [125, -1]~, -11;
[-214, 1]1~, 33; [-213, -1]~, -33; [189, 1]~, 74; [190, -1]~, 104;

[-168, 1]1~, 2; [-167, -1]~, -8]; }

? bnfisunit(bnf,v)

%5 = [1, 0]~

Note that v is the fundamental unit of bnf given in compact (factored) form.

If the argument U is present, as output by bnfunits(bnf, S), then the function decomposes = on the
S-units generators given in U[1].

? bnf = bnfinit(x*4 - xA3 + 4*xA2 + 3*x + 9, 1);
? bnf.sign

%2 = [0, 2]

? S = idealprimedec(bnf,5); #S

%3 = 2

? US = bnfunits(bnf,S);

? g = US[1]; #g \\ #S = #g, four S-units generators, in factored form
%5 =4

7 g[1]

% = [[6, -3, -2, -2]~ 1]

? gl[2]

%7 =

(-1, 1/2, -1/2, -1/2]~ 1]

[[4, -2, -1, -1]~ 1]

? [nffactorback(bnf, x) | x <- g]

%»8 = [[6, -3, -2, -2]~, [-5, 5, ®, ®O]~, [-1, 1, -1, O]~,
[1, -1, 0, 0]~]

(continues on next page)

1.1. Guide to real precision in the PARI interface 57

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

?u [10,-40,24,11]~;

? a = bnfisunit(bnf, u, US)

% = [2, 0, 1, 4]~

? nffactorback(bnf, g, a) \\ prod_i g[i]*a[i] still in factored form
%10 =

[[6, -3, -2, -2]~ 2]

[[0, 0, -1, -1]~ 1]
[2, -1, -1, 0]~ -21
[[1, 1, 0, 0]~ 2]

[[-1, 1, 1, 1]~ -1]
[[1, -1, 0, O]~ 4]

? nffactorback(bnf,%) \\ u = prod_i g[i]*a[i]
%11 = [10, -40, 24, 11]~

bnflog (bnf, [)

Let bnf be a bnf structure attached to the number field F' and let [be a prime number (hereafter denoted
¢ for typographical reasons). Return the logarithmic ¢-class group Clr of F'. This is an abelian group,
conjecturally finite (known to be finite if F'/Q is abelian). The function returns if and only if the group is
indeed finite (otherwise it would run into an infinite loop). Let S = pq, ..., px be the set of ¢-adic places
(maximal ideals containing ¢). The function returns [D, G(¢), G'], where

¢ D is the vector of elementary divisors for Clg.

* G(¥) is the vector of elementary divisors for the (conjecturally finite) abelian group

k]

where the :math: ‘p;‘arethe : math : ‘4‘—adicplacesof : math : ‘F*;thisisasubgroupof : math : ‘ Cl-.

» (@ is the vector of elementary divisors for the /-Sylow C’ of the S-class group of F’; the group Cl maps to
CU" with a simple co-kernel.

bnflogdegree (nf, A, 1)

Let nf be a nf structure attached to a number field F', and let [be a prime number (hereafter denoted ¢). The
{-adified group of id\"{e}les of F' quotiented by the group of logarithmic units is identified to the ¢-group of
logarithmic divisors ®©Z¢[p], generated by the maximal ideals of F'.

The degree map deg. is additive with values in Z;, defined by deg, p = f, deg, p, where the integer f, is as
in bnflogef and deg, p is log, p for p! = ¢, log,(1 + ¢) for p = ¢! = 2 and log, (1 + 2%) forp = £ = 2.

Let A =[] p"» be anideal and let A =)" n,[p] be the attached logarithmic divisor. Return the exponential of
the /-adic logarithmic degree deg A, which is a natural number.

bnflogef (nf, pr)

Let nf be anf structure attached to a number field F' and let pr be a prid structure attached to a maximal ideal p/p.
Return [e(F},/Qy), f(F,/Qp)] the logarithmic ramification and residue degrees. Let Qf,/Q,, be the cyclotomic

58 Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

Z,-extension, then e = [F), : [, NQg] and f = [F, N Q5 : Q,]. Note that e f = e(p/p)f(p/p), where e(p/p)
and f(p/p) denote the usual ramification and residue degrees.

? F = nfinit(y*6 - 3*yA5 + 5%yA3 - 3%y + 1);
? bnflogef(F, idealprimedec(F,2)[1])

%2 = [6, 1]

? bnflogef(F, idealprimedec(F,5)[1])

%3 = [1, 2]

bnfnarrow(bnf)

bnf being as output by bnfinit, computes the narrow class group of bnf. The output is a 3-component row
vector v analogous to the corresponding class group component : emphasis: “bnf.clgp': the first component is
the narrow class number :math: " v.no", the second component is a vector containing the SNF cyclic components
:math: v.cyc of the narrow class group, and the third is a vector giving the generators of the corresponding
:math: v.gen" cyclic groups. Note that this function is a special case of bnrinit; the bnf need not contain
fundamental units.

bnfsignunit (bnf)

bn f being as output by bnfinit, this computes an ry2(r; + 7o — 1) matrix having 1 components, giving the
signs of the real embeddings of the fundamental units. The following functions compute generators for the totally
positive units:

/% exponents of totally positive units generators on K.tu, K.fu */
tpuexpo (K)=

{ my(M, S = bnfsignunit(K), [m,n] = matsize(S));

\\m =K.rl, n = rl+r2-1

S = matrix(m,n, i,j, if (S[i,j] < 0, 1,0));
S = concat(vectorv(m,i,1), S); \\ add sign(-1)
M = matkermod(S, 2);

if (M, mathnfmodid(M, 2), 2*matid(n+1))
}

/% totally positive fundamental units of bnf K */
tpu(K)=
{ my(ex = tpuexpo(X)[,*1]); \\ remove ex[,1], corresponds to 1 or -1
my(v = concat(K.tu[2], K.fu));
[nffactorback(X, v, c) | c <- ex];

}

bnfsunit (bnf, S, precision)

Computes the fundamental S-units of the number field bn f (output by bnfinit), where S is a list of prime ideals
(output by idealprimedec). The output is a vector v with 6 components.

v[1] gives a minimal system of (integral) generators of the S-unit group modulo the unit group.
v[2] contains technical data needed by bnfissunit.

v[3] is an obsoleted component, now the empty vector.

v[4] is the S-regulator (this is the product of the regulator, the S-class number and the natural logarithms of the
norms of the ideals in S).

v[5] gives the S-class group structure, in the usual abelian group format: a vector whose three components give
in order the S-class number, the cyclic components and the generators.

v[6] is a copy of S.

1.1. Guide to real precision in the PARI interface 59

CyPari2 Documentation, Release 2.1.3

bnfunits(bnf, S)

Return the fundamental units of the number field bnf output by bnfinit; if S is present and is a list of prime ideals,
compute fundamental S-units instead. The first component of the result contains independent integral S-units
generators: first nonunits, then 71 + 75 — 1 fundamental units, then the torsion unit. The result may be used as
an optional argument to bnfisunit. The units are given in compact form: no expensive computation is attempted
if the bnf does not already contain units.

? bnf = bnfinit(x*4 - x*3 + 4*xA2 + 3*x + 9, 1);

? bnf.sign \\ r1 + r2 -1 =1

%2 = [0, 2]

? U = bnfunits(bnf); u = U[1];

? #u \\ rl + r2 = 2 units

%5 = 2;

? u[l] \\ fundamental unit as factorization matrix
%6 =

[[®, O, -1, -1]~ 1]

[[21 _1) _1’ ®]~ _2]
[[1! 1; ®’ ®]~ 2]

[[-1, 1, 1, 1]~ -1]

? u[2] \\ torsion unit as factorization matrix

%7 =

[[1, -1, 0, 0]~ 1]

? [nffactorback(bnf, z) | z <- u] \\ same units in expanded form
% = [[-1, 1, -1, ®]~, [1, -1, O, 0]~]

Now an example involving S-units for a nontrivial S:

? S = idealprimedec(bnf,5); #S

% = 2

? US = bnfunits(bnf, S); uS = US[1];

? g = [nffactorback(bnf, z) | z <- uS] \\ now 4 units
%11 = [[6, -3, -2, -2]~, [-5, 5, ®, ®]~, [-1, 1, -1, ®]~, [1, -1, O, O]~]
? bnfisunit(bnf,[10,-40,24,11]~)

%12 = []~ \\ not a unit

? e bnfisunit(bnf, [10,-40,24,11]~, US)

%13 = [2, O, 1, 4]~ \\ ...but an S-unit

? nffactorback(bnf, g, e)

%14 = [10, -40, 24, 11]~

? nffactorback(bnf, uS, e) \\ in factored form

%15 =

[[6, -3, -2, -2]~ 2]

[[0, O, -1, -1]~ 1]
[[2, -1, -1, O]~ -2]
[[1, 1, 0, 0]~ 2]

[[-1, 1, 1, 1]~ -1]

[[1, -1, O, 0]~ 4]

60

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

Note that in more complicated cases, any nffactorback fully expanding an element in factored form could be
very expensive. On the other hand, the final example expands a factorization whose components are themselves
in factored form, hence the result is a factored form: this is a cheap operation.

bnrL1(bnr, H, flag, precision)
Let bnr be the number field data output by bnrinit and H be a square matrix defining a congruence subgroup
of the ray class group corresponding to bnr (the trivial congruence subgroup if omitted). This function returns,
for each character x of the ray class group which is trivial on H, the value at s = 1 (or s = 0) of the abelian
L-function attached to x. For the value at s = 0, the function returns in fact for each x a vector [ry, ¢,] where

L(s,x) = c.s" +O(s"™)

near 0.

The argument flag is optional, its binary digits mean 1: compute at s = 0 if unset or s = 1 if set, 2: compute
the primitive L-function attached to x if unset or the L-function with Euler factors at prime ideals dividing the
modulus of bnr removed if set (that is Lg(s, x), where S is the set of infinite places of the number field together
with the finite prime ideals dividing the modulus of bnr), 3: return also the character if set.

K = bnfinit(x42-229);
bnr = bnrinit(K,1);
bnrL1(bnr)

returns the order and the first nonzero term of L(s, x) at s = 0 where x runs through the characters of the class
group of K = Q(+v/229). Then

bnr2 = bnrinit(X,2);
bnrL1(bnr2,,2)

returns the order and the first nonzero terms of Lg(s, x) at s = 0 where x runs through the characters of the class
group of K and S is the set of infinite places of K together with the finite prime 2. Note that the ray class group
modulo 2 is in fact the class group, so bnrL1(bnr2,0) returns the same answer as bnrL1 (bnr, 0).

This function will fail with the message

#**% bnrL1l: overflow in zeta_get_NO [need too many primes].

if the approximate functional equation requires us to sum too many terms (if the discriminant of K is too large).

bnrchar (bnr, g, v)

Returns all characters x on bar. clgp such that x(g;) = e(v;), where e(x) = exp(2irz). If v is omitted, returns
all characters that are trivial on the g;. Else the vectors g and v must have the same length, the g; must be ideals in
any form, and each v; is a rational number whose denominator must divide the order of g; in the ray class group.
For convenience, the vector of the g; can be replaced by a matrix whose columns give their discrete logarithm, as
given by bnrisprincipal; this allows to specify abstractly a subgroup of the ray class group.

? bnr = bnrinit(bnfinit(x), [160,[1]1], 1); /* (Z/160Z)*r* */

? bnr.cyc

%2 = [8, 4, 2]

? g = bnr.gen;

? bnrchar(bnr, g, [1/2,0,0])

%4 = [[4, 0, 0]] \\ a unique character

? bnrchar(bnr, [g[1]1,9[3]1]1) \\ all characters trivial on g[1l] and g[3]
%5 = [[6, 1, 0], [0, 2, O], [0, 3, 0], [0, O, 0]]

? bnrchar(bnr, [1,0,0;0,1,0;0,0,2])

% = [[0, 0, 1], [0, 0, 0]] \\ characters trivial on given subgroup

1.1. Guide to real precision in the PARI interface 61

CyPari2 Documentation, Release 2.1.3

bnrclassfield(bnr, subgp, flag, precision)

bnr being as output by bnrinit, returns a relative equation for the class field corresponding to the congruence
group defined by (bnr, subgp) (the full ray class field if subgp is omitted). The subgroup can also be a t_INT n,
meaning n.Cly. The function also handles a vector of subgroup, e.g, from subgrouplist and returns the vector
of individual results in this case.

If flag = 0, returns a vector of polynomials such that the compositum of the corresponding fields is the class
field; if flag = 1 returns a single polynomial; if flag = 2 returns a single absolute polynomial.

? bnf = bnfinit(y*3+14*y-1); bnf.cyc

%1 = [4, 2]

? pol = bnrclassfield(bnf,,1) \\ Hilbert class field

%2 = xA8 - 2*xXA7 + ... + Mod(11*yA2 - 82*y + 116, yA3 + 1l4*y - 1)
? rnfdisc(bnf,pol)[1]

%3 =1

? bnr = bnrinit(bnf,3*5%7); bnr.cyc
%4 = [24, 12, 12, 2]
? bnrclassfield(bnr,2) \\ maximal 2-elementary subextension
%5 = [x*2 + (-21*y - 105), x*2 + (-5*y - 25), x22 + (-y - 5), x*2 + (-y - 1]
\\ quadratic extensions of maximal conductor
? bnrclassfield(bnr, subgrouplist(bnr,[2]))
%6 = [[x22 - 105], [x*2 + (-105*y+2 - 1260)], [x*2 + (-105*y - 525)1],
[xA2 + (-105*y - 105)]1]
? #bnrclassfield(bnr, subgrouplist(bnr, [2],1)) \\ all quadratic extensions
%7 = 15

When the subgroup contains nC'l¢, where n is fixed, it is advised to directly compute the bnr modulo n to avoid
expensive discrete logarithms:

? bnf = bnfinit(y*2-5); p = 1594287814679644276013;

? bnr = bnrinit(bnf,p); \\ very slow

time = 24,146 ms.

? bnrclassfield(bnr, 2) \\ ... even though the result is trivial
%3 = [x22 - 1594287814679644276013]

? bnr2 = bnrinit(bnf,p,,2); \\ now fast

time = 1 ms.

? bnrclassfield(bnr2, 2)

%5 = [x22 - 1594287814679644276013]

This will save a lot of time when the modulus contains a maximal ideal whose residue field is large.

bnrclassno(A, B, C)

Let A, B, C define a class field L over a ground field K (of type [:emphasis: bnr]", [:emphasis: bnr,
subgroup]’, or [:emphasis: bnf, modulus], or [:emphasis: bnf, modulus,.emphasis:subgroup]’, CFT (in
the PARI manual)); this function returns the relative degree [L : K.

In particular if A is a bnf (with units), and B a modulus, this function returns the corresponding ray class number
modulo B. One can input the attached bid (with generators if the subgroup C'is non trivial) for B instead of the
module itself, saving some time.

This function is faster than bnrinit and should be used if only the ray class number is desired. See
bnrclassnolist if you need ray class numbers for all moduli less than some bound.

bnrclassnolist (bnf, list)
bnf being as output by bnfinit, and list being a list of moduli (with units) as output by ideallist or

62 Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

ideallistarch, outputs the list of the class numbers of the corresponding ray class groups. To compute a
single class number, bnrclassno is more efficient.

? bnf = bnfinit(x*2 - 2);

? L = ideallist(bnf, 100, 2);

? H = bnrclassnolist(bnf, L);

? H[98]

% = [1, 3, 1]

? 1 =L[1][98]; ids = vector(#1, i, 1[i].mod[1])

%5 = [[98, 88; ®, 1], [14, 0; O, 7], [98, 10; 0, 1]1]

The weird 1[i].mod[1], is the first component of 1[i].mod, i.e. the finite part of the conductor. (This is
cosmetic: since by construction the Archimedean part is trivial, I do not want to see it). This tells us that the ray
class groups modulo the ideals of norm 98 (printed as %5) have respectively order 1, 3 and 1. Indeed, we may
check directly:

? bnrclassno(bnf, ids[2])
%6 = 3

bnrconductor (A, B, C, flag)

Conductor f of the subfield of a ray class field as defined by [A, B,C] (of type [:emphasis: bnr],
[:emphasis: “bnr, subgroup], [:emphasis: bnf, modulus]® or [:emphasis: bnf, modulus, subgroup],
CFT (in the PARI manual))

If flag = 0, returns f.
If flag = 1, returns [f, Cly, H], where Cl; is the ray class group modulo f, as a finite abelian group; finally H
is the subgroup of Cl; defining the extension.

If flag = 2, returns [f, bnr(f), H], as above except C'ly is replaced by a bnr structure, as output by bnrinit(, f),
without generators unless the input contained a bnr with generators.

In place of a subgroup H, this function also accepts a character chi = (a;), expressed as usual in terms of the
generators bnr.gen: x(g;) = exp(2ima;/d;), where g; has order d; = bnr.cyc[j]. In which case, the function
returns respectively

If flag = 0, the conductor f of Kery.

If flag = 1, [f,Cly, xs], where x is x expressed on the minimal ray class group, whose modulus is the con-
ductor.

If flag =2, [f, bnr(f), xs]-

Note. Using this function with flag! = 0 is usually a bad idea and kept for compatibility and convenience only:
flag = 1 has always been useless, since it is no faster than flag = 2 and returns less information; flag = 2 is
mostly OK with two subtle drawbacks:

* it returns the full bnr attached to the full ray class group, whereas in applications we only need Cl; modulo
N-th powers, where N is any multiple of the exponent of C'ly /H. Computing directly the conductor, then
calling bnrinit with optional argument N avoids this problem.

* computing the bnr needs only be done once for each conductor, which is not possible using this function.

For maximal efficiency, the recommended procedure is as follows. Starting from data (character or congruence
subgroups) attached to a modulus m, we can first compute the conductors using this function with default flag =
0. Then for all data with a common conductor f||m, compute (once!) the bnr attached to f using bnrinit
(modulo N-th powers for a suitable N!) and finally map original data to the new bnr using bnrmap.

bnrconductorofchar (bnr, chi)

This function is obsolete, use bnrconductor.

1.1. Guide to real precision in the PARI interface 63

CyPari2 Documentation, Release 2.1.3

bnrdisc(A, B, C, flag)

A, B, C defining a class field L over a ground field K (of type [:emphasis: bnr]’, [:emphasis: bnr, sub-
group]’, [:emphasis: “bnr, character], [:emphasis: bnf, modulus]® or [:emphasis: bnf, modulus, sub-
group]’, CFT (in the PARI manual)), outputs data [N, 1, D] giving the discriminant and signature of L, depending
on the binary digits of flag:

* 1: if this bit is unset, output absolute data related to L/Q: N is the absolute degree [L : Q], r; the number of
real places of L, and D the discriminant of L/Q. Otherwise, output relative data for L/K: N is the relative
degree [L : K], rq is the number of real places of K unramified in L (so that the number of real places of L
is equal to r1 times N), and D is the relative discriminant ideal of L/K.

« 2: if this bit is set and if the modulus is not the conductor of L, only return 0.

bnrdisclist (bnf, bound, arch)

bn f being as output by bnfinit (with units), computes a list of discriminants of Abelian extensions of the number
field by increasing modulus norm up to bound bound. The ramified Archimedean places are given by arch; all
possible values are taken if arch is omitted.

The alternative syntax bnrdisclist(bnf,list) is supported, where [list is as output by ideallist or
ideallistarch (with units), in which case arch is disregarded.

The output v is a vector, where v[k] is itself a vector w, whose length is the number of ideals of norm k.

* We consider first the case where arch was specified. Each component of w corresponds to an ideal m of
norm k, and gives invariants attached to the ray class field L of bnf of conductor [m, arch]. Namely, each
contains a vector [m, d, r, D] with the following meaning: m is the prime ideal factorization of the modulus,
d = [L : Q] is the absolute degree of L, r is the number of real places of L, and D is the factorization of its
absolute discriminant. We set d = r = D = 0 if m is not the finite part of a conductor.

o If arch was omitted, all ¢ = 2" possible values are taken and a component of w has the form
[m, [[d1,71, D1], ..., [d¢, ¢, D¢]]], where m is the finite part of the conductor as above, and [d;, r;, D;] are the
invariants of the ray class field of conductor [m, v;], where v; is the i-th Archimedean component, ordered
by inverse lexicographic order; so v; = [0, ..., 0], v2 = [1,0...,0], etc. Again, wesetd; = r; = D; = 0 if
[m, v;] is not a conductor.

Finally, each prime ideal pr = [p, a, e, f, 4] in the prime factorization m is coded as the integer p.n? + (f —
1).n 4+ (j — 1), where n is the degree of the base field and j is such that

pr = idealprimedec(:emphasis: nf,p)[j].
m can be decoded using bnfdecodemodule.

Note that to compute such data for a single field, either bnrclassno or bnrdisc are (much) more efficient.

bnrgaloisapply (bnr, mat, H)

Apply the automorphism given by its matrix mat to the congruence subgroup H given as a HNF matrix. The
matrix mat can be computed with bnrgaloismatrix.

bnrgaloismatrix(bnr, aut)

Return the matrix of the action of the automorphism aut of the base field bnf.nf on the generators of the ray
class field bnr. gen; aut can be given as a polynomial, an algebraic number, or a vector of automorphisms or a
Galois group as output by galoisinit, in which case a vector of matrices is returned (in the later case, only for
the generators aut.gen).

The generators bnr.gen need not be explicitly computed in the input bnr, which saves time: the result is well
defined in this case also.

? K = bnfinit(a*4-3*a*2+253009); B = bnrinit(K,9); B.cyc
%1 = [8400, 12, 6, 3]

(continues on next page)

64

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

? G = nfgaloisconj(K)

%2 = [-a, a, -1/503*a*3 + 3/503*a, 1/503*a*3 - 3/503*a]~
? bnrgaloismatrix(B, G[2]) \\ G[2] = Id ...

%3 =

[1 00 0]

[0 10 0]

[6 0 10]

[0 0 0 1]

? bnrgaloismatrix(B, G[3]) \\ automorphism of order 2
%4 =

[799 0 0 2800]

[070 4]

[405 2]

[0 0 2]

? M = %*2; for (i=1, #B.cyc, M[i,] %= B.cyc[i]); M
%5 = \\ acts on ray class group as automorphism of order 2
[10 0 0]

[6 10 0]

[0 0 1 0]

[0 0 0 1]

See bnrisgalois for further examples.

banrinit (bnf, f, flag, cycmod)
bnf is as output by bnfinit (including fundamental units), f is a modulus, initializes data linked to the ray
class group structure corresponding to this module, a so-called bnr structure. One can input the attached bid
with generators for f instead of the module itself, saving some time. (As in idealstar, the finite part of the
conductor may be given by a factorization into prime ideals, as produced by idealfactor.)

If the positive integer cycmod is present, only compute the ray class group modulo cycmod, which may save a lot
of time when some maximal ideals in f have a huge residue field. In applications, we are given a congruence sub-
group H and study the class field attached to Cl;/H. If that finite Abelian group has an exponent which divides
cycmod, then we have changed nothing theoretically, while trivializing expensive discrete logs in residue fields
(since computations can be made modulo cycmod-th powers). This is useful in bnrclassfield, for instance
when computing p-elementary extensions.

The following member functions are available on the result: .bnf is the underlying bnf, .mod the modulus, .bid
the bid structure attached to the modulus; finally, .clgp, .no, .cyc, .gen refer to the ray class group (as a finite
abelian group), its cardinality, its elementary divisors, its generators (only computed if flag = 1).

The last group of functions are different from the members of the underlying bnf, which refer to the class group;
use :emphasis: bnr.bnf.:emphasis:xxx * to access these, e.g. :emphasis: bnr.bnf.cyc™ to get the cyclic de-
composition of the class group.

They are also different from the members of the underlying bid, which refer to (Zx/f)*; use
:emphasis: “bnr.bid.:emphasis:xxx * to access these, e.g. :emphasis: “bnr.bid.no" to get ¢(f).

1.1. Guide to real precision in the PARI interface 65

CyPari2 Documentation, Release 2.1.3

If flag = 0 (default), the generators of the ray class group are not explicitly computed, which saves time. Hence
:emphasis: bnr.gen" would produce an error. Note that implicit generators are still fixed and stored in the bnr
(and guaranteed to be the same for fixed bnf and bid inputs), in terms of bnr.bnf.gen and bnr.bid.gen. The
computation which is not performed is the expansion of such products in the ray class group so as to fix eplicit
ideal representatives.

If flag = 1, as the default, except that generators are computed.

bnrisconductor (A4, B, C)

Fast variant of bnrconductor(A, B,C); A, B, C represent an extension of the base field, given by class field
theory (see CFT (in the PARI manual)). Outputs 1 if this modulus is the conductor, and O otherwise. This is
slightly faster than bnrconductor when the character or subgroup is not primitive.

bnrisgalois(bnr, gal, H)

Check whether the class field attached to the subgroup H is Galois over the subfield of bnr.nf fixed by the
group gal, which can be given as output by galoisinit, or as a matrix or a vector of matrices as output by
bnrgaloismatrix, the second option being preferable, since it saves the recomputation of the matrices. Note:
The function assumes that the ray class field attached to bnr is Galois, which is not checked.

In the following example, we lists the congruence subgroups of subextension of degree at most 3 of the ray class
field of conductor 9 which are Galois over the rationals.

? K = bnfinit(a*4-3*a*2+253009); B = bnrinit(K,9); G = galoisinit(X);
? [H | H<-subgrouplist(B,3), bnrisgalois(B,G,H)];

time = 160 ms.

? M = bnrgaloismatrix(B,G);

? [H | H<-subgrouplist(B,3), bnrisgalois(B,M,H)]

time = 1 ms.

The second computation is much faster since bnrgaloismatrix (B, G) is computed only once.

bnrisprincipal (bnr, x, flag)

Let bnr be the ray class group data output by bnrinit(,, 1) and let = be an ideal in any form, coprime to the
modulus f = bnr.mod. Solves the discrete logarithm problem in the ray class group, with respect to the generators
bnr.gen, in a way similar to bnfisprincipal. If is not coprime to the modulus of bnr the result is undefined.
Note that bnr need not contain the ray class group generators, i.e. it may be created with bnrinit(,,0); in that
case, although bnr.gen is undefined, we can still fix natural generators for the ray class group (in terms of the
generators in bnr.bnf.gen and bnr.bid.gen) and compute with respect to them.

The binary digits of flag (default flag = 1) mean:

* 1: If set returns a 2-component vector [e,] where e is the vector of components of x on the ray class group
generators, « is an element congruent to 1 mod* f such that x = o[[, g;*. If unset, returns only e.

* 4: If set, returns [e, o] where « is given in factored form (compact representation). This is orders of magnitude
faster.

? K = bnfinit(x*2 - 30); bnr = bnrinit(, [4, [1,1]11);

? bnr.clgp \\ ray class group is isomorphic to Z/4 x Z/2 x Z/2

%2 = [16, [4, 2, 2]]

? P = idealprimedec(K, 3)[1]; \\ the ramified prime ideal above 3
? bnrisprincipal (bnr,P) \\ bnr.gen undefined !

%5 = [[3, 0, 0]~, 9]

? bnrisprincipal (bnr,P, 0) \\ omit principal part

%5 = [3, 0, 0]~

? bnr = bnrinit(bnr, bnr.bid, 1); \\ include explicit generators

(continues on next page)

66

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

? bnrisprincipal(bnr,P) \\ ... alpha is different !
%7 = [[3, 0, 0]~, 1/128625]

It may be surprising that the generator « is different although the underlying bnf and bid are the same. This defines
unique generators for the ray class group as ideal classes, whether we use bnrinit(,®) or bnrinit(, 1). But
the actual ideal representatives (implicit if the flag is 0, computed and stored in the bnr if the flag is 1) are in
general different and this is what happens here. Indeed, the implicit generators are naturally expressed expressed
in terms of bnr.bnf.gen and bnr.bid.gen and then expanded and simplified (in the same ideal class) so that
we obtain ideal representatives for bnr.gen which are as simple as possible. And indeed the quotient of the two
« found is 1 modulo the conductor (and positive at the infinite places it contains), and this is the only guaranteed

property.

Beware that, when bnr is generated using bnrinit(, cycmod), the results are given in C'ly modulo cycmod-th
powers:

? bnr2 = bnrinit(K, bnr.mod,, 2); \\ modulo squares
? bnr2.clgp

%9 = [8, [2, 2, 2]] \\ bnr.clgp tensored by Z/2Z

? bnrisprincipal (bnr2,P, 0)

%10 = [1, 0, 0]~

bnrmap (A, B)

This function has two different uses:

* if A and B are bnr structures for the same bnf attached to moduli m 4 and mp with mpg||m 4, return the
canonical surjection from A to B, i.e. from the ray class group moodulo m 4 to the ray class group modulo
mp. The map is coded by a triple [M, cyca, cycp]: M gives the image of the fixed ray class group generators
of A in terms of the ones in B, cyc4 and cycp are the cyclic structures A.cyc and B. cyc respectively. Note
that this function does not need A or B to contain explicit generators for the ray class groups: they may be
created using bnrinit(,0).

If B is only known modulo N-th powers (from bnrinit (,N)), the result is correct provided N is a multiple of
the exponent of A.

« if A is a projection map as above and B is either a congruence subgroup H, or a ray class character , or
a discrete logarithm (from bnrisprincipal) modulo m 4 whose conductor divides m p, return the image
of the subgroup (resp. the character, the discrete logarighm) as defined modulo mp. The main use of this
variant is to compute the primitive subgroup or character attached to a bnr modulo their conductor. This is
more efficient than bnrconductor in two respects: the bnr attached to the conductor need only be computed
once and, most importantly, the ray class group can be computed modulo N-th powers, where N is a multiple
of the exponent of Cl,, , /H (resp. of the order of x). Whereas bnrconductor is specified to return a bnr
attached to the full ray class group, which may lead to untractable discrete logarithms in the full ray class
group instead of a tiny quotient.

bnrrootnumber (bnr, chi, flag, precision)

If x = chi is a character over bnr, not necessarily primitive, let L(s, x) = >_,, x(id)N (id)~* be the attached
Artin L-function. Returns the so-called Artin root number, i.e. the complex number W () of modulus 1 such
that

Al —=s,x) = WO)A(s, X)

where A(s, x) = A(x)*/?7,(s)L(s, x) is the enlarged L-function attached to L.

You can set flag = 1 if the character is known to be primitive. Example:

1.1.

Guide to real precision in the PARI interface 67

CyPari2 Documentation, Release 2.1.3

bnf = bnfinit(x*2 - x - 57);
bnr = bnrinit(bnf, [7,[1,1]]1);
bnrrootnumber (bnr, [2,1])

returns the root number of the character x of Clyoo, 00, (Q(v/229)) defined by x(g%g5) = (?*¢5. Here g1, g2 are
the generators of the ray-class group given by bnr.gen and ¢; = €2™/M ¢, = ¢27/N2 where Ny, N, are the
orders of g; and g5 respectively (N7 = 6 and Ny = 3 as bnr. cyc readily tells us).

bnrstark (bnr, subgroup, precision)

bnr being as output by bnrinit, finds a relative equation for the class field corresponding to the modulus in bnr
and the given congruence subgroup (as usual, omit subgroup if you want the whole ray class group).

The main variable of bnr must not be z, and the ground field and the class field must be totally real. When the
base field is Q, the vastly simpler galoissubcyclo is used instead. Here is an example:

bnf = bnfinit(y*2 - 3);
bnr = bnrinit(bnf, 5);
bnrstark(bnr)

returns the ray class field of Q(+/3) modulo 5. Usually, one wants to apply to the result one of

rnfpolredbest(bnf, pol) \\ compute a reduced relative polynomial
rnfpolredbest(bnf, pol, 2) \\ compute a reduced absolute polynomial

The routine uses Stark units and needs to find a suitable auxiliary conductor, which may not exist when the class
field is not cyclic over the base. In this case bnrstark is allowed to return a vector of polynomials defining inde-
pendent relative extensions, whose compositum is the requested class field. We decided that it was useful to keep
the extra information thus made available, hence the user has to take the compositum herself, see nfcompositum.

Even if it exists, the auxiliary conductor may be so large that later computations become unfeasible. (And of
course, Stark’s conjecture may simply be wrong.) In case of difficulties, try bnrclassfield:

? bnr = bnrinit(bnfinit(y*8-12*yA6+36*yAr4-36*yA2+9,1), 2);
? bnrstark(bnr)

o8

*** at top-level: bnrstark(bnr)
#** bnrstark: need 3919350809720744 coefficients in initzeta.
#** Computation impossible.

? bnrclassfield(bnr)

time = 20 ms.

%2 = [x22 + (-2/3%y*6 + 7*yr4 - 14%y*2 + 3)]

call(f, A)

A = |ay, ..., a,] being a vector and f being a function, returns the evaluation of f(a1,...,a,). f can also be
the name of a built-in GP function. If #A4 = 1, call (f, A) = apply (f, A)[1]. If f is variadic, the variadic
arguments must grouped in a vector in the last component of A.

This function is useful

* when writing a variadic function, to call another one:

fprintf(file, format,args[..]) = write(file,call(strprintf, [format,args]))

* when dealing with function arguments with unspecified arity

The function below implements a global memoization interface:

68

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

memo=Map () ;
memoize(£f,A[..])=
{
my (res);
if(!mapisdefined(memo, [f,A], &res),
res = call(f,A);
mapput (memo, [f,A],res));
res;

for example:

? memoize(factor,24128+1)
%3 = [59649589127497217,1;5704689200685129054721,1]
? ##

#**%* last result computed in 76 ms.

? memoize(factor,24128+1)
%4 = [59649589127497217,1;5704689200685129054721,1]
? ##

#%%* last result computed in 0 ms.

? memoize(ffinit,3,3)
%5 = Mod(1,3)*x23+Mod(1,3)*x42+Mod (1, 3)*x+Mod (2, 3)
? fibo(n)=if(n==0,0,n==1,1,memoize(fibo,n-2)+memoize(fibo,n-1));
? £ibo(100)
%7 = 354224848179261915075

* to call operators through their internal names without using alias

matnbelts(M) = call("_*_",matsize(M))

ceil (x)

Ceiling of z. When z is in R, the result is the smallest integer greater than or equal to x. Applied to a rational
function, ceil(x) returns the Euclidean quotient of the numerator by the denominator.

centerlift(x, v)
Same as 1ift, except that t_INTMOD and t_PADIC components are lifted using centered residues:
* fora t_INTMOD x € Z/nZ, the lift y is such that —n/2 < y <= n/2.

* a t_PADIC « is lifted in the same way as above (modulo pPadicprec(x)) if its valuation v is nonnegative; if
not, returns the fraction p¥ centerlift(xp~?); in particular, rational reconstruction is not attempted. Use
bestappr for this.

For backward compatibility, centerlift(x, 'v) is allowed as an alias for 1ift(x, 'v).

characteristic(x)

Returns the characteristic of the base ring over which x is defined (as defined by t_INTMOD and t_FFELT compo-
nents). The function raises an exception if incompatible primes arise from t_FFELT and t_PADIC components.

? characteristic(Mod(1,24)*x + Mod(1,18)*y)
%l = 6

charconj(cyc, chi)

Let cyc represent a finite abelian group by its elementary divisors, i.e. (d;) represents <k Z/d;Z with

1.1. Guide to real precision in the PARI interface 69

CyPari2 Documentation, Release 2.1.3

dp|...||d1; any object which has a .cyc method is also allowed, e.g. the output of znstar or bnrinit. A char-
acter on this group is given by a row vector x = [ay, ..., @] such that x (]| g?j) = exp(2mi) ajn;/d;), where
g; denotes the generator (of order d;) of the j-th cyclic component.

This function returns the conjugate character.

? cyc = [15,5]; chi = [1,1];
? charconj(cyc, chi)

%2 = [14, 4]

? bnf = bnfinit(x*2+23);

? bnf.cyc

%4 = [3]

? charconj(bnf, [1])

%5 = [2]

For Dirichlet characters (when cyc is znstar(q, 1)), characters in Conrey representation are available, see
dirichletchar (in the PARI manual) or ??character:

? G = znstar(8, 1); \\ (Z/8Z)+*

? charorder(G, 3) \\ Conrey label

%2 = 2

? chi = znconreylog(G, 3);

? charorder(G, chi) \\ Conrey logarithm
%4 = 2

chardiv(cyc, a, b)

Let cyc represent a finite abelian group by its elementary divisors, i.e. (d;) represents) <k Z/d;Z with
dp|...||d1; any object which has a .cyc method is also allowed, e.g. the output of znstar or bnrinit. A char-
acter on this group is given by a row vector a = [aq, ..., a,] such that x (] g;”) = exp(27mi Y a;n;/d;), where
g; denotes the generator (of order d;) of the j-th cyclic component.

Given two characters a and b, return the character a/b = ab.

? cyc = [15,5]; a = [1,1]; b = [2,4];
? chardiv(cyc, a,b)

%2 = [14, 2]

? bnf = bnfinit(x*2+23);

? bnf.cyc

%4 = [3]

? chardiv(bnf, [1], [2])

%5 = [2]

For Dirichlet characters on (Z/NZ)*, additional representations are available (Conrey labels, Conrey logarithm),
see dirichletchar (in the PARI manual) or ??character. If the two characters are in the same format, the
result is given in the same format, otherwise a Conrey logarithm is used.

? G = znstar(100, 1);

? G.cyc
%2 = [20, 2]
? a = [10, 1]; \\ usual representation for characters

?b 7; \\ Conrey label;

? ¢ = znconreylog(G, 11); \\ Conrey log
? chardiv(G, b,b)

%6 = 1 \\ Conrey label

? chardiv(G, a,b)

(continues on next page)

70

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

%7 = [0, 5]~ \\ Conrey log
? chardiv(G, a,c)
%7 = [0, 14]~ \\ Conrey log

chareval (G, chi, x, 7)

Let G be an abelian group structure affording a discrete logarithm method, e.g G = znstar(N, 1) for (Z/NZ)*
or a bnr structure, let x be an element of GG and let chi be a character of GG (see the note below for details). This
function returns the value of chi at x.

Note on characters. Let K be some field. If G is an abelian group, let y : G — K™ be a character of finite order
and let o be a multiple of the character order such that y(n) = ¢ for some fixed ¢ € K* of multiplicative
order o and a unique morphism ¢ : G — (Z/0Z, +). Our usual convention is to write

G=(Z/o1Z)g1 & ... ® (Z]oaL)ga

for some generators (g;) of respective order d;, where the group has exponent o := lcm;0;. Since (° = 1, the
vector (c;) in [[(Z/0;Z) defines a character x on G via x(g;) = ¢%(°/°) for all i. Classical Dirichlet characters
have values in K = C and we can take (= exp(2in/0).

Note on Dirichlet characters. In the special case where bid is attached to G = (Z/qZ)* (asper G = znstar(q,
1)), the Dirichlet character chi can be written in one of the usual 3 formats: a t_VEC in terms of bid.gen as
above, a t_COL in terms of the Conrey generators, or a t_INT (Conrey label); see dirichletchar (in the PARI
manual) or ??character.

The character value is encoded as follows, depending on the optional argument z:

o If z is omitted: return the rational number ¢(x) /o for x coprime to g, where we normalize 0 <= ¢(x) < o.
If can not be mapped to the group (e.g. z is not coprime to the conductor of a Dirichlet or Hecke character)
we return the sentinel value —1.

* If z is an integer o, then we assume that o is a multiple of the character order and we return the integer c(x)
when z belongs to the group, and the sentinel value —1 otherwise.

* z can be of the form [zeta, o], where zeta is an o-th root of 1 and o is a multiple of the character order. We
return (¢(*) if 2 belongs to the group, and the sentinel value 0 otherwise. (Note that this coincides with the
usual extension of Dirichlet characters to Z, or of Hecke characters to general ideals.)

* Finally, z can be of the form [vzeta, 0], where vzeta is a vector of powers (°, ..., (°~! of some o-th root of
1 and o is a multiple of the character order. As above, we return ¢¢(*) after a table lookup. Or the sentinel
value 0.
chargalois(cyc, ORD)

Let cyc represent a finite abelian group by its elementary divisors (any object which has a . cyc method is also
allowed, i.e. the output of znstar or bnrinit). Return a list of representatives for the Galois orbits of complex
characters of G. If ORD is present, select characters depending on their orders:

¢ if ORD is a t_INT, restrict to orders less than this bound;

e if ORD is a t_VEC or t_VECSMALL, restrict to orders in the list.

? G = znstar(96);
? #chargalois(G) \\ 16 orbits of characters mod 96

%2 = 16
? #chargalois(G,4) \\ order less than 4
%3 = 12

? chargalois(G,[1,4]) \\ order 1 or 4; 5 orbits
%4 = [[0, ®, 0], [2, &, O], [2, 1, O], [2, O, 1], [2, 1, 1]]

1.1. Guide to real precision in the PARI interface 71

CyPari2 Documentation, Release 2.1.3

Given a character ¥, of order n (charorder (G, chi)), the elements in its orbit are the ¢(n) characters xi, (i,n) =
1.

charker (cyc, chi)

Let cyc represent a finite abelian group by its elementary divisors, i.e. (d;) represents <=k Z/d;Z with
dp|...||d1; any object which has a .cyc method is also allowed, e.g. the output of znstar or bnrinit. A char-
acter on this group is given by a row vector x = [ay, ..., ay] such that x (]| g;»”) = exp(2mi Y a;n;/d;), where
g; denotes the generator (of order d;) of the j-th cyclic component.

This function returns the kernel of x, as a matrix K in HNF which is a left-divisor of matdiagonal(d). Its
columns express in terms of the g; the generators of the subgroup. The determinant of K is the kernel index.

? cyc = [15,5]; chi = [1,1];
? charker(cyc, chi)

%2 =

[15 12]

[01]

? bnf = bnfinit(xA2+23);
? bnf.cyc

%4 = [3]

? charker(bnf, [1])

%5 =

[3]

Note that for Dirichlet characters (when cycis znstar(q, 1)), charactersin Conrey representation are available,
see dirichletchar (in the PARI manual) or ??character.

? G = znstar(8, 1); \\ (Z/8Z)+*

? charker(G, 1) \\ Conrey label for trivial character
%2 =

[1 0]

[0 1]

charmul (cyc, a, b)

Let cyc represent a finite abelian group by its elementary divisors, i.e. (d;) represents >, _; Z/d;Z with
dg|...|]|d1; any object which has a .cyc method is also allowed, e.g. the output of znstar or bnrinit. A char-
acter on this group is given by a row vector a = [ay, ..., a,] such that x (] | g;”) = exp(27i) a;n;/d;), where
g; denotes the generator (of order d;) of the j-th cyclic component.

Given two characters a and b, return the product character ab.

? cyc = [15,5]; a = [1,1]; b = [2,4];
? charmul (cyc, a,b)

%2 = [3, 0]

? bnf = bnfinit(x*2+23);

? bnf.cyc

%4 = [3]

? charmul (bnf, [1], [2])

%5 = [0]

For Dirichlet characters on (Z/NZ)*, additional representations are available (Conrey labels, Conrey logarithm),
see dirichletchar (in the PARI manual) or ??character. If the two characters are in the same format, their
product is given in the same format, otherwise a Conrey logarithm is used.

72

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

? G = znstar(100, 1);

? G.cyc

%2 = [20, 2]

? a = [10, 1]; \\ usual representation for characters
? b =7; \\ Conrey label;

? ¢ = znconreylog(G, 11); \\ Conrey log
? charmul (G, b,b)

%6 = 49 \\ Conrey label

? charmul (G, a,b)

%7 = [0, 15]~ \\ Conrey log

? charmul (G, a,c)

%7 = [0, 6]~ \\ Conrey log

charorder (cyc, chi)

Let cyc represent a finite abelian group by its elementary divisors, i.e. (d;) represents) <k Z/d;Z with
dp|...||d1; any object which has a .cyc method is also allowed, e.g. the output of znstar or bnrinit. A char-
acter on this group is given by a row vector x = [ay, ..., a,,] such that x (]| g;-”) = exp(2mi Y a;n;/d;), where
g; denotes the generator (of order d;) of the j-th cyclic component.

This function returns the order of the character chi.

? cyc = [15,5]; chi = [1,1];
? charorder(cyc, chi)

%2 = 15

? bnf = bnfinit(x*2+23);

? bnf.cyc

%4 = [3]

? charorder(bnf, [1])

%5 = 3

For Dirichlet characters (when cyc is znstar(q, 1)), characters in Conrey representation are available, see
dirichletchar (in the PARI manual) or ??character:

? G = znstar(100, 1); \\ (Z/100Z)Ar*
? charorder(G, 7) \\ Conrey label
%2 = 4

charpoly (A, v, flag)

characteristic polynomial of A with respect to the variable v, i.e. determinant of v * [— A if A is a square matrix.

? charpoly([1,2;3,4]);

%l = xA2 - 5*x - 2

? charpoly([1,2;3,4],, 't)
%2 = tr2 - 5%t - 2

If A is not a square matrix, the function returns the characteristic polynomial of the map “multiplication by A” if
A is a scalar:

? charpoly (Mod(x+2, xA3-2))
%1 = xA3 - 6%xA2 + 12*x - 10
? charpoly(I)

%2 = x22 + 1

? charpoly(quadgen(5))

(continues on next page)

1.1.

Guide to real precision in the PARI interface 73

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

%3 = x22 - x -1
? charpoly(ffgen(ffinit(2,4)))
%4 = Mod(1l, 2)*x24 + Mod(l, 2)*xA3 + Mod(1l, 2)*xA2 + Mod(l, 2)*x + Mod(1l, 2)

The value of flag is only significant for matrices, and we advise to stick to the default value. Let n be the
dimension of A.

If flag = 0, same method (Le Verrier’s) as for computing the adjoint matrix, i.e. using the traces of the powers
of A. Assumes that n! is invertible; uses O(n*) scalar operations.

If flag = 1, uses Lagrange interpolation which is usually the slowest method. Assumes that n! is invertible; uses
O(n*) scalar operations.

If flag = 2, uses the Hessenberg form. Assumes that the base ring is a field. Uses O(n?) scalar operations, but
suffers from coeflicient explosion unless the base field is finite or R.

If flag = 3, uses Berkowitz’s division free algorithm, valid over any ring (commutative, with unit). Uses O(n*)
scalar operations.

If flag = 4, = must be integral. Uses a modular algorithm: Hessenberg form for various small primes, then
Chinese remainders.

If flag = 5 (default), uses the “best” method given z. This means we use Berkowitz unless the base ring is Z
(use flag = 4) or a field where coefficient explosion does not occur, e.g. a finite field or the reals (use flag = 2).

charpow(cyc, a, n)

Let cyc represent a finite abelian group by its elementary divisors, i.e. (d;) represents >, _, Z/d;Z with
dg|...|]|d1; any object which has a .cyc method is also allowed, e.g. the output of znstar or bnrinit. A char-
acter on this group is given by a row vector a = [aq, ..., a,] such that x (]| g;”) = exp(2mi) ajn;/d;), where
g; denotes the generator (of order d;) of the j-th cyclic component.

Given n € Z and a character a, return the character a”.

? cyc = [15,5]; a = [1,1];
? charpow(cyc, a, 3)

%2 = [3, 3]

? charpow(cyc, a, 5)

%2 = [5, 0]

? bnf = bnfinit(x*2+23);

? bnf.cyc

%4 = [3]

? charpow(bnf, [1], 3)

%5 = [0]

For Dirichlet characters on (Z/NZ)*, additional representations are available (Conrey labels, Conrey logarithm),
see dirichletchar (in the PARI manual) or ??character and the output uses the same format as the input.

? G = znstar(100, 1);

? G.cyc

%2 = [20, 2]

? a = [10, 1]; \\ standard representation for characters
? b =7; \\ Conrey label;

? ¢ = znconreylog(G, 11); \\ Conrey log

? charpow(G, a,3)

%6 = [10, 1] \\ standard representation

? charpow(G, b,3)

(continues on next page)

74

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

%7 = 43 \\ Conrey label
? charpow(G, c,3)
%8 = [1, 8]~ \\ Conrey log

chinese(x, y)

If z and y are both intmods or both polmods, creates (with the same type) a z in the same residue class as x and
in the same residue class as y, if it is possible.

? chinese(Mod(1,2), Mod(2,3))

%1 = Mod(5, 6)

? chinese(Mod(x,x*2-1), Mod(x+1,x22+1))
%2 = Mod(-1/2*x%2 + x + 1/2, x*4 - 1)

This function also allows vector and matrix arguments, in which case the operation is recursively applied to each
component of the vector or matrix.

? chinese([Mod(1,2),Mod(1,3)], [Mod(1l,5),Mod(2,7)])
%3 = [Mod(1, 10), Mod(1l6, 21)]

For polynomial arguments in the same variable, the function is applied to each coefficient; if the polynomials have
different degrees, the high degree terms are copied verbatim in the result, as if the missing high degree terms in
the polynomial of lowest degree had been Mod (0, 1). Since the latter behavior is usually not the desired one, we
propose to convert the polynomials to vectors of the same length first:

?7 P =x+1; Q = xA2+42%x+1;

? chinese(P*Mod(1,2), Q*Mod(1,3))

%4 = Mod(1l, 3)*xA2 + Mod(5, 6)*x + Mod(3, 6)

? chinese(Vec(P,3)*Mod(1,2), Vec(Q,3)*Mod(1,3))
%5 = [Mod(1, 6), Mod(5, 6), Mod(4, 6)]

? Pol(%)

%6 = Mod(1l, 6)*xA2 + Mod(5, 6)*x + Mod(4, 6)

If y is omitted, and « is a vector, chinese is applied recursively to the components of z, yielding a residue
belonging to the same class as all components of x.

Finally chinese(x, z) = x regardless of the type of x; this allows vector arguments to contain other data, so long
as they are identical in both vectors.

cmp (x, y)
Gives the result of a comparison between arbitrary objects = and y (as —1, 0 or 1). The underlying order relation
is transitive, the function returns O if and only if + === . It has no mathematical meaning but satisfies the

following properties when comparing entries of the same type:
* two t_INT s compare as usual (i.e. cmp(x,y) < 0 if and only if x < y);
* two t_VECSMALL s of the same length compare lexicographically;
* two t_STR s compare lexicographically.

In case all components are equal up to the smallest length of the operands, the more complex is considered to be
larger. More precisely, the longest is the largest; when lengths are equal, we have matrix > vector > scalar. For
example:

? cmp(l, 2)
%l = -1

(continues on next page)

1.1. Guide to real precision in the PARI interface 75

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

? cmp(2, 1)

%2 =1

? cmp(l, 1.0) \\ note that 1 == 1.0, but (1===1.0) is false.
%3 = -1

? cmp(x + Pi, [1)

%4 = -1

This function is mostly useful to handle sorted lists or vectors of arbitrary objects. For instance, if v is a vector,
the construction vecsort (v, cmp) is equivalent to Set(v).

component (x, n)

Extracts the n — th-component of x. This is to be understood as follows: every PARI type has one or two initial
code words. The components are counted, starting at 1, after these code words. In particular if x is a vector, this is
indeed the n — th-component of z, if x is a matrix, the n — th column, if x is a polynomial, the n — th coefficient
(i.e. of degree n — 1), and for power series, the n — th significant coefficient.

For polynomials and power series, one should rather use polcoeff, and for vectors and matrices, the [] operator.
Namely, if x is a vector, then x[n] represents the n — th component of . If = is a matrix, x[m,n] represents the
coefficient of row m and column n of the matrix, x[m,] represents the m — th row of z, and x[,n] represents the
n — th column of x.

Using of this function requires detailed knowledge of the structure of the different PARI types, and thus it should
almost never be used directly. Some useful exceptions:

? x =3+ 0(3r5);

? component(x, 2)

%2 = 81 \\ p*(p-adic accuracy)
? component(x, 1)

%3 =3 \\p

? q = Qfb(1,2,3);

? component(q, 1)

%5 =1

concat (x, y)

Concatenation of x and y. If x or y is not a vector or matrix, it is considered as a one-dimensional vector. All
types are allowed for x and y, but the sizes must be compatible. Note that matrices are concatenated horizontally,
i.e. the number of rows stays the same. Using transpositions, one can concatenate them vertically, but it is often
simpler to use matconcat.

? x = matid(2); y = 2*matid(2);
? concat(x,y)

%2 =

[1 02 0]

[0 10 2]

? concat(x~,y~)~
%3 =

[1 0]

[0 1]

(2 0]

(continues on next page)

76

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

[0 2]
? matconcat([x;y])
%4 =
[1 0]
[0 1]
[2 0]

[0 2]

To concatenate vectors sideways (i.e. to obtain a two-row or two-column matrix), use Mat instead, or matconcat:

?x = [1,2];
7y = [3,41;
? concat(x,y)
%3 = [1, 2, 3, 4]

? Mat([x,y]l~)
%4 =
[1 2]

[3 4]
? matconcat([x;y])
%5 =
[1 2]

[3 4]

Concatenating a row vector to a matrix having the same number of columns will add the row to the matrix (top
row if the vector is x, i.e. comes first, and bottom row otherwise).

The empty matrix [;] is considered to have a number of rows compatible with any operation, in particular
concatenation. (Note that this is not the case for empty vectors [] or []~.)

If y is omitted, = has to be a row vector or a list, in which case its elements are concatenated, from left to right,
using the above rules.

? concat([1,2], [3,4])

%1 = [1, 2, 3, 4]

? a= [[1,2]~, [3,4]~]; concat(a)
%2 =

[1 3]

[2 4]

? concat([1,2; 3,41, [5,6]~)
%3 =
[1 2 5]

[3 4 6]
? concat([%, [7,8]~, [1,2,3,41])
%5 =

(continues on next page)

1.1.

Guide to real precision in the PARI interface 77

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

[1 25 7]

[3 46 8]

[1 2 3 4]

conj(x)
Conjugate of x. The meaning of this is clear, except that for real quadratic numbers, it means conjugation in
the real quadratic field. This function has no effect on integers, reals, intmods, fractions or p-adics. The only
forbidden type is polmod (see conjvec for this).
conjvec(z, precision)
Conjugate vector representation of z. If z is a polmod, equal to Mod(a, T'), this gives a vector of length degree(T")
containing:
* the complex embeddings of z if T" has rational coefficients, i.e. the a(r[i]) where r = polroots(T);
* the conjugates of z if T" has some intmod coefficients;

if z is a finite field element, the result is the vector of conjugates [z, 2?7, ng7 cey an—l] where n = degree(T).

If z is an integer or a rational number, the result is z. If z is a (row or column) vector, the result is a matrix whose
columns are the conjugate vectors of the individual elements of z.

content (x, D)

Computes the gcd of all the coefficients of =, when this gcd makes sense. This is the natural definition if x is a
polynomial (and by extension a power series) or a vector/matrix. This is in general a weaker notion than the ideal
generated by the coefficients:

? content (2*x+y)
%1 = 1 \\ = gcd(2,y) over Q[y]

If x is a scalar, this simply returns the absolute value of x if z is rational (t_INT or t_FRAC), and either 1 (inexact
input) or = (exact input) otherwise; the result should be identical to gcd(x, 0).

The content of a rational function is the ratio of the contents of the numerator and the denominator. In recursive
structures, if a matrix or vector coefficient x appears, the gcd is taken not with z, but with its content:

? content([[2], 4*matid(3) 1)
%l = 2

The content of a t_VECSMALL is computed assuming the entries are signed integers.
The optional argument D allows to control over which ring we compute and get a more predictable behaviour:
¢ 1: we only consider the underlying Q-structure and the denominator is a (positive) rational number

* a simple variable, say 'x: all entries are considered as rational functions in K (z) for some field K and the
content is an element of K.

?f=x+1/y + 1/2;

? content(f) \\ as a t_POL in x
%2 = 1/(2%y)

? content(f, 1) \\ Q-content

%3 = 1/2
? content(f, y) \\ as a rational function in y
%4 = 1/2

(continues on next page)

78 Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

? g = XA2%y + yA2¥X;
? content(g, X)

%6 =y
? content(g, y)
%7 = X

contfrac(x, b, nmax)
Returns the row vector whose components are the partial quotients of the continued fraction expansion of x. In
other words, a result [ag, ..., a,] means that z ag + 1/(a; + ... + 1/a,,). The output is normalized so that a,,! = 1
(unless we also have n = 0).

The number of partial quotients n + 1 is limited by nmax. If nmax is omitted, the expansion stops at the last
significant partial quotient.

? \pl9
realprecision = 19 significant digits
? contfrac(Pi)
%l = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2]
? contfrac(Pi,, 3) \\' n = 2
%2 = [3, 7, 15]

2 can also be a rational function or a power series.

If a vector b is supplied, the numerators are equal to the coefficients of b, instead of all equal to 1 as above; more
precisely, « (1/bg)(aog + b1/(a1 + ... + by /ay)); for a numerical continued fraction (z real), the a; are integers,
as large as possible; if x is a rational function, they are polynomials with dega; = degb; + 1. The length of
the result is then equal to the length of b, unless the next partial quotient cannot be reliably computed, in which
case the expansion stops. This happens when a partial remainder is equal to zero (or too small compared to the
available significant digits for « a t_REAL).

A direct implementation of the numerical continued fraction contfrac(x,b) described above would be

\\ "greedy" generalized continued fraction
cf(x, b) =
{ my(a= vector(#b), t);

X *= b[1];

for (i = 1, #Db,

a[i] = floor(x);

t =x - a[i]; if ('t || i == #b, break);
x = b[i+1l] / t;

); a;

3

There is some degree of freedom when choosing the a;; the program above can easily be modified to derive
variants of the standard algorithm. In the same vein, although no builtin function implements the related Engel
expansion (a special kind of Egyptian fraction decomposition: x = 1/ay + 1/(ajaz) + ...), it can be obtained
as follows:

\\ n terms of the Engel expansion of x
engel(x, n = 10) =

{my(Cu=1x, a=vector(n));

for (k 1, n,

alk] = ceil(1/uw);

(continues on next page)

1.1. Guide to real precision in the PARI interface 79

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

u = u*alk] - 1;
if (lu, break);
); a

}

Obsolete hack. (don’t use this): if b is an integer, nmax is ignored and the command is understood as

<

contfrac(:math: 'x,, b).

contfraceval (CF, ¢, lim)

Given a continued fraction CF output by contfracinit, evaluate the first 1im terms of the continued fraction at
t (all terms if 1im is negative or omitted; if positive, 1im must be less than or equal to the length of CF.

contfracinit (M, lim)

Given M representing the power series S =), M[n 4 1]2", transform it into a continued fraction in Euler
form, using the quotient-difference algorithm; restrict to n <= lim if latter is nonnegative. M can be a vector,
a power series, a polynomial; if the limiting parameter 1im is present, a rational function is also allowed (and
converted to a power series of that accuracy).

The result is a 2-component vector [A, B] such that S = M[1]/(1 + A[l]z + B[1]2%/(1 + A[2]z + B[2]2?/(1 +
..1/(1 + Allim/2]z)))). Does not work if any coefficient of M vanishes, nor for series for which certain partial
denominators vanish.

contfracpngn(x, n)

When z is a vector or a one-row matrix, x is considered as the list of partial quotients [ag, a1, ..., a,] of a rational
number, and the result is the 2 by 2 matrix [py,, Pn—1; ¢n, Gn—1] in the standard notation of continued fractions, so
Dn/qn = ao +1/(a1 + ... + 1/ay,). If x is a matrix with two rows [bg, b1, ..., b,] and [ag, a1, ..., a,], this is then
considered as a generalized continued fraction and we have similarly p,, /g, = (1/bo)(ao+b1/(a1+...+bn/an)).
Note that in this case one usually has by = 1.

If n >= 0 is present, returns all convergents from pg/qo up to p,/gn. (All convergents if x is too small to
compute the n + 1 requested convergents.)

? a = contfrac(Pi,10)

%l = [3, 7, 15, 1, 292, 1, 1, 1, 3]

? allpngn(x) = contfracpngn(x,#x) \\ all convergents
? allpngn(a)

%3 =

[3 22 333 355 103993 104348 208341 312689 1146408]

[1 7 106 113 33102 33215 66317 99532 364913]
? contfracpngn(a) \\ last two convergents
%4 =

[1146408 312689]

[364913 99532]

? contfracpngn(a,3) \\ first three convergents
%5 =

[3 22 333 355]

[1 7 106 113]

core(n, flag)

If n is an integer written as n = df? with d squarefree, returns d. If flag is nonzero, returns the two-element row
vector [d, f]. By convention, we write 0 = 0x12, so core(®, 1) returns [0, 1].

80

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

coredisc(n, flag)

A fundamental discriminant is an integer of the form ¢t = 1mod4 or 4t = 8, 12mod16, with ¢ squarefree (i.e. 1
or the discriminant of a quadratic number field). Given a nonzero integer n, this routine returns the (unique)
fundamental discriminant d such that n = df?, f a positive rational number. If flag is nonzero, returns the
two-element row vector [d, f]. If n is congruent to O or 1 modulo 4, f is an integer, and a half-integer otherwise.

By convention, coredisc(®, 1)) returns [0, 1].
Note that quaddisc(n) returns the same value as coredisc(n), and also works with rational inputs n € Q*.

cos (x, precision)

Cosine of x. Note that, for real z, cosine and sine can be obtained simultaneously as

cs(x) = my(z = exp(I*x)); [real(z), imag(z)];

and for general complex x as

cs2(x) = my(z = exp(I*x), u = 1/z); [(z+w)/2, (z-uw)/2];

Note that the latter function suffers from catastrophic cancellation when 22 1.

cosh (x, precision)

Hyperbolic cosine of x.

cotan(x, precision)

Cotangent of z.

cotanh (x, precision)

Hyperbolic cotangent of x.

default (key, val)

Returns the default corresponding to keyword key. If val is present, sets the default to val first (which is subject to
string expansion first). Typing default () (or \d) yields the complete default list as well as their current values.
See defaults (in the PARI manual) for an introduction to GP defaults, gp_defaults (in the PARI manual) for
a list of available defaults, and meta (in the PARI manual) for some shortcut alternatives. Note that the shortcuts
are meant for interactive use and usually display more information than default.

denominator(f, D)

Denominator of f. The meaning of this is clear when f is a rational number or function. If f is an integer or a
polynomial, it is treated as a rational number or function, respectively, and the result is equal to 1. For polynomials,
you probably want to use

denominator(content(f))

instead. As for modular objects, t_INTMOD and t_PADIC have denominator 1, and the denominator of a t_POLMOD
is the denominator of its lift.

If f is a recursive structure, for instance a vector or matrix, the lcm of the denominators of its components (a
common denominator) is computed. This also applies for t_COMPLEX s and t_QUAD s.

Warning. Multivariate objects are created according to variable priorities, with possibly surprising side effects
(z/y is a polynomial, but y/x is a rational function). See priority (in the PARI manual).

The optional argument D allows to control over which ring we compute the denominator and get a more pre-
dictable behaviour:

¢ 1: we only consider the underlying Q-structure and the denominator is a (positive) rational integer

* asimple variable, say 'x: all entries as rational functions in K (z) and the denominator is a polynomial in z.

1.1. Guide to real precision in the PARI interface 81

CyPari2 Documentation, Release 2.1.3

?f=x+1/y + 1/2;
? denominator(f) \\ a t_POL in x
%2 =1
? denominator(f, 1) \\ Q-denominator
%3 = 2
? denominator(f, x) \\ as a t_POL in x, seen above
% =1
? denominator(f, y) \\ as a rational function in y
%5 = 2%y
deriv(x, v)

Derivative of x with respect to the main variable if v is omitted, and with respect to v otherwise. The derivative
of a scalar type is zero, and the derivative of a vector or matrix is done componentwise. One can use x’ as a
shortcut if the derivative is with respect to the main variable of x; and also use z”, etc., for multiple derivatives
altough derivn is often preferrable.

By definition, the main variable of a t_POLMOD is the main variable among the coefficients from its two poly-
nomial components (representative and modulus); in other words, assuming a polmod represents an element of
R[X]/(T(X)), the variable X is a mute variable and the derivative is taken with respect to the main variable
used in the base ring R.

?7 £ = (x/Y)A5;
? deriv()

%2 = 5/yA5*%xA4
? f'

%3 = 5/yA5%xA4
? deriv(f, 'x) \\ same since 'x is the main variable
%4 = 5/yA5%xA4
? deriv(f, 'y)
%5 = -5/yr6*xA5

This function also operates on closures, in which case the variable must be omitted. It returns a closure performing
a numerical differentiation as per derivnum:

? £(x) = x12;
? g = deriv(f)
? g(L)

%3 = 2.0000000000000000000000000000000000000
? £(x) = sin(exp(x));

? deriv(f) (®)

%5 = 0.54030230586813971740093660744297660373
? cos(l)

%6 = 0.54030230586813971740093660744297660373

derivn(x, n, v)

n-th derivative of x with respect to the main variable if v is omitted, and with respect to v otherwise; the integer
n must be nonnegative. The derivative of a scalar type is zero, and the derivative of a vector or matrix is done
componentwise. One can use 2/, x”, etc., as a shortcut if the derivative is with respect to the main variable of .

By definition, the main variable of a t_POLMOD is the main variable among the coefficients from its two poly-
nomial components (representative and modulus); in other words, assuming a polmod represents an element of
R[X]/(T(X)), the variable X is a mute variable and the derivative is taken with respect to the main variable
used in the base ring R.

82

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

? £ = (x/y)*5;

? derivn(£f, 2)

%2 = 20/yA5%xA3

?f'!

%3 = 20/yA5%xA3

? derivn(f, 2, 'x) \\ same since 'x is the main variable
%4 = 20/yAr5%xA3

? derivn(f, 2, 'y)

%5 = 30/yA7%xXAS

This function also operates on closures, in which case the variable must be omitted. It returns a closure performing
a numerical differentiation as per derivnum:

? £(x) = x710;
? g = derivn(f, 5)
7 g(L

%3 = 30240.000000000000000000000000000000000

? derivn(zeta, 2)(0)

%4 = -2.0063564559085848512101000267299604382
? zeta''(0®)

%5 = -2.0063564559085848512101000267299604382

diffop(x, v, d, n)
Let v be a vector of variables, and d a vector of the same length, return the image of x by the n-power (1 if n is
not given) of the differential operator D that assumes the value d[i] on the variable v[i]. The value of D on a
scalar type is zero, and D applies componentwise to a vector or matrix. When applied to a t_POLMOD, if no value
is provided for the variable of the modulus, such value is derived using the implicit function theorem.

Examples. This function can be used to differentiate formal expressions: if E = exp(X?) then we have £/ =
2% X % E. We derivate X * exp(X?) as follows:

? diffop(E*X, [X,E],[1,2*X*E])
%1 = (2*X*2 + 1)*E

Let Sin and Cos be two function such that Sin? + Cos? = 1 and Cos’ = —Sin. We can differentiate Sin/Cos
as follows, PARI inferring the value of Sin’ from the equation:

? diffop(Mod('Sin/'Cos, 'Sin*2+'Cos*2-1),['Cos], [-'Sin])
%1 = Mod(1/Cos*2, Sin?2 + (Cos?*2 - 1))

Compute the Bell polynomials (both complete and partial) via the Faa di Bruno formula:

Bell(k,n=-1)=
{ my(x, v, dv, var = i->eval(Str("X",i)));

v = vector(k, i, if (i==1, 'E, var(i-1)));

dv = vector(k, i, if (i==1, 'X*var(1)*'E, var(i)));
x = diffop('E,v,dv,k) / "E;

if (n < 0, subst(x,'X,1), polcoef(x,n,'X));

}

digits(x, b)
Outputs the vector of the digits of ||z| in base b, where = and b are integers (b = 10 by default). For x >= 1, the
number of digits is logint(x,b) + 1. See fromdigits for the reverse operation.

1.1. Guide to real precision in the PARI interface 83

CyPari2 Documentation, Release 2.1.3

? digits(1230)
%l = [1, 2, 3, 0]

? digits(10, 2) \\ base 2
%2 = [1, 0, 1, O]

By convention, 0 has no digits:

? digits(0)
%3 = []

dilog(x, precision)
Principal branch of the dilogarithm of z, i.e. analytic continuation of the power series logy(z) = > . _; 2™/ n?.

dirdiv(x, y)
x and y being vectors of perhaps different lengths but with y[1]! = 0 considered as Dirichlet series, computes the
quotient of x by y, again as a vector.

dirmul (x, y)

x and y being vectors of perhaps different lengths representing the Dirichlet series > |, x,n~° and) y,n~"°,
computes the product of = by y, again as a vector.

? dirmul (vector(10,n,1), vector(10,n,moebius(n)))
%l =[1, 0, 0, 0, 0, 0, 0, 0, 0, O]

The product length is the minimum of # z * v(y) and # y * v(z), where v(x) is the index of the first nonzero
coeflicient.

? dirmul([0,1], [0,11);
%2 = [0, 0, 0, 1]

dirpowers (n, x, precision)

For nonnegative n and complex number x, return the vector with n components [1%, 2%, ..., n®].

? dirpowers(5, 2)

%1l = [1, 4, 9, 16, 25]

? dirpowers(5, 1/2)

%2 = [1, 1.414..., 1.732..., 2.000..., 2.236...]

When n <= 0, the function returns the empty vector [].

dirpowerssum(n, x, precision)

For positive integer n and complex number z, return the sum 1% 4 2* + ... + n®. This is the same as
vecsum(dirpowers(n,x)), but faster and using only O(/n) memory instead of O(n).

? dirpowers(5, 2)

%1 = [1, 4, 9, 16, 25]

? vecsum(%)

%2 = 55

? dirpowerssum(5, 2)

%3 = 55

? \p200

? dirpowerssum(10+7, 1/2 + I * sqrt(3));
time = 29,884 ms.

(continues on next page)

84 Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

? vecsum(dirpowers(10A7, 1/2 + I * sqrt(3)))
time = 41,894 ms.

The penultimate command works with default stack size, the last one requires a stacksize of at least SGB.
When n <= 0, the function returns 0.

dirzetak(nf, b)
Gives as a vector the first b coefficients of the Dedekind zeta function of the number field nf considered as a
Dirichlet series.

divisors(x, flag)
Creates a row vector whose components are the divisors of x. The factorization of x (as output by factor) can

be used instead. If flag = 1, return pairs [d, factor(d)].

By definition, these divisors are the products of the irreducible factors of n, as produced by factor (n), raised to
appropriate powers (no negative exponent may occur in the factorization). If n is an integer, they are the positive
divisors, in increasing order.

? divisors(12)

%l = [1, 2, 3, 4, 6, 12]

? divisors(12, 1) \\ include their factorization

%2 = [[1, matrix(0,2)], [2, Mat([2, 11D]1, [3, Mat([3, 1D1,
[4, Mat([2, 21)], [6, [2, 1; 3, 111, [12, [2, 2; 3, 1]11]

? divisors(x*4 + 2*xA3 + x*2) \\ also works for polynomials
%3 = [1, x, x*2, x + 1, X*2 + X, XA3 + XA2, X*2 + 2*%x + 1,
XA3 4+ 2%XA2 + X, XM + 2¥xA3 + xA2]

This function requires a lot of memory if x has many divisors. The following idiom runs through all divisors
using very little memory, in no particular order this time:

F = factor(x); P = F[,1]; E = F[,2];
forvec(e = vectorv(#E,1i,[0,E[i]]), d = factorback(P,e); ...)

If the factorization of d is also desired, then [P, e] almost provides it but not quite: e may contain 0 exponents,
which are not allowed in factorizations. These must be sieved out as in:

tofact(P,E) =
my(v = select(x->x, E, 1)); Mat([vecextract(P,v), vecextract(E,v)]);

? tofact([2,3,5,7]~, [4,0,2,0]~)
%4 =
[2 4]

5 2]

We can then run the above loop with tofact (P, e) instead of, or together with, factorback.

divisorslenstra(m, r, s)

Given three integers N > s > r >= 0 such that (r,s) = 1 and s* > N, find all divisors d of N such that
d = r(mods). There are at most 11 such divisors (Lenstra).

? N = 245784; r = 19; s = 65 ;
? divisorslenstra(N, r, s)

(continues on next page)

1.1. Guide to real precision in the PARI interface 85

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

%2 = [19, 84, 539, 1254, 3724, 245784]
? [d]| d<- divisors(N), d % s == r]
%3 = [19, 84, 539, 1254, 3724, 245784]

When the preconditions are not met, the result is undefined:

? N = 4484075232; r = 7; s = 1303; sA3 > N

%4 = 0

? divisorslenstra(N, r, s)

? [d]| d<- divisors(N), d % s == 1]

% = [7, 2613, 9128, 19552, 264516, 3407352, 344928864]

(Divisors were missing but s3 < N.)

divrem(x, y, v)

Creates a column vector with two components, the first being the Euclidean quotient (:math: "~ x \:math:y *), the
second the Euclidean remainder (:math: " x - (z\:math:y)*:math:y), of the division of = by y. This avoids the
need to do two divisions if one needs both the quotient and the remainder. If v is present, and z, y are multivariate
polynomials, divide with respect to the variable v.

Beware that divrem(:math: " x,:math:y)[2] is in general not the same as :math: " x % y; no GP operator corre-
sponds to it:

? divrem(1l/2, 3)[2]

%1 = 1/2
?7 (1/2) % 3
%2 = 2

? divrem(Mod(2,9), 3)[2]
**%* at top-level: divrem(Mod(2,9),3)[2

RN A

#*%% forbidden division t_INTMOD \ t_INT.
? Mod(2,9) % 6
%3 = Mod(2,3)

eintl(x, n, precision)

Exponential integral [o(e™")/(t)dt = incgam(0, x'), where the latter expression extends the function definition
from real > 0 to all complex z! = 0.

If n is present, we must have 2 > 0; the function returns the n-dimensional vector [eint1(x), ..., eintl(nx)).
Contrary to other transcendental functions, and to the default case (n omitted), the values are correct up to a
bounded absolute, rather than relative, error 10~", where n is precision(z) if = is a t_REAL and defaults to
realprecision otherwise. (In the most important application, to the computation of L-functions via approxi-
mate functional equations, those values appear as weights in long sums and small individual relative errors are
less useful than controlling the absolute error.) This is faster than repeatedly calling eint1(:math: i * x)*, but
less precise.

el1E(k, precision)

Complete elliptic integral of the second kind

E(k) = /O ﬂ/2(1 — k2sin(t)?)'/2dt

for the complex parameter & using the agm.

86

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

ellK(k, precision)
Complete elliptic integral of the first kind

K(k) = /Oﬁ/z(l — k2sin(t)?) "V 2dt

for the complex parameter k using the agm.

ellL1(E, r, precision)

Returns the value at s = 1 of the derivative of order r of the L-function of the elliptic curve E.

? E = ellinit("11al"); \\ order of vanishing is ®
? ellL1(E)

%2 = 0.2538418608559106843377589233

? E = ellinit("389al1"); \\ order of vanishing is 2
? ellL1(E)

%4 = -5.384067311837218089235032414 E-29

? ellL1(E, 1)

%5 =0

? ellL1(E, 2)

%6 = 1.518633000576853540460385214

The main use of this function, after computing at low accuracy the order of vanishing using ellanalyticrank,
is to compute the leading term at high accuracy to check (or use) the Birch and Swinnerton-Dyer conjecture:

? \pl8
realprecision = 18 significant digits
? E = ellinit("5077al"); ellanalyticrank(E)
time = 8 ms.
%1 = [3, 10.3910994007158041]
? \p200
realprecision = 202 significant digits (200 digits displayed)
? ellL1(E, 3)
time = 104 ms.
%3 = 10.3910994007158041387518505103609170697263563756570092797[...]

elladd(E, z/, z2)
Sum of the points z1 and 22 on the elliptic curve corresponding to E.
ellak(E, n)

Computes the coefficient a,, of the L-function of the elliptic curve E/Q, i.e. coefficients of a newform of weight
2 by the modularity theorem (Taniyama-Shimura-Weil conjecture). E must be an ell structure over @ as output
by ellinit. F must be given by an integral model, not necessarily minimal, although a minimal model will
make the function faster.

? E = ellinit([1,-1,0,4,3]);

? ellak(E, 10)

%2 = -3

? e = ellchangecurve(E, [1/5,0,0,0]); \\ made not minimal at 5
? ellak(e, 10) \\ wasteful but works

%3 = -3

? E = ellminimalmodel(e); \\ now minimal

? ellak(E, 5)

%5 = -3

1.1. Guide to real precision in the PARI interface 87

CyPari2 Documentation, Release 2.1.3

If the model is not minimal at a number of bad primes, then the function will be slower on those n divisible by
the bad primes. The speed should be comparable for other n:

? for(i=1,1046, ellak(E,5))

time = 699 ms.

? for(i=1,10+6, ellak(e,5)) \\ 5 is bad, markedly slower
time = 1,079 ms.

? for(i=1,10A5,ellak(E,5%1))

time = 1,477 ms.

? for(i=1,1045,ellak(e,5*i)) \\ still slower but not so much on average
time = 1,569 ms.

ellan(E, n)

Computes the vector of the first n Fourier coefficients aj corresponding to the elliptic curve E defined over a
number field. If F is defined over QQ, the curve may be given by an arbitrary model, not necessarily minimal,
although a minimal model will make the function faster. Over a more general number field, the model must be
locally minimal at all primes above 2 and 3.

ellanalyticrank(E, eps, precision)

Returns the order of vanishing at s = 1 of the L-function of the elliptic curve E and the value of the first nonzero
derivative. To determine this order, it is assumed that any value less than eps is zero. If eps is omitted, 2-b/2 g
used, where b is the current bit precision.

? E = ellinit("11al1™); \\ rank ®

? ellanalyticrank(E)

%2 = [0, 0.2538418608559106843377589233]
? E = ellinit("37a1"); \\ rank 1

? ellanalyticrank(E)

%4 = [1, 0.3059997738340523018204836835]
? E = ellinit("389al1"); \\ rank 2

? ellanalyticrank(E)

%6 = [2, 1.518633000576853540460385214]

? E = ellinit("5077al1"); \\ rank 3

? ellanalyticrank(E)

%8 = [3, 10.39109940071580413875185035]

ellap(E, p)

Let E be an ell structure as output by ellinit, attached to an elliptic curve E/K. If the field K = F is finite,
return the trace of Frobenius ¢, defined by the equation #E(F,) = ¢+ 1 —¢.

For other fields of definition and p defining a finite residue field IF;, return the trace of Frobenius for the reduction
of E: the argument p is best left omitted if K = Q, (else we must have p = ¢) and must be a prime number
(K = Q) or prime ideal () a general number field) with residue field IF, otherwise. The equation need not be
minimal or even integral at p; of course, a minimal model will be more efficient.

For a number field K, the trace of Frobenius is the a,, coefficient in the Euler product defining the curve L-series,
whence the function name:

L(E/K,s) = [T (1 —ap(WNp)™)"" JT (1 = ap(Np)~* + (Np)'=2%) 7
badp goodp

When the characteristic of the finite field is large, the availability of the seadata package will speed up the
computation.

88

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

? E = ellinit([0,1]); \\ y*2 = x*3 + 0.x + 1, defined over Q
? ellap(E, 7) \\ 7 necessary here

%2 = -4 \\ #E(F_7) = 7+1-(-4) = 12

? ellcard(E, 7)

%3 = 12 \\ OK

? E = ellinit([0,1], 11); \\ defined over F_11
? ellap(E) \\ no need to repeat 11

%4 = 0
? ellap(E, 11) \\ ... but it also works
% =0

? ellgroup(E, 13) \\ ouch, inconsistent input!
*%% at top-level: ellap(E,13)

“* @llap: inconsistent moduli in Rg_to_Fp:
11
13
? a = ffgen(ffinit(11,3), 'a); \\ defines F_q := F_{1143}
? E = ellinit([a+1,a]); \\ y*2 = xA3 + (a+1)x + a, defined over F_q
? ellap(E)
%8 = -3

If the curve is defined over a more general number field than QQ, the maximal ideal p must be explicitly given in
idealprimedec format. There is no assumption of local minimality at p.

? K = nfinit(a*2+1); E = ellinit([1+a,0,1,0,0], K);
? fa = idealfactor(X, E.disc)

%2 =

[[5, [-2, 1]~, 1, 1, [2, -1; 1, 2]1 1]

[ri3, s, 1j~, 1, 1, [-5, -1; 1, -5]7 2]

? ellap(E, fa[l,11])

%3 = -1 \\ nonsplit multiplicative reduction
? ellap(E, fa[2,1])

%4 = 1 \\ split multiplicative reduction

? P17 = idealprimedec(K,17)[1];

? ellap(E, P17)

%6 = 6 \\ good reduction

? E2 = ellchangecurve(E, [17,0,0,0]);

? ellap(E2, P17)

%8 = 6 \\ same, starting from a nonmiminal model

? P3 = idealprimedec(K,3)[1];

? ellap(E, P3) \\ OK: E is minimal at P3
%10 = -2

? E3 = ellchangecurve(E, [3,0,0,0]);

? ellap(E3, P3) \\ not integral at P3

at top-level: ellap(E3,P3)

S

#**%* @llap: impossible inverse in Rg_to_ff: Mod(0, 3).

Algorithms used. If E/F, has CM by a principal imaginary quadratic order we use a fast explicit formula
(involving essentially Kronecker symbols and Cornacchia’s algorithm), in O(log ¢)? bit operations. Otherwise,
we use Shanks-Mestre’s baby-step/giant-step method, which runs in time O(q'/*) using O(q'/*) storage, hence

1.1. Guide to real precision in the PARI interface 89

CyPari2 Documentation, Release 2.1.3

becomes unreasonable when ¢ has about 30 digits. Above this range, the SEA algorithm becomes available,
heuristically in O(log)%, and primes of the order of 200 digits become feasible. In small characteristic we use
Mestre’s (p = 2), Kohel’s (p = 3,5,7,13), Satoh-Harley (all in O(p?n?)) or Kedlaya’s (in O(pn?)) algorithms.

ellbil (E, zl, 72, precision)

Deprecated alias for ellheight (E,P,Q).

ellbsd(E, precision)

The object E' being an elliptic curve over a number field, returns a real number c such that the BSD conjecture
predicts that Lg) (1)/r! = c¢RS where r is the rank, R the regulator and S the cardinal of the Tate-Shafarevich
group.

? e = ellinit([0®,-1,1,-10,-20]1); \\ rank 0

? ellbsd(e)

%2 = 0.25384186085591068433775892335090946105
? 1fun(e,1)

%3 = 0.25384186085591068433775892335090946104
? e = ellinit([0,0,1,-1,0]); \\ rank 1

? P = ellheegner(e);

? ellbsd(e)*ellheight(e,P)

%6 = 0.30599977383405230182048368332167647445
? 1fun(e,1,1)

%7 = 0.30599977383405230182048368332167647445
? e = ellinit([1+a,0,1,0,0],nfinit(a*2+1)); \\ rank 0
? ellbsd(e)

%9 = 0.42521832235345764503001271536611593310
? 1fun(e, 1)

%10 = 0.42521832235345764503001271536611593309

ellcard(E, p)

Let E be an ell structure as output by ellinit, attached to an elliptic curve E/K. If K = F is finite, return
the order of the group E(F,).

? E = ellinit([-3,1], 5); ellcard(E)

%l =7
? t = ffgen(3+5,'t); E = ellinit([t,t*2+1]); ellcard(E)
%2 = 217

For other fields of definition and p defining a finite residue field IF, return the order of the reduction of E: the
argument p is best left omitted if K = Q, (else we must have p = £) and must be a prime number (K = Q)
or prime ideal (K a general number field) with residue field IF, otherwise. The equation need not be minimal
or even integral at p; of course, a minimal model will be more efficient. The function considers the group of
nonsingular points of the reduction of a minimal model of the curve at p, so also makes sense when the curve has
bad reduction.

? E = ellinit([-3,1]);
? factor(E.disc)

%2 =

[2 4]

[3 4]
? ellcard(E, 5) \\ as above !
%3 =7

(continues on next page)

90

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

? ellcard(E, 2) \\ additive reduction
%4 = 2

When the characteristic of the finite field is large, the availability of the seadata package will speed the compu-
tation. See also ellap for the list of implemented algorithms.
ellchangecurve(E, v)

Changes the data for the elliptic curve E by changing the coordinates using the vector v = [u,r,s,t],i.e. if 2’
and y/ are the new coordinates, then = = u?2’ + r, y = vy’ + su?2’ 4+ t. E must be an el1 structure as output
by ellinit. The special case v = 1 is also used instead of [1, 0, 0, 0] to denote the trivial coordinate change.

ellchangepoint (x, v)

Changes the coordinates of the point or vector of points x using the vector v = [u,r,s,t],ie.if 2’ and y’ are
the new coordinates, then x = u22’ + r, y = u3y’ + su?z’ + t (see also ellchangecurve).

? EO = ellinit([1,1]); PO = [0,1]; v = [1,2,3,4];
? E = ellchangecurve(E®, v);

? P = ellchangepoint(P®,v)

%3 = [-2, 3]

? ellisoncurve(E, P)

% =1

? ellchangepointinv(P,v)

%5 = [0, 1]

ellchangepointinv(x, v)
Changes the coordinates of the point or vector of points x using the inverse of the isomorphism attached to v
= [u,r,s,t],ie. if 2’ and ¢ are the old coordinates, then x = u?x’ + r, y = w3y’ + su?x’ + t (inverse of
ellchangepoint).

? EO = ellinit([1,1]); PO® = [0,1]; v = [1,2,3,4];
? E = ellchangecurve(E®, Vv);
? P = ellchangepoint (PO,v)

%3 = [-2, 3]
? ellisoncurve(E, P)
%4 = 1

? ellchangepointinv(P,v)
%5 = [0, 1] \\ we get back PO

ellconvertname (name)

Converts an elliptic curve name, as found in the elldata database, from a string to a triplet
[conductor, isogenyclass, index]. It will also convert a triplet back to a curve name. Examples:

? ellconvertname("123b1")
%1 = [123, 1, 1]

? ellconvertname (%)

%2 = "123b1"

elldivpol(E, n, v)

n-division polynomial f;,, for the curve E in the variable v. In standard notation, for any affine point P = (X,Y)
on the curve and any integer n >= 0, we have

[P = (6 (P)¢n(P) : wn(P) : ¥u(P)?)

1.1. Guide to real precision in the PARI interface 91

CyPari2 Documentation, Release 2.1.3

for some polynomials ¢,,,wy, ¥y, in Z[ay,as,as,as, a6][X,Y]. We have f,(X) = ,(X) for n odd, and
fr(X) = ¢ (X, Y)(2Y + a1 X + a3) for n even. We have

fo=0,f1=1,fo =4X3 + b2 X2 + 264X + bg, f3 = 3X* + ba X> + 30, X2 + 3bg X + b8,

fa= f2(2XC + b2 XP + 5bs X* + 1006 X3 + 10bg X2 + (bobs — babs) X + (bgby — b2)), ...

When n is odd, the roots of f,, are the X -coordinates of the affine points in the n-torsion subgroup E[n]; when n
is even, the roots of f,, are the X-coordinates of the affine points in E[n] F[2] when n > 2, resp. in E[2] when
n = 2. Forn < 0, we define f,, := —f_,.

elleisnum(w, k, flag, precision)

k being an even positive integer, computes the numerical value of the Eisenstein series of weight k at the lattice
w, as given by ellperiods, namely

(2im/ws) (1 +2/C(L—k) D n*1q" /(1= q")),

where ¢ = exp(2inT) and 7 := w; /wa belongs to the complex upper half-plane. It is also possible to directly
input w = w1, ws], or an elliptic curve E as given by ellinit.

? w = ellperiods([1,I]);

? elleisnum(w, 4)

%2 = 2268.8726415508062275167367584190557607
? elleisnum(w, 6)

%3 = -3.977978632282564763 E-33

? E = ellinit([1, 0]);

? elleisnum(E, 4)

%5 = -48.000000000000000000000000000000000000

When flag is nonzero and k = 4 or 6, returns the elliptic invariants g5 or g3, such that
y? = 4a® — gow — g3

is a Weierstrass equation for E.

? g2 = elleisnum(E, 4, 1)

%6 = -4.0000000000000000000000000000000000000
? g3 = elleisnum(E, 6, 1) \\ ~ 0

%7 = 0.E-114 - 3.909948178422242682 E-57*I

elleta(w, precision)

Returns the quasi-periods [11,72] attached to the lattice basis w = [wy,ws]. Alternatively, w can be an el-
liptic curve E as output by ellinit, in which case, the quasi periods attached to the period lattice basis
:math: E.omega™ (namely, :math: E.eta") are returned.

? elleta([1, I1)
%1 = [3.141592653589793238462643383, 9.424777960769379715387930149%1]

ellformaldifferential (E, serprec, n)

Let w := dx/(2y + a1x + a3) be the invariant differential form attached to the model E of some elliptic curve
(ellinit form), and 7 := z(¢)w. Return n terms (seriesprecision by default) of f(t), g(t) two power series
in the formal parameter t = —x /y such that w = f(t)dt, n = g(t)dt:

ft) =1+ ait + (af +az)t® + .., g(t) =t + ...

92 Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

? E = ellinit([-1,1/4]); [f,9] = ellformaldifferential(E,7,'t);
? f

%2 = 1 - 2%tA4 + 3/4%tr6 + 0(tr7)

79

%3 = tr-2 - tA2 + 1/2%tr + 0(tA5)

ellformalexp(E, serprec, n)

The elliptic formal exponential Exp attached to E is the isomorphism from the formal additive law to the formal
group of E. It is normalized so as to be the inverse of the elliptic logarithm (see el1formallog): FxpoL = Id.
Return n terms of this power series:

? E=ellinit([-1,1/4]); Exp = ellformalexp(E,10,'z)
%l = z + 2/5%zA5 - 3/28%zA7 + 2/15%zA9 + 0(z*11)

? L = ellformallog(E, 10, 't);

? subst(Exp,z,L)

%3 = t + 0(tr11)

ellformallog(E, serprec, n)

The formal elliptic logarithm is a series L in tK[[t]] such that dL = w = dz/(2y + a1 + a3), the canonical
invariant differential attached to the model E. It gives an isomorphism from the formal group of E to the additive
formal group.

? E = ellinit([-1,1/4]); L = ellformallog(E, 9, 't)
%1 = t - 2/5%tA5 + 3/28%tA7 + 2/3*tA9 + 0(tA10)

? [f,9] = ellformaldifferential(E,8,'t);

? L - £

%3 = 0(t*8)

ellformalpoint (E, serprec, n)

If E is an elliptic curve, return the coordinates z(t), y(¢) in the formal group of the elliptic curve E in the formal
parameter t = —x/y at 0o:

z=t"2— a1t71 —ao —agt + ...

Y = s a1t72 — agtfl —as—+ ...

Return n terms (seriesprecision by default) of these two power series, whose coefficients are in
Zlay, az, a3, as, ag).

? E = ellinit([0,0,1,-1,0]); [x,y] = ellformalpoint(E,8,'t);
? X

%2 = th-2 - t + tA2 - tr + 2%tAS5 + 0(t*6)

7y

%3 = -tA-3 + 1 - t + tA3 - 2%tA4 + 0(tA5)

? E = ellinit([0,1/2]); ellformalpoint(E,7)

%4 = [x7-2 - 1/2%x2 + 0(xA5), -x7-3 + 1/2%x23 + 0(x*4)]

ellformalw(E, serprec, n)

Return the formal power series w attached to the elliptic curve E, in the variable ¢:
w(t) = t2(1+ art + (ag + a2t + ... + O(t™)),

which is the formal expansion of —1/y in the formal parameter ¢ := —x/y at oo (take n = seriesprecision if n
is omitted). The coefficients of w belong to Z[a1, as, as, a4, ag].

1.1. Guide to real precision in the PARI interface 93

CyPari2 Documentation, Release 2.1.3

? E=ellinit([3,2,-4,-2,5]); ellformalw(E, 5, 't)
%1l = t*3 + 3%tA4 + 11%tA5 + 35%tr6 + 101*%tA7 + 0(t*8)

ellfromeqn(P)

Given a genus 1 plane curve, defined by the affine equation f(z,y) = 0, return the coefficients [a1, as, a3, a4, ag)
of a Weierstrass equation for its Jacobian. This allows to recover a Weierstrass model for an elliptic curve given by
a general plane cubic or by a binary quartic or biquadratic model. The function implements the f : — — — > f*
formulae of Artin, Tate and Villegas (Advances in Math. 198 (2005), pp. 366-382).

In the example below, the function is used to convert between twisted Edwards coordinates and Weierstrass co-
ordinates.

? e = ellfromegn(a*xA2+yr2 - (1+d*xA2%yA2))

%1 = [0, -a - d, 0, -4*d*a, 4*d*a*r2 + 4*dr2%a]

? E = ellinit(ellfromeqn(y*2-x22 - 1 +(121665/121666%*xA2%yA2)),24255-19);
? isprime(ellcard(E) / 8)

%3 =1

The elliptic curve attached to the sum of two cubes is given by

? ellfromegn(x*3+y*3 - a)
%l = [0, 0, -9%a, 0, -27*%ar2]

Congruent number problem. Let n be an integer, if a® + b> = ¢? and ab = 2n, then by substituting b by 2n/a
in the first equation, we get ((a® + (2n/a)?) — c*)a® = 0. We set x = a, y = ac.

? En = ellfromegn((x*2 + (2*n/x)A2 - (y/x)A2)*xA2)
%1 = [01 ®’ ®; _16*nA2, 0]

For example 23 is congruent since the curve has a point of infinite order, namely:

? ellheegner(ellinit(subst(En, n, 23)))
%2 = [168100/289, 68053440/4913]

ellfromj (j)

Returns the coefficients [a1, as, ag, as, ag] of a fixed elliptic curve with j-invariant j.

ellgenerators(E)

If E is an elliptic curve over the rationals, return a Z-basis of the free part of the Mordell-Weil group attached
to E. This relies on the elldata database being installed and referencing the curve, and so is only available for
curves over Z of small conductors. If F is an elliptic curve over a finite field IF, as output by ellinit, return a
minimal set of generators for the group E(F,).

Caution. When the group is not cyclic, of shape Z/dyZxZ/d2Z with da||d;, the points [P, Q] returned by
ellgenerators need not have order d; and ds: it is true that P has order d;, but we only know that () is a generator
of E(F,)/ < P > and that the Weil pairing w(P, Q) has order ds, see ??ellgroup. If you need generators
[P, R] with R of order d, find x such that R = @ — [z] P has order d5 by solving the discrete logarithm problem
[d2]@ = [z]([d2]P) in a cyclic group of order dy/ds. This will be very expensive if dy /do has a large prime
factor.

ellglobalred(E)

Let E be an ell structure as output by ellinit attached to an elliptic curve defined over a number field. This
function calculates the arithmetic conductor and the global Tamagawa number c¢. The result [N, v, ¢, F, L] is
slightly different if F is defined over Q (domain D = 1 in ellinit) or over a number field (domain D is a
number field structure, including nfinit (x) representing Q !):

94

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

¢ N is the arithmetic conductor of the curve,

¢ v is an obsolete field, left in place for backward compatibility. If E is defined over Q, v gives the coordinate
change for E to the standard minimal integral model (el1lminimalmodel provides it in a cheaper way); if £
is defined over another number field, v gives a coordinate change to an integral model (ellintegralmodel
provides it in a cheaper way).

* cis the product of the local Tamagawa numbers c,, a quantity which enters in the Birch and Swinnerton-Dyer
conjecture,

e [F'is the factorization of IV,

» [is a vector, whose i-th entry contains the local data at the ¢-th prime ideal divisor of NV, i.e. L[i] =
elllocalred(E,F[i,1]). If Fisdefined over Q, the local coordinate change has been deleted and replaced
by a 0; if F is defined over another number field the local coordinate change to a local minimal model is given
relative to the integral model afforded by v (so either start from an integral model so that v be trivial, or apply
v first).

ellgroup(E, p, flag)

Let E be an el1 structure as output by el1init, attached to an elliptic curve E /K. We first describle the function
when the field K = [, is finite, it computes the structure of the finite abelian group E(F,):

* if flag = 0, return the structure [(trivial group) or [d;] (nontrivial cyclic group) or [dy, d2] (noncyclic
group) of E(F,) Z/d1ZxZ/d2Z, with da||d;.

« if flag = 1, return a triple [h, cyc, gen|, where h is the curve cardinality, cyc gives the group struc-
ture as a product of cyclic groups (as per flag = 0). More precisely, if d2 > 1, the output is
[dyd2, [d1, da], [P, Q]] where P is of order dy and [P, Q] generates the curve. Caution. It is not guaran-
teed that () has order ds, which in the worst case requires an expensive discrete log computation. Only that
ellweilpairing(F, P, @, d;) has order ds.

For other fields of definition and p defining a finite residue field I, return the structure of the reduction of F:
the argument p is best left omitted if X' = Q, (else we must have p = ¢) and must be a prime number (K = Q)
or prime ideal () a general number field) with residue field IF, otherwise. The curve is allowed to have bad
reduction at p and in this case we consider the (cyclic) group of nonsingular points for the reduction of a minimal
model at p.

If flag = 0, the equation not be minimal or even integral at p; of course, a minimal model will be more efficient.

If flag = 1, the requested generators depend on the model, which must then be minimal at p, otherwise an
exception is thrown. Use ellintegralmodel and/or ellocalred first to reduce to this case.

? E = ellinit([0,1]); \\ y*2 = x*3 + 0.x + 1, defined over Q
? ellgroup(E, 7)

%2 = [6, 2] \\ Z/6 x Z/2, noncyclic

? E = ellinit([0,1] * Mod(1,11)); \\ defined over F_11

? ellgroup(E) \\ no need to repeat 11

%4 = [12]
? ellgroup(E, 11) \\ ... but it also works
%5 = [12]

? ellgroup(E, 13) \\ ouch, inconsistent input!
**% at top-level: ellgroup(E,13)

11

13

? ellgroup(E, 7, 1)

% = [12, [6, 2], [[Mod(2, 7), Mod(4, 7)], [Mod(4, 7), Mod(4, 7)11]

1.1. Guide to real precision in the PARI interface 95

CyPari2 Documentation, Release 2.1.3

Let us now consider curves of bad reduction, in this case we return the structure of the (cyclic) group of nonsingular
points, satisfying #E,,s(F,) = p — ay:

? E = ellinit([0,5]);

? ellgroup(E, 5, 1)

%2 = [5, [5], [[Mod(4, 5), Mod(2, 5)11]

? ellap(E, 5)

%3 = 0 \\ additive reduction at 5

? E = ellinit([0,-1,0,35,01);

? ellgroup(E, 5, 1)

%5 = [4, [4], [[Mod(2, 5), Mod(2, 5)11]

? ellap(E, 5)

%6 = 1 \\ split multiplicative reduction at 5
? ellgroup(E, 7, 1)

%7 = [8, [8], [[Mod(3, 7), Mod(5, 7)11]

? ellap(E, 7)

%8 = -1 \\ nonsplit multiplicative reduction at 7

ellheegner(E)

Let E be an elliptic curve over the rationals, assumed to be of (analytic) rank 1. This returns a nontorsion rational
point on the curve, whose canonical height is equal to the product of the elliptic regulator by the analytic Sha.

This uses the Heegner point method, described in Cohen GTM 239; the complexity is proportional to the product
of the square root of the conductor and the height of the point (thus, it is preferable to apply it to strong Weil
curves).

? E = ellinit([-15742,0]);

? u = ellheegner(E); print(u[l], "\n", u[2])
69648970982596494254458225/166136231668185267540804
538962435089604615078004307258785218335/67716816556077455999228495435742408
? ellheegner(ellinit([®,1])) \\ E has rank 0 !

*** at top-level: ellheegner(E=ellinit

RN A

e e oo

#%*%* @llheegner: The curve has even analytic rank.

ellheight (E, P, Q, precision)

Let E be an elliptic curve defined over K = QQ or a number field, as output by el1linit; it needs not be given by
a minimal model although the computation will be faster if it is.

e Without arguments P, (), returns the Faltings height of the curve E using Deligne normalization. For a
rational curve, the normalization is such that the function returns -(1/2)*log(ellminimalmodel (E).
area).

o If the argument P € E(K) is present, returns the global Néron-Tate height h(P) of the point, using the
normalization in Cremona’s Algorithms for modular elliptic curves.

o Ifthe argument Q € E(K) is also present, computes the value of the bilinear form (h(P+Q)—h(P—-Q))/4.

ellheightmatrix (E, x, precision)

x being a vector of points, this function outputs the Gram matrix of x with respect to the Néron-Tate height, in
other words, the (4, j) component of the matrix is equal to e11bil(:math: Ex[¢],x[5])". The rank of this ma-
trix, at least in some approximate sense, gives the rank of the set of points, and if z is a basis of the Mordell-Weil
group of F, its determinant is equal to the regulator of E. Note our height normalization follows Cremona’s Algo-
rithms for modular elliptic curves: this matrix should be divided by 2 to be in accordance with, e.g., Silverman’s
normalizations.

96

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

ellidentify(E)

Look up the elliptic curve F, defined by an arbitrary model over Q, in the elldata database. Return [[N, M,
G], C] where N is the curve name in Cremona’s elliptic curve database, M is the minimal model, G is a Z-basis
of the free part of the Mordell-Weil group E(Q) and C is the change of coordinates from F to M, suitable for
ellchangecurve.

ellinit(x, D, precision)

Initialize an el1l structure, attached to the elliptic curve E. F is either
* a b-component vector [ay, as, as, a4, ag) defining the elliptic curve with Weierstrass equation
Y24+ a1 XY 4+ a3Y = X2 + aa X? 4+ au X + as,
* a 2-component vector [ay, ag] defining the elliptic curve with short Weierstrass equation
Y? = X2+ as X + ag,

* acharacter string in Cremona’s notation, e.g. "11al", in which case the curve is retrieved from the elldata
database if available.

The optional argument D describes the domain over which the curve is defined:
e the t_INT 1 (default): the field of rational numbers Q.
* a t_INT p, where p is a prime number: the prime finite field IF,,.
* an t_INTMOD Mod(a, p), where p is a prime number: the prime finite field IF,,.
* a t_FFELT, as returned by ffgen: the corresponding finite field F,.

L]

a t_PADIC, O(p"): the field Q,, where p-adic quantities will be computed to a relative accuracy of n digits.
We advise to input a model defined over Q for such curves. In any case, if you input an approximate model
with t_PADIC coefficients, it will be replaced by a lift to @ (an exact model “close” to the one that was input)
and all quantities will then be computed in terms of this lifted model, at the given accuracy.

e a t_REAL z: the field C of complex numbers, where floating point quantities are by default computed to a
relative accuracy of precision(z). If no such argument is given, the value of realprecision at the time
ellinit is called will be used.

* anumber field K, given by a nf or bnf structure; a bnf is required for ellminimalmodel.

* aprime ideal p, given by a prid structure; valid if z is a curve defined over a number field K and the equation
is integral and minimal at p.

This argument D is indicative: the curve coefficients are checked for compatibility, possibly changing D; for
instance if D = 1 and an t_INTMOD is found. If inconsistencies are detected, an error is raised:

? ellinit([1 + 0(5), 11, 0(7));
**%* at top-level: ellinit([1+0(5),1],0

RN A

*%% @llinit: inconsistent moduli in ellinit: 7 I=5

If the curve coeflicients are too general to fit any of the above domain categories, only basic operations, such as
point addition, will be supported later.

If the curve (seen over the domain D) is singular, fail and return an empty vector [].

= ellinit([0,0,0,0,1]1); \\ y*2 = xA3 + 1, over Q
ellinit([0,1]); \\ the same curve, short form
ellinit("36al"); \\ sill the same curve, Cremona's notations
= ellinit([0,1], 2) \\ over F2: singular curve

NN N N
M M m
I

(continues on next page)

1.1. Guide to real precision in the PARI interface 97

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

%4 = []
? E = ellinit(['a4, 'a6] * Mod(1,5)); \\ over F_5[a4,a6], basic support !

The result of ellinit is an ell structure. It contains at least the following information in its components:
ai,az, as, a4, ag, bz, ba, be, bs, ca, ce, A, J.

All are accessible via member functions. In particular, the discriminant is :math: " E.disc’, and the j-invariant is
:math: Ej.

? E = ellinit([a4, ab]);

? E.disc

%2 = -64%adr3 - 432*%a6’2

? E.j

%3 = -6912%adr3/(-4%ad4r3 - 27%abr2)

Further components contain domain-specific data, which are in general dynamic: only computed when needed,
and then cached in the structure.

? E = ellinit([2,3], 10460+7); \\ E over F_p, p large
? ellap(E)

time = 4,440 ms.

%2 = -1376268269510579884904540406082

? ellcard(E); \\ now instantaneous !

time = 0 ms.

? ellgenerators(E);

time = 5,965 ms.

? ellgenerators(E); \\ second time instantaneous

time = 0 ms.

See the description of member functions related to elliptic curves at the beginning of this section.

ellintegralmodel (E, v)

Let E be an ell structure over a number field K or QQ,. This function returns an integral model. If v is
present, sets v = [u,0,0,0] to the corresponding change of variable: the return value is identical to that of
ellchangecurve(E, v).

? e = ellinit([1/17,1/42]);

? e = ellintegralmodel(e,&v);

? e[1..5]

%3 = [0, 0, 0, 15287762448, 3154568630095008]
?7v

%4 = [1/714, 0, 0, 0]

ellisdivisible(E, P, n, Q)

Given E/K anumber field and P in E(K) return 1 if P = [n]R for some R in F(K) and set) to one such R;
and return 0 otherwise. The integer n >= 0 may be given as el1xn(E,n), if many points need to be tested.

? K = nfinit(polcyclo(11,t));

? E = ellinit([0,-1,1,0,0], K);
? P =1[0,0];

? ellorder(E,P)

%4 =5

(continues on next page)

98

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

? ellisdivisible(E,P,5, &Q)

%5 =1

? 1lift(Q

%6 = [-tA7-1tA6-tAS5-tr4+1, -tA9-2%tAB-2%tA7-3%tA6-3%tA5-2%tA4-2%tAr3-tr2-1]
? ellorder(E, Q)

%7 = 25

The algebraic complexity of the underlying algorithm is in O(n?), so it is advisable to first factor n, then use a
chain of checks attached to the prime divisors of n: the function will do it itself unless n is given in el1xn form.

ellisogeny (E, G, only_image, x, y)

Given an elliptic curve E, a finite subgroup G of F is given either as a generating point P (for a cyclic G) or
as a polynomial whose roots vanish on the z-coordinates of the nonzero elements of G (general case and more
efficient if available). This function returns the [a1, as, as, a4, ag] invariants of the quotient elliptic curve E/G
and (if only_image is zero (the default)) a vector of rational functions [f, g, h] such that the isogeny F — E/G

is given by (z,y) : — — — > (f(z)/h(x)?, g(z,y)/h(x)?).

? E = ellinit([0,1]);

? elltors(E)

%2 = [6, [6], [[2, 311]

? ellisogeny(E, [2,3], 1) \\ Weierstrass model for E/<P>

%3 = [0, 0, 0, -135, -594]

? ellisogeny(E,[-1,0])

%4 = [[0,0,0,-15,22], [xA3+2%xA2+4%x+3, y*xA3+3*y*xA2-2%y, x+1]]

ellisogenyapply(f, g)
Given an isogeny of elliptic curves f : E' — E (being the result of a call to ellisogeny), apply f to g:

* if g is a point P in the domain of f, return the image f(P);

e if g: E” — E’ is a compatible isogeny, return the composite isogeny fog : E” — E.

? one = ffgen(101, 't)*0;

? E = ellinit([6, 53, 85, 32, 34] * one);

? P = [84, 71] * one;

ellorder(E, P)

%4 =5

? [F, f] = ellisogeny(E, P); \\ f: E->F = E/<P>
? ellisogenyapply(f, P)

%6 = [0]

? F = ellinit(F);

? Q = [89, 44] * one;

? ellorder(F, Q)

%9 = 2

? [G, g] = ellisogeny(F, Q; \\ g: F->G = F/<Q>
? gof = ellisogenyapply(g, £); \\ gof: E -> G

- -

ellisomat(E, p, fI)

Given an elliptic curve E defined over a number field K, compute representatives of the isomorphism classes of
elliptic curves defined over K and K-isogenous to E. We assume that £ does not have CM over K (otherwise
that set would be infinite). For any such curve F;, let f; : E — E; be a rational isogeny of minimal degree and
let g; : F; — I be the dual isogeny; and let M be the matrix such that M; ; is the minimal degree for an isogeny
E;, — Ej.

1.1. Guide to real precision in the PARI interface 99

CyPari2 Documentation, Release 2.1.3

The function returns a vector [L, M| where L is a list of triples [E;, f;, g;] (flag = 0), or simply the list of FE;
(flag = 1, which saves time). The curves F; are given in [a4, ag] form and the first curve E} is isomorphic to E

by fi.
If p is set, it must be a prime number; in this which case only isogenies of degree a power of p are considered.

Over a number field, the possible isogeny degrees are determined by Billerey algorithm.

= ellinit("14al™);
L,M] = ellisomat(E);
E

NN N

E

2 [
LE = apply(x->x[1], L) \\ list of curves

%3 = [[215/48,-5291/864],[-675/16,6831/32],[-8185/48,-742643/864],
[-1705/48,-57707/864],[-13635/16,306207/32],[-131065/48,-47449331/864]1]

? L[2][2] \\ isogeny f_2

%4 = [xA3+3/4*xA2+19/2%x-311/12,
1/2%xA 4+ (y+1) *xA3+(y-4) *x2 2+ (-9*y+23) *x+(55*y+55/2) ,x+1/3]

? L[2]1[3] \\ dual isogeny g_2

%5 = [1/9%xA3-1/4*x+2-141/16*x+5613/64,
-1/18%x24+(1/27*y-1/3)*x23+(-1/12*y+87/16) *x*2+(49/16*y-48) *x
+(-3601/64*y+16947/512) ,x-3/4]

? apply(E->ellidentify(ellinit(E))[1][1], LE)

%6 = ["14al1","14a4","14a3","14a2","14a6","14a5"]

?M

%7 =

[1 3326 6]

[3196 2 18]
[3916 18 2]
[26 613 3]
[6 2 18 31 9]

[6 18 2 3 9 1]

ellisoncurve(E, z)

Gives 1 (i.e. true) if the point z is on the elliptic curve E, 0 otherwise. If E or z have imprecise coefficients, an
attempt is made to take this into account, i.e. an imprecise equality is checked, not a precise one. It is allowed for
z to be a vector of points in which case a vector (of the same type) is returned.

ellisotree(E)
Given an elliptic curve F defined over Q or a set of (Q-isogenous curves as given by ellisomat, return a pair
[L, M| where

¢ [lists the minimal models of the isomorphism classes of elliptic curves QQ-isogenous to E (or in the set of
isogenous curves),

* M is the adjacency matrix of the prime degree isogenies tree: there is an edge from E; to E; if there is an
isogeny F; — FE; of prime degree such that the Néron differential forms are preserved.

E = ellinit("14al1");
? [L,M] = ellisotree(E);
? M
%3 =
[0 0 320 0]

N N N

(continues on next page)

100 Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

[300020]

[0 0000 2]

[®6 000 0 3]

[0 0030 0]

[0 0000 0]

? [L2,M2] = ellisotree(ellisomat(E,2,1));
%4 =

[0 2]

[0 0]

? [L3,M3] = ellisotree(ellisomat(E,3,1));
7?7 M3

%6 =

[0 0 3]

[3 0 0]

[0 0 0]

Compare with the result of ellisomat.

? [L,M]=ellisomat(E,,1);
7?7 M

%7 =

[13326 6]

[31962 18]

[3916 18 2]
[26613 3]

(6218 3 1 9]

[6 18 2 3 9 1]

ellissupersingular(E, p)

Return 1 if the elliptic curve E defined over a number field, Q,, or a finite field is supersingular at p, and 0
otherwise. If the curve is defined over a number field, p must be explicitly given, and must be a prime number,
resp. a maximal ideal, if the curve is defined over QQ, resp. a general number field: we return 1 if and only if £
has supersingular good reduction at p.

Alternatively, E' can be given by its j-invariant in a finite field. In this case p must be omitted.

? setrand(1); \\ make the choice of g deterministic

? g = ffprimroot(ffgen(745))

%1 = 4%xA4 + 5%xA3 + 6%*XA2 + 5*X + 6

? [gM | n <- [1 .. 7A5 - 1], ellissupersingular(g*n)]

(continues on next page)

1.1. Guide to real precision in the PARI interface 101

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

%2 = [6]

? K = nfinit(y*3-2); P = idealprimedec(X, 2)[1];
? E = ellinit([y, 1], K);

? ellissupersingular(E, P)

% =1

? Q = idealprimedec(K,5)[1];

? ellissupersingular(E, Q)

%6 = 0

ellj (x, precision)

Elliptic j-invariant. £ must be a complex number with positive imaginary part, or convertible into a power series
or a p-adic number with positive valuation.

elllocalred(E, p)

Calculates the Kodaira type of the local fiber of the elliptic curve E at p. E must be an ell structure as output
by ellinit, over Q, (p better left omitted, else equal to £) over Q (p a rational prime) or a number field K
(p a maximal ideal given by a prid structure). The result is a 4-component vector [f, kod, v, ¢]. Here f is the
exponent of p in the arithmetic conductor of F, and kod is the Kodaira type which is coded as follows:

1 means good reduction (type I:math:_0), 2, 3 and 4 mean types II, Il and IV respectively, 44-v with v > (0 means
type I:math:_nu; finally the opposite values —1, —2, etc. refer to the starred types I:math:_0"*, II:math:**, etc.
The third component v is itself a vector [u, r, s, t] giving the coordinate changes done during the local reduction;
u = 1 if and only if the given equation was already minimal at p. Finally, the last component c is the local
Tamagawa number c,,.

elllog(E, P, G, 0)

Given two points P and G on the elliptic curve E/F, returns the discrete logarithm of P in base G, i.e. the
smallest nonnegative integer n such that P = [n]G. See znlog for the limitations of the underlying discrete log
algorithms. If present, o represents the order of G, see DLfun (in the PARI manual); the preferred format for this
parameter is [N, factor(N)], where N is the order of G.

If no o is given, assume that G generates the curve. The function also assumes that P is a multiple of G.

ffgen(£ffinit(2,8),'a);

ellinit([a,1,0,0,1]1); \\ over F_{248}

= a*3; y = ellordinate(E,x)[1];

= [x,y]; G = ellmul(E, P, 113);

ord = [242, factor(242)]; \\ P generates a group of order 242. Initialize.
? ellorder(E, G, ord)

%4 = 242

NN N N N
UM Mo
I}

? e = elllog(E, P, G, ord)
%5 = 15

? ellmul(E,G,e) == P

%6 =1

elllseries(E, s, A, precision)

This function is deprecated, use 1fun(E, s) instead.

E being an elliptic curve, given by an arbitrary model over QQ as output by ellinit, this function computes the
value of the L-series of E at the (complex) point s. This function uses an O(N 1 2) algorithm, where N is the
conductor.

The optional parameter A fixes a cutoff point for the integral and is best left omitted; the result must be independent
of A, up to realprecision, so this allows to check the function’s accuracy.

102

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

ellminimaldisc(E)

I being an elliptic curve defined over a number field output by ellinit, return the minimal discriminant ideal
of E.

ellminimalmodel (E, v)

Let E be an ell structure over a number field K. This function determines whether £ admits a global minimal
integral model. If so, it returns it and sets v = [u, r, s, t] to the corresponding change of variable: the return value
is identical to that of ellchangecurve(E, v).

Else return the (nonprincipal) Weierstrass class of E, i.e. the class of [] p(*»2=9)/12 where A = E.disc is the
model’s discriminant and pg is the local minimal discriminant. This function requires either that F/ be defined
over the rational field Q (with domain D = 1 in ellinit), in which case a global minimal model always exists,
or over a number field given by a bnf structure. The Weierstrass class is given in bnfisprincipal format, i.e.
in terms of the K. gen generators.

The resulting model has integral coefficients and is everywhere minimal, the coefficients a; and a3 are reduced
modulo 2 (in terms of the fixed integral basis K. zk) and as is reduced modulo 3. Over Q, we further require that
a1 and as be 0 or 1, that as be 0 or 1 and that v > 0 in the change of variable: both the model and the change of
variable v are then unique.

? e = ellinit([6,6,12,55,233]); \\ over Q
? E = ellminimalmodel (e, &v);

? E[1..5]

%3 = [0, 0, 0, 1, 1]

?v

%4 = [2, -5, -3, 9]

? K = bnfinit(a*2-65); \\ over a nonprincipal number field

? K.cyc

%2 = [2]

? u = Mod(8+a, K.pol);

? E = ellinit([1,40%u+1,0,25%ur2,0], K);

? ellminimalmodel(E) \\ no global minimal model exists over Z_K
%6 = [1]~

ellminimaltwist(FE, flag)

Let E be an elliptic curve defined over Q, return a discriminant D such that the twist of E by D is minimal among
all possible quadratic twists, i.e. if flag = 0, its minimal model has minimal discriminant, or if flag = 1, it has
minimal conductor.

In the example below, we find a curve with j-invariant 3 and minimal conductor.

? E = ellminimalmodel (ellinit(ellfromj(3)));

? ellglobalred(E)[1]

%2 = 357075

? D = ellminimaltwist(E, 1)

%3 = -15

? E2 = ellminimalmodel (ellinit(elltwist(E,D)));
? ellglobalred(E2)[1]

%5 = 14283

In the example below, flag = 0 and flag = 1 give different results.

? E = ellinit([1,0]);
? DO® = ellminimaltwist(E,®)

(continues on next page)

1.1. Guide to real precision in the PARI interface 103

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

%7 =1

? D1 = ellminimaltwist(E, 1)

%8 = 8

? E® = ellminimalmodel (ellinit(elltwist(E,D®)));

? [EO®.disc, ellglobalred(E®)[1]]

%10 = [-64, 64]

? E1 = ellminimalmodel (ellinit(elltwist(E,D1)));
? [El.disc, ellglobalred(E1)[1]]

%12 = [-4096, 32]

ellmoddegree(e)

e being an elliptic curve defined over QQ output by ellinit, compute the modular degree of e divided by the
square of the Manin constant c. It is conjectured that ¢ = 1 for the strong Weil curve in the isogeny class (optimal
quotient of Jy(N')) and this can be proven using ellweilcurve when the conductor N is moderate.

? E = ellinit("11al1"); \\ from Cremona table: strong Weil curve and c =1
? [v,smith] = ellweilcurve(E); smith \\ proof of the above

%2 = [[1, 11, [5, 11, [1, 1/51]

? ellmoddegree(E)

%3 =1

? [ellidentify(e)[1][1] | e<-v]

%4 = ["11al", "11a2", "11a3"]

? ellmoddegree(ellinit("11a2"))

%5 =5
? ellmoddegree(ellinit("11a3"))
%6 = 1/5

The modular degree of 11al is 1 (because ellweilcurve or Cremona’s table prove that the Manin constant is
1 for this curve); the output of ellweilcurve also proves that the Manin constants of 11a2 and 11a3 are 1 and
5 respectively, so the actual modular degree of both 11a2 and 11a3 is 5.

ellmodularegn(, x, y)

Given a prime N < 500, return a vector [P, t] where P(z,y) is a modular equation of level NV, i.e. a bivariate
polynomial with integer coefficients; ¢ indicates the type of this equation: either canonical (t = 0) or Atkin
(t = 1). This function requires the seadata package and its only use is to give access to the package contents.
See polmodular for a more general and more flexible function.

Let j be the j-invariant function. The polynomial P satisfies the functional equation,

for some modular function f = fy (hand-picked for each fixed N to minimize its size, see below), where
Wy (1) = —1/(NT) is the Atkin-Lehner involution. These two equations allow to compute the values of the
classical modular polynomial @y, such that 5 (j(7),j(N7)) = 0, while being much smaller than the latter.
More precisely, we have j(Wy (7)) = j(NT); the function f is invariant under I'g (V) and also satisfies

o for Atkin type: f||Wn = f;

* for canonical type: let s = 12/gcd(12, N — 1), then f||Wx = N*/f. In this case, f has a simple definition:
f(1) = N*(n(N7)/n(T))?*, where n is Dedekind’s eta function.

The following GP function returns values of the classical modular polynomial by eliminating fx (7) in the above
functional equation, for N <= 31 or V € 41,47,59, 71.

104

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

classicalegn(N, X=X, Y="Y)=
{
my([P,t] = ellmodulareqn(N), Q, d);

if (poldegree(P,'y) > 2, error("level unavailable in classicaleqn™));
if (t == 0, \\ Canonical

my(s = 12/gcd(12,N-1));

Q = "xA(N+1) * substvec(P,['x,'y],[NAs/'x,Y]);

d = NA(s*(2*N+1)) * (-1)A(N+1);

, \\ Atkin

Q = subst(P,'y,Y);

d = E-VDAWN+1));

polresultant(subst(P, 'y,X), Q) / d;
}

ellmul (E, z, n)

Computes [n]z, where z is a point on the elliptic curve E. The exponent n is in Z, or may be a complex quadratic
integer if the curve E has complex multiplication by n (if not, an error message is issued).

? Ei = ellinit([1,0]); z = [0,0];
? ellmul (Ei, z, 10)
%2 = [0] \\ unsurprising: z has order 2
? ellmul(Ei, z, I)
%3 = [0, 0] \\ Ei has complex multiplication by Z[i]
? ellmul(Ei, z, quadgen(-4))
%4 = [0, 0] \\ an alternative syntax for the same query
? Ej = ellinit([0®,1]); z = [-1,0];
? ellmul(Ej, z, I)
**%* at top-level: ellmul(Ej,z,I)
%% @llmul: not a complex multiplication in ellmul.
? ellmul(Ej, z, l+quadgen(-3))
% = [1 - w, 0]

The simple-minded algorithm for the CM case assumes that we are in characteristic 0, and that the quadratic order
to which n belongs has small discriminant.

ellneg(E, 2)

Opposite of the point z on elliptic curve E.

ellnonsingularmultiple(E, P)

Given an elliptic curve E/Q (more precisely, a model defined over Q of a curve) and a rational point P € E(Q),
returns the pair [R, n], where n is the least positive integer such that R := [n]P has good reduction at every
prime. More precisely, its image in a minimal model is everywhere nonsingular.

? e = ellinit("57al1"); P = [2,-2];

? ellnonsingularmultiple(e, P)

%2 = [[1, -1], 2]

? e = ellinit("396b2"); P = [35, -198];
? [R,n] = ellnonsingularmultipleCe, P);
?n

%5 = 12

ellorder(E, z, 0)

Gives the order of the point z on the elliptic curve E, defined over a finite field or a number field. Return (the

1.1. Guide to real precision in the PARI interface 105

CyPari2 Documentation, Release 2.1.3

impossible value) zero if the point has infinite order.

? E = ellinit([-15742,0]); \\ the "157-is-congruent" curve

? P =1[2,2]; ellorder(E, P)

%2 = 2

? P = ellheegner(E); ellorder(E, P) \\ infinite order
%3 =0

? K = nfinit(polcyclo(11l,t)); E=ellinit("11a3", K); T = elltors(E);
? ellorder(E, T.gen[1])

%5 = 25

? E = ellinit(ellfromj(ffgen(5410)));

? ellcard(E)

%7 = 9762580

? P = random(E); ellorder(E, P)

%8 = 4881290

? p =27160+7; E = ellinit([1,2], p);

? N ellcard(E)

%9 = 1461501637330902918203686560289225285992592471152
? o = [N, factor(N)];

? for(i=1,100, ellorder(E,random(E)))

time = 260 ms.

The parameter o, is now mostly useless, and kept for backward compatibility. If present, it represents a nonzero
multiple of the order of z, see DLfun (in the PARI manual); the preferred format for this parameter is [ord,
factor(ord)], where ord is the cardinality of the curve. It is no longer needed since PARI is now able to
compute it over large finite fields (was restricted to small prime fields at the time this feature was introduced),
and caches the result in E so that it is computed and factored only once. Modifying the last example, we see that
including this extra parameter provides no improvement:

? o = [N, factor(N)];
? for(i=1,100, ellorder(E,random(E),0))
time = 260 ms.

ellordinate(E, x, precision)

Gives a 0, 1 or 2-component vector containing the y-coordinates of the points of the curve E having x as x-
coordinate.

ellpadicL(E, p,n,s, r, D)

Returns the value (or r-th derivative) on a character x*® of Z;‘, of the p-adic L-function of the elliptic curve E/Q,
twisted by D, given modulo p”.

Characters. The set of continuous characters of Gal(Q(j1p00)/Q) is identified to Zy, via the cyclotomic character

X with values in QT; Denote by 7 : Zy — Z;, the Teichmiiller character, with values in the (p — 1)-th roots of
1 for p! = 2, and —1,1 for p = 2; finally, let < y >= y7 !, with values in 1 + 2pZy. In GP, the continuous
character of Gal(Q(ppe0)/Q) given by < x >°' 7°2 is represented by the pair of integers s = (s1, s2), with
s1 € Z, and symodp — 1 for p > 2, (resp. mod 2 for p = 2); s may be also an integer, representing (s, s) or x°.

The :math:*p-adic L function.” The p-adic L function L, is defined on the set of continuous characters of
Gal(Q(ppe-)/Q), as fz; x°dp for a certain p-adic distribution i on Z5. The derivative is given by

e - |

log) ()x* (a)d(a).
.

P
More precisely:

* When E has good supersingular reduction, L,, takes its values in D := Hio(E/Q) ®g Q, and satisfies

106

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

where : math : ‘F‘isthe Frobenius,: math : ‘L(E, 1)‘isthevalueo fthecomplex : math : ‘L functionat : math : ‘1°,: math

The function returns the components of Lér) (E, x®) in the basis (w, Fw).

e When E has ordinary good reduction, this method only defines the projection of L,(E,x*) on the a-
eigenspace, where « is the unit eigenvalue for F'. This is what the function returns. We have

(1—a 2L, o(E,X%) = L(E,1)/9.

Two supersingular examples:

? cxL(e) = bestappr(ellL1(e) / e.omega[l]);

e ellinit("17al"); p=3; \\ supersingular, a3 = 0

L ellpadiclL(e,p,4);

F = [0,-p;1,ellap(e,p)]; \\ Frobenius matrix in the basis (omega,F(omega))
(1-pA(-1)*F)+-2 * L / cxL(e)

N N N N

%5 = [1 + 0(325), 0(325)1~ \\ [1,0]~

? e = ellinit("116al"); p=3; \\ supersingular, a3 != 0~
? L = ellpadicL(e,p,4);

? F=1[0,-p; 1,ellap(e,p)];

?

(1-pA(-1)*F)A-2*L~ / cxL(e)
%9 = [1 + 0(3*4), 0(345)]~

Good ordinary reduction:

? e = ellinit("17al"); p=5; ap = ellap(e,p)

%1 = -2 \\ ordinary

? L = ellpadicL(e,p,4)

%2 = 4 + 3%5 + 4%5A2 + 2%543 + 0(5%4)

? al = padicappr(x*2 - ap*x + p, ap + 0(p*7))[1];
? (1-alr(-1))A(-2) * L / cxL(e)

% =1 + 0(5%4)

Twist and Teichmiiller:

? e = ellinit("17al™); p=5; \\ ordinary
\\ 2nd derivative at tau*l, twist by -7
? ellpadicL(e, p, 4, [0,1], 2, -7)

%2 = 2%5A2 + 543 + 0(5+4)

We give an example of non split multiplicative reduction (see ellpadicbsd for more examples).

? e=ellinit("15al"); p=3; n=5;

? L = ellpadicL(e,p,n)

%2 = 2 + 3 4+ 322 + 323 + 324 + 0(3A5)
? (1 - ellap(e,p))*(-1) * L / cxL(e)
%3 = 1 + 0(345)

This function is a special case of mspadicL and it also appears as the first term of mspadicseries:

e ellinit("17al"); p=5;
L = ellpadicL(e,p,4)

?
?

(continues on next page)

. Guide to real precision in the PARI interface 107

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

%2 = 4 + 3%5 + 4%5A2 + 2%543 + 0(5%4)

? [M,phi] = msfromell(e, 1);

? Mp = mspadicinit(M, p, 4);

? mu = mspadicmoments(Mp, phi);

? mspadicL (mu)

%6 = 4 + 3%5 + 4%5A2 + 2%5A3 + 2%5A4 + 5A5 + 0(546)

? mspadicseries(mu)

%7 = (4 + 3%5 + 4%5A2 + 2%5A3 4+ 2%5A4 + 5A5 + 0(5%6))

+ (3 + 3*%5 + 542 + 543 + 0(5%4))*x
+ (2 + 3%5 + 542 + 0(5%3))*xA2

+ (3 + 4%5 + 4%5A2 + 0(53))*xA3
+ (3 + 2*%5 + 0(542))*x*4 + 0(x*5)

These are more cumbersome than ellpadicL but allow to compute at different characters, or successive deriva-
tives, or to twist by a quadratic character essentially for the cost of a single call to el1lpadicL due to precompu-
tations.

ellpadicbsd(E, p, n, D)

Given an elliptic curve F over Q, its quadratic twist Ep and a prime number p, this function is a p-adic analog
of the complex functions ellanalyticrank and ellbsd. It calls ellpadicL with initial accuracy p™ and may
increase it internally; it returns a vector [r, L,] where

* L, is a p-adic number (resp. a pair of p-adic numbers if £ has good supersingular reduction) defined modulo
pY, conjecturally equal to R,S, where R, is the p-adic regulator as given by ellpadicregulator (in the

basis (w, Fw)) and S is the cardinal of the Tate-Shafarevich group for the quadratic twist E.

* 7 is an upper bound for the analytic rank of the p-adic L-function attached to E'p: we know for sure that
the i-th derivative of L,(Ep,.) at x° is O(p") for all i < 7 and that its r-th derivative is nonzero; it is
expected that the true analytic rank is equal to the rank of the Mordell-Weil group Ep(Q), plus 1 if the
reduction of E'p at p is split multiplicative; if » = 0, then both the analytic rank and the Mordell-Weil rank
are unconditionnally 0.

Recall that the p-adic BSD conjecture (Mazur, Tate, Teitelbaum, Bernardi, Perrin-Riou) predicts an explicit link
between R,S and

(1-p ' F)2.LY (Ep, x°) /!

where r is the analytic rank of the p-adic L-function attached to Ep and F is the Frobenius on H; see
ellpadicL for definitions.

? E = ellinit("11al™); p = 7; n = 5; \\ good ordinary
? ellpadicbsd(E, 7, 5) \\ rank O,
%2 = [0, 1 + 0(745)]

? E = ellinit("91al™); p =7; n = 5; \\ non split multiplicative
? [r,Lp] = ellpadicbsd(E, p, n)

%5 = [1, 2%7 + 6%742 + 3*7A3 + 774 + 0(7+5)]

? R = ellpadicregulator(E, p, n, E.gen)

%6 = 2%7 + 6%7A2 + 3%7A3 + 724 + 5*%7A5 + 0(746)

? sha = Lp/R

%7 = 1 + 0(7%4)

E = ellinit("91b1"™); p = 7; n = 5; \\ split multiplicative
[

?
? [r,Lp] = ellpadicbsd(E, p, n)

(continues on next page)

108

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

%9 = [2, 2%7 + 7422 + 5%7+A3 + 0(7*4)]

? ellpadicregulator(E, p, n, E.gen)

%10 = 2%7 + 7A2 + 5%7A3 + 6%7A4 + 2*7A5 + 0(746)

? [rC, LC] = ellanalyticrank(E);

? [r, rC]

%12 = [2, 1] \\ r = rC+1 because of split multiplicative reduction

? E = ellinit("53al"); p = 5; n = 5; \\ supersingular
? [r, Lp] = ellpadicbsd(E, p, n);
?7r

? Lp
%16 = [3*%5 + 2%5A2 + 2*%5A5 + 0(546), \
5 4+ 3%5A2 + 4%5A3 4+ 2%5A4 + 5A5 + 0(546)]
? R = ellpadicregulator(E, p, n, E.gen)
%17 = [3%5 + 2%5A2 + 2%5A5 + 0(546), 5 + 3%542 + 4%5A3 + 2%5A4 + 0(545)]
\\ expect Lp = R*#Sha, hence (conjecturally) #Sha =1

? E = ellinit("84al"); p = 11; n = 6; D = -443;

? [r,Lp] = ellpadicbsd(E, 11, 6, D) \\ Mordell-Weil rank 0, no regulator
%19 = [0, 3 + 2*11 + 0(C11+6)]

? 1lift(Lp) \\ expected cardinal for Sha is 522

%20 = 25

? ellpadicbsd(E, 3, 12, D) \\ at 3

%21 = [1, 1 + 2*3 + 2*%342 + 0(348)]

? ellpadicbsd(E, 7, 8, D) \\ and at 7

%22 = [0, 4 + 3*7 + 0(7*8)]

ellpadicfrobenius(E, p, n)

If p > 2 is a prime and F is an elliptic curve on Q with good reduction at p, return the matrix of the Frobenius
endomorphism ¢ on the crystalline module D,(E) = Q, ® H}n(E/Q) with respect to the basis of the given
model (w,n = zw), where w = dx/(2y + a1x + as3) is the invariant differential. The characteristic polynomial

of ¢ is 22 — a,x + p. The matrix is computed to absolute p-adic precision p".
? E = ellinit([1,-1,1,0,0]1);

? F = ellpadicfrobenius(E,5,3);

7 lift(F)

%3 =

[120 29]

[55 5]

? charpoly(F)

%4 = x22 + 0(543)*x + (5 + 0(543))
? ellap(E, 5)

% =0

ellpadicheight(E, p, n, P, Q)

Cyclotomic p-adic height of the rational point P on the elliptic curve F (defined over QQ), given to n p-adic digits.
If the argument () is present, computes the value of the bilinear form (h(P + Q) — h(P — Q))/4.

Let D := Hj,(E)®q Q) be the Q, vector space spanned by w (invariant differential dz /(2y + a1z + a3) related
to the given model) and n = aw. Then the cyclotomic p-adic height hg associates to P € F(Q) an element
fw + gnin D. This routine returns the vector [f, g to n p-adic digits. If P € E(Q) is in the kernel of reduction

1.1. Guide to real precision in the PARI interface 109

CyPari2 Documentation, Release 2.1.3

mod p and if its reduction at all finite places is non singular, then g = —(log; P)?, where log; is the logarithm
for the formal group of E at p.

If furthermore the model is of the form Y? = X3 + aX + band P = (z,y), then
[= log,(denominator(x)) — 2log, (o (P))

where o(P) is given by ellsigma(E, P).

Recall (Advanced topics in the arithmetic of elliptic curves, Theorem 3.2) that the local height function over the
complex numbers is of the form

Mz) = —log(|| E.disc|))/6 + R(zn(z)) — 21log(o(2)).

(N.B. our normalization for local and global heights is twice that of Silverman’s).

? E = ellinit([1,-1,1,0,0]); P = [0,0];

? ellpadicheight(E,5,3, P)

%2 = [3*5 + 542 + 2%5A3 + 0(5%4), 542 + 4%544 + 0(545)]

? E = ellinit("11al™); P = [5,5]; \\ torsion point

? ellpadicheight(E, 19,6, P)

%4 = [0, 0]

? E = ellinit([0,0,1,-4,2]); P = [-2,1];

? ellpadicheight(E,3,3, P)

%6 = [2%342 + 2%3A3 + 374 + 0(3+5), 2*342 + 344 + 0(3425)]
? ellpadicheight(E,3,5, P, elladd(E,P,P))

%7 = [322 + 2%3A3 + 0(3A7), 342 + 343 + 2%344 + 3A5 + 0(327)]

* When E has good ordinary reduction at p or non split multiplicative reduction, the “canonical” p-adic height
is given by

s2 = ellpadics2(E,p,n);
ellpadicheight(E, p, n, P) * [1,-s2]~

Since s5 does not depend on P, it is preferable to compute it only once:

E = ellinit("5077al™); p = 5; n = 7; \\ rank 3

s2 = ellpadics2(E,p,n);

M = ellpadicheightmatrix(E,p, n, E.gen) * [1,-s2]~;
matdet (M) \\ p-adic regulator on the points in E.gen
%4 =5 + 542 + 4*5A3 + 2%5A4 + 2%5A5 + 2%5A6 + 0(547)

NN N

=~

e When E has split multiplicative reduction at p (Tate curve), the “canonical” p-adic height is given by

Ep = ellinit(E[1..5], O(p*(n))); \\ E seen as a Tate curve over Qp
[u2,u,q] = Ep.tate;
ellpadicheight(E, p, n, P) * [1,-s2 + 1/1log(q)/u2]]~

where s, is as above. For example,

E = ellinit("91b1"); P =[-1, 3]; p =7; n = 5;
Ep = ellinit(E[1..5], 0(p*(n)));

s2 = ellpadics2(E,p,n);

[u2,u,q] = Ep.tate;

N N N N

(continues on next page)

110

Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

? H = ellpadicheight(E,p, n, P) * [1,-s2 + 1/log(q)/u2]~
%5 = 2%7 + 7A2 + 5%7A3 + 6%724 + 2*7A5 + 0(7%6)

These normalizations are chosen so that p-adic BSD conjectures are easy to state, see el1padicbsd.

ellpadicheightmatrix(FE, p, n, Q)
@ being a vector of points, this function returns the “Gram matrix” [F, G] of the cyclotomic p-adic height
hg with respect to the basis (w,n) of D = H},(FE) ®g Q, given to n p-adic digits. In other words, if
ellpadicheight(FE,p,n, Q[i], Q[j]) = [f, g], corresponding to fw+gnin D, then F[i, j] = f and G[i, j] = g.

? E = ellinit([®1®111_7l6]); Q = [[_213]1[_113]]; p = 5; n = 5;

? [F,G] = ellpadicheightmatrix(E,p,n,Q);

? lift(F) \\ p-adic entries, integral approximation for readability
%3 =

[2364 3100]

[3100 3119]

?G

%4 =

[25225 46975]

[46975 61850]

? [F,G] * [1,-ellpadics2(E,p,n)]~

%5 =
[4 + 2*%5 + 4%5A2 + 3%5A3 + 0(575) 4%542 + 4%543 + 544 + 0(545)]

[4%542 + 4%5A3 + 544 + 0(5%5) 4 + 3*5 + 4*%542 + 4%5A3 + 544 + 0(545)]

ellpadiclambdamu(E, p, D, i)

Let p be a prime number and let F'/Q be a rational elliptic curve with good or bad multiplicative reduction at p.
Return the Iwasawa invariants A and y for the p-adic L function L, (E), twisted by (D/.) and the i-th power of
the Teichmiiller character 7, see el1lpadicL for details about L, (E).

Let x be the cyclotomic character and choose v in Gal(Qp(ppeo)/Qp) such that x(v) = 1 + 2p. Let L(i),D ¢
Qp[[X]] ® Deris such that
(< x>) (EODP(y — 1)) = L(E, < x >* 7(D/.)).

* When E has good ordinary or bad multiplicative reduction at p. By Weierstrass’s preparation theorem the
series ©():P can be written p*(X* + pG(X)) up to a p-adic unit, where G(X) € Z,[X]. The function
returns [\, p].

* When E has good supersingular reduction, we define a sequence of polynomials P,, in Q,[X] of degree
< p" (and bounded denominators), such that

LD = p,o" g — &, Pyo19" Pwpmod((1+ X)" — 1)Qu[X] @ Deris,
where : math : ‘€, = polcyclo(p™, 1 + X)‘.Let : math : ‘A, pn‘betheinvariantsof : math : ‘P, . Wefindthat

* /i, is nonnegative and decreasing for n of given parity hence pa,, tends to a limit u™ and 2,41 tends to a
limit 1z~ (both conjecturally 0).

« there exists integers A*, A\~ in Z (denoted with a in the reference below) such that

1.1. Guide to real precision in the PARI interface 111

CyPari2 Documentation, Release 2.1.3

lim Agn +1/(p+1) = Atand lim Appi1 +p/(p+1) = A"
The functionreturns : math : ‘[ANT, A7, [ut, p7]]"

Reference: B. Perrin-Riou, Arithmétique des courbes elliptiques a réduction supersinguli\'ere en p, Experimental
Mathematics, 12, 2003, pp. 155-186.
ellpadiclog(E, p, n, P)

Given E defined over K = Qor Q, and P = [z, y] on E(K) in the kernel of reduction mod p, lett(P) = —z/y be
the formal group parameter; this function returns L(t), where L denotes the formal logarithm (mapping the formal
group of E to the additive formal group) attached to the canonical invariant differential: dL = dx/(2y+aiz+as3).

? E =ellinit([0,0,1,-4,2]); P = [-2,1];

? ellpadiclog(E,2,10,P)

%2 = 2 + 273 + 248 + 279 + 2410 + 0(2~11)

? E = ellinit([17,42]);

? p=3; Ep = ellinit(E,p); \\ E mod p

? P=[114,1218]; ellorder(Ep,P) \\ the order of P on (E mod p) is 2
%5 = 2

? Q = ellmul(E,P,2) \\ we need a point of the form 2*P

%6 = [200257/7056, 90637343/592704]

? ellpadiclog(E,3,10,Q)

%7 = 3 + 2%3A2 + 3A3 + 344 + 3A5 + 346 + 2%348 + 349 + 2%3A10 + 0(3+11)

ellpadicregulator(F, p, n, S)
Let F/Q be an elliptic curve. Return the determinant of the Gram matrix of the vector of points S = (51, ..., Sy)
with respect to the “canonical” cyclotomic p-adic height on E, given to n (p-adic) digits.

When E has ordinary reduction at p, this is the expected Gram deteterminant in Q,,.

In the case of supersingular reduction of E at p, the definition requires care: the regulator R is an element of
D := H},(F) ®g Qp, which is a two-dimensional Q,-vector space spanned by w and 7 = zw (which are
defined over Q) or equivalently but now over Q, by w and Fw where F' is the Frobenius endomorphism on D as
defined in ellpadicfrobenius. On D we define the cyclotomic height hg = fw + gn (see ellpadicheight)
and a canonical alternating bilinear form [., .] p such that [w,n]p = 1.

Forany v € D, we can define a height b, := [hg, v]p from E(Q) to Q, and < .,. >, the attached bilinear form.
In particular, if hy = fw + gn, then h,, = [hg,n|p =fand h, = [hg,w|p = —g hence hg = hyw — hyn.
Then, R is the unique element of D such that

[w, V]E_l[Ra vlp = det(< S;,5; >,)

forall v € D not in Q,w. The ellpadicregulator function returns R in the basis (w, Fw), which was chosen
so that p-adic BSD conjectures are easy to state, see ellpadicbsd.

Note that by definition
[R.n]p = det(< Si, Sj >y)
and

[R,w + 77]D = det(< S;, Sj >w+77)~

ellpadics2(E, p, n)

If p > 2is a prime and E/Q is an elliptic curve with ordinary good reduction at p, returns the slope of the
unit eigenvector of ellpadicfrobenius(E,p,n), i.e., the action of Frobenius ¢ on the crystalline module
D,(E) = Q, ® Hj(E/Q) in the basis of the given model (w,n = zw), where w is the invariant differential
dx/(2y + a1z + a3). In other words, 77 + sow is an eigenvector for the unit eigenvalue of .

112 Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

? e=ellinit([17,42]);
? ellpadics2(e,13,4)
%2 = 10 + 2*13 + 6%13A3 + 0(1374)

This slope is the unique ¢ € 37'Z,, such that the odd solution o (¢) = ¢ + O(t?) of

—d((1)/(o)(do)/(w)) = (2(t) + c)w
is in tZ,[[t]].

It is equal to by /12 — E5/12 where E» is the value of the Katz p-adic Eisenstein series of weight 2 on (E,w).
This is used to construct a canonical p-adic height when E has good ordinary reduction at p as follows

s2 = ellpadics2(E,p,n);
h(E,p,n, P, s2) = ellpadicheight(E, [p,[l,-s2]],n, P);

Since sy does not depend on the point P, we compute it only once.

ellperiods(w, flag, precision)

Let w describe a complex period lattice (w = [w7,ws] or an ellinit structure). Returns normalized periods
[W71, W] generating the same lattice such that 7 := W; /W5 has positive imaginary part and lies in the standard
fundamental domain for SLy(Z).

If flag = 1, the function returns [[W71, Wa], [11, n2]], where 71 and 72 are the quasi-periods attached to [W7, Wa],
satisfying oW1 — n1 Wy = 2im.

The output of this function is meant to be used as the first argument given to ellwp, ellzeta, ellsigma or elleisnum.
Quasi-periods are needed by ellzeta and ellsigma only.

? L = ellperiods([1,I],1);

? [wl,w2] = L[1]; [el,e2] = L[2];

? e2*wl - el*w2

%3 = 6.2831853071795864769252867665590057684*1
? ellzeta(L, 1/2 + 2*I)

%4 = 1.5707963... - 6.283185307...*I
? ellzeta([1,I], 1/2 + 2*I) \\ same but less efficient
%4 = 1.5707963... - 6.283185307...*I

ellpointtoz(E, P, precision)
If E/C C/A is a complex elliptic curve (A = E.omega), computes a complex number z, well-defined modulo
the lattice A, corresponding to the point P; i.e. such that P = [px(2), @, ()] satisfies the equation
y® = 42® — gow — g3,
where gs, g3 are the elliptic invariants.

If E is defined over R and P € E(R), we have more precisely, 0 < (¢) < wl and 0 <= 3(t) < (w2), where
(w1, w?2) are the real and complex periods of E.

? E = ellinit([0,1]); P = [2,3];

? z = ellpointtoz(E, P)

%2 = 3.5054552633136356529375476976257353387

? ellwp(E, z)

%3 = 2.0000000000000000000000000000000000000

? ellztopoint(E, z) - P

%4 = [2.548947057811923643 E-57, 7.646841173435770930 E-57]

(continues on next page)

1.1. Guide to real precision in the PARI interface 113

CyPari2 Documentation, Release 2.1.3

(continued from previous page)

? ellpointtoz(E, [0]) \\ the point at infinity
%5 =0

If E is defined over a general number field, the function returns the values corresponding to the various complex
embeddings of the curve and of the point, in the same order as E.nf.roots:

? E=ellinit([-22032-15552%x,0], nfinit(x*2-2));

? P=[-72%x-108,0];

? ellisoncurve(E,P)

%3 =1

? ellpointtoz(E,P)

%4 = [-0.52751724240790530394437835702346995884*1,
-0.090507650025885335533571758708283389896*1]

? E.nf.roots

%5 = [-1.4142135623730950488016887242096980786, \\ x-> -sqrt(2)
1.4142135623730950488016887242096980786] \\ x-> sqrt(2)

If £/Q, has multiplicative reduction, then £/ (@p is analytically isomorphic to @; / q% (Tate curve) for some
p-adic integer q. The behavior is then as follows:

* If the reduction is split (E.tate[2] is a t_PADIC), we have an isomorphism ¢ : E(Q,) Q;/¢” and the function
returns ¢(P) € Q,.

« If the reduction is not split (E.tate[2] is a t_POLMOD), we only have an isomorphism ¢ : E(K) K*/q% over
the unramified quadratic extension K/Q,. In this case, the output ¢(P) € K is a t_POLMOD.

? E = ellinit([0,-1,1,0,0], 0(11+5)); P = [0,0];

? [u2,u,q] = E.tate; type(u) \\ split multiplicative reduction

%2 = "t_PADIC"

? ellmul(E, P, 5) \\ P has order 5

%3 = [0]

? z = ellpointtoz(E, [0,0])

%4 = 3 + 11742 + 2*%1123 + 3*1144 + 6*11A5 + 10*1146 + 8%11+7 + 0(1148)
? zAS

%5 = 1 + 0(1149)

? E = ellinit(ellfromj(1/4), 0(246)); x=1/2; y=ellordinate(E,x)[1];
? z = ellpointtoz(E, [x,y]); \\ t_POLMOD of t_POL with t_PADIC coeffs
? liftint(z) \\ 1lift all p-adics

%8 = Mod(8*u + 7, u*r2 + 437)

ellpow(E, z, n)
Deprecated alias for el1mul.

ellratpoints(E, h, flag)
E being an integral model of elliptic curve , return a vector containing the affine rational points on the curve of
naive height less than h. If flag = 1, stop as soon as a point is found; return either an empty vector or a vector
containing a single point. See hyperellratpoints for how h can be specified.

? E=ellinit([-25,11);

? ellratpoints(E, 10)

%2 = [[-5,1]1,[-5,-11,[-3,7]1,[(-3,-7],[-1,5]1,[-1,-51,
[6,1],[®,-11,[5,1]1,[5,-11,[7,13]1,[7,-13]]

? ellratpoints(E,10,1)

%3 = [[-5,1]]

114 Chapter 1. Interface to the PARI library

CyPari2 Documentation, Release 2.1.3

ellrootno(E, p)

FE being an ell structure over Q as output by ellinit, this function computes the local root number of its L-
series at the place p (at the infinite place if p = 0). If p is omitted, return the global root number and in this case
the curve can also be defined over a number field.

Note that the global root number is the sign of the functional equation and conjecturally is the parity of the rank
of the Mordell-Weil group. The equation for E needs not be minimal at p, but if the model is already minimal
the function will run faster.

ellsea(FE, tors)

Let I be an ell structure as output by ellinit, defined over a finite field IF;. This low-level function computes
the order of the group E(F,) using the SEA algorithm; compared to the high-level function ellcard, which
includes SEA among its choice of algorithms, the tors argument allows to speed up a search for curves having
almost prime order and whose quadratic twist may also have almost prime order. When tors is set to a nonzero
value, the function returns O as soon as it detects that the order has a small prime factor not dividing tors; SEA
considers modular polynomials of increasing prime degree ¢ and we return 0 as soon as we hit an £ (coprime to
tors) dividing #E(F,):

? ellsea(ellinit([1,1], 2A56+3477), 1)
%1 = 72057594135613381

? forprime(p=24128,00, q
time = 6,571 ms.

? forprime(p=2+128,00, q = ellsea(ellinit([1,1],p),1);if(isprime(q),break))
time = 522 ms.

ellcard(ellinit([1,1],p)); if(isprime(q),break))

In particular, set tors to 1 if you want a curve with prime order, to 2 if you want to allow a cofactor which is a
power of two (e.g. for Edwards’s curves), etc. The early exit on bad curves yields a massive speedup compared
to running the cardinal algorithm to completion.

When tors is negative, similar checks are performed for the quadratic twist of the curve.

The following function returns a curve of prime order over I,,.

cryptocurve(p) =
{
while(1,

my(E, N, j = Mod(random(p), p));

E = ellinit(ellfromj(j));

N = ellsea(E, 1); if (!N, continue);

if (isprime(N), ret