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CHAPTER

ONE

INTERFACE TO THE PARI LIBRARY

AUTHORS:

• William Stein (2006-03-01): updated to work with PARI 2.2.12-beta

• William Stein (2006-03-06): added newtonpoly

• Justin Walker: contributed some of the function definitions

• Gonzalo Tornaria: improvements to conversions; much better error handling.

• Robert Bradshaw, Jeroen Demeyer, William Stein (2010-08-15): Upgrade to PARI 2.4.3 (Sage ticket #9343)

• Jeroen Demeyer (2011-11-12): rewrite various conversion routines (Sage ticket #11611, Sage ticket #11854,
Sage ticket #11952)

• Peter Bruin (2013-11-17): split off this file from gen.pyx (Sage ticket #15185)

• Jeroen Demeyer (2014-02-09): upgrade to PARI 2.7 (Sage ticket #15767)

• Jeroen Demeyer (2014-09-19): upgrade to PARI 2.8 (Sage ticket #16997)

• Jeroen Demeyer (2015-03-17): automatically generate methods from pari.desc (Sage ticket #17631 and Sage
ticket #17860)

• Luca De Feo (2016-09-06): Separate Sage-specific components from generic C-interface in Pari (Sage ticket
#20241)

Examples:

>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari('5! + 10/x')
(120*x + 10)/x
>>> pari('intnum(x=0,13,sin(x)+sin(x^2) + x)')
85.6215190762676
>>> f = pari('x^3 - 1')
>>> v = f.factor(); v
[x - 1, 1; x^2 + x + 1, 1]
>>> v[0] # indexing is 0-based unlike in GP.
[x - 1, x^2 + x + 1]~
>>> v[1]
[1, 1]~

For most functions, you can call the function as method of pari or you can first create a Gen object and then call the
function as method of that. In other words, the following two commands do the same:
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>>> pari('x^3 - 1').factor()
[x - 1, 1; x^2 + x + 1, 1]
>>> pari.factor('x^3 - 1')
[x - 1, 1; x^2 + x + 1, 1]

Arithmetic operations cause all arguments to be converted to PARI:

>>> type(pari(1) + 1)
<... 'cypari2.gen.Gen'>
>>> type(1 + pari(1))
<... 'cypari2.gen.Gen'>

1.1 Guide to real precision in the PARI interface

In the PARI interface, “real precision” refers to the precision of real numbers, so it is the floating-point precision. This
is a non-trivial issue, since there are various interfaces for different things.

1.1.1 Internal representation of floating-point numbers in PARI

Real numbers in PARI have a precision associated to them, which is always a multiple of the CPU wordsize. So, it is a
multiple of 32 of 64 bits. When converting a float from Python to PARI, the float has 53 bits of precision which is
rounded up to 64 bits in PARI:

>>> x = 1.0
>>> pari(x)
1.00000000000000
>>> pari(x).bitprecision()
64

It is possible to change the precision of a PARI object with the Gen.bitprecision() method:

>>> p = pari(1.0)
>>> p.bitprecision()
64
>>> p = p.bitprecision(100)
>>> p.bitprecision() # Rounded up to a multiple of the wordsize
128

Beware that these extra bits are just bogus. For example, this will not magically give a more precise approximation of
math.pi:

>>> import math
>>> p = pari(math.pi)
>>> pari("Pi") - p
1.225148... E-16
>>> p = p.bitprecision(1000)
>>> pari("Pi") - p
1.225148... E-16

Another way to create numbers with many bits is to use a string with many digits:

2 Chapter 1. Interface to the PARI library
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>>> p = pari("3.1415926535897932384626433832795028842")
>>> p.bitprecision()
128

1.1.2 Output precision for printing

Even though PARI reals have a precision, not all significant bits are printed by default. The maximum number
of digits when printing a PARI real can be set using the methods Pari.set_real_precision_bits() or Pari.
set_real_precision(). Note that this will also change the input precision for strings, see Input precision for func-
tion calls.

We create a very precise approximation of pi and see how it is printed in PARI:

>>> pi = pari.pi(precision=1024)

The default precision is 15 digits:

>>> pi
3.14159265358979

With a different precision, we see more digits. Note that this does not affect the object pi at all, it only affects how it
is printed:

>>> _ = pari.set_real_precision(50)
>>> pi
3.1415926535897932384626433832795028841971693993751

Back to the default:

>>> _ = pari.set_real_precision(15)
>>> pi
3.14159265358979

1.1.3 Input precision for function calls

When we talk about precision for PARI functions, we need to distinguish three kinds of calls:

1. Using the string interface, for example pari("sin(1)").

2. Using the library interface with exact inputs, for example pari.sin(1).

3. Using the library interface with inexact inputs, for example pari.sin(1.0).

In the first case, the relevant precision is the one set by the methods Pari.set_real_precision_bits() or Pari.
set_real_precision():

>>> pari.set_real_precision_bits(150)
>>> pari("sin(1)")
0.841470984807896506652502321630298999622563061
>>> pari.set_real_precision_bits(53)
>>> pari("sin(1)")
0.841470984807897

1.1. Guide to real precision in the PARI interface 3



CyPari2 Documentation, Release 2.1.3

In the second case, the precision can be given as the argument precision in the function call, with a default of 53 bits.
The real precision set by Pari.set_real_precision_bits() or Pari.set_real_precision() does not affect
the call (but it still affects printing).

As explained before, the precision increases to a multiple of the wordsize (and you should not assume that the extra
bits are meaningful):

>>> a = pari.sin(1, precision=180); a
0.841470984807897
>>> a.bitprecision()
192
>>> b = pari.sin(1, precision=40); b
0.841470984807897
>>> b.bitprecision()
64
>>> c = pari.sin(1); c
0.841470984807897
>>> c.bitprecision()
64
>>> pari.set_real_precision_bits(90)
>>> print(a); print(b); print(c)
0.841470984807896506652502322
0.8414709848078965067
0.8414709848078965067

In the third case, the precision is determined only by the inexact inputs and the precision argument is ignored:

>>> pari.sin(1.0, precision=180).bitprecision()
64
>>> pari.sin(1.0, precision=40).bitprecision()
64
>>> pari.sin("1.0000000000000000000000000000000000000").bitprecision()
128

Tests:

Check that the documentation is generated correctly:

>>> from inspect import getdoc
>>> getdoc(pari.Pi)
'The constant :math:`\\pi` ...'

Check that output from PARI’s print command is actually seen by Python (Sage ticket #9636):

>>> pari('print("test")')
test

Verify that nfroots() (which has an unusual signature with a non-default argument following a default argument)
works:

>>> pari.nfroots(x='x^4 - 1')
[-1, 1]
>>> pari.nfroots(pari.nfinit('t^2 + 1'), "x^4 - 1")
[-1, 1, Mod(-t, t^2 + 1), Mod(t, t^2 + 1)]

Reset default precision for the following tests:

4 Chapter 1. Interface to the PARI library
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>>> pari.set_real_precision_bits(53)

Test that interrupts work properly:

>>> pari.allocatemem(8000000, 2**29)
PARI stack size set to 8000000 bytes, maximum size set to ...
>>> from cysignals.alarm import alarm, AlarmInterrupt
>>> for i in range(1, 11):
... try:
... alarm(i/11.0)
... pari.binomial(2**100, 2**22)
... except AlarmInterrupt:
... pass

Test that changing the stack size using default works properly:

>>> pari.default("parisizemax", 2**23)
>>> pari = cypari2.Pari() # clear stack
>>> a = pari(1)
>>> pari.default("parisizemax", 2**29)
>>> a + a
2
>>> pari.default("parisizemax")
536870912

class cypari2.pari_instance.Pari

List(x)
Create an empty list or convert x to a list.

Examples:

>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari.List(range(5))
List([0, 1, 2, 3, 4])
>>> L = pari.List()
>>> L
List([])
>>> L.listput(42, 1)
42
>>> L
List([42])
>>> L.listinsert(24, 1)
24
>>> L
List([24, 42])

allocatemem(s, sizemax, *, silent)
Change the PARI stack space to the given size s (or double the current size if s is 0) and change the
maximum stack size to sizemax.

PARI tries to use only its current stack (the size which is set by s), but it will increase its stack if needed
up to the maximum size which is set by sizemax.

1.1. Guide to real precision in the PARI interface 5
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The PARI stack is never automatically shrunk. You can use the command pari.allocatemem(10^6) to
reset the size to 10^6, which is the default size at startup. Note that the results of computations using cypari
are copied to the Python heap, so they take up no space in the PARI stack. The PARI stack is cleared after
every computation.

It does no real harm to set this to a small value as the PARI stack will be automatically enlarged when we
run out of memory.

INPUT:

• s - an integer (default: 0). A non-zero argument is the size in bytes of the new PARI stack. If s is zero,
double the current stack size.

• sizemax - an integer (default: 0). A non-zero argument is the maximum size in bytes of the PARI
stack. If sizemax is 0, the maximum of the current maximum and s is taken.

Examples:

>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari.allocatemem(10**7, 10**7)
PARI stack size set to 10000000 bytes, maximum size set to 100...
>>> pari.allocatemem() # Double the current size
PARI stack size set to 20000000 bytes, maximum size set to 200...
>>> pari.stacksize()
20000000
>>> pari.allocatemem(10**6)
PARI stack size set to 1000000 bytes, maximum size set to 200...

The following computation will automatically increase the PARI stack size:

>>> a = pari('2^100000000')

a is now a Python variable on the Python heap and does not take up any space on the PARI stack. The PARI
stack is still large because of the computation of a:

>>> pari.stacksize() > 10**6
True

Setting a small maximum size makes this fail:

>>> pari.allocatemem(10**6, 2**22)
PARI stack size set to 1000000 bytes, maximum size set to 4194304
>>> a = pari('2^100000000')
Traceback (most recent call last):
...
PariError: _^s: the PARI stack overflows (current size: 1000000; maximum size:␣
→˓4194304)
You can use pari.allocatemem() to change the stack size and try again

Tests:

Do the same without using the string interface and starting from a very small stack size:

>>> pari.allocatemem(1, 2**26)
PARI stack size set to 1024 bytes, maximum size set to 67108864
>>> a = pari(2)**100000000

(continues on next page)

6 Chapter 1. Interface to the PARI library



CyPari2 Documentation, Release 2.1.3

(continued from previous page)

>>> pari.stacksize() > 10**6
True

We do not allow sizemax less than s:

>>> pari.allocatemem(10**7, 10**6)
Traceback (most recent call last):
...
ValueError: the maximum size (10000000) should be at least the stack size␣
→˓(1000000)

complex(re, im)

Create a new complex number, initialized from re and im.

debugstack()

Print the internal PARI variables top (top of stack), avma (available memory address, think of this as the
stack pointer), bot (bottom of stack).

euler(precision)
Euler’s constant 𝛾 = 0.57721.... Note that Euler is one of the few reserved names which cannot be used
for user variables.

factorial_int(n)
Return the factorial of the integer n as a PARI gen. Give result as an integer.

Examples:

>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari.factorial_int(0)
1
>>> pari.factorial_int(1)
1
>>> pari.factorial_int(5)
120
>>> pari.factorial_int(25)
15511210043330985984000000

genus2red(P, p)
Let P be a polynomial with integer coefficients. Determines the reduction of the (proper, smooth) genus 2
curve C/QQ, defined by the hyperelliptic equation y^2 = P. The special syntax genus2red([P,Q]) is also
allowed, where the polynomials P and Q have integer coefficients, to represent the model y^2 + Q(x)y =
P(x).

If the second argument p is specified, it must be a prime. Then only the local information at p is computed
and returned.

Examples:

>>> import cypari2
>>> pari = cypari2.Pari()
>>> x = pari('x')
>>> pari.genus2red([-5*x**5, x**3 - 2*x**2 - 2*x + 1])
[1416875, [2, -1; 5, 4; 2267, 1], ..., [[2, [2, [Mod(1, 2)]], []], [5, [1, []],␣

(continues on next page)
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(continued from previous page)

→˓["[V] page 156", [3]]], [2267, [2, [Mod(432, 2267)]], ["[I{1-0-0}] page 170",␣
→˓[]]]]]
>>> pari.genus2red([-5*x**5, x**3 - 2*x**2 - 2*x + 1],2267)
[2267, Mat([2267, 1]), ..., [2267, [2, [Mod(432, 2267)]], ["[I{1-0-0}] page 170
→˓", []]]]

get_debug_level()

Set the debug PARI C library variable.

get_real_precision()

Returns the current PARI default real precision.

This is used both for creation of new objects from strings and for printing. It is the number of digits IN
DECIMAL in which real numbers are printed. It also determines the precision of objects created by parsing
strings (e.g. pari(‘1.2’)), which is not the normal way of creating new PARI objects in CyPari2. It has no
effect on the precision of computations within the pari library.

See also:
get_real_precision_bits() to get the precision in bits.

Examples:

>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari.get_real_precision()
15

get_real_precision_bits()

Return the current PARI default real precision in bits.

This is used both for creation of new objects from strings and for printing. It determines the number of
digits in which real numbers numbers are printed. It also determines the precision of objects created by
parsing strings (e.g. pari(‘1.2’)), which is not the normal way of creating new PARI objects using cypari.
It has no effect on the precision of computations within the PARI library.

See also:
get_real_precision() to get the precision in decimal digits.

Examples:

>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari.get_real_precision_bits()
53

init_primes(M)

Recompute the primes table including at least all primes up to M (but possibly more).

Examples:

>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari.init_primes(200000)

We make sure that ticket Sage ticket #11741 has been fixed:

8 Chapter 1. Interface to the PARI library
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>>> pari.init_primes(2**30)
Traceback (most recent call last):
...
ValueError: Cannot compute primes beyond 436273290

matrix(m, n, entries)
matrix(long m, long n, entries=None): Create and return the m x n PARI matrix with given list of entries.

Examples:

>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari.matrix(3, 3, range(9))
[0, 1, 2; 3, 4, 5; 6, 7, 8]

new_with_bits_prec(s, precision)
pari.new_with_bits_prec(self, s, precision) creates s as a PARI Gen with (at most) precision bits of preci-
sion.

one()

Examples:

>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari.one()
1

static pari_version()

Return a string describing the version of PARI/GP.

>>> from cypari2 import Pari
>>> Pari.pari_version()
'GP/PARI CALCULATOR Version ...'

pi(precision)
The constant 𝜋 (3.14159...). Note that Pi is one of the few reserved names which cannot be used for user
variables.

polchebyshev(n, v)
Chebyshev polynomial of the first kind of degree n, in the variable v.

Examples:

>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari.polchebyshev(7)
64*x^7 - 112*x^5 + 56*x^3 - 7*x
>>> pari.polchebyshev(7, 'z')
64*z^7 - 112*z^5 + 56*z^3 - 7*z
>>> pari.polchebyshev(0)
1

polsubcyclo(n, d, v=x): return the pari list of polynomial(s)
defining the sub-abelian extensions of degree d of the cyclotomic field QQ(zeta_n), where d divides phi(n).

Examples:

1.1. Guide to real precision in the PARI interface 9
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>>> import cypari2
>>> pari = cypari2.Pari()

>>> pari.polsubcyclo(8, 4)
[x^4 + 1]
>>> pari.polsubcyclo(8, 2, 'z')
[z^2 + 2, z^2 - 2, z^2 + 1]
>>> pari.polsubcyclo(8, 1)
[x - 1]
>>> pari.polsubcyclo(8, 3)
[]

primes(n, end)
Return a pari vector containing the first n primes, the primes in the interval [n, end], or the primes up to
end.

INPUT:

Either

• n – integer

or

• n – list or tuple [a, b] defining an interval of primes

or

• n, end – start and end point of an interval of primes

or

• end – end point for the list of primes

OUTPUT: a PARI list of prime numbers

Examples:

>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari.primes(3)
[2, 3, 5]
>>> pari.primes(10)
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
>>> pari.primes(20)
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71]
>>> len(pari.primes(1000))
1000
>>> pari.primes(11,29)
[11, 13, 17, 19, 23, 29]
>>> pari.primes((11,29))
[11, 13, 17, 19, 23, 29]
>>> pari.primes(end=29)
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
>>> pari.primes(10**30, 10**30 + 100)
[1000000000000000000000000000057, 1000000000000000000000000000099]

Tests:
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>>> pari.primes(0)
[]
>>> pari.primes(-1)
[]
>>> pari.primes(end=1)
[]
>>> pari.primes(end=-1)
[]
>>> pari.primes(3,2)
[]

set_debug_level(level)
Set the debug PARI C library variable.

set_real_precision(n)
Sets the PARI default real precision in decimal digits.

This is used both for creation of new objects from strings and for printing. It is the number of digits IN
DECIMAL in which real numbers are printed. It also determines the precision of objects created by parsing
strings (e.g. pari(‘1.2’)), which is not the normal way of creating new PARI objects in CyPari2. It has no
effect on the precision of computations within the pari library.

Returns the previous PARI real precision.

See also:
set_real_precision_bits() to set the precision in bits.

Examples:

>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari.set_real_precision(60)
15
>>> pari('1.2')
1.20000000000000000000000000000000000000000000000000000000000
>>> pari.set_real_precision(15)
60

set_real_precision_bits(n)
Sets the PARI default real precision in bits.

This is used both for creation of new objects from strings and for printing. It determines the number of
digits in which real numbers numbers are printed. It also determines the precision of objects created by
parsing strings (e.g. pari(‘1.2’)), which is not the normal way of creating new PARI objects using cypari.
It has no effect on the precision of computations within the PARI library.

See also:
set_real_precision() to set the precision in decimal digits.

Examples:

>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari.set_real_precision_bits(200)
>>> pari('1.2')

(continues on next page)
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(continued from previous page)

1.20000000000000000000000000000000000000000000000000000000000
>>> pari.set_real_precision_bits(53)

setrand(seed)
Sets PARI’s current random number seed.

INPUT:

• seed – either a strictly positive integer or a GEN of type t_VECSMALL as output by getrand()

Examples:

>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari.setrand(50)
>>> a = pari.getrand()
>>> pari.setrand(a)
>>> a == pari.getrand()
True

Tests:

Check that invalid inputs are handled properly:

>>> pari.setrand("foobar")
Traceback (most recent call last):
...
PariError: incorrect type in setrand (t_POL)

stacksize()

Return the current size of the PARI stack, which is 10^6 by default. However, the stack size is automatically
increased when needed up to the given maximum stack size.

See also:

• stacksizemax() to get the maximum stack size

• allocatemem() to change the current or maximum stack size

Examples:

>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari.stacksize()
8000000
>>> pari.allocatemem(2**18, silent=True)
>>> pari.stacksize()
262144

stacksizemax()

Return the maximum size of the PARI stack, which is determined at startup in terms of available memory.
Usually, the PARI stack size is (much) smaller than this maximum but the stack will be increased up to this
maximum if needed.

See also:

12 Chapter 1. Interface to the PARI library
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• stacksize() to get the current stack size

• allocatemem() to change the current or maximum stack size

Examples:

>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari.allocatemem(2**18, 2**26, silent=True)
>>> pari.stacksizemax()
67108864

vector(n, entries)
vector(long n, entries=None): Create and return the length n PARI vector with given list of entries.

Examples:

>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari.vector(5, [1, 2, 5, 4, 3])
[1, 2, 5, 4, 3]
>>> pari.vector(2, ['x', 1])
[x, 1]
>>> pari.vector(2, ['x', 1, 5])
Traceback (most recent call last):
...
IndexError: length of entries (=3) must equal n (=2)

version()

Return the PARI version as tuple with 3 or 4 components: (major, minor, patch) or (major, minor, patch,
VCSversion).

Examples:

>>> from cypari2 import Pari
>>> Pari().version() >= (2, 9, 0)
True

zero()

Examples:

>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari.zero()
0

class cypari2.pari_instance.Pari_auto

Part of the Pari class containing auto-generated functions.

You must never use this class directly (in fact, Python may crash if you do), use the derived class Pari instead.

Catalan(precision)
Catalan’s constant 𝐺 =

∑︀
𝑛>=0((−1)𝑛)/((2𝑛+ 1)2) = 0.91596.... Note that Catalan is one of the few

reserved names which cannot be used for user variables.

1.1. Guide to real precision in the PARI interface 13
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Col(x, n)
Transforms the object 𝑥 into a column vector. The dimension of the resulting vector can be optionally
specified via the extra parameter 𝑛.

If 𝑛 is omitted or 0, the dimension depends on the type of 𝑥; the vector has a single component, except
when 𝑥 is

• a vector or a quadratic form (in which case the resulting vector is simply the initial object considered
as a row vector),

• a polynomial or a power series. In the case of a polynomial, the coefficients of the vector start with
the leading coefficient of the polynomial, while for power series only the significant coefficients are
taken into account, but this time by increasing order of degree. In this last case, Vec is the reciprocal
function of Pol and Ser respectively,

• a matrix (the column of row vector comprising the matrix is returned),

• a character string (a vector of individual characters is returned).

In the last two cases (matrix and character string), 𝑛 is meaningless and must be omitted or an error is
raised. Otherwise, if 𝑛 is given, 0 entries are appended at the end of the vector if 𝑛 > 0, and prepended at
the beginning if 𝑛 < 0. The dimension of the resulting vector is ‖𝑛‖.

See ??Vec for examples.

Colrev(x, n)
As 𝐶𝑜𝑙(𝑥,−𝑛), then reverse the result. In particular, Colrev is the reciprocal function of Polrev: the
coefficients of the vector start with the constant coefficient of the polynomial and the others follow by
increasing degree.

Euler(precision)
Euler’s constant 𝛾 = 0.57721.... Note that Euler is one of the few reserved names which cannot be used
for user variables.

I()

The complex number
√
−1.

List(x)
Transforms a (row or column) vector 𝑥 into a list, whose components are the entries of 𝑥. Similarly for a
list, but rather useless in this case. For other types, creates a list with the single element 𝑥.

Map(x)
A “Map” is an associative array, or dictionary: a data type composed of a collection of (key, value)
pairs, such that each key appears just once in the collection. This function converts the matrix
[𝑎1, 𝑏1; 𝑎2, 𝑏2; ...; 𝑎𝑛, 𝑏𝑛] to the map 𝑎𝑖 : −−− > 𝑏𝑖.

? M = Map(factor(13!));
? mapget(M,3)
%2 = 5

If the argument 𝑥 is omitted, creates an empty map, which may be filled later via mapput.

Mat(x)
Transforms the object 𝑥 into a matrix. If 𝑥 is already a matrix, a copy of 𝑥 is created. If 𝑥 is a row (resp.
column) vector, this creates a 1-row (resp. 1-column) matrix, unless all elements are column (resp. row)
vectors of the same length, in which case the vectors are concatenated sideways and the attached big matrix
is returned. If 𝑥 is a binary quadratic form, creates the attached 2𝑥2 matrix. Otherwise, this creates a 1𝑥1
matrix containing 𝑥.
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? Mat(x + 1)
%1 =
[x + 1]
? Vec( matid(3) )
%2 = [[1, 0, 0]~, [0, 1, 0]~, [0, 0, 1]~]
? Mat(%)
%3 =
[1 0 0]

[0 1 0]

[0 0 1]
? Col( [1,2; 3,4] )
%4 = [[1, 2], [3, 4]]~
? Mat(%)
%5 =
[1 2]

[3 4]
? Mat(Qfb(1,2,3))
%6 =
[1 1]

[1 3]

Mod(a, b)
In its basic form, create an intmod or a polmod (𝑎𝑚𝑜𝑑𝑏); 𝑏 must be an integer or a polynomial. We then
obtain a t_INTMOD and a t_POLMOD respectively:

? t = Mod(2,17); t^8
%1 = Mod(1, 17)
? t = Mod(x,x^2+1); t^2
%2 = Mod(-1, x^2+1)

If 𝑎%𝑏 makes sense and yields a result of the appropriate type (t_INT or scalar/t_POL), the operation
succeeds as well:

? Mod(1/2, 5)
%3 = Mod(3, 5)
? Mod(7 + O(3^6), 3)
%4 = Mod(1, 3)
? Mod(Mod(1,12), 9)
%5 = Mod(1, 3)
? Mod(1/x, x^2+1)
%6 = Mod(-x, x^2+1)
? Mod(exp(x), x^4)
%7 = Mod(1/6*x^3 + 1/2*x^2 + x + 1, x^4)

If 𝑎 is a complex object, “base change” it to Z/𝑏Z or 𝐾[𝑥]/(𝑏), which is equivalent to, but faster than,
multiplying it by Mod(1,b):

? Mod([1,2;3,4], 2)
%8 =

(continues on next page)
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[Mod(1, 2) Mod(0, 2)]

[Mod(1, 2) Mod(0, 2)]
? Mod(3*x+5, 2)
%9 = Mod(1, 2)*x + Mod(1, 2)
? Mod(x^2 + y*x + y^3, y^2+1)
%10 = Mod(1, y^2 + 1)*x^2 + Mod(y, y^2 + 1)*x + Mod(-y, y^2 + 1)

This function is not the same as 𝑥 % 𝑦, the result of which has no knowledge of the intended modulus 𝑦.
Compare

? x = 4 % 5; x + 1
%11 = 5
? x = Mod(4,5); x + 1
%12 = Mod(0,5)

Note that such “modular” objects can be lifted via lift or centerlift. The modulus of a t_INTMOD or
t_POLMOD 𝑧 can be recovered via :math:`z.mod`.

Pi(precision)
The constant 𝜋 (3.14159...). Note that Pi is one of the few reserved names which cannot be used for user
variables.

Pol(t, v)
Transforms the object 𝑡 into a polynomial with main variable 𝑣. If 𝑡 is a scalar, this gives a constant
polynomial. If 𝑡 is a power series with nonnegative valuation or a rational function, the effect is similar
to truncate, i.e. we chop off the 𝑂(𝑋𝑘) or compute the Euclidean quotient of the numerator by the
denominator, then change the main variable of the result to 𝑣.

The main use of this function is when 𝑡 is a vector: it creates the polynomial whose coefficients are given by
𝑡, with 𝑡[1] being the leading coefficient (which can be zero). It is much faster to evaluate Pol on a vector
of coefficients in this way, than the corresponding formal expression 𝑎𝑛𝑋𝑛 + ...+ 𝑎0, which is evaluated
naively exactly as written (linear versus quadratic time in 𝑛). Polrev can be used if one wants 𝑥[1] to be
the constant coefficient:

? Pol([1,2,3])
%1 = x^2 + 2*x + 3
? Polrev([1,2,3])
%2 = 3*x^2 + 2*x + 1

The reciprocal function of Pol (resp. Polrev) is Vec (resp. Vecrev).

? Vec(Pol([1,2,3]))
%1 = [1, 2, 3]
? Vecrev( Polrev([1,2,3]) )
%2 = [1, 2, 3]

Warning. This is not a substitution function. It will not transform an object containing variables of higher
priority than 𝑣.

? Pol(x + y, y)
*** at top-level: Pol(x+y,y)
*** ^----------
*** Pol: variable must have higher priority in gtopoly.
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Polrev(t, v)
Transform the object 𝑡 into a polynomial with main variable 𝑣. If 𝑡 is a scalar, this gives a constant polyno-
mial. If 𝑡 is a power series, the effect is identical to truncate, i.e. it chops off the 𝑂(𝑋𝑘).

The main use of this function is when 𝑡 is a vector: it creates the polynomial whose coefficients are given
by 𝑡, with 𝑡[1] being the constant term. Pol can be used if one wants 𝑡[1] to be the leading coefficient:

? Polrev([1,2,3])
%1 = 3*x^2 + 2*x + 1
? Pol([1,2,3])
%2 = x^2 + 2*x + 3

The reciprocal function of Pol (resp. Polrev) is Vec (resp. Vecrev).

Qfb(a, b, c, D, precision)
Creates the binary quadratic form 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2. If 𝑏2 − 4𝑎𝑐 > 0, initialize Shanks’ distance function
to 𝐷. Negative definite forms are not implemented, use their positive definite counterpart instead.

Ser(s, v, d, serprec)
Transforms the object 𝑠 into a power series with main variable 𝑣 (𝑥 by default) and precision (number of
significant terms) equal to 𝑑 >= 0 (𝑑 = 𝑠𝑒𝑟𝑖𝑒𝑠𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 by default). If 𝑠 is a scalar, this gives a constant
power series in 𝑣 with precision d. If 𝑠 is a polynomial, the polynomial is truncated to 𝑑 terms if needed

? \ps
seriesprecision = 16 significant terms

? Ser(1) \\ 16 terms by default
%1 = 1 + O(x^16)
? Ser(1, 'y, 5)
%2 = 1 + O(y^5)
? Ser(x^2,, 5)
%3 = x^2 + O(x^7)
? T = polcyclo(100)
%4 = x^40 - x^30 + x^20 - x^10 + 1
? Ser(T, 'x, 11)
%5 = 1 - x^10 + O(x^11)

The function is more or less equivalent with multiplication by 1 +𝑂(𝑣𝑑) in theses cases, only faster.

For the remaining types, vectors and power series, we first explain what occurs if 𝑑 is omitted. In this case,
the function uses exactly the amount of information given in the input:

• If 𝑠 is already a power series in 𝑣, we return it verbatim;

• If 𝑠 is a vector, the coefficients of the vector are understood to be the coefficients of the power series
starting from the constant term (as in Polrev(𝑥)); in other words we convert t_VEC / t_COL to the
power series whose significant terms are exactly given by the vector entries.

On the other hand, if 𝑑 is explicitly given, we abide by its value and return a series, truncated or extended
with zeros as needed, with 𝑑 significant terms.

? v = [1,2,3];
? Ser(v, t) \\ 3 terms: seriesprecision is ignored!
%7 = 1 + 2*t + 3*t^2 + O(t^3)
? Ser(v, t, 7) \\ 7 terms as explicitly requested
%8 = 1 + 2*t + 3*t^2 + O(t^7)
? s = 1+x+O(x^2);
? Ser(s)

(continues on next page)
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%10 = 1 + x + O(x^2) \\ 2 terms: seriesprecision is ignored
? Ser(s, x, 7) \\ extend to 7 terms
%11 = 1 + x + O(x^7)
? Ser(s, x, 1) \\ truncate to 1 term
%12 = 1 + O(x)

The warning given for Pol also applies here: this is not a substitution function.

Set(x)
Converts 𝑥 into a set, i.e. into a row vector, with strictly increasing entries with respect to the (some-
what arbitrary) universal comparison function cmp. Standard container types t_VEC, t_COL, t_LIST and
t_VECSMALL are converted to the set with corresponding elements. All others are converted to a set with
one element.

? Set([1,2,4,2,1,3])
%1 = [1, 2, 3, 4]
? Set(x)
%2 = [x]
? Set(Vecsmall([1,3,2,1,3]))
%3 = [1, 2, 3]

Strchr(x)
Deprecated alias for strchr.

Vec(x, n)
Transforms the object 𝑥 into a row vector. The dimension of the resulting vector can be optionally specified
via the extra parameter 𝑛. If 𝑛 is omitted or 0, the dimension depends on the type of 𝑥; the vector has a
single component, except when 𝑥 is

• a vector or a quadratic form: returns the initial object considered as a row vector,

• a polynomial or a power series: returns a vector consisting of the coefficients. In the case of a poly-
nomial, the coefficients of the vector start with the leading coefficient of the polynomial, while for
power series only the significant coefficients are taken into account, but this time by increasing order
of degree. In particular the valuation is ignored (which makes the function useful for series of negative
valuation):

? Vec(3*x^2 + x)
%1 = [3, 1, 0]
? Vec(x^2 + 3*x^3 + O(x^5))
%2 = [1, 3, 0]
? Vec(x^-2 + 3*x^-1 + O(x))
%3 = [1, 3, 0]

Vec is the reciprocal function of Pol for a polynomial and of Ser for power series of valuation 0.

• a matrix: returns the vector of columns comprising the matrix,

? m = [1,2,3;4,5,6]
%4 =
[1 2 3]

[4 5 6]
? Vec(m)
%5 = [[1, 4]~, [2, 5]~, [3, 6]~]
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• a character string: returns the vector of individual characters,

? Vec("PARI")
%6 = ["P", "A", "R", "I"]

• a map: returns the vector of the domain of the map,

• an error context (t_ERROR): returns the error components, see iferr.

In the last four cases (matrix, character string, map, error), 𝑛 is meaningless and must be omitted or an error
is raised. Otherwise, if 𝑛 is given, 0 entries are appended at the end of the vector if 𝑛 > 0, and prepended
at the beginning if 𝑛 < 0. The dimension of the resulting vector is ‖𝑛‖. This allows to write a conversion
function for series that takes positive valuations into account:

? serVec(s) = Vec(s, -serprec(s,variable(s)));
? Vec(x^2 + 3*x^3 + O(x^5))
%2 = [0, 0, 1, 3, 0]

(That function is not intended for series of negative valuation.)

Vecrev(x, n)
As 𝑉 𝑒𝑐(𝑥,−𝑛), then reverse the result. In particular, Vecrev is the reciprocal function of Polrev: the
coefficients of the vector start with the constant coefficient of the polynomial and the others follow by
increasing degree.

Vecsmall(x, n)
Transforms the object 𝑥 into a row vector of type t_VECSMALL. The dimension of the resulting vector can
be optionally specified via the extra parameter 𝑛.

This acts as Vec(𝑥, 𝑛), but only on a limited set of objects: the result must be representable as a vector of
small integers. If 𝑥 is a character string, a vector of individual characters in ASCII encoding is returned
(strchr yields back the character string).

abs(x, precision)
Absolute value of 𝑥 (modulus if 𝑥 is complex). Rational functions are not allowed. Contrary to most
transcendental functions, an exact argument is not converted to a real number before applying abs and an
exact result is returned if possible.

? abs(-1)
%1 = 1
? abs(3/7 + 4/7*I)
%2 = 5/7
? abs(1 + I)
%3 = 1.414213562373095048801688724

If 𝑥 is a polynomial, returns −𝑥 if the leading coefficient is real and negative else returns 𝑥. For a power
series, the constant coefficient is considered instead.

acos(x, precision)
Principal branch of cos−1(𝑥) = −𝑖 log(𝑥 + 𝑖

√
1 − 𝑥2). In particular, ℜ(𝑎𝑐𝑜𝑠(𝑥)) ∈ [0, 𝜋] and if 𝑥 ∈ R

and ‖𝑥‖ > 1, then 𝑎𝑐𝑜𝑠(𝑥) is complex. The branch cut is in two pieces: ] − 𝑜𝑜,−1] , continuous with
quadrant II, and [1,+𝑜𝑜[, continuous with quadrant IV. We have 𝑎𝑐𝑜𝑠(𝑥) = 𝜋/2 − 𝑎𝑠𝑖𝑛(𝑥) for all 𝑥.

acosh(x, precision)
Principal branch of cosh−1(𝑥) = 2 log(

√︀
(𝑥+ 1)/2 +

√︀
(𝑥− 1)/2). In particular, ℜ(𝑎𝑐𝑜𝑠ℎ(𝑥)) >= 0

and ℑ(𝑎𝑐𝑜𝑠ℎ(𝑥)) ∈] − 𝜋, 𝜋]; if 𝑥 ∈ R and 𝑥 < 1, then 𝑎𝑐𝑜𝑠ℎ(𝑥) is complex.
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addhelp(sym, str)
Changes the help message for the symbol sym. The string str is expanded on the spot and stored as the online
help for sym. It is recommended to document global variables and user functions in this way, although gp
will not protest if you don’t.

You can attach a help text to an alias, but it will never be shown: aliases are expanded by the ? help operator
and we get the help of the symbol the alias points to. Nothing prevents you from modifying the help of
built-in PARI functions. But if you do, we would like to hear why you needed it!

Without addhelp, the standard help for user functions consists of its name and definition.

gp> f(x) = x^2;
gp> ?f
f =
(x)->x^2

Once addhelp is applied to 𝑓 , the function code is no longer included. It can still be consulted by typing
the function name:

gp> addhelp(f, "Square")
gp> ?f
Square

gp> f
%2 = (x)->x^2

addprimes(x)
Adds the integers contained in the vector 𝑥 (or the single integer 𝑥) to a special table of “user-defined
primes”, and returns that table. Whenever factor is subsequently called, it will trial divide by the elements
in this table. If 𝑥 is empty or omitted, just returns the current list of extra primes.

? addprimes(37975227936943673922808872755445627854565536638199)
? factor(15226050279225333605356183781326374297180681149613806\
88657908494580122963258952897654000350692006139)

%2 =
[37975227936943673922808872755445627854565536638199 1]

[40094690950920881030683735292761468389214899724061 1]
? ##
*** last result computed in 0 ms.

The entries in 𝑥 must be primes: there is no internal check, even if the factor_proven default is set. To
remove primes from the list use removeprimes.

agm(x, y, precision)
Arithmetic-geometric mean of 𝑥 and 𝑦. In the case of complex or negative numbers, the optimal AGM is
returned (the largest in absolute value over all choices of the signs of the square roots). 𝑝-adic or power
series arguments are also allowed. Note that a 𝑝-adic agm exists only if 𝑥/𝑦 is congruent to 1 modulo 𝑝
(modulo 16 for 𝑝 = 2). 𝑥 and 𝑦 cannot both be vectors or matrices.

airy(z, precision)
Airy [𝐴𝑖,𝐵𝑖] functions of argument 𝑧.

? [A,B] = airy(1);
? A

(continues on next page)
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%2 = 0.13529241631288141552414742351546630617
? B
%3 = 1.2074235949528712594363788170282869954

algadd(al, x, y)
Given two elements 𝑥 and 𝑦 in al, computes their sum 𝑥+ 𝑦 in the algebra al.

? A = alginit(nfinit(y),[-1,1]);
? algadd(A,[1,0]~,[1,2]~)
%2 = [2, 2]~

Also accepts matrices with coefficients in al.

algalgtobasis(al, x)
Given an element x in the central simple algebra al output by alginit, transforms it to a column vector
on the integral basis of al. This is the inverse function of algbasistoalg.

? A = alginit(nfinit(y^2-5),[2,y]);
? algalgtobasis(A,[y,1]~)
%2 = [0, 2, 0, -1, 2, 0, 0, 0]~
? algbasistoalg(A,algalgtobasis(A,[y,1]~))
%3 = [Mod(Mod(y, y^2 - 5), x^2 - 2), 1]~

algaut(al)
Given a cyclic algebra 𝑎𝑙 = (𝐿/𝐾, 𝜎, 𝑏) output by alginit, returns the automorphism 𝜎.

? nf = nfinit(y);
? p = idealprimedec(nf,7)[1];
? p2 = idealprimedec(nf,11)[1];
? A = alginit(nf,[3,[[p,p2],[1/3,2/3]],[0]]);
? algaut(A)
%5 = -1/3*x^2 + 1/3*x + 26/3

algb(al)
Given a cyclic algebra 𝑎𝑙 = (𝐿/𝐾, 𝜎, 𝑏) output by alginit, returns the element 𝑏 ∈ 𝐾.

nf = nfinit(y);
? p = idealprimedec(nf,7)[1];
? p2 = idealprimedec(nf,11)[1];
? A = alginit(nf,[3,[[p,p2],[1/3,2/3]],[0]]);
? algb(A)
%5 = Mod(-77, y)

algbasis(al)
Given a central simple algebra al output by alginit, returns a Z-basis of the order 𝑂0 stored in al with
respect to the natural order in al. It is a maximal order if one has been computed.

A = alginit(nfinit(y), [-1,-1]);
? algbasis(A)
%2 =
[1 0 0 1/2]

(continues on next page)
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[0 1 0 1/2]

[0 0 1 1/2]

[0 0 0 1/2]

algbasistoalg(al, x)
Given an element x in the central simple algebra al output by alginit, transforms it to its algebraic repre-
sentation in al. This is the inverse function of algalgtobasis.

? A = alginit(nfinit(y^2-5),[2,y]);
? z = algbasistoalg(A,[0,1,0,0,2,-3,0,0]~);
? liftall(z)
%3 = [(-1/2*y - 2)*x + (-1/4*y + 5/4), -3/4*y + 7/4]~
? algalgtobasis(A,z)
%4 = [0, 1, 0, 0, 2, -3, 0, 0]~

algcenter(al)
If al is a table algebra output by algtableinit, returns a basis of the center of the algebra al over its prime
field (Q or F𝑝). If al is a central simple algebra output by alginit, returns the center of al, which is stored
in al.

A simple example: the 2𝑥2 upper triangular matrices over Q, generated by 𝐼2, 𝑎 = [0, 1; 0, 0] and 𝑏 =
[0, 0; 0, 1], such that 𝑎2 = 0, 𝑎𝑏 = 𝑎, 𝑏𝑎 = 0, 𝑏2 = 𝑏: the diagonal matrices form the center.

? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt);
? algcenter(A) \\ = (I_2)
%3 =
[1]

[0]

[0]

An example in the central simple case:

? nf = nfinit(y^3-y+1);
? A = alginit(nf, [-1,-1]);
? algcenter(A).pol
%3 = y^3 - y + 1

algcentralproj(al, z, maps)
Given a table algebra al output by algtableinit and a t_VEC 𝑧 = [𝑧1, ..., 𝑧𝑛] of orthogonal central
idempotents, returns a t_VEC [𝑎𝑙1, ..., 𝑎𝑙𝑛] of algebras such that 𝑎𝑙𝑖 = 𝑧𝑖𝑎𝑙. If 𝑚𝑎𝑝𝑠 = 1, each 𝑎𝑙𝑖 is a
t_VEC [𝑞𝑢𝑜, 𝑝𝑟𝑜𝑗, 𝑙𝑖𝑓𝑡] where quo is the quotient algebra, proj is a t_MAT representing the projection onto
this quotient and lift is a t_MAT representing a lift.

A simple example: F2𝑥F4, generated by 1 = (1, 1), 𝑒 = (1, 0) and 𝑥 such that 𝑥2 + 𝑥 + 1 = 0. We
have 𝑒2 = 𝑒, 𝑥2 = 𝑥+ 1 and 𝑒𝑥 = 0.

? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);

(continues on next page)
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? e = [0,1,0]~;
? e2 = algsub(A,[1,0,0]~,e);
? [a,a2] = algcentralproj(A,[e,e2]);
? algdim(a)
%6 = 1
? algdim(a2)
%7 = 2

algchar(al)
Given an algebra al output by alginit or algtableinit, returns the characteristic of al.

? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,13);
? algchar(A)
%3 = 13

algcharpoly(al, b, v, abs)
Given an element 𝑏 in al, returns its characteristic polynomial as a polynomial in the variable 𝑣. If al is
a table algebra output by algtableinit or if 𝑎𝑏𝑠 = 1, returns the absolute characteristic polynomial of
b, which is an element of F𝑝[𝑣] or Q[𝑣]; if al is a central simple algebra output by alginit and 𝑎𝑏𝑠 = 0,
returns the reduced characteristic polynomial of b, which is an element of 𝐾[𝑣] where 𝐾 is the center of
al.

? al = alginit(nfinit(y), [-1,-1]); \\ (-1,-1)_Q
? algcharpoly(al, [0,1]~)
%2 = x^2 + 1
? algcharpoly(al, [0,1]~,,1)
%3 = x^4 + 2*x^2 + 1
? nf = nfinit(y^2-5);
? al = alginit(nf,[-1,y]);
? a = [y,1+x]~*Mod(1,y^2-5)*Mod(1,x^2+1);
? P = lift(algcharpoly(al,a))
%7 = x^2 - 2*y*x + (-2*y + 5)
? algcharpoly(al,a,,1)
%8 = x^8 - 20*x^6 - 80*x^5 + 110*x^4 + 800*x^3 + 1500*x^2 - 400*x + 25
? lift(P*subst(P,y,-y)*Mod(1,y^2-5))^2
%9 = x^8 - 20*x^6 - 80*x^5 + 110*x^4 + 800*x^3 + 1500*x^2 - 400*x + 25

Also accepts a square matrix with coefficients in al.

algdegree(al)
Given a central simple algebra al output by alginit, returns the degree of al.

? nf = nfinit(y^3-y+1);
? A = alginit(nf, [-1,-1]);
? algdegree(A)
%3 = 2

algdep(z, k, flag)
𝑧 being real/complex, or 𝑝-adic, finds a polynomial (in the variable 'x) of degree at most 𝑘, with integer
coefficients, having 𝑧 as approximate root. Note that the polynomial which is obtained is not necessarily
the “correct” one. In fact it is not even guaranteed to be irreducible. One can check the closeness either by
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a polynomial evaluation (use subst), or by computing the roots of the polynomial given by algdep (use
polroots or polrootspadic).

Internally, lindep([1, 𝑧, ..., 𝑧𝑘], 𝑓 𝑙𝑎𝑔) is used. A nonzero value of 𝑓𝑙𝑎𝑔 may improve on the default behav-
ior if the input number is known to a huge accuracy, and you suspect the last bits are incorrect: if 𝑓𝑙𝑎𝑔 > 0
the computation is done with an accuracy of 𝑓𝑙𝑎𝑔 decimal digits; to get meaningful results, the parameter
𝑓𝑙𝑎𝑔 should be smaller than the number of correct decimal digits in the input. But default values are usually
sufficient, so try without 𝑓𝑙𝑎𝑔 first:

? \p200
? z = 2^(1/6)+3^(1/5);
? algdep(z, 30); \\ right in 280ms
? algdep(z, 30, 100); \\ wrong in 169ms
? algdep(z, 30, 170); \\ right in 288ms
? algdep(z, 30, 200); \\ wrong in 320ms
? \p250
? z = 2^(1/6)+3^(1/5); \\ recompute to new, higher, accuracy !
? algdep(z, 30); \\ right in 329ms
? algdep(z, 30, 200); \\ right in 324ms
? \p500
? algdep(2^(1/6)+3^(1/5), 30); \\ right in 677ms
? \p1000
? algdep(2^(1/6)+3^(1/5), 30); \\ right in 1.5s

The changes in realprecision only affect the quality of the initial approximation to 21/6 +31/5, algdep
itself uses exact operations. The size of its operands depend on the accuracy of the input of course: more
accurate input means slower operations.

Proceeding by increments of 5 digits of accuracy, algdep with default flag produces its first correct result
at 195 digits, and from then on a steady stream of correct results:

\\ assume T contains the correct result, for comparison
forstep(d=100, 250, 5, localprec(d);\
print(d, " ", algdep(2^(1/6)+3^(1/5),30) == T))

The above example is the test case studied in a 2000 paper by Borwein and Lisonek: Applications of
integer relation algorithms, Discrete Math., 217, p. 65–82. The version of PARI tested there was 1.39,
which succeeded reliably from precision 265 on, in about 200 as much time as the current version.

algdim(al, abs)
If al is a table algebra output by algtableinit or if 𝑎𝑏𝑠 = 1, returns the dimension of al over its prime
subfield (Q or F𝑝). If al is a central simple algebra output by alginit and 𝑎𝑏𝑠 = 0, returns the dimension
of al over its center.

? nf = nfinit(y^3-y+1);
? A = alginit(nf, [-1,-1]);
? algdim(A)
%3 = 4
? algdim(A,1)
%4 = 12

algdisc(al)
Given a central simple algebra al output by alginit, computes the discriminant of the order 𝑂0 stored in
al, that is the determinant of the trace form Tr : O0xO0 → Z.
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? nf = nfinit(y^2-5);
? A = alginit(nf, [-3,1-y]);
? [PR,h] = alghassef(A)
%3 = [[[2, [2, 0]~, 1, 2, 1], [3, [3, 0]~, 1, 2, 1]], Vecsmall([0, 1])]
? n = algdegree(A);
? D = algdim(A,1);
? h = vector(#h, i, n - gcd(n,h[i]));
? n^D * nf.disc^(n^2) * idealnorm(nf, idealfactorback(nf,PR,h))^n
%4 = 12960000
? algdisc(A)
%5 = 12960000

algdivl(al, x, y)
Given two elements 𝑥 and 𝑦 in al, computes their left quotient 𝑥∖𝑦 in the algebra al: an element 𝑧 such that
𝑥𝑧 = 𝑦 (such an element is not unique when 𝑥 is a zerodivisor). If 𝑥 is invertible, this is the same as 𝑥−1𝑦.
Assumes that 𝑦 is left divisible by 𝑥 (i.e. that 𝑧 exists). Also accepts matrices with coefficients in al.

algdivr(al, x, y)
Given two elements 𝑥 and 𝑦 in al, returns 𝑥𝑦−1. Also accepts matrices with coefficients in al.

alggroup(gal, p)
Initializes the group algebra 𝐾[𝐺] over 𝐾 = Q (𝑝 omitted) or F𝑝 where 𝐺 is the underlying group of the
galoisinit structure gal. The input gal is also allowed to be a t_VEC of permutations that is closed under
products.

Example:

? K = nfsplitting(x^3-x+1);
? gal = galoisinit(K);
? al = alggroup(gal);
? algissemisimple(al)
%4 = 1
? G = [Vecsmall([1,2,3]), Vecsmall([1,3,2])];
? al2 = alggroup(G, 2);
? algissemisimple(al2)
%8 = 0

alggroupcenter(gal, p, cc)
Initializes the center 𝑍(𝐾[𝐺]) of the group algebra 𝐾[𝐺] over 𝐾 = Q (𝑝 = 0 or omitted) or F𝑝 where 𝐺
is the underlying group of the galoisinit structure gal. The input gal is also allowed to be a t_VEC
of permutations that is closed under products. Sets cc to a t_VEC [𝑒𝑙𝑡𝑠, 𝑐𝑜𝑛𝑗𝑐𝑙𝑎𝑠𝑠, 𝑟𝑒𝑝, 𝑓𝑙𝑎𝑔] where elts
is a sorted t_VEC containing the list of elements of 𝐺, conjclass is a t_VECSMALL of the same length
as elts containing the index of the conjugacy class of the corresponding element (an integer between 1 and
the number of conjugacy classes), and rep is a t_VECSMALL of length the number of conjugacy classes
giving for each conjugacy class the index in elts of a representative of this conjugacy class. Finally flag
is 1 if and only if the permutation representation of 𝐺 is transitive, in which case the 𝑖-th element of elts
is characterized by 𝑔[1] = 𝑖; this is always the case when gal is a galoisinit structure. The basis
of 𝑍(𝐾[𝐺]) as output consists of the indicator functions of the conjugacy classes in the ordering given
by cc. Example:

? K = nfsplitting(x^4+x+1);
? gal = galoisinit(K); \\ S4
? al = alggroupcenter(gal,,&cc);
? algiscommutative(al)

(continues on next page)
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(continued from previous page)

%4 = 1
? #cc[3] \\ number of conjugacy classes of S4
%5 = 5
? gal = [Vecsmall([1,2,3]),Vecsmall([1,3,2])]; \\ C2
? al = alggroupcenter(gal,,&cc);
? cc[3]
%8 = Vecsmall([1, 2])
? cc[4]
%9 = 0

alghasse(al, pl)
Given a central simple algebra al output by alginit and a prime ideal or an integer between 1 and 𝑟1 +𝑟2,
returns a t_FRAC ℎ : the local Hasse invariant of al at the place specified by pl.

? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? alghasse(A, 1)
%3 = 1/2
? alghasse(A, 2)
%4 = 0
? alghasse(A, idealprimedec(nf,2)[1])
%5 = 1/2
? alghasse(A, idealprimedec(nf,5)[1])
%6 = 0

alghassef(al)
Given a central simple algebra al output by alginit, returns a t_VEC [𝑃𝑅, ℎ𝑓 ] describing the local Hasse
invariants at the finite places of the center: PR is a t_VEC of primes and ℎ𝑓 is a t_VECSMALL of integers
modulo the degree 𝑑 of al. The Hasse invariant of al at the primes outside PR is 0, but PR can include
primes at which the Hasse invariant is 0.

? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,2*y-1]);
? [PR,hf] = alghassef(A);
? PR
%4 = [[19, [10, 2]~, 1, 1, [-8, 2; 2, -10]], [2, [2, 0]~, 1, 2, 1]]
? hf
%5 = Vecsmall([1, 0])

alghassei(al)
Given a central simple algebra al output by alginit, returns a t_VECSMALL ℎ𝑖 of 𝑟1 integers modulo the
degree 𝑑 of al, where 𝑟1 is the number of real places of the center: the local Hasse invariants of al at infinite
places.

? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? alghassei(A)
%3 = Vecsmall([1, 0])

algindex(al, pl)
Returns the index of the central simple algebra 𝐴 over 𝐾 (as output by alginit), that is the degree 𝑒 of the
unique central division algebra 𝐷 over 𝐾 such that 𝐴 is isomorphic to some matrix algebra 𝑀𝑘(𝐷). If pl
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is set, it should be a prime ideal of 𝐾 or an integer between 1 and 𝑟1 + 𝑟2, and in that case return the local
index at the place pl instead.

? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? algindex(A, 1)
%3 = 2
? algindex(A, 2)
%4 = 1
? algindex(A, idealprimedec(nf,2)[1])
%5 = 2
? algindex(A, idealprimedec(nf,5)[1])
%6 = 1
? algindex(A)
%7 = 2

alginit(B, C, v, maxord)
Initializes the central simple algebra defined by data 𝐵, 𝐶 and variable 𝑣, as follows.

• (multiplication table)𝐵 is the base number field𝐾 in nfinit form, 𝐶 is a “multiplication table” over
𝐾. As a 𝐾-vector space, the algebra is generated by a basis (𝑒1 = 1, ..., 𝑒𝑛); the table is given as a
t_VEC of 𝑛 matrices in 𝑀𝑛(𝐾), giving the left multiplication by the basis elements 𝑒𝑖, in the given
basis. Assumes that 𝑒1 = 1, that the multiplication table is integral, and that (

⨁︀𝑛
𝑖=1𝐾𝑒𝑖, 𝐶) describes

a central simple algebra over 𝐾.

{ mi = [0,-1,0, 0;
1, 0,0, 0;
0, 0,0,-1;
0, 0,1, 0];
mj = [0, 0,-1,0;
0, 0, 0,1;
1, 0, 0,0;
0,-1, 0,0];
mk = [0, 0, 0, 0;
0, 0,-1, 0;
0, 1, 0, 0;
1, 0, 0,-1];
A = alginit(nfinit(y), [matid(4), mi,mj,mk], 0); }

represents (in a complicated way) the quaternion algebra (−1,−1)Q. See below for a simpler solution.

• (cyclic algebra) 𝐵 is an rnf structure attached to a cyclic number field extension 𝐿/𝐾 of degree 𝑑,
𝐶 is a t_VEC [sigma,b] with 2 components: sigma is a t_POLMOD representing an automorphism
generating𝐺𝑎𝑙(𝐿/𝐾), 𝑏 is an element in𝐾*. This represents the cyclic algebra (𝐿/𝐾, 𝜎, 𝑏). Currently
the element 𝑏 has to be integral.

? Q = nfinit(y); T = polcyclo(5, 'x); F = rnfinit(Q, T);
? A = alginit(F, [Mod(x^2,T), 3]);

defines the cyclic algebra (𝐿/Q, 𝜎, 3), where 𝐿 = Q(𝜁5) and 𝜎 : 𝜁 : −−− > 𝜁2 generates 𝐺𝑎𝑙(𝐿/Q).

• (quaternion algebra, special case of the above) 𝐵 is an nf structure attached to a number field 𝐾,
𝐶 = [𝑎, 𝑏] is a vector containing two elements of 𝐾* with 𝑎 not a square in 𝐾, returns the quaternion
algebra (𝑎, 𝑏)𝐾 . The variable 𝑣 ('x by default) must have higher priority than the variable of 𝐾.pol
and is used to represent elements in the splitting field 𝐿 = 𝐾[𝑥]/(𝑥2 − 𝑎).
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? Q = nfinit(y); A = alginit(Q, [-1,-1]); \\ (-1,-1)_Q

• (algebra/𝐾 defined by local Hasse invariants) 𝐵 is an nf structure attached to a number field 𝐾, 𝐶 =
[𝑑, [𝑃𝑅, ℎ𝑓 ], ℎ𝑖] is a triple containing an integer 𝑑 > 1, a pair [𝑃𝑅, ℎ𝑓 ] describing the Hasse invariants
at finite places, and ℎ𝑖 the Hasse invariants at archimedean (real) places. A local Hasse invariant
belongs to (1/𝑑)Z/Z ⊂ Q/Z, and is given either as a t_FRAC (lift to (1/𝑑)Z), a t_INT or t_INTMOD
modulo 𝑑 (lift to Z/𝑑Z); a whole vector of local invariants can also be given as a t_VECSMALL, whose
entries are handled as t_INT s. PR is a list of prime ideals (prid structures), and ℎ𝑓 is a vector of the
same length giving the local invariants at those maximal ideals. The invariants at infinite real places
are indexed by the real roots 𝐾.roots: if the Archimedean place 𝑣 is attached to the 𝑗-th root, the
value of ℎ𝑣 is given by ℎ𝑖[𝑗], must be 0 or 1/2 (or 𝑑/2 modulo 𝑑), and can be nonzero only if 𝑑 is even.

By class field theory, provided the local invariants ℎ𝑣 sum to 0, up to Brauer equivalence, there is a unique
central simple algebra over 𝐾 with given local invariants and trivial invariant elsewhere. In particular, up
to isomorphism, there is a unique such algebra 𝐴 of degree 𝑑.

We realize𝐴 as a cyclic algebra through class field theory. The variable 𝑣 ('x by default) must have higher
priority than the variable of𝐾.pol and is used to represent elements in the (cyclic) splitting field extension
𝐿/𝐾 for 𝐴.

? nf = nfinit(y^2+1);
? PR = idealprimedec(nf,5); #PR
%2 = 2
? hi = [];
? hf = [PR, [1/3,-1/3]];
? A = alginit(nf, [3,hf,hi]);
? algsplittingfield(A).pol
%6 = x^3 - 21*x + 7

• (matrix algebra, toy example) 𝐵 is an nf structure attached to a number field 𝐾, 𝐶 = 𝑑 is a positive
integer. Returns a cyclic algebra isomorphic to the matrix algebra 𝑀𝑑(𝐾).

In all cases, this function computes a maximal order for the algebra by default, which may require a lot of
time. Setting 𝑚𝑎𝑥𝑜𝑟𝑑 = 0 prevents this computation.

The pari object representing such an algebra 𝐴 is a t_VEC with the following data:

• A splitting field 𝐿 of 𝐴 of the same degree over 𝐾 as 𝐴, in rnfinit format, accessed with
algsplittingfield.

• The Hasse invariants at the real places of 𝐾, accessed with alghassei.

• The Hasse invariants of𝐴 at the finite primes of𝐾 that ramify in the natural order of𝐴, accessed with
alghassef.

• A basis of an order 𝑂0 expressed on the basis of the natural order, accessed with algbasis.

• A basis of the natural order expressed on the basis of 𝑂0, accessed with alginvbasis.

• The left multiplication table of 𝑂0 on the previous basis, accessed with algmultable.

• The characteristic of 𝐴 (always 0), accessed with algchar.

• The absolute traces of the elements of the basis of 𝑂0.

• If 𝐴 was constructed as a cyclic algebra (𝐿/𝐾, 𝜎, 𝑏) of degree 𝑑, a t_VEC [𝜎, 𝜎2, ..., 𝜎𝑑−1]. The func-
tion algaut returns 𝜎.

• If 𝐴 was constructed as a cyclic algebra (𝐿/𝐾, 𝜎, 𝑏), the element 𝑏, accessed with algb.

28 Chapter 1. Interface to the PARI library



CyPari2 Documentation, Release 2.1.3

• If 𝐴 was constructed with its multiplication table 𝑚𝑡 over 𝐾, the t_VEC of t_MAT𝑚𝑡, accessed with
algrelmultable.

• If 𝐴 was constructed with its multiplication table 𝑚𝑡 over 𝐾, a t_VEC with three components: a
t_COL representing an element of 𝐴 generating the splitting field 𝐿 as a maximal subfield of 𝐴, a
t_MAT representing an 𝐿-basis 𝐵 of 𝐴 expressed on the Z-basis of 𝑂0, and a t_MAT representing the
Z-basis of 𝑂0 expressed on 𝐵. This data is accessed with algsplittingdata.

alginv(al, x)
Given an element 𝑥 in al, computes its inverse 𝑥−1 in the algebra al. Assumes that 𝑥 is invertible.

? A = alginit(nfinit(y), [-1,-1]);
? alginv(A,[1,1,0,0]~)
%2 = [1/2, 1/2, 0, 0]~

Also accepts matrices with coefficients in al.

alginvbasis(al)
Given an central simple algebra al output by alginit, returns a Z-basis of the natural order in al with
respect to the order 𝑂0 stored in al.

A = alginit(nfinit(y), [-1,-1]);
? alginvbasis(A)
%2 =
[1 0 0 -1]

[0 1 0 -1]

[0 0 1 -1]

[0 0 0 2]

algisassociative(mt, p)
Returns 1 if the multiplication table mt is suitable for algtableinit(mt,p), 0 otherwise. More pre-
cisely, mt should be a t_VEC of 𝑛matrices in𝑀𝑛(𝐾), giving the left multiplications by the basis elements
𝑒1, ..., 𝑒𝑛 (structure constants). We check whether the first basis element 𝑒1 is 1 and 𝑒𝑖(𝑒𝑗𝑒𝑘) = (𝑒𝑖𝑒𝑗)𝑒𝑘
for all 𝑖, 𝑗, 𝑘.

? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? algisassociative(mt)
%2 = 1

May be used to check a posteriori an algebra: we also allow mt as output by algtableinit (𝑝 is ignored
in this case).

algiscommutative(al)
al being a table algebra output by algtableinit or a central simple algebra output by alginit, tests
whether the algebra al is commutative.

? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt);
? algiscommutative(A)
%3 = 0
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);

(continues on next page)
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? algiscommutative(A)
%6 = 1

algisdivision(al, pl)
Given a central simple algebra al output by alginit, tests whether al is a division algebra. If pl is set, it
should be a prime ideal of𝐾 or an integer between 1 and 𝑟1 +𝑟2, and in that case tests whether al is locally
a division algebra at the place pl instead.

? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? algisdivision(A, 1)
%3 = 1
? algisdivision(A, 2)
%4 = 0
? algisdivision(A, idealprimedec(nf,2)[1])
%5 = 1
? algisdivision(A, idealprimedec(nf,5)[1])
%6 = 0
? algisdivision(A)
%7 = 1

algisdivl(al, x, y, z)
Given two elements 𝑥 and 𝑦 in al, tests whether 𝑦 is left divisible by 𝑥, that is whether there exists 𝑧 in al
such that 𝑥𝑧 = 𝑦, and sets 𝑧 to this element if it exists.

? A = alginit(nfinit(y), [-1,1]);
? algisdivl(A,[x+2,-x-2]~,[x,1]~)
%2 = 0
? algisdivl(A,[x+2,-x-2]~,[-x,x]~,&z)
%3 = 1
? z
%4 = [Mod(-2/5*x - 1/5, x^2 + 1), 0]~

Also accepts matrices with coefficients in al.

algisinv(al, x, ix)
Given an element 𝑥 in al, tests whether 𝑥 is invertible, and sets 𝑖𝑥 to the inverse of 𝑥.

? A = alginit(nfinit(y), [-1,1]);
? algisinv(A,[-1,1]~)
%2 = 0
? algisinv(A,[1,2]~,&ix)
%3 = 1
? ix
%4 = [Mod(Mod(-1/3, y), x^2 + 1), Mod(Mod(2/3, y), x^2 + 1)]~

Also accepts matrices with coefficients in al.

algisramified(al, pl)
Given a central simple algebra al output by alginit, tests whether al is ramified, i.e. not isomorphic to a
matrix algebra over its center. If pl is set, it should be a prime ideal of𝐾 or an integer between 1 and 𝑟1+𝑟2,
and in that case tests whether al is locally ramified at the place pl instead.
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? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? algisramified(A, 1)
%3 = 1
? algisramified(A, 2)
%4 = 0
? algisramified(A, idealprimedec(nf,2)[1])
%5 = 1
? algisramified(A, idealprimedec(nf,5)[1])
%6 = 0
? algisramified(A)
%7 = 1

algissemisimple(al)
al being a table algebra output by algtableinit or a central simple algebra output by alginit, tests
whether the algebra al is semisimple.

? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt);
? algissemisimple(A)
%3 = 0
? m_i=[0,-1,0,0;1,0,0,0;0,0,0,-1;0,0,1,0]; \\ quaternion algebra (-1,-1)
? m_j=[0,0,-1,0;0,0,0,1;1,0,0,0;0,-1,0,0];
? m_k=[0,0,0,-1;0,0,-1,0;0,1,0,0;1,0,0,0];
? mt = [matid(4), m_i, m_j, m_k];
? A = algtableinit(mt);
? algissemisimple(A)
%9 = 1

algissimple(al, ss)
al being a table algebra output by algtableinit or a central simple algebra output by alginit, tests
whether the algebra al is simple. If 𝑠𝑠 = 1, assumes that the algebra al is semisimple without testing it.

? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt); \\ matrices [*,*; 0,*]
? algissimple(A)
%3 = 0
? algissimple(A,1) \\ incorrectly assume that A is semisimple
%4 = 1
? m_i=[0,-1,0,0;1,0,0,0;0,0,0,-1;0,0,1,0];
? m_j=[0,0,-1,0;0,0,0,1;1,0,0,0;0,-1,0,0];
? m_k=[0,0,0,-1;0,0,b,0;0,1,0,0;1,0,0,0];
? mt = [matid(4), m_i, m_j, m_k];
? A = algtableinit(mt); \\ quaternion algebra (-1,-1)
? algissimple(A)
%10 = 1
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2); \\ direct product F_4 x F_2
? algissimple(A)
%13 = 0

algissplit(al, pl)
Given a central simple algebra al output by alginit, tests whether al is split, i.e. isomorphic to a matrix
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algebra over its center. If pl is set, it should be a prime ideal of 𝐾 or an integer between 1 and 𝑟1 + 𝑟2, and
in that case tests whether al is locally split at the place pl instead.

? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? algissplit(A, 1)
%3 = 0
? algissplit(A, 2)
%4 = 1
? algissplit(A, idealprimedec(nf,2)[1])
%5 = 0
? algissplit(A, idealprimedec(nf,5)[1])
%6 = 1
? algissplit(A)
%7 = 0

alglatadd(al, lat1, lat2, ptinter)
Given an algebra al and two lattices lat1 and lat2 in al, computes the sum 𝑙𝑎𝑡1 + 𝑙𝑎𝑡2. If ptinter is present,
set it to the intersection 𝑙𝑎𝑡1 ∩ 𝑙𝑎𝑡2.

? al = alginit(nfinit(y^2+7), [-1,-1]);
? lat1 = alglathnf(al,[1,1,0,0,0,0,0,0]~);
? lat2 = alglathnf(al,[1,0,1,0,0,0,0,0]~);
? latsum = alglatadd(al,lat1,lat2,&latinter);
? matdet(latsum[1])
%5 = 4
? matdet(latinter[1])
%6 = 64

alglatcontains(al, lat, x, ptc)
Given an algebra al, a lattice lat and x in al, tests whether 𝑥 ∈ 𝑙𝑎𝑡. If ptc is present, sets it to the t_COL of
coordinates of 𝑥 in the basis of lat.

? al = alginit(nfinit(y^2+7), [-1,-1]);
? a1 = [1,-1,0,1,2,0,1,2]~;
? lat1 = alglathnf(al,a1);
? alglatcontains(al,lat1,a1,&c)
%4 = 1
? c
%5 = [-1, -2, -1, 1, 2, 0, 1, 1]~

alglatelement(al, lat, c)
Given an algebra al, a lattice lat and a t_COL c, returns the element of al whose coordinates on the
mathbb{Z}-basis of lat are given by c.

? al = alginit(nfinit(y^2+7), [-1,-1]);
? a1 = [1,-1,0,1,2,0,1,2]~;
? lat1 = alglathnf(al,a1);
? c = [1..8]~;
? elt = alglatelement(al,lat1,c);
? alglatcontains(al,lat1,elt,&c2)
%6 = 1
? c==c2
%7 = 1
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alglathnf(al, m, d)
Given an algebra al and a matrix m with columns representing elements of al, returns the lattice𝐿 generated
by the columns of m. If provided, d must be a rational number such that 𝐿 contains d times the natural
basis of al. The argument m is also allowed to be a t_VEC of t_MAT, in which case m is replaced by the
concatenation of the matrices, or a t_COL, in which case m is replaced by its left multiplication table as an
element of al.

? al = alginit(nfinit(y^2+7), [-1,-1]);
? a = [1,1,-1/2,1,1/3,-1,1,1]~;
? mt = algtomatrix(al,a,1);
? lat = alglathnf(al,mt);
? lat[2]
%5 = 1/6

alglatindex(al, lat1, lat2)
Given an algebra al and two lattices lat1 and lat2 in al, computes the generalized index of lat1 relative
to lat2, i.e. ‖𝑙𝑎𝑡2/𝑙𝑎𝑡1 ∩ 𝑙𝑎𝑡2‖/‖𝑙𝑎𝑡1/𝑙𝑎𝑡1 ∩ 𝑙𝑎𝑡2‖.

? al = alginit(nfinit(y^2+7), [-1,-1]);
? lat1 = alglathnf(al,[1,1,0,0,0,0,0,0]~);
? lat2 = alglathnf(al,[1,0,1,0,0,0,0,0]~);
? alglatindex(al,lat1,lat2)
%4 = 1
? lat1==lat2
%5 = 0

alglatinter(al, lat1, lat2, ptsum)

Given an algebra al and two lattices lat1 and lat2 in al, computes the intersection 𝑙𝑎𝑡1 ∩ 𝑙𝑎𝑡2. If ptsum is
present, sets it to the sum 𝑙𝑎𝑡1 + 𝑙𝑎𝑡2.

? al = alginit(nfinit(y^2+7), [-1,-1]);
? lat1 = alglathnf(al,[1,1,0,0,0,0,0,0]~);
? lat2 = alglathnf(al,[1,0,1,0,0,0,0,0]~);
? latinter = alglatinter(al,lat1,lat2,&latsum);
? matdet(latsum[1])
%5 = 4
? matdet(latinter[1])
%6 = 64

alglatlefttransporter(al, lat1, lat2)
Given an algebra al and two lattices lat1 and lat2 in al, computes the left transporter from lat1 to lat2, i.e.
the set of 𝑥 ∈ 𝑎𝑙 such that 𝑥.𝑙𝑎𝑡1 ⊂ 𝑙𝑎𝑡2.

? al = alginit(nfinit(y^2+7), [-1,-1]);
? lat1 = alglathnf(al,[1,-1,0,1,2,0,5,2]~);
? lat2 = alglathnf(al,[0,1,-2,-1,0,0,3,1]~);
? tr = alglatlefttransporter(al,lat1,lat2);
? a = alglatelement(al,tr,[0,0,0,0,0,0,1,0]~);
? alglatsubset(al,alglatmul(al,a,lat1),lat2)
%6 = 1
? alglatsubset(al,alglatmul(al,lat1,a),lat2)
%7 = 0
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alglatmul(al, lat1, lat2)
Given an algebra al and two lattices lat1 and lat2 in al, computes the lattice generated by the products of
elements of lat1 and lat2. One of lat1 and lat2 is also allowed to be an element of al; in this case, computes
the product of the element and the lattice.

? al = alginit(nfinit(y^2+7), [-1,-1]);
? a1 = [1,-1,0,1,2,0,1,2]~;
? a2 = [0,1,2,-1,0,0,3,1]~;
? lat1 = alglathnf(al,a1);
? lat2 = alglathnf(al,a2);
? lat3 = alglatmul(al,lat1,lat2);
? matdet(lat3[1])
%7 = 29584
? lat3 == alglathnf(al, algmul(al,a1,a2))
%8 = 0
? lat3 == alglatmul(al, lat1, a2)
%9 = 0
? lat3 == alglatmul(al, a1, lat2)
%10 = 0

alglatrighttransporter(al, lat1, lat2)
Given an algebra al and two lattices lat1 and lat2 in al, computes the right transporter from lat1 to lat2, i.e.
the set of 𝑥 ∈ 𝑎𝑙 such that 𝑙𝑎𝑡1.𝑥 ⊂ 𝑙𝑎𝑡2.

? al = alginit(nfinit(y^2+7), [-1,-1]);
? lat1 = alglathnf(al,matdiagonal([1,3,7,1,2,8,5,2]));
? lat2 = alglathnf(al,matdiagonal([5,3,8,1,9,8,7,1]));
? tr = alglatrighttransporter(al,lat1,lat2);
? a = alglatelement(al,tr,[0,0,0,0,0,0,0,1]~);
? alglatsubset(al,alglatmul(al,lat1,a),lat2)
%6 = 1
? alglatsubset(al,alglatmul(al,a,lat1),lat2)
%7 = 0

alglatsubset(al, lat1, lat2, ptindex)
Given an algebra al and two lattices lat1 and lat2 in al, tests whether 𝑙𝑎𝑡1 ⊂ 𝑙𝑎𝑡2. If it is true and ptindex
is present, sets it to the index of lat1 in lat2.

? al = alginit(nfinit(y^2+7), [-1,-1]);
? lat1 = alglathnf(al,[1,1,0,0,0,0,0,0]~);
? lat2 = alglathnf(al,[1,0,1,0,0,0,0,0]~);
? alglatsubset(al,lat1,lat2)
%4 = 0
? latsum = alglatadd(al,lat1,lat2);
? alglatsubset(al,lat1,latsum,&index)
%6 = 1
? index
%7 = 4

algmakeintegral(mt, maps)
mt being a multiplication table over Q in the same format as the input of algtableinit, computes an
integral multiplication table mt2 for an isomorphic algebra. When𝑚𝑎𝑝𝑠 = 1, returns a t_VEC [𝑚𝑡2, 𝑆, 𝑇 ]
where S and T are matrices respectively representing the map from the algebra defined by mt to the one
defined by mt2 and its inverse.
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? mt = [matid(2),[0,-1/4;1,0]];
? algtableinit(mt);
*** at top-level: algtableinit(mt)
*** ^----------------
*** algtableinit: domain error in algtableinit: denominator(mt) != 1

? mt2 = algmakeintegral(mt);
? al = algtableinit(mt2);
? algisassociative(al)
%4 = 1
? [mt2, S, T] = algmakeintegral(mt,1);
? S
%6 =
[1 0]

[0 1/4]
? T
%7 =
[1 0]

[0 4]
? vector(#mt, i, S * (mt * T[,i]) * T) == mt2
%8 = 1

algmul(al, x, y)
Given two elements 𝑥 and 𝑦 in al, computes their product 𝑥𝑦 in the algebra al.

? A = alginit(nfinit(y), [-1,-1]);
? algmul(A,[1,1,0,0]~,[0,0,2,1]~)
%2 = [2, 3, 5, -4]~

Also accepts matrices with coefficients in al.

algmultable(al)
Returns a multiplication table of al over its prime subfield (Q or F𝑝), as a t_VEC of t_MAT: the left multi-
plication tables of basis elements. If al was output by algtableinit, returns the multiplication table used
to define al. If al was output by alginit, returns the multiplication table of the order 𝑂0 stored in al.

? A = alginit(nfinit(y), [-1,-1]);
? M = algmultable(A);
? #M
%3 = 4
? M[1] \\ multiplication by e_1 = 1
%4 =
[1 0 0 0]

[0 1 0 0]

[0 0 1 0]

[0 0 0 1]

? M[2]
%5 =

(continues on next page)
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(continued from previous page)

[0 -1 1 0]

[1 0 1 1]

[0 0 1 1]

[0 0 -2 -1]

algneg(al, x)
Given an element 𝑥 in al, computes its opposite −𝑥 in the algebra al.

? A = alginit(nfinit(y), [-1,-1]);
? algneg(A,[1,1,0,0]~)
%2 = [-1, -1, 0, 0]~

Also accepts matrices with coefficients in al.

algnorm(al, x, abs)
Given an element x in al, computes its norm. If al is a table algebra output by algtableinit or if 𝑎𝑏𝑠 = 1,
returns the absolute norm of x, which is an element of F𝑝 of Q; if al is a central simple algebra output by
alginit and 𝑎𝑏𝑠 = 0 (default), returns the reduced norm of x, which is an element of the center of al.

? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,19);
? algnorm(A,[0,-2,3]~)
%3 = 18
? nf = nfinit(y^2-5);
? B = alginit(nf,[-1,y]);
? b = [x,1]~;
? n = algnorm(B,b)
%7 = Mod(-y + 1, y^2 - 5)
? algnorm(B,b,1)
%8 = 16
? nfeltnorm(nf,n)^algdegree(B)
%9 = 16

Also accepts a square matrix with coefficients in al.

algpoleval(al, T, b)
Given an element 𝑏 in al and a polynomial 𝑇 in 𝐾[𝑋], computes 𝑇 (𝑏) in al. Also accepts as input a
t_VEC [𝑏,𝑚𝑏] where 𝑚𝑏 is the left multiplication table of 𝑏.

? nf = nfinit(y^2-5);
? al = alginit(nf,[y,-1]);
? b = [1..8]~;
? pol = algcharpoly(al,b,,1);
? algpoleval(al,pol,b)==0
%5 = 1
? mb = algtomatrix(al,b,1);
? algpoleval(al,pol,[b,mb])==0
%7 = 1

algpow(al, x, n)
Given an element 𝑥 in al and an integer 𝑛, computes the power 𝑥𝑛 in the algebra al.
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? A = alginit(nfinit(y), [-1,-1]);
? algpow(A,[1,1,0,0]~,7)
%2 = [8, -8, 0, 0]~

Also accepts a square matrix with coefficients in al.

algprimesubalg(al)
al being the output of algtableinit representing a semisimple algebra of positive characteristic, returns
a basis of the prime subalgebra of al. The prime subalgebra of al is the subalgebra fixed by the Frobenius
automorphism of the center of al. It is abstractly isomorphic to a product of copies of F𝑝.

? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);
? algprimesubalg(A)
%3 =
[1 0]

[0 1]

[0 0]

algquotient(al, I, maps)
al being a table algebra output by algtableinit and I being a basis of a two-sided ideal of al represented
by a matrix, returns the quotient 𝑎𝑙/𝐼 . When𝑚𝑎𝑝𝑠 = 1, returns a t_VEC [𝑎𝑙/𝐼, 𝑝𝑟𝑜𝑗, 𝑙𝑖𝑓𝑡] where proj and
lift are matrices respectively representing the projection map and a section of it.

? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);
? AQ = algquotient(A,[0;1;0]);
? algdim(AQ)
%4 = 2

algradical(al)
al being a table algebra output by algtableinit, returns a basis of the Jacobson radical of the algebra al
over its prime field (Q or F𝑝).

Here is an example with 𝐴 = Q[𝑥]/(𝑥2), with the basis (1, 𝑥):

? mt = [matid(2),[0,0;1,0]];
? A = algtableinit(mt);
? algradical(A) \\ = (x)
%3 =
[0]

[1]

Another one with 2𝑥2 upper triangular matrices over Q, with basis 𝐼2, 𝑎 = [0, 1; 0, 0] and 𝑏 = [0, 0; 0, 1],
such that 𝑎2 = 0, 𝑎𝑏 = 𝑎, 𝑏𝑎 = 0, 𝑏2 = 𝑏:

? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt);
? algradical(A) \\ = (a)
%6 =
[0]

(continues on next page)
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(continued from previous page)

[1]

[0]

algramifiedplaces(al)
Given a central simple algebra al output by alginit, returns a t_VEC containing the list of places of the
center of al that are ramified in al. Each place is described as an integer between 1 and 𝑟1 or as a prime
ideal.

? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? algramifiedplaces(A)
%3 = [1, [2, [2, 0]~, 1, 2, 1]]

algrandom(al, b)
Given an algebra al and an integer b, returns a random element in al with coefficients in [−𝑏, 𝑏].

algrelmultable(al)
Given a central simple algebra al output by alginit defined by a multiplication table over its center (a
number field), returns this multiplication table.

? nf = nfinit(y^3-5); a = y; b = y^2;
? {m_i = [0,a,0,0;
1,0,0,0;
0,0,0,a;
0,0,1,0];}

? {m_j = [0, 0,b, 0;
0, 0,0,-b;
1, 0,0, 0;
0,-1,0, 0];}

? {m_k = [0, 0,0,-a*b;
0, 0,b, 0;
0,-a,0, 0;
1, 0,0, 0];}

? mt = [matid(4), m_i, m_j, m_k];
? A = alginit(nf,mt,'x);
? M = algrelmultable(A);
? M[2] == m_i
%8 = 1
? M[3] == m_j
%9 = 1
? M[4] == m_k
%10 = 1

algsimpledec(al, maps)
al being the output of algtableinit, returns a t_VEC [𝐽, [𝑎𝑙1, 𝑎𝑙2, ..., 𝑎𝑙𝑛]] where 𝐽 is a basis of the Jacob-
son radical of al and 𝑎𝑙/𝐽 is isomorphic to the direct product of the simple algebras 𝑎𝑙𝑖. When𝑚𝑎𝑝𝑠 = 1,
each 𝑎𝑙𝑖 is replaced with a t_VEC [𝑎𝑙𝑖, 𝑝𝑟𝑜𝑗𝑖, 𝑙𝑖𝑓𝑡𝑖] where 𝑝𝑟𝑜𝑗𝑖 and 𝑙𝑖𝑓𝑡𝑖 are matrices respectively repre-
senting the projection map 𝑎𝑙 → 𝑎𝑙𝑖 and a section of it. Modulo 𝐽 , the images of the 𝑙𝑖𝑓𝑡𝑖 form a direct
sum in 𝑎𝑙/𝐽 , so that the images of 1𝑖 under 𝑙𝑖𝑓𝑡𝑖 are central primitive idempotents of 𝑎𝑙/𝐽 . The factors are
sorted by increasing dimension, then increasing dimension of the center. This ensures that the ordering of
the isomorphism classes of the factors is deterministic over finite fields, but not necessarily over Q.
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algsplit(al, v)
If al is a table algebra over F𝑝 output by algtableinit that represents a simple algebra, computes an
isomorphism between al and a matrix algebra 𝑀𝑑(F𝑝𝑛) where 𝑁 = 𝑛𝑑2 is the dimension of al. Returns a
t_VEC [𝑚𝑎𝑝,𝑚𝑎𝑝𝑖], where:

• map is a t_VEC of𝑁 matrices of size 𝑑𝑥𝑑with t_FFELT coefficients using the variable v, representing
the image of the basis of al under the isomorphism.

• mapi is an 𝑁𝑥𝑁 matrix with t_INT coefficients, representing the image in al by the inverse isomor-
phism of the basis (𝑏𝑖) of 𝑀𝑑(F𝑝[𝛼]) (where 𝛼 has degree 𝑛 over F𝑝) defined as follows: let 𝐸𝑖,𝑗 be
the matrix having all coefficients 0 except the (𝑖, 𝑗)-th coefficient equal to 1, and define

𝑏𝑖3+𝑛(𝑖2+𝑑𝑖1)+1 = 𝐸𝑖1+1,𝑖2+1𝛼
𝑖3 ,

𝑤ℎ𝑒𝑟𝑒 : 𝑚𝑎𝑡ℎ : ‘0 <= 𝑖1, 𝑖2 < 𝑑‘𝑎𝑛𝑑 : 𝑚𝑎𝑡ℎ : ‘0 <= 𝑖3 < 𝑛‘.

Example:

? al0 = alginit(nfinit(y^2+7), [-1,-1]);
? al = algtableinit(algmultable(al0), 3); \\ isomorphic to M_2(F_9)
? [map,mapi] = algsplit(al, 'a);
? x = [1,2,1,0,0,0,0,0]~; fx = map*x
%4 =
[2*a 0]

[ 0 2]
? y = [0,0,0,0,1,0,0,1]~; fy = map*y
%5 =
[1 2*a]

[2 a + 2]
? map*algmul(al,x,y) == fx*fy
%6 = 1
? map*mapi[,6]
%7 =
[0 0]

[a 0]

Warning. If al is not simple, algsplit(al) can trigger an error, but can also run into an infinite loop.
Example:

? al = alginit(nfinit(y),[-1,-1]); \\ ramified at 2
? al2 = algtableinit(algmultable(al),2); \\ maximal order modulo 2
? algsplit(al2); \\ not semisimple, infinite loop

algsplittingdata(al)
Given a central simple algebra al output by alginit defined by a multiplication table over its center 𝐾
(a number field), returns data stored to compute a splitting of al over an extension. This data is a t_VEC
[t,Lbas,Lbasinv] with 3 components:

• an element 𝑡 of al such that 𝐿 = 𝐾(𝑡) is a maximal subfield of al;

• a matrix Lbas expressing a 𝐿-basis of al (given an 𝐿-vector space structure by multiplication on the
right) on the integral basis of al;

• a matrix Lbasinv expressing the integral basis of al on the previous 𝐿-basis.
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? nf = nfinit(y^3-5); a = y; b = y^2;
? {m_i = [0,a,0,0;
1,0,0,0;
0,0,0,a;
0,0,1,0];}

? {m_j = [0, 0,b, 0;
0, 0,0,-b;
1, 0,0, 0;
0,-1,0, 0];}

? {m_k = [0, 0,0,-a*b;
0, 0,b, 0;
0,-a,0, 0;
1, 0,0, 0];}

? mt = [matid(4), m_i, m_j, m_k];
? A = alginit(nf,mt,'x);
? [t,Lb,Lbi] = algsplittingdata(A);
? t
%8 = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]~;
? matsize(Lb)
%9 = [12, 2]
? matsize(Lbi)
%10 = [2, 12]

algsplittingfield(al)
Given a central simple algebra al output by alginit, returns an rnf structure: the splitting field of al that
is stored in al, as a relative extension of the center.

nf = nfinit(y^3-5);
a = y; b = y^2;
{m_i = [0,a,0,0;
1,0,0,0;
0,0,0,a;
0,0,1,0];}

{m_j = [0, 0,b, 0;
0, 0,0,-b;
1, 0,0, 0;
0,-1,0, 0];}

{m_k = [0, 0,0,-a*b;
0, 0,b, 0;
0,-a,0, 0;
1, 0,0, 0];}

mt = [matid(4), m_i, m_j, m_k];
A = alginit(nf,mt,'x);
algsplittingfield(A).pol
%8 = x^2 - y

algsqr(al, x)
Given an element 𝑥 in al, computes its square 𝑥2 in the algebra al.

? A = alginit(nfinit(y), [-1,-1]);
? algsqr(A,[1,0,2,0]~)
%2 = [-3, 0, 4, 0]~

Also accepts a square matrix with coefficients in al.
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algsub(al, x, y)
Given two elements 𝑥 and 𝑦 in al, computes their difference 𝑥− 𝑦 in the algebra al.

? A = alginit(nfinit(y), [-1,-1]);
? algsub(A,[1,1,0,0]~,[1,0,1,0]~)
%2 = [0, 1, -1, 0]~

Also accepts matrices with coefficients in al.

algsubalg(al, B)
al being a table algebra output by algtableinit and B being a basis of a subalgebra of al represented by
a matrix, computes an algebra al2 isomorphic to B.

Returns [𝑎𝑙2, 𝐵2] where B2 is a possibly different basis of the subalgebra al2, with respect to which the
multiplication table of al2 is defined.

? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);
? B = algsubalg(A,[1,0; 0,0; 0,1]);
? algdim(A)
%4 = 3
? algdim(B[1])
%5 = 2
? m = matcompanion(x^4+1);
? mt = [m^i | i <- [0..3]];
? al = algtableinit(mt);
? B = [1,0;0,0;0,1/2;0,0];
? al2 = algsubalg(al,B);
? algdim(al2[1])
? al2[2]
%13 =
[1 0]

[0 0]

[0 1]

[0 0]

algtableinit(mt, p)
Initializes the associative algebra over 𝐾 = Q (𝑝 omitted) or F𝑝 defined by the multiplication table mt. As
a 𝐾-vector space, the algebra is generated by a basis (𝑒1 = 1, 𝑒2, ..., 𝑒𝑛); the table is given as a t_VEC of
𝑛 matrices in 𝑀𝑛(𝐾), giving the left multiplication by the basis elements 𝑒𝑖, in the given basis. Assumes
that 𝑒1 = 1, that 𝐾𝑒1 ⊕ ... ⊕𝐾𝑒𝑛] describes an associative algebra over 𝐾, and in the case 𝐾 = Q that
the multiplication table is integral. If the algebra is already known to be central and simple, then the case
𝐾 = F𝑝 is useless, and one should use alginit directly.

The point of this function is to input a finite dimensional𝐾-algebra, so as to later compute its radical, then
to split the quotient algebra as a product of simple algebras over 𝐾.

The pari object representing such an algebra 𝐴 is a t_VEC with the following data:

• The characteristic of 𝐴, accessed with algchar.

• The multiplication table of 𝐴, accessed with algmultable.

• The traces of the elements of the basis.
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A simple example: the 2𝑥2 upper triangular matrices over Q, generated by 𝐼2, 𝑎 = [0, 1; 0, 0] and 𝑏 =
[0, 0; 0, 1], such that 𝑎2 = 0, 𝑎𝑏 = 𝑎, 𝑏𝑎 = 0, 𝑏2 = 𝑏:

? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt);
? algradical(A) \\ = (a)
%6 =
[0]

[1]

[0]
? algcenter(A) \\ = (I_2)
%7 =
[1]

[0]

[0]

algtensor(al1, al2, maxord)
Given two algebras al1 and al2, computes their tensor product. Computes a maximal order by default.
Prevent this computation by setting 𝑚𝑎𝑥𝑜𝑟𝑑 = 0.

Currently only implemented for cyclic algebras of coprime degree over the same center 𝐾, and the tensor
product is over 𝐾.

algtomatrix(al, x, abs)
Given an element x in al, returns the image of x under a homomorphism to a matrix algebra. If al is a table
algebra output by algtableinit or if 𝑎𝑏𝑠 = 1, returns the left multiplication table on the integral basis;
if al is a central simple algebra and 𝑎𝑏𝑠 = 0, returns 𝜑(𝑥) where 𝜑 : 𝐴 ⊗𝐾 𝐿 → 𝑀𝑑(𝐿) (where 𝑑 is the
degree of the algebra and 𝐿 is an extension of 𝐿 with [𝐿 : 𝐾] = 𝑑) is an isomorphism stored in al. Also
accepts a square matrix with coefficients in al.

? A = alginit(nfinit(y), [-1,-1]);
? algtomatrix(A,[0,0,0,2]~)
%2 =
[Mod(x + 1, x^2 + 1) Mod(Mod(1, y)*x + Mod(-1, y), x^2 + 1)]

[Mod(x + 1, x^2 + 1) Mod(-x + 1, x^2 + 1)]
? algtomatrix(A,[0,1,0,0]~,1)
%2 =
[0 -1 1 0]

[1 0 1 1]

[0 0 1 1]

[0 0 -2 -1]
? algtomatrix(A,[0,x]~,1)
%3 =
[-1 0 0 -1]

[-1 0 1 0]
(continues on next page)
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[-1 -1 0 -1]

[ 2 0 0 1]

Also accepts matrices with coefficients in al.

algtrace(al, x, abs)
Given an element x in al, computes its trace. If al is a table algebra output by algtableinit or if 𝑎𝑏𝑠 = 1,
returns the absolute trace of x, which is an element of F𝑝 or Q; if al is the output of alginit and 𝑎𝑏𝑠 = 0
(default), returns the reduced trace of x, which is an element of the center of al.

? A = alginit(nfinit(y), [-1,-1]);
? algtrace(A,[5,0,0,1]~)
%2 = 11
? algtrace(A,[5,0,0,1]~,1)
%3 = 22
? nf = nfinit(y^2-5);
? A = alginit(nf,[-1,y]);
? a = [1+x+y,2*y]~*Mod(1,y^2-5)*Mod(1,x^2+1);
? t = algtrace(A,a)
%7 = Mod(2*y + 2, y^2 - 5)
? algtrace(A,a,1)
%8 = 8
? algdegree(A)*nfelttrace(nf,t)
%9 = 8

Also accepts a square matrix with coefficients in al.

algtype(al)
Given an algebra al output by alginit or by algtableinit, returns an integer indicating the type of
algebra:

• 0: not a valid algebra.

• 1: table algebra output by algtableinit.

• 2: central simple algebra output by alginit and represented by a multiplication table over its center.

• 3: central simple algebra output by alginit and represented by a cyclic algebra.

? algtype([])
%1 = 0
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);
? algtype(A)
%4 = 1
? nf = nfinit(y^3-5);
? a = y; b = y^2;
? {m_i = [0,a,0,0;
1,0,0,0;
0,0,0,a;
0,0,1,0];}

? {m_j = [0, 0,b, 0;
0, 0,0,-b;

(continues on next page)
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1, 0,0, 0;
0,-1,0, 0];}

? {m_k = [0, 0,0,-a*b;
0, 0,b, 0;
0,-a,0, 0;
1, 0,0, 0];}

? mt = [matid(4), m_i, m_j, m_k];
? A = alginit(nf,mt,'x);
? algtype(A)
%12 = 2
? A = alginit(nfinit(y), [-1,-1]);
? algtype(A)
%14 = 3

apply(f, A)
Apply the t_CLOSURE f to the entries of A.

• If A is a scalar, return f(A).

• If A is a polynomial or power series
∑︀
𝑎𝑖𝑥

𝑖 (+𝑂(𝑥𝑁 )), apply f on all coefficients and return∑︀
𝑓(𝑎𝑖)𝑥

𝑖 (+𝑂(𝑥𝑁 )).

• If A is a vector or list [𝑎1, ..., 𝑎𝑛], return the vector or list [𝑓(𝑎1), ..., 𝑓(𝑎𝑛)]. If A is a matrix, return the
matrix whose entries are the 𝑓(𝐴[𝑖, 𝑗]).

? apply(x->x^2, [1,2,3,4])
%1 = [1, 4, 9, 16]
? apply(x->x^2, [1,2;3,4])
%2 =
[1 4]

[9 16]
? apply(x->x^2, 4*x^2 + 3*x+ 2)
%3 = 16*x^2 + 9*x + 4
? apply(sign, 2 - 3* x + 4*x^2 + O(x^3))
%4 = 1 - x + x^2 + O(x^3)

Note that many functions already act componentwise on vectors or matrices, but they almost never act on
lists; in this case, apply is a good solution:

? L = List([Mod(1,3), Mod(2,4)]);
? lift(L)
*** at top-level: lift(L)
*** ^-------
*** lift: incorrect type in lift.

? apply(lift, L);
%2 = List([1, 2])

Remark. For 𝑣 a t_VEC, t_COL, t_VECSMALL, t_LIST or t_MAT, the alternative set-notations

[g(x) | x <- v, f(x)]
[x | x <- v, f(x)]
[g(x) | x <- v]

are available as shortcuts for
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apply(g, select(f, Vec(v)))
select(f, Vec(v))
apply(g, Vec(v))

respectively:

? L = List([Mod(1,3), Mod(2,4)]);
? [ lift(x) | x<-L ]
%2 = [1, 2]

arg(x, precision)
Argument of the complex number 𝑥, such that −𝜋 < arg(𝑥) <= 𝜋.

arity(C)
Return the arity of the closure 𝐶, i.e., the number of its arguments.

? f1(x,y=0)=x+y;
? arity(f1)
%1 = 2
? f2(t,s[..])=print(t,":",s);
? arity(f2)
%2 = 2

Note that a variadic argument, such as 𝑠 in f2 above, is counted as a single argument.

asin(x, precision)
Principal branch of sin−1(𝑥) = −𝑖 log(𝑖𝑥 +

√
1 − 𝑥2). In particular, ℜ(𝑎𝑠𝑖𝑛(𝑥)) ∈ [−𝜋/2, 𝜋/2] and if

𝑥 ∈ R and ‖𝑥‖ > 1 then 𝑎𝑠𝑖𝑛(𝑥) is complex. The branch cut is in two pieces: ]−𝑜𝑜,−1], continuous with
quadrant II, and [1,+𝑜𝑜[ continuous with quadrant IV. The function satisfies 𝑖𝑎𝑠𝑖𝑛(𝑥) = 𝑎𝑠𝑖𝑛ℎ(𝑖𝑥).

asinh(x, precision)
Principal branch of sinh−1(𝑥) = log(𝑥 +

√
1 + 𝑥2). In particular ℑ(𝑎𝑠𝑖𝑛ℎ(𝑥)) ∈ [−𝜋/2, 𝜋/2]. The

branch cut is in two pieces: ] − 𝑖𝑜𝑜,−𝑖], continuous with quadrant III and [+𝑖,+𝑖𝑜𝑜[, continuous with
quadrant I.

asympnum(expr, alpha, precision)
Asymptotic expansion of expr, corresponding to a sequence 𝑢(𝑛), assuming it has the shape

𝑢(𝑛)
∑︁
𝑖>=0

𝑎𝑖𝑛
−𝑖𝛼

with rational coefficients 𝑎𝑖 with reasonable height; the algorithm is heuristic and performs repeated calls
to limitnum, with alpha as in limitnum. As in limitnum, 𝑢(𝑛) may be given either by a closure 𝑛 :
−−− > 𝑢(𝑛) or as a closure 𝑁 : −−− > [𝑢(1), ..., 𝑢(𝑁)], the latter being often more efficient.

? f(n) = n! / (n^n*exp(-n)*sqrt(n));
? asympnum(f)
%2 = [] \\ failure !
? localprec(57); l = limitnum(f)
%3 = 2.5066282746310005024157652848110452530
? asympnum(n->f(n)/l) \\ normalize
%4 = [1, 1/12, 1/288, -139/51840, -571/2488320, 163879/209018880,
5246819/75246796800]

and we indeed get a few terms of Stirling’s expansion. Note that it definitely helps to normalize with a limit
computed to higher accuracy (as a rule of thumb, multiply the bit accuracy by 1.612):
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? l = limitnum(f)
? asympnum(n->f(n) / l) \\ failure again !!!
%6 = []

We treat again the example of the Motzkin numbers 𝑀𝑛 given in limitnum:

\\ [M_k, M_{k*2}, ..., M_{k*N}] / (3^n / n^(3/2))
? vM(N, k = 1) =
{ my(q = k*N, V);
if (q == 1, return ([1/3]));
V = vector(q); V[1] = V[2] = 1;
for(n = 2, q - 1,
V[n+1] = ((2*n + 1)*V[n] + 3*(n - 1)*V[n-1]) / (n + 2));
f = (n -> 3^n / n^(3/2));
return (vector(N, n, V[n*k] / f(n*k)));

}
? localprec(100); l = limitnum(n->vM(n,10)); \\ 3/sqrt(12*Pi)
? \p38
? asympnum(n->vM(n,10)/l)
%2 = [1, -3/32, 101/10240, -1617/1638400, 505659/5242880000, ...]

If alpha is not a rational number, loss of accuracy is expected, so it should be precomputed to double
accuracy, say:

? \p38
? asympnum(n->log(1+1/n^Pi),Pi)
%1 = [0, 1, -1/2, 1/3, -1/4, 1/5]
? localprec(76); a = Pi;
? asympnum(n->log(1+1/n^Pi), a) \\ more terms
%3 = [0, 1, -1/2, 1/3, -1/4, 1/5, -1/6, 1/7, -1/8, 1/9, -1/10, 1/11, -1/12]
? asympnum(n->log(1+1/sqrt(n)),1/2) \\ many more terms
%4 = 49

The expression is evaluated for 𝑛 = 1, 2, ..., 𝑁 for an 𝑁 = 𝑂(𝐵) if the current bit accuracy is 𝐵. If it is
not defined for one of these values, translate or rescale accordingly:

? asympnum(n->log(1-1/n)) \\ can't evaluate at n = 1 !
*** at top-level: asympnum(n->log(1-1/n))
*** ^-----------------------
*** in function asympnum: log(1-1/n)
*** ^----------
*** log: domain error in log: argument = 0

? asympnum(n->-log(1-1/(2*n)))
%5 = [0, 1/2, 1/8, 1/24, ...]
? asympnum(n->-log(1-1/(n+1)))
%6 = [0, 1, -1/2, 1/3, -1/4, ...]

asympnumraw(expr, N, alpha, precision)
Return the𝑁+1 first terms of asymptotic expansion of expr, corresponding to a sequence 𝑢(𝑛), as floating
point numbers. Assume that the expansion has the shape

𝑢(𝑛)
∑︁
𝑖>=0

𝑎𝑖𝑛
−𝑖𝛼

and return approximation of [𝑎0, 𝑎1, ..., 𝑎𝑁 ]. The algorithm is heuristic and performs repeated calls to
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limitnum, with alpha as in limitnum. As in limitnum, 𝑢(𝑛) may be given either by a closure 𝑛 :
− − − > 𝑢(𝑛) or as a closure 𝑁 : − − − > [𝑢(1), ..., 𝑢(𝑁)], the latter being often more efficient. This
function is related to, but more flexible than, asympnum, which requires rational asymptotic expansions.

? f(n) = n! / (n^n*exp(-n)*sqrt(n));
? asympnum(f)
%2 = [] \\ failure !
? v = asympnumraw(f, 10);
? v[1] - sqrt(2*Pi)
%4 = 0.E-37
? bestappr(v / v[1], 2^60)
%5 = [1, 1/12, 1/288, -139/51840, -571/2488320, 163879/209018880,...]

and we indeed get a few terms of Stirling’s expansion (the first 9 terms are correct). If𝑢(𝑛) has an asymptotic
expansion in 𝑛−𝛼 with 𝛼 not an integer, the default 𝑎𝑙𝑝ℎ𝑎 = 1 is inaccurate:

? f(n) = (1+1/n^(7/2))^(n^(7/2));
? v1 = asympnumraw(f,10);
? v1[1] - exp(1)
%8 = 4.62... E-12
? v2 = asympnumraw(f,10,7/2);
? v2[1] - exp(1)
%7 0.E-37

As in asympnum, if alpha is not a rational number, loss of accuracy is expected, so it should be precomputed
to double accuracy, say.

atan(x, precision)
Principal branch of 𝑡𝑎𝑛−1(𝑥) = log((1 + 𝑖𝑥)/(1− 𝑖𝑥))/2𝑖. In particular the real part of 𝑎𝑡𝑎𝑛(𝑥) belongs
to ] − 𝜋/2, 𝜋/2[. The branch cut is in two pieces: ] − 𝑖𝑜𝑜,−𝑖[, continuous with quadrant IV, and ]𝑖,+𝑖𝑜𝑜[
continuous with quadrant II. The function satisfies 𝑎𝑡𝑎𝑛(𝑥) = −𝑖𝑎𝑡𝑎𝑛ℎ(𝑖𝑥) for all 𝑥! = 𝑖.

atanh(x, precision)
Principal branch of 𝑡𝑎𝑛ℎ−1(𝑥) = log((1 + 𝑥)/(1 − 𝑥))/2. In particular the imaginary part of 𝑎𝑡𝑎𝑛ℎ(𝑥)
belongs to [−𝜋/2, 𝜋/2]; if 𝑥 ∈ R and ‖𝑥‖ > 1 then 𝑎𝑡𝑎𝑛ℎ(𝑥) is complex.

bernfrac(n)
Bernoulli number 𝐵𝑛, where 𝐵0 = 1, 𝐵1 = −1/2, 𝐵2 = 1/6,. . . , expressed as a rational number. The
argument 𝑛 should be a nonnegative integer. The function bervec creates a cache of successive Bernoulli
numbers which greatly speeds up later calls to bernfrac:

? bernfrac(20000);
time = 107 ms.
? bernvec(10000); \\ cache B_0, B_2, ..., B_20000
time = 35,957 ms.
? bernfrac(20000); \\ now instantaneous
?

bernpol(n, v)
Bernoulli polynomial 𝐵𝑛 in variable 𝑣.

? bernpol(1)
%1 = x - 1/2
? bernpol(3)
%2 = x^3 - 3/2*x^2 + 1/2*x

1.1. Guide to real precision in the PARI interface 47



CyPari2 Documentation, Release 2.1.3

bernreal(n, precision)
Bernoulli number 𝐵𝑛, as bernfrac, but 𝐵𝑛 is returned as a real number (with the current precision). The
argument 𝑛 should be a nonnegative integer. The function slows down as the precision increases:

? \p1000
? bernreal(200000);
time = 5 ms.
? \p10000
? bernreal(200000);
time = 18 ms.
? \p100000
? bernreal(200000);
time = 84 ms.

bernvec(n)
Returns a vector containing, as rational numbers, the Bernoulli numbers 𝐵0, 𝐵2,. . . , 𝐵2𝑛:

? bernvec(5) \\ B_0, B_2..., B_10
%1 = [1, 1/6, -1/30, 1/42, -1/30, 5/66]
? bernfrac(10)
%2 = 5/66

This routine uses a lot of memory but is much faster than repeated calls to bernfrac:

? forstep(n = 2, 10000, 2, bernfrac(n))
time = 18,245 ms.
? bernvec(5000);
time = 1,338 ms.

The computed Bernoulli numbers are stored in an incremental cache which makes later calls to bernfrac
and bernreal instantaneous in the cache range: re-running the same previous bernfrac s after the
bernvec call gives:

? forstep(n = 2, 10000, 2, bernfrac(n))
time = 1 ms.

The time and space complexity of this function are 𝑂(𝑛2); in the feasible range 𝑛 <= 105 (requires about
two hours), the practical time complexity is closer to 𝑂(𝑛log2 6).

besselh1(nu, x, precision)
𝐻1-Bessel function of index nu and argument 𝑥.

besselh2(nu, x, precision)
𝐻2-Bessel function of index nu and argument 𝑥.

besseli(nu, x, precision)
𝐼-Bessel function of index nu and argument 𝑥. If 𝑥 converts to a power series, the initial factor
(𝑥/2)𝜈/Γ(𝜈 + 1) is omitted (since it cannot be represented in PARI when 𝜈 is not integral).

besselj(nu, x, precision)
𝐽-Bessel function of index nu and argument 𝑥. If 𝑥 converts to a power series, the initial factor
(𝑥/2)𝜈/Γ(𝜈 + 1) is omitted (since it cannot be represented in PARI when 𝜈 is not integral).

besseljh(n, x, precision)
𝐽-Bessel function of half integral index. More precisely, 𝑏𝑒𝑠𝑠𝑒𝑙𝑗ℎ(𝑛, 𝑥) computes 𝐽𝑛+1/2(𝑥) where 𝑛
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must be of type integer, and 𝑥 is any element of C. In the present version 2.13.3, this function is not very
accurate when 𝑥 is small.

besselk(nu, x, precision)
𝐾-Bessel function of index nu and argument 𝑥.

besseln(nu, x, precision)
Deprecated alias for bessely.

bessely(nu, x, precision)
𝑌 -Bessel function of index nu and argument 𝑥.

bestappr(x, B)
Using variants of the extended Euclidean algorithm, returns a rational approximation 𝑎/𝑏 to 𝑥, whose
denominator is limited by 𝐵, if present. If 𝐵 is omitted, returns the best approximation affordable given
the input accuracy; if you are looking for true rational numbers, presumably approximated to sufficient
accuracy, you should first try that option. Otherwise,𝐵must be a positive real scalar (impose 0 < 𝑏 <= 𝐵).

• If 𝑥 is a t_REAL or a t_FRAC, this function uses continued fractions.

? bestappr(Pi, 100)
%1 = 22/7
? bestappr(0.1428571428571428571428571429)
%2 = 1/7
? bestappr([Pi, sqrt(2) + 'x], 10^3)
%3 = [355/113, x + 1393/985]

By definition, 𝑎/𝑏 is the best rational approximation to 𝑥 if ‖𝑏𝑥 − 𝑎‖ < ‖𝑣𝑥 − 𝑢‖ for all integers (𝑢, 𝑣)
with 0 < 𝑣 <= 𝐵. (Which implies that 𝑛/𝑑 is a convergent of the continued fraction of 𝑥.)

• If 𝑥 is a t_INTMOD modulo 𝑁 or a t_PADIC of precision 𝑁 = 𝑝𝑘, this function performs rational
modular reconstruction modulo𝑁 . The routine then returns the unique rational number 𝑎/𝑏 in coprime
integers ‖𝑎‖ < 𝑁/2𝐵 and 𝑏 <= 𝐵 which is congruent to 𝑥 modulo 𝑁 . Omitting 𝐵 amounts to
choosing it of the order of

√︀
𝑁/2. If rational reconstruction is not possible (no suitable 𝑎/𝑏 exists),

returns [].

? bestappr(Mod(18526731858, 11^10))
%1 = 1/7
? bestappr(Mod(18526731858, 11^20))
%2 = []
? bestappr(3 + 5 + 3*5^2 + 5^3 + 3*5^4 + 5^5 + 3*5^6 + O(5^7))
%2 = -1/3

In most concrete uses, 𝐵 is a prime power and we performed Hensel lifting to obtain 𝑥.

The function applies recursively to components of complex objects (polynomials, vectors,. . . ). If rational
reconstruction fails for even a single entry, returns [].

bestapprPade(x, B)
Using variants of the extended Euclidean algorithm (Padé approximants), returns a rational function ap-
proximation 𝑎/𝑏 to 𝑥, whose denominator is limited by 𝐵, if present. If 𝐵 is omitted, return the best ap-
proximation affordable given the input accuracy; if you are looking for true rational functions, presumably
approximated to sufficient accuracy, you should first try that option. Otherwise, 𝐵 must be a nonnegative
real (impose 0 <= 𝑑𝑒𝑔𝑟𝑒𝑒(𝑏) <= 𝐵).

• If 𝑥 is a t_POLMOD modulo 𝑁 this function performs rational modular reconstruction modulo 𝑁 . The
routine then returns the unique rational function 𝑎/𝑏 in coprime polynomials, with 𝑑𝑒𝑔𝑟𝑒𝑒(𝑏) <= 𝐵
and 𝑑𝑒𝑔𝑟𝑒𝑒(𝑎) minimal, which is congruent to 𝑥modulo𝑁 . Omitting𝐵 amounts to choosing it equal
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to the floor of 𝑑𝑒𝑔𝑟𝑒𝑒(𝑁)/2. If rational reconstruction is not possible (no suitable 𝑎/𝑏 exists), returns
[].

? T = Mod(x^3 + x^2 + x + 3, x^4 - 2);
? bestapprPade(T)
%2 = (2*x - 1)/(x - 1)
? U = Mod(1 + x + x^2 + x^3 + x^5, x^9);
? bestapprPade(U) \\ internally chooses B = 4
%3 = []
? bestapprPade(U, 5) \\ with B = 5, a solution exists
%4 = (2*x^4 + x^3 - x - 1)/(-x^5 + x^3 + x^2 - 1)

• If 𝑥 is a t_SER, we implicitly convert the input to a t_POLMOD modulo 𝑁 = 𝑡𝑘 where 𝑘 is the series
absolute precision.

? T = 1 + t + t^2 + t^3 + t^4 + t^5 + t^6 + O(t^7); \\ mod t^7
? bestapprPade(T)
%1 = 1/(-t + 1)

• If 𝑥 is a t_RFRAC, we implicitly convert the input to a t_POLMOD modulo 𝑁 = 𝑡𝑘 where 𝑘 = 2𝐵+ 1.
If 𝐵 was omitted, we return 𝑥:

? T = (4*t^2 + 2*t + 3)/(t+1)^10;
? bestapprPade(T,1)
%2 = [] \\ impossible
? bestapprPade(T,2)
%3 = 27/(337*t^2 + 84*t + 9)
? bestapprPade(T,3)
%4 = (4253*t - 3345)/(-39007*t^3 - 28519*t^2 - 8989*t - 1115)

The function applies recursively to components of complex objects (polynomials, vectors,. . . ). If rational
reconstruction fails for even a single entry, return [].

bestapprnf(V, T, rootT, precision)
𝑇 being an integral polynomial and 𝑉 being a scalar, vector, or matrix with complex coefficients, return a
reasonable approximation of 𝑉 with polmods modulo 𝑇 . 𝑇 can also be any number field structure, in which
case the minimal polynomial attached to the structure (:math:`T`.pol) is used. The rootT argument, if
present, must be an element of polroots(:math:`T)` (or :math:`T`.pol), i.e. a complex root of 𝑇 fixing
an embedding of Q[𝑥]/(𝑇 ) into C.

? bestapprnf(sqrt(5), polcyclo(5))
%1 = Mod(-2*x^3 - 2*x^2 - 1, x^4 + x^3 + x^2 + x + 1)
? bestapprnf(sqrt(5), polcyclo(5), exp(4*I*Pi/5))
%2 = Mod(2*x^3 + 2*x^2 + 1, x^4 + x^3 + x^2 + x + 1)

When the output has huge rational coefficients, try to increase the working realbitprecision: if the
answer does not stabilize, consider that the reconstruction failed. Beware that if 𝑇 is not Galois over Q,
some embeddings may not allow to reconstruct 𝑉 :

? T = x^3-2; vT = polroots(T); z = 3*2^(1/3)+1;
? bestapprnf(z, T, vT[1])
%2 = Mod(3*x + 1, x^3 - 2)

(continues on next page)
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(continued from previous page)

? bestapprnf(z, T, vT[2])
%3 = 4213714286230872/186454048314072 \\ close to 3*2^(1/3) + 1

bezout(x, y)
Deprecated alias for gcdext

bezoutres(A, B, v)
Deprecated alias for polresultantext

bigomega(x)
Number of prime divisors of the integer ‖𝑥‖ counted with multiplicity:

? factor(392)
%1 =
[2 3]

[7 2]

? bigomega(392)
%2 = 5; \\ = 3+2
? omega(392)
%3 = 2; \\ without multiplicity

binary(x)
Outputs the vector of the binary digits of ‖𝑥‖. Here 𝑥 can be an integer, a real number (in which case the
result has two components, one for the integer part, one for the fractional part) or a vector/matrix.

? binary(10)
%1 = [1, 0, 1, 0]

? binary(3.14)
%2 = [[1, 1], [0, 0, 1, 0, 0, 0, [...]]

? binary([1,2])
%3 = [[1], [1, 0]]

For integer 𝑥 >= 1, the number of bits is 𝑙𝑜𝑔𝑖𝑛𝑡(𝑥, 2) + 1. By convention, 0 has no digits:

? binary(0)
%4 = []

binomial(x, k)
binomial coefficient 𝑏𝑖𝑛𝑜𝑚𝑥𝑘. Here 𝑘 must be an integer, but 𝑥 can be any PARI object.

? binomial(4,2)
%1 = 6
? n = 4; vector(n+1, k, binomial(n,k-1))
%2 = [1, 4, 6, 4, 1]

The argument 𝑘 may be omitted if 𝑥 = 𝑛 is a nonnegative integer; in this case, return the vector with 𝑛+ 1
components whose 𝑘 + 1-th entry is binomial(𝑛, 𝑘)
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? binomial(4)
%3 = [1, 4, 6, 4, 1]

bitand(x, y)
Bitwise and of two integers 𝑥 and 𝑦, that is the integer∑︁

𝑖

(𝑥𝑖 𝑎𝑛𝑑 𝑦𝑖)2
𝑖

Negative numbers behave 2-adically, i.e. the result is the 2-adic limit of bitand(𝑥𝑛, 𝑦𝑛), where 𝑥𝑛 and
𝑦𝑛 are nonnegative integers tending to 𝑥 and 𝑦 respectively. (The result is an ordinary integer, possibly
negative.)

? bitand(5, 3)
%1 = 1
? bitand(-5, 3)
%2 = 3
? bitand(-5, -3)
%3 = -7

bitneg(x, n)
bitwise negation of an integer 𝑥, truncated to 𝑛 bits, 𝑛 >= 0, that is the integer

𝑛−1∑︁
𝑖=0

𝑛𝑜𝑡(𝑥𝑖)2
𝑖.

The special case 𝑛 = −1 means no truncation: an infinite sequence of leading 1 is then represented as a
negative number.

See bitand (in the PARI manual) for the behavior for negative arguments.

bitnegimply(x, y)
Bitwise negated imply of two integers 𝑥 and 𝑦 (or not (𝑥 ==> 𝑦)), that is the integer∑︁

(𝑥𝑖 𝑎𝑛𝑑𝑛𝑜𝑡(𝑦𝑖))2
𝑖

See bitand (in the PARI manual) for the behavior for negative arguments.

bitor(x, y)
bitwise (inclusive) or of two integers 𝑥 and 𝑦, that is the integer∑︁

(𝑥𝑖 𝑜𝑟 𝑦𝑖)2
𝑖

See bitand (in the PARI manual) for the behavior for negative arguments.

bitprecision(x, n)
The function behaves differently according to whether 𝑛 is present or not. If 𝑛 is missing, the function
returns the (floating point) precision in bits of the PARI object 𝑥.

If 𝑥 is an exact object, the function returns +oo.

? bitprecision(exp(1e-100))
%1 = 512 \\ 512 bits
? bitprecision( [ exp(1e-100), 0.5 ] )
%2 = 128 \\ minimal accuracy among components
? bitprecision(2 + x)
%3 = +oo \\ exact object
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Use getlocalbitprec() to retrieve the working bit precision (as modified by possible localbitprec
statements).

If 𝑛 is present and positive, the function creates a new object equal to 𝑥 with the new bit-precision roughly
𝑛. In fact, the smallest multiple of 64 (resp. 32 on a 32-bit machine) larger than or equal to 𝑛.

For 𝑥 a vector or a matrix, the operation is done componentwise; for series and polynomials, the operation
is done coefficientwise. For real 𝑥, 𝑛 is the number of desired significant bits. If 𝑛 is smaller than the
precision of 𝑥, 𝑥 is truncated, otherwise 𝑥 is extended with zeros. For exact or non-floating-point types, no
change.

? bitprecision(Pi, 10) \\ actually 64 bits ~ 19 decimal digits
%1 = 3.141592653589793239
? bitprecision(1, 10)
%2 = 1
? bitprecision(1 + O(x), 10)
%3 = 1 + O(x)
? bitprecision(2 + O(3^5), 10)
%4 = 2 + O(3^5)

bittest(x, n)
Outputs the 𝑛− 𝑡ℎ bit of 𝑥 starting from the right (i.e. the coefficient of 2𝑛 in the binary expansion of 𝑥).
The result is 0 or 1. For 𝑥 >= 1, the highest 1-bit is at 𝑛 = 𝑙𝑜𝑔𝑖𝑛𝑡(𝑥) (and bigger 𝑛 gives 0).

? bittest(7, 0)
%1 = 1 \\ the bit 0 is 1
? bittest(7, 2)
%2 = 1 \\ the bit 2 is 1
? bittest(7, 3)
%3 = 0 \\ the bit 3 is 0

See bitand (in the PARI manual) for the behavior at negative arguments.

bitxor(x, y)
Bitwise (exclusive) or of two integers 𝑥 and 𝑦, that is the integer∑︁

(𝑥𝑖 𝑥𝑜𝑟 𝑦𝑖)2
𝑖

See bitand (in the PARI manual) for the behavior for negative arguments.

bnfcertify(bnf, flag)
𝑏𝑛𝑓 being as output by bnfinit, checks whether the result is correct, i.e. whether it is possible to remove
the assumption of the Generalized Riemann Hypothesis. It is correct if and only if the answer is 1. If it is
incorrect, the program may output some error message, or loop indefinitely. You can check its progress by
increasing the debug level. The bnf structure must contain the fundamental units:

? K = bnfinit(x^3+2^2^3+1); bnfcertify(K)
*** at top-level: K=bnfinit(x^3+2^2^3+1);bnfcertify(K)
*** ^-------------
*** bnfcertify: precision too low in makeunits [use bnfinit(,1)].

? K = bnfinit(x^3+2^2^3+1, 1); \\ include units
? bnfcertify(K)
%3 = 1

If flag is present, only certify that the class group is a quotient of the one computed in bnf (much simpler
in general); likewise, the computed units may form a subgroup of the full unit group. In this variant, the
units are no longer needed:
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? K = bnfinit(x^3+2^2^3+1); bnfcertify(K, 1)
%4 = 1

bnfdecodemodule(nf, m)

If 𝑚 is a module as output in the first component of an extension given by bnrdisclist, outputs the true
module.

? K = bnfinit(x^2+23); L = bnrdisclist(K, 10); s = L[2]
%1 = [[[Vecsmall([8]), Vecsmall([1])], [[0, 0, 0]]],
[[Vecsmall([9]), Vecsmall([1])], [[0, 0, 0]]]]

? bnfdecodemodule(K, s[1][1])
%2 =
[2 0]

[0 1]
? bnfdecodemodule(K,s[2][1])
%3 =
[2 1]

[0 1]

bnfinit(P, flag, tech, precision)
Initializes a bnf structure. Used in programs such as bnfisprincipal, bnfisunit or bnfnarrow. By
default, the results are conditional on the GRH, see GRHbnf (in the PARI manual). The result is a 10-
component vector bnf.

This implements Buchmann’s sub-exponential algorithm for computing the class group, the regulator and a
system of fundamental units of the general algebraic number field𝐾 defined by the irreducible polynomial
𝑃 with integer coefficients. The meaning of flag is as follows:

• 𝑓𝑙𝑎𝑔 = 0 (default). This is the historical behavior, kept for compatibility reasons and speed. It has
severe drawbacks but is likely to be a little faster than the alternative, twice faster say, so only use it
if speed is paramount, you obtain a useful speed gain for the fields under consideration, and you are
only interested in the field invariants such as the classgroup structure or its regulator. The computations
involve exact algebraic numbers which are replaced by floating point embeddings for the sake of speed.
If the precision is insufficient, gp may not be able to compute fundamental units, nor to solve some
discrete logarithm problems. It may be possible to increase the precision of the bnf structure using
nfnewprec but this may fail, in particular when fundamental units are large. In short, the resulting
bnf structure is correct and contains useful information but later function calls to bnfisprincpal or
bnrclassfield may fail.

When 𝑓𝑙𝑎𝑔 = 1, we keep an exact algebraic version of all floating point data and this allows to guarantee that
functions using the structure will always succeed, as well as to compute the fundamental units exactly. The
units are computed in compact form, as a product of small 𝑆-units, possibly with huge exponents. This flag
also allows bnfisprincipal to compute generators of principal ideals in factored form as well. Be warned
that expanding such products explicitly can take a very long time, but they can easily be mapped to floating
point or ℓ-adic embeddings of bounded accuracy, or to 𝐾*/(𝐾*)ℓ, and this is enough for applications. In
short, this flag should be used by default, unless you have a very good reason for it, for instance building
massive tables of class numbers, and you do not care about units or the effect large units would have on
your computation.

𝑡𝑒𝑐ℎ is a technical vector (empty by default, see GRHbnf (in the PARI manual)). Careful use of this param-
eter may speed up your computations, but it is mostly obsolete and you should leave it alone.

The components of a bnf are technical. In fact: never access a component directly, always use a proper
member function. However, for the sake of completeness and internal documentation, their description is
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as follows. We use the notations explained in the book by H. Cohen, A Course in Computational Algebraic
Number Theory, Graduate Texts in Maths 138, Springer-Verlag, 1993, Section 6.5, and subsection 6.5.5 in
particular.

𝑏𝑛𝑓 [1] contains the matrix 𝑊 , i.e. the matrix in Hermite normal form giving relations for the class group
on prime ideal generators (𝑝𝑖)1<=𝑖<=𝑟.

𝑏𝑛𝑓 [2] contains the matrix 𝐵, i.e. the matrix containing the expressions of the prime ideal factorbase in
terms of the 𝑝𝑖. It is an 𝑟𝑥𝑐 matrix.

𝑏𝑛𝑓 [3] contains the complex logarithmic embeddings of the system of fundamental units which has been
found. It is an (𝑟1 + 𝑟2)𝑥(𝑟1 + 𝑟2 − 1) matrix.

𝑏𝑛𝑓 [4] contains the matrix 𝑀”𝐶 of Archimedean components of the relations of the matrix (𝑊‖𝐵).

𝑏𝑛𝑓 [5] contains the prime factor base, i.e. the list of prime ideals used in finding the relations.

𝑏𝑛𝑓 [6] contains a dummy 0.

𝑏𝑛𝑓 [7] or :emphasis:`bnf.nf` is equal to the number field data 𝑛𝑓 as would be given by nfinit.

𝑏𝑛𝑓 [8] is a vector containing the classgroup :emphasis:`bnf.clgp` as a finite abelian group, the regulator
:emphasis:`bnf.reg`, the number of roots of unity and a generator :emphasis:`bnf.tu`, the funda-
mental units in expanded form :emphasis:`bnf.fu`. If the fundamental units were omitted in the bnf,
:emphasis:`bnf.fu` returns the sentinel value 0. If 𝑓𝑙𝑎𝑔 = 1, this vector contain also algebraic data
corresponding to the fundamental units and to the discrete logarithm problem (see bnfisprincipal). In
particular, if 𝑓𝑙𝑎𝑔 = 1 we may only know the units in factored form: the first call to :emphasis:`bnf.fu`
expands them, which may be very costly, then caches the result.

𝑏𝑛𝑓 [9] is a vector used in bnfisprincipal only and obtained as follows. Let 𝐷 = 𝑈𝑊𝑉 obtained by
applying the Smith normal form algorithm to the matrix 𝑊 ( = 𝑏𝑛𝑓 [1]) and let 𝑈𝑟 be the reduction of 𝑈
modulo 𝐷. The first elements of the factorbase are given (in terms of bnf.gen) by the columns of 𝑈𝑟,
with Archimedean component 𝑔𝑎; let also 𝐺𝐷𝑎 be the Archimedean components of the generators of the
(principal) ideals defined by the bnf.gen[i]^bnf.cyc[i]. Then 𝑏𝑛𝑓 [9] = [𝑈𝑟, 𝑔𝑎, 𝐺𝐷𝑎], followed by
technical exact components which allow to recompute 𝑔𝑎 and 𝐺𝐷𝑎 to higher accuracy.

𝑏𝑛𝑓 [10] is by default unused and set equal to 0. This field is used to store further information about the field
as it becomes available, which is rarely needed, hence would be too expensive to compute during the initial
bnfinit call. For instance, the generators of the principal ideals bnf.gen[i]^bnf.cyc[i] (during a call
to bnrisprincipal), or those corresponding to the relations in𝑊 and𝐵 (when the bnf internal precision
needs to be increased).

bnfisintnorm(bnf, x)
Computes a complete system of solutions (modulo units of positive norm) of the absolute norm equation
Norm(𝑎) = 𝑥, where 𝑎 is an integer in 𝑏𝑛𝑓 . If 𝑏𝑛𝑓 has not been certified, the correctness of the result
depends on the validity of GRH.

See also bnfisnorm.

bnfisnorm(bnf, x, flag)
Tries to tell whether the rational number 𝑥 is the norm of some element y in 𝑏𝑛𝑓 . Returns a vector [𝑎, 𝑏]
where 𝑥 = 𝑁𝑜𝑟𝑚(𝑎) * 𝑏. Looks for a solution which is an 𝑆-unit, with 𝑆 a certain set of prime ideals
containing (among others) all primes dividing 𝑥. If 𝑏𝑛𝑓 is known to be Galois, you may set 𝑓𝑙𝑎𝑔 = 0 (in
this case, 𝑥 is a norm iff 𝑏 = 1). If 𝑓𝑙𝑎𝑔 is nonzero the program adds to 𝑆 the following prime ideals,
depending on the sign of 𝑓𝑙𝑎𝑔. If 𝑓𝑙𝑎𝑔 > 0, the ideals of norm less than 𝑓𝑙𝑎𝑔. And if 𝑓𝑙𝑎𝑔 < 0 the ideals
dividing 𝑓𝑙𝑎𝑔.

Assuming GRH, the answer is guaranteed (i.e. 𝑥 is a norm iff 𝑏 = 1), if 𝑆 contains all primes less than
12 log(disc(𝐵𝑛𝑓))2, where 𝐵𝑛𝑓 is the Galois closure of 𝑏𝑛𝑓 .

See also bnfisintnorm.
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bnfisprincipal(bnf, x, flag)
𝑏𝑛𝑓 being the number field data output by bnfinit, and 𝑥 being an ideal, this function tests whether the
ideal is principal or not. The result is more complete than a simple true/false answer and solves a general
discrete logarithm problem. Assume the class group is ⊕(Z/𝑑𝑖Z)𝑔𝑖 (where the generators 𝑔𝑖 and their
orders 𝑑𝑖 are respectively given by bnf.gen and bnf.cyc). The routine returns a row vector [𝑒, 𝑡], where
𝑒 is a vector of exponents 0 <= 𝑒𝑖 < 𝑑𝑖, and 𝑡 is a number field element such that

𝑥 = (𝑡)
∏︁
𝑖

𝑔𝑒𝑖𝑖 .

For given 𝑔𝑖 (i.e. for a given bnf), the 𝑒𝑖 are unique, and 𝑡 is unique modulo units.

In particular, 𝑥 is principal if and only if 𝑒 is the zero vector. Note that the empty vector, which is returned
when the class number is 1, is considered to be a zero vector (of dimension 0).

? K = bnfinit(y^2+23);
? K.cyc
%2 = [3]
? K.gen
%3 = [[2, 0; 0, 1]] \\ a prime ideal above 2
? P = idealprimedec(K,3)[1]; \\ a prime ideal above 3
? v = bnfisprincipal(K, P)
%5 = [[2]~, [3/4, 1/4]~]
? idealmul(K, v[2], idealfactorback(K, K.gen, v[1]))
%6 =
[3 0]

[0 1]
? % == idealhnf(K, P)
%7 = 1

The binary digits of flag mean:

• 1: If set, outputs [𝑒, 𝑡] as explained above, otherwise returns only 𝑒, which is much easier to compute.
The following idiom only tests whether an ideal is principal:

is_principal(bnf, x) = !bnfisprincipal(bnf,x,0);

• 2: It may not be possible to recover 𝑡, given the initial accuracy to which the bnf structure was com-
puted. In that case, a warning is printed and 𝑡 is set equal to the empty vector []~. If this bit is set,
increase the precision and recompute needed quantities until 𝑡 can be computed. Warning: setting this
may induce lengthy computations and you should consider using flag 4 instead.

• 4: Return 𝑡 in factored form (compact representation), as a small product of 𝑆-units for a small set of
finite places 𝑆, possibly with huge exponents. This kind of result can be cheaply mapped to𝐾*/(𝐾*)ℓ

or to C or Q𝑝 to bounded accuracy and this is usually enough for applications. Explicitly expanding
such a compact representation is possible using nffactorback but may be very costly. The algorithm
is guaranteed to succeed if the bnf was computed using bnfinit(,1). If not, the algorithm may fail
to compute a huge generator in this case (and replace it by []~). This is orders of magnitude faster
than flag 2 when the generators are indeed large.

bnfissunit(bnf, sfu, x)
This function is obsolete, use bnfisunit.
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bnfisunit(bnf, x, U)

bnf being the number field data output by bnfinit and 𝑥 being an algebraic number (type integer, rational
or polmod), this outputs the decomposition of 𝑥 on the fundamental units and the roots of unity if 𝑥 is a
unit, the empty vector otherwise. More precisely, if 𝑢1,. . . ,:math:u_r are the fundamental units, and 𝜁 is
the generator of the group of roots of unity (bnf.tu), the output is a vector [𝑥1, ..., 𝑥𝑟, 𝑥𝑟+1] such that
𝑥 = 𝑢𝑥1

1 ...𝑢
𝑥𝑟
𝑟 .𝜁𝑥𝑟+1 . The 𝑥𝑖 are integers but the last one (𝑖 = 𝑟 + 1) is only defined modulo the order 𝑤

of 𝜁 and is guaranteed to be in [0, 𝑤[.

Note that bnf need not contain the fundamental units explicitly: it may contain the placeholder 0 instead:

? setrand(1); bnf = bnfinit(x^2-x-100000);
? bnf.fu
%2 = 0
? u = [119836165644250789990462835950022871665178127611316131167, \
379554884019013781006303254896369154068336082609238336]~;

? bnfisunit(bnf, u)
%3 = [-1, 0]~

The given 𝑢 is 1/𝑢1, where 𝑢1 is the fundamental unit implicitly stored in bnf. In this case, 𝑢1 was not com-
puted and stored in algebraic form since the default accuracy was too low. Re-run the bnfinit command
at \g1 or higher to see such diagnostics.

This function allows 𝑥 to be given in factored form, but it then assumes that 𝑥 is an actual unit. (Because
it is general too costly to check whether this is the case.)

? { v = [2, 85; 5, -71; 13, -162; 17, -76; 23, -37; 29, -104; [224, 1]~, -66;
[-86, 1]~, 86; [-241, 1]~, -20; [44, 1]~, 30; [124, 1]~, 11; [125, -1]~, -11;
[-214, 1]~, 33; [-213, -1]~, -33; [189, 1]~, 74; [190, -1]~, 104;
[-168, 1]~, 2; [-167, -1]~, -8]; }
? bnfisunit(bnf,v)
%5 = [1, 0]~

Note that 𝑣 is the fundamental unit of bnf given in compact (factored) form.

If the argument U is present, as output by bnfunits(bnf, S), then the function decomposes 𝑥 on the
𝑆-units generators given in U[1].

? bnf = bnfinit(x^4 - x^3 + 4*x^2 + 3*x + 9, 1);
? bnf.sign
%2 = [0, 2]
? S = idealprimedec(bnf,5); #S
%3 = 2
? US = bnfunits(bnf,S);
? g = US[1]; #g \\ #S = #g, four S-units generators, in factored form
%5 = 4
? g[1]
%6 = [[6, -3, -2, -2]~ 1]
? g[2]
%7 =
[[-1, 1/2, -1/2, -1/2]~ 1]

[ [4, -2, -1, -1]~ 1]
? [nffactorback(bnf, x) | x <- g]
%8 = [[6, -3, -2, -2]~, [-5, 5, 0, 0]~, [-1, 1, -1, 0]~,
[1, -1, 0, 0]~]

(continues on next page)
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(continued from previous page)

? u = [10,-40,24,11]~;
? a = bnfisunit(bnf, u, US)
%9 = [2, 0, 1, 4]~
? nffactorback(bnf, g, a) \\ prod_i g[i]^a[i] still in factored form
%10 =
[[6, -3, -2, -2]~ 2]

[ [0, 0, -1, -1]~ 1]

[ [2, -1, -1, 0]~ -2]

[ [1, 1, 0, 0]~ 2]

[ [-1, 1, 1, 1]~ -1]

[ [1, -1, 0, 0]~ 4]

? nffactorback(bnf,%) \\ u = prod_i g[i]^a[i]
%11 = [10, -40, 24, 11]~

bnflog(bnf, l)
Let bnf be a bnf structure attached to the number field 𝐹 and let 𝑙 be a prime number (hereafter denoted
ℓ for typographical reasons). Return the logarithmic ℓ-class group 𝐶𝑙𝐹 of 𝐹 . This is an abelian group,
conjecturally finite (known to be finite if 𝐹/Q is abelian). The function returns if and only if the group is
indeed finite (otherwise it would run into an infinite loop). Let 𝑆 = 𝑝1, ..., 𝑝𝑘 be the set of ℓ-adic places
(maximal ideals containing ℓ). The function returns [𝐷,𝐺(ℓ), 𝐺′], where

• 𝐷 is the vector of elementary divisors for 𝐶𝑙𝐹 .

• 𝐺(ℓ) is the vector of elementary divisors for the (conjecturally finite) abelian group

,
where the :math:‘p𝑖‘𝑎𝑟𝑒𝑡ℎ𝑒 : 𝑚𝑎𝑡ℎ : ‘ℓ‘−𝑎𝑑𝑖𝑐𝑝𝑙𝑎𝑐𝑒𝑠𝑜𝑓 : 𝑚𝑎𝑡ℎ : ‘𝐹 ‘; 𝑡ℎ𝑖𝑠𝑖𝑠𝑎𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝𝑜𝑓 : 𝑚𝑎𝑡ℎ : ‘ Cl‘.

• 𝐺′ is the vector of elementary divisors for the ℓ-Sylow 𝐶𝑙′ of the 𝑆-class group of 𝐹 ; the group Cl maps to
𝐶𝑙′ with a simple co-kernel.

bnflogdegree(nf, A, l)
Let nf be a nf structure attached to a number field 𝐹 , and let 𝑙 be a prime number (hereafter denoted ℓ). The
ℓ-adified group of id\`{e}les of 𝐹 quotiented by the group of logarithmic units is identified to the ℓ-group of
logarithmic divisors ⊕Zℓ[𝑝], generated by the maximal ideals of 𝐹 .

The degree map deg𝐹 is additive with values in Zℓ, defined by deg𝐹 𝑝 = 𝑓𝑝 degℓ 𝑝, where the integer 𝑓𝑝 is as
in bnflogef and degℓ 𝑝 is logℓ 𝑝 for 𝑝! = ℓ, logℓ(1 + ℓ) for 𝑝 = ℓ! = 2 and logℓ(1 + 22) for 𝑝 = ℓ = 2.

Let 𝐴 =
∏︀
𝑝𝑛𝑝 be an ideal and let 𝐴 =

∑︀
𝑛𝑝[𝑝] be the attached logarithmic divisor. Return the exponential of

the ℓ-adic logarithmic degree deg𝐹 𝐴, which is a natural number.

bnflogef(nf, pr)
Let nf be a nf structure attached to a number field 𝐹 and let pr be a prid structure attached to a maximal ideal 𝑝/𝑝.
Return [ 𝑒(𝐹𝑝/Q𝑝), 𝑓(𝐹𝑝/Q𝑝)] the logarithmic ramification and residue degrees. Let Q𝑐

𝑝/Q𝑝 be the cyclotomic
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Z𝑝-extension, then 𝑒 = [𝐹𝑝 : 𝐹𝑝 ∩Q𝑐
𝑝] and 𝑓 = [𝐹𝑝 ∩Q𝑐

𝑝 : Q𝑝]. Note that 𝑒 𝑓 = 𝑒(𝑝/𝑝)𝑓(𝑝/𝑝), where 𝑒(𝑝/𝑝)
and 𝑓(𝑝/𝑝) denote the usual ramification and residue degrees.

? F = nfinit(y^6 - 3*y^5 + 5*y^3 - 3*y + 1);
? bnflogef(F, idealprimedec(F,2)[1])
%2 = [6, 1]
? bnflogef(F, idealprimedec(F,5)[1])
%3 = [1, 2]

bnfnarrow(bnf )
bnf being as output by bnfinit, computes the narrow class group of bnf. The output is a 3-component row
vector 𝑣 analogous to the corresponding class group component :emphasis:`bnf.clgp`: the first component is
the narrow class number :math:`v.no`, the second component is a vector containing the SNF cyclic components
:math:`v.cyc` of the narrow class group, and the third is a vector giving the generators of the corresponding
:math:`v.gen` cyclic groups. Note that this function is a special case of bnrinit; the bnf need not contain
fundamental units.

bnfsignunit(bnf )
𝑏𝑛𝑓 being as output by bnfinit, this computes an 𝑟1𝑥(𝑟1 + 𝑟2 − 1) matrix having 1 components, giving the
signs of the real embeddings of the fundamental units. The following functions compute generators for the totally
positive units:

/* exponents of totally positive units generators on K.tu, K.fu */
tpuexpo(K)=
{ my(M, S = bnfsignunit(K), [m,n] = matsize(S));
\\ m = K.r1, n = r1+r2-1
S = matrix(m,n, i,j, if (S[i,j] < 0, 1,0));
S = concat(vectorv(m,i,1), S); \\ add sign(-1)
M = matkermod(S, 2);
if (M, mathnfmodid(M, 2), 2*matid(n+1))
}

/* totally positive fundamental units of bnf K */
tpu(K)=
{ my(ex = tpuexpo(K)[,^1]); \\ remove ex[,1], corresponds to 1 or -1
my(v = concat(K.tu[2], K.fu));
[ nffactorback(K, v, c) | c <- ex];
}

bnfsunit(bnf, S, precision)
Computes the fundamental 𝑆-units of the number field 𝑏𝑛𝑓 (output by bnfinit), where 𝑆 is a list of prime ideals
(output by idealprimedec). The output is a vector 𝑣 with 6 components.

𝑣[1] gives a minimal system of (integral) generators of the 𝑆-unit group modulo the unit group.

𝑣[2] contains technical data needed by bnfissunit.

𝑣[3] is an obsoleted component, now the empty vector.

𝑣[4] is the 𝑆-regulator (this is the product of the regulator, the 𝑆-class number and the natural logarithms of the
norms of the ideals in 𝑆).

𝑣[5] gives the 𝑆-class group structure, in the usual abelian group format: a vector whose three components give
in order the 𝑆-class number, the cyclic components and the generators.

𝑣[6] is a copy of 𝑆.
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bnfunits(bnf, S)
Return the fundamental units of the number field bnf output by bnfinit; if 𝑆 is present and is a list of prime ideals,
compute fundamental 𝑆-units instead. The first component of the result contains independent integral 𝑆-units
generators: first nonunits, then 𝑟1 + 𝑟2 − 1 fundamental units, then the torsion unit. The result may be used as
an optional argument to bnfisunit. The units are given in compact form: no expensive computation is attempted
if the bnf does not already contain units.

? bnf = bnfinit(x^4 - x^3 + 4*x^2 + 3*x + 9, 1);
? bnf.sign \\ r1 + r2 - 1 = 1
%2 = [0, 2]
? U = bnfunits(bnf); u = U[1];
? #u \\ r1 + r2 = 2 units
%5 = 2;
? u[1] \\ fundamental unit as factorization matrix
%6 =
[[0, 0, -1, -1]~ 1]

[[2, -1, -1, 0]~ -2]

[ [1, 1, 0, 0]~ 2]

[ [-1, 1, 1, 1]~ -1]
? u[2] \\ torsion unit as factorization matrix
%7 =
[[1, -1, 0, 0]~ 1]
? [nffactorback(bnf, z) | z <- u] \\ same units in expanded form
%8 = [[-1, 1, -1, 0]~, [1, -1, 0, 0]~]

Now an example involving 𝑆-units for a nontrivial 𝑆:

? S = idealprimedec(bnf,5); #S
%9 = 2
? US = bnfunits(bnf, S); uS = US[1];
? g = [nffactorback(bnf, z) | z <- uS] \\ now 4 units
%11 = [[6, -3, -2, -2]~, [-5, 5, 0, 0]~, [-1, 1, -1, 0]~, [1, -1, 0, 0]~]
? bnfisunit(bnf,[10,-40,24,11]~)
%12 = []~ \\ not a unit
? e = bnfisunit(bnf, [10,-40,24,11]~, US)
%13 = [2, 0, 1, 4]~ \\ ...but an S-unit
? nffactorback(bnf, g, e)
%14 = [10, -40, 24, 11]~
? nffactorback(bnf, uS, e) \\ in factored form
%15 =
[[6, -3, -2, -2]~ 2]

[ [0, 0, -1, -1]~ 1]

[ [2, -1, -1, 0]~ -2]

[ [1, 1, 0, 0]~ 2]

[ [-1, 1, 1, 1]~ -1]

[ [1, -1, 0, 0]~ 4]
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Note that in more complicated cases, any nffactorback fully expanding an element in factored form could be
very expensive. On the other hand, the final example expands a factorization whose components are themselves
in factored form, hence the result is a factored form: this is a cheap operation.

bnrL1(bnr, H, flag, precision)
Let bnr be the number field data output by bnrinit and H be a square matrix defining a congruence subgroup
of the ray class group corresponding to bnr (the trivial congruence subgroup if omitted). This function returns,
for each character 𝜒 of the ray class group which is trivial on 𝐻 , the value at 𝑠 = 1 (or 𝑠 = 0) of the abelian
𝐿-function attached to 𝜒. For the value at 𝑠 = 0, the function returns in fact for each 𝜒 a vector [𝑟𝜒, 𝑐𝜒] where

𝐿(𝑠, 𝜒) = 𝑐.𝑠𝑟 +𝑂(𝑠𝑟+1)

near 0.

The argument flag is optional, its binary digits mean 1: compute at 𝑠 = 0 if unset or 𝑠 = 1 if set, 2: compute
the primitive 𝐿-function attached to 𝜒 if unset or the 𝐿-function with Euler factors at prime ideals dividing the
modulus of bnr removed if set (that is 𝐿𝑆(𝑠, 𝜒), where 𝑆 is the set of infinite places of the number field together
with the finite prime ideals dividing the modulus of bnr), 3: return also the character if set.

K = bnfinit(x^2-229);
bnr = bnrinit(K,1);
bnrL1(bnr)

returns the order and the first nonzero term of 𝐿(𝑠, 𝜒) at 𝑠 = 0 where 𝜒 runs through the characters of the class
group of 𝐾 = Q(

√
229). Then

bnr2 = bnrinit(K,2);
bnrL1(bnr2,,2)

returns the order and the first nonzero terms of 𝐿𝑆(𝑠, 𝜒) at 𝑠 = 0 where 𝜒 runs through the characters of the class
group of 𝐾 and 𝑆 is the set of infinite places of 𝐾 together with the finite prime 2. Note that the ray class group
modulo 2 is in fact the class group, so bnrL1(bnr2,0) returns the same answer as bnrL1(bnr,0).

This function will fail with the message

*** bnrL1: overflow in zeta_get_N0 [need too many primes].

if the approximate functional equation requires us to sum too many terms (if the discriminant of 𝐾 is too large).

bnrchar(bnr, g, v)
Returns all characters 𝜒 on bnr.clgp such that 𝜒(𝑔𝑖) = 𝑒(𝑣𝑖), where 𝑒(𝑥) = exp(2𝑖𝜋𝑥). If 𝑣 is omitted, returns
all characters that are trivial on the 𝑔𝑖. Else the vectors 𝑔 and 𝑣 must have the same length, the 𝑔𝑖 must be ideals in
any form, and each 𝑣𝑖 is a rational number whose denominator must divide the order of 𝑔𝑖 in the ray class group.
For convenience, the vector of the 𝑔𝑖 can be replaced by a matrix whose columns give their discrete logarithm, as
given by bnrisprincipal; this allows to specify abstractly a subgroup of the ray class group.

? bnr = bnrinit(bnfinit(x), [160,[1]], 1); /* (Z/160Z)^* */
? bnr.cyc
%2 = [8, 4, 2]
? g = bnr.gen;
? bnrchar(bnr, g, [1/2,0,0])
%4 = [[4, 0, 0]] \\ a unique character
? bnrchar(bnr, [g[1],g[3]]) \\ all characters trivial on g[1] and g[3]
%5 = [[0, 1, 0], [0, 2, 0], [0, 3, 0], [0, 0, 0]]
? bnrchar(bnr, [1,0,0;0,1,0;0,0,2])
%6 = [[0, 0, 1], [0, 0, 0]] \\ characters trivial on given subgroup
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bnrclassfield(bnr, subgp, flag, precision)
bnr being as output by bnrinit, returns a relative equation for the class field corresponding to the congruence
group defined by (𝑏𝑛𝑟, 𝑠𝑢𝑏𝑔𝑝) (the full ray class field if subgp is omitted). The subgroup can also be a t_INT 𝑛,
meaning 𝑛.𝐶𝑙𝑓 . The function also handles a vector of subgroup, e.g, from subgrouplist and returns the vector
of individual results in this case.

If 𝑓𝑙𝑎𝑔 = 0, returns a vector of polynomials such that the compositum of the corresponding fields is the class
field; if 𝑓𝑙𝑎𝑔 = 1 returns a single polynomial; if 𝑓𝑙𝑎𝑔 = 2 returns a single absolute polynomial.

? bnf = bnfinit(y^3+14*y-1); bnf.cyc
%1 = [4, 2]
? pol = bnrclassfield(bnf,,1) \\ Hilbert class field
%2 = x^8 - 2*x^7 + ... + Mod(11*y^2 - 82*y + 116, y^3 + 14*y - 1)
? rnfdisc(bnf,pol)[1]
%3 = 1
? bnr = bnrinit(bnf,3*5*7); bnr.cyc
%4 = [24, 12, 12, 2]
? bnrclassfield(bnr,2) \\ maximal 2-elementary subextension
%5 = [x^2 + (-21*y - 105), x^2 + (-5*y - 25), x^2 + (-y - 5), x^2 + (-y - 1)]
\\ quadratic extensions of maximal conductor
? bnrclassfield(bnr, subgrouplist(bnr,[2]))
%6 = [[x^2 - 105], [x^2 + (-105*y^2 - 1260)], [x^2 + (-105*y - 525)],
[x^2 + (-105*y - 105)]]
? #bnrclassfield(bnr,subgrouplist(bnr,[2],1)) \\ all quadratic extensions
%7 = 15

When the subgroup contains 𝑛𝐶𝑙𝑓 , where 𝑛 is fixed, it is advised to directly compute the bnr modulo 𝑛 to avoid
expensive discrete logarithms:

? bnf = bnfinit(y^2-5); p = 1594287814679644276013;
? bnr = bnrinit(bnf,p); \\ very slow
time = 24,146 ms.
? bnrclassfield(bnr, 2) \\ ... even though the result is trivial
%3 = [x^2 - 1594287814679644276013]
? bnr2 = bnrinit(bnf,p,,2); \\ now fast
time = 1 ms.
? bnrclassfield(bnr2, 2)
%5 = [x^2 - 1594287814679644276013]

This will save a lot of time when the modulus contains a maximal ideal whose residue field is large.

bnrclassno(A, B, C)
Let 𝐴, 𝐵, 𝐶 define a class field 𝐿 over a ground field 𝐾 (of type [:emphasis:`bnr]`, [:emphasis:`bnr,
subgroup]`, or [:emphasis:`bnf, modulus]`, or [:emphasis:`bnf, modulus,:emphasis:subgroup]`, CFT (in
the PARI manual)); this function returns the relative degree [𝐿 : 𝐾].

In particular if𝐴 is a bnf (with units), and𝐵 a modulus, this function returns the corresponding ray class number
modulo 𝐵. One can input the attached bid (with generators if the subgroup 𝐶 is non trivial) for 𝐵 instead of the
module itself, saving some time.

This function is faster than bnrinit and should be used if only the ray class number is desired. See
bnrclassnolist if you need ray class numbers for all moduli less than some bound.

bnrclassnolist(bnf, list)
𝑏𝑛𝑓 being as output by bnfinit, and list being a list of moduli (with units) as output by ideallist or
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ideallistarch, outputs the list of the class numbers of the corresponding ray class groups. To compute a
single class number, bnrclassno is more efficient.

? bnf = bnfinit(x^2 - 2);
? L = ideallist(bnf, 100, 2);
? H = bnrclassnolist(bnf, L);
? H[98]
%4 = [1, 3, 1]
? l = L[1][98]; ids = vector(#l, i, l[i].mod[1])
%5 = [[98, 88; 0, 1], [14, 0; 0, 7], [98, 10; 0, 1]]

The weird l[i].mod[1], is the first component of l[i].mod, i.e. the finite part of the conductor. (This is
cosmetic: since by construction the Archimedean part is trivial, I do not want to see it). This tells us that the ray
class groups modulo the ideals of norm 98 (printed as %5) have respectively order 1, 3 and 1. Indeed, we may
check directly:

? bnrclassno(bnf, ids[2])
%6 = 3

bnrconductor(A, B, C, flag)
Conductor 𝑓 of the subfield of a ray class field as defined by [𝐴,𝐵,𝐶] (of type [:emphasis:`bnr]`,
[:emphasis:`bnr, subgroup]`, [:emphasis:`bnf, modulus]` or [:emphasis:`bnf, modulus, subgroup]`,
CFT (in the PARI manual))

If 𝑓𝑙𝑎𝑔 = 0, returns 𝑓 .

If 𝑓𝑙𝑎𝑔 = 1, returns [𝑓, 𝐶𝑙𝑓 , 𝐻], where 𝐶𝑙𝑓 is the ray class group modulo 𝑓 , as a finite abelian group; finally 𝐻
is the subgroup of 𝐶𝑙𝑓 defining the extension.

If 𝑓𝑙𝑎𝑔 = 2, returns [𝑓, 𝑏𝑛𝑟(𝑓), 𝐻], as above except𝐶𝑙𝑓 is replaced by a bnr structure, as output by 𝑏𝑛𝑟𝑖𝑛𝑖𝑡(, 𝑓),
without generators unless the input contained a bnr with generators.

In place of a subgroup 𝐻 , this function also accepts a character chi = (𝑎𝑗), expressed as usual in terms of the
generators bnr.gen: 𝜒(𝑔𝑗) = exp(2𝑖𝜋𝑎𝑗/𝑑𝑗), where 𝑔𝑗 has order 𝑑𝑗 = 𝑏𝑛𝑟.𝑐𝑦𝑐[𝑗]. In which case, the function
returns respectively

If 𝑓𝑙𝑎𝑔 = 0, the conductor 𝑓 of 𝐾𝑒𝑟𝜒.

If 𝑓𝑙𝑎𝑔 = 1, [𝑓, 𝐶𝑙𝑓 , 𝜒𝑓 ], where 𝜒𝑓 is 𝜒 expressed on the minimal ray class group, whose modulus is the con-
ductor.

If 𝑓𝑙𝑎𝑔 = 2, [𝑓, 𝑏𝑛𝑟(𝑓), 𝜒𝑓 ].

Note. Using this function with 𝑓𝑙𝑎𝑔! = 0 is usually a bad idea and kept for compatibility and convenience only:
𝑓𝑙𝑎𝑔 = 1 has always been useless, since it is no faster than 𝑓𝑙𝑎𝑔 = 2 and returns less information; 𝑓𝑙𝑎𝑔 = 2 is
mostly OK with two subtle drawbacks:

• it returns the full bnr attached to the full ray class group, whereas in applications we only need 𝐶𝑙𝑓 modulo
𝑁 -th powers, where 𝑁 is any multiple of the exponent of 𝐶𝑙𝑓/𝐻 . Computing directly the conductor, then
calling bnrinit with optional argument 𝑁 avoids this problem.

• computing the bnr needs only be done once for each conductor, which is not possible using this function.

For maximal efficiency, the recommended procedure is as follows. Starting from data (character or congruence
subgroups) attached to a modulus𝑚, we can first compute the conductors using this function with default 𝑓𝑙𝑎𝑔 =
0. Then for all data with a common conductor 𝑓‖𝑚, compute (once!) the bnr attached to 𝑓 using bnrinit
(modulo 𝑁 -th powers for a suitable 𝑁 !) and finally map original data to the new bnr using bnrmap.

bnrconductorofchar(bnr, chi)
This function is obsolete, use bnrconductor.
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bnrdisc(A, B, C, flag)
𝐴, 𝐵, 𝐶 defining a class field 𝐿 over a ground field 𝐾 (of type [:emphasis:`bnr]`, [:emphasis:`bnr, sub-
group]`, [:emphasis:`bnr, character]`, [:emphasis:`bnf, modulus]` or [:emphasis:`bnf, modulus, sub-
group]`, CFT (in the PARI manual)), outputs data [𝑁, 𝑟1, 𝐷] giving the discriminant and signature of𝐿, depending
on the binary digits of flag:

• 1: if this bit is unset, output absolute data related to 𝐿/Q: 𝑁 is the absolute degree [𝐿 : Q], 𝑟1 the number of
real places of 𝐿, and 𝐷 the discriminant of 𝐿/Q. Otherwise, output relative data for 𝐿/𝐾: 𝑁 is the relative
degree [𝐿 : 𝐾], 𝑟1 is the number of real places of 𝐾 unramified in 𝐿 (so that the number of real places of 𝐿
is equal to 𝑟1 times 𝑁 ), and 𝐷 is the relative discriminant ideal of 𝐿/𝐾.

• 2: if this bit is set and if the modulus is not the conductor of 𝐿, only return 0.

bnrdisclist(bnf, bound, arch)
𝑏𝑛𝑓 being as output by bnfinit (with units), computes a list of discriminants of Abelian extensions of the number
field by increasing modulus norm up to bound bound. The ramified Archimedean places are given by arch; all
possible values are taken if arch is omitted.

The alternative syntax 𝑏𝑛𝑟𝑑𝑖𝑠𝑐𝑙𝑖𝑠𝑡(𝑏𝑛𝑓, 𝑙𝑖𝑠𝑡) is supported, where list is as output by ideallist or
ideallistarch (with units), in which case arch is disregarded.

The output 𝑣 is a vector, where 𝑣[𝑘] is itself a vector 𝑤, whose length is the number of ideals of norm 𝑘.

• We consider first the case where arch was specified. Each component of 𝑤 corresponds to an ideal 𝑚 of
norm 𝑘, and gives invariants attached to the ray class field 𝐿 of 𝑏𝑛𝑓 of conductor [𝑚, 𝑎𝑟𝑐ℎ]. Namely, each
contains a vector [𝑚, 𝑑, 𝑟,𝐷] with the following meaning: 𝑚 is the prime ideal factorization of the modulus,
𝑑 = [𝐿 : Q] is the absolute degree of 𝐿, 𝑟 is the number of real places of 𝐿, and 𝐷 is the factorization of its
absolute discriminant. We set 𝑑 = 𝑟 = 𝐷 = 0 if 𝑚 is not the finite part of a conductor.

• If arch was omitted, all 𝑡 = 2𝑟1 possible values are taken and a component of 𝑤 has the form
[𝑚, [[𝑑1, 𝑟1, 𝐷1], ..., [𝑑𝑡, 𝑟𝑡, 𝐷𝑡]]], where𝑚 is the finite part of the conductor as above, and [𝑑𝑖, 𝑟𝑖, 𝐷𝑖] are the
invariants of the ray class field of conductor [𝑚, 𝑣𝑖], where 𝑣𝑖 is the 𝑖-th Archimedean component, ordered
by inverse lexicographic order; so 𝑣1 = [0, ..., 0], 𝑣2 = [1, 0..., 0], etc. Again, we set 𝑑𝑖 = 𝑟𝑖 = 𝐷𝑖 = 0 if
[𝑚, 𝑣𝑖] is not a conductor.

Finally, each prime ideal 𝑝𝑟 = [𝑝, 𝛼, 𝑒, 𝑓, 𝛽] in the prime factorization 𝑚 is coded as the integer 𝑝.𝑛2 + (𝑓 −
1).𝑛+ (𝑗 − 1), where 𝑛 is the degree of the base field and 𝑗 is such that

pr = idealprimedec(:emphasis:`nf,p)[j]`.

𝑚 can be decoded using bnfdecodemodule.

Note that to compute such data for a single field, either bnrclassno or bnrdisc are (much) more efficient.

bnrgaloisapply(bnr, mat, H)

Apply the automorphism given by its matrix mat to the congruence subgroup 𝐻 given as a HNF matrix. The
matrix mat can be computed with bnrgaloismatrix.

bnrgaloismatrix(bnr, aut)
Return the matrix of the action of the automorphism aut of the base field bnf.nf on the generators of the ray
class field bnr.gen; aut can be given as a polynomial, an algebraic number, or a vector of automorphisms or a
Galois group as output by galoisinit, in which case a vector of matrices is returned (in the later case, only for
the generators aut.gen).

The generators bnr.gen need not be explicitly computed in the input bnr, which saves time: the result is well
defined in this case also.

? K = bnfinit(a^4-3*a^2+253009); B = bnrinit(K,9); B.cyc
%1 = [8400, 12, 6, 3]

(continues on next page)
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? G = nfgaloisconj(K)
%2 = [-a, a, -1/503*a^3 + 3/503*a, 1/503*a^3 - 3/503*a]~
? bnrgaloismatrix(B, G[2]) \\ G[2] = Id ...
%3 =
[1 0 0 0]

[0 1 0 0]

[0 0 1 0]

[0 0 0 1]
? bnrgaloismatrix(B, G[3]) \\ automorphism of order 2
%4 =
[799 0 0 2800]

[ 0 7 0 4]

[ 4 0 5 2]

[ 0 0 0 2]
? M = %^2; for (i=1, #B.cyc, M[i,] %= B.cyc[i]); M
%5 = \\ acts on ray class group as automorphism of order 2
[1 0 0 0]

[0 1 0 0]

[0 0 1 0]

[0 0 0 1]

See bnrisgalois for further examples.

bnrinit(bnf, f, flag, cycmod)
𝑏𝑛𝑓 is as output by bnfinit (including fundamental units), 𝑓 is a modulus, initializes data linked to the ray
class group structure corresponding to this module, a so-called bnr structure. One can input the attached bid
with generators for 𝑓 instead of the module itself, saving some time. (As in idealstar, the finite part of the
conductor may be given by a factorization into prime ideals, as produced by idealfactor.)

If the positive integer cycmod is present, only compute the ray class group modulo cycmod, which may save a lot
of time when some maximal ideals in 𝑓 have a huge residue field. In applications, we are given a congruence sub-
group 𝐻 and study the class field attached to 𝐶𝑙𝑓/𝐻 . If that finite Abelian group has an exponent which divides
cycmod, then we have changed nothing theoretically, while trivializing expensive discrete logs in residue fields
(since computations can be made modulo cycmod-th powers). This is useful in bnrclassfield, for instance
when computing 𝑝-elementary extensions.

The following member functions are available on the result: .bnf is the underlying bnf, .mod the modulus, .bid
the bid structure attached to the modulus; finally, .clgp, .no, .cyc, .gen refer to the ray class group (as a finite
abelian group), its cardinality, its elementary divisors, its generators (only computed if 𝑓𝑙𝑎𝑔 = 1).

The last group of functions are different from the members of the underlying bnf, which refer to the class group;
use :emphasis:`bnr.bnf.:emphasis:xxx` to access these, e.g. :emphasis:`bnr.bnf.cyc` to get the cyclic de-
composition of the class group.

They are also different from the members of the underlying bid, which refer to (Z𝐾/𝑓)*; use
:emphasis:`bnr.bid.:emphasis:xxx` to access these, e.g. :emphasis:`bnr.bid.no` to get 𝜑(𝑓).
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If 𝑓𝑙𝑎𝑔 = 0 (default), the generators of the ray class group are not explicitly computed, which saves time. Hence
:emphasis:`bnr.gen` would produce an error. Note that implicit generators are still fixed and stored in the bnr
(and guaranteed to be the same for fixed bnf and bid inputs), in terms of bnr.bnf.gen and bnr.bid.gen. The
computation which is not performed is the expansion of such products in the ray class group so as to fix eplicit
ideal representatives.

If 𝑓𝑙𝑎𝑔 = 1, as the default, except that generators are computed.

bnrisconductor(A, B, C)
Fast variant of bnrconductor(𝐴,𝐵,𝐶); 𝐴, 𝐵, 𝐶 represent an extension of the base field, given by class field
theory (see CFT (in the PARI manual)). Outputs 1 if this modulus is the conductor, and 0 otherwise. This is
slightly faster than bnrconductor when the character or subgroup is not primitive.

bnrisgalois(bnr, gal, H)

Check whether the class field attached to the subgroup 𝐻 is Galois over the subfield of bnr.nf fixed by the
group gal, which can be given as output by galoisinit, or as a matrix or a vector of matrices as output by
bnrgaloismatrix, the second option being preferable, since it saves the recomputation of the matrices. Note:
The function assumes that the ray class field attached to bnr is Galois, which is not checked.

In the following example, we lists the congruence subgroups of subextension of degree at most 3 of the ray class
field of conductor 9 which are Galois over the rationals.

? K = bnfinit(a^4-3*a^2+253009); B = bnrinit(K,9); G = galoisinit(K);
? [H | H<-subgrouplist(B,3), bnrisgalois(B,G,H)];
time = 160 ms.
? M = bnrgaloismatrix(B,G);
? [H | H<-subgrouplist(B,3), bnrisgalois(B,M,H)]
time = 1 ms.

The second computation is much faster since bnrgaloismatrix(B,G) is computed only once.

bnrisprincipal(bnr, x, flag)
Let bnr be the ray class group data output by bnrinit(, , 1) and let 𝑥 be an ideal in any form, coprime to the
modulus 𝑓 = 𝑏𝑛𝑟.𝑚𝑜𝑑. Solves the discrete logarithm problem in the ray class group, with respect to the generators
bnr.gen, in a way similar to bnfisprincipal. If 𝑥 is not coprime to the modulus of bnr the result is undefined.
Note that bnr need not contain the ray class group generators, i.e. it may be created with bnrinit(, , 0); in that
case, although bnr.gen is undefined, we can still fix natural generators for the ray class group (in terms of the
generators in bnr.bnf.gen and bnr.bid.gen) and compute with respect to them.

The binary digits of 𝑓𝑙𝑎𝑔 (default 𝑓𝑙𝑎𝑔 = 1) mean:

• 1: If set returns a 2-component vector [𝑒, 𝛼] where 𝑒 is the vector of components of 𝑥 on the ray class group
generators, 𝛼 is an element congruent to 1 𝑚𝑜𝑑*𝑓 such that 𝑥 = 𝛼

∏︀
𝑖 𝑔

𝑒𝑖
𝑖 . If unset, returns only 𝑒.

• 4: If set, returns [𝑒, 𝛼] where𝛼 is given in factored form (compact representation). This is orders of magnitude
faster.

? K = bnfinit(x^2 - 30); bnr = bnrinit(K, [4, [1,1]]);
? bnr.clgp \\ ray class group is isomorphic to Z/4 x Z/2 x Z/2
%2 = [16, [4, 2, 2]]
? P = idealprimedec(K, 3)[1]; \\ the ramified prime ideal above 3
? bnrisprincipal(bnr,P) \\ bnr.gen undefined !
%5 = [[3, 0, 0]~, 9]
? bnrisprincipal(bnr,P, 0) \\ omit principal part
%5 = [3, 0, 0]~
? bnr = bnrinit(bnr, bnr.bid, 1); \\ include explicit generators

(continues on next page)
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? bnrisprincipal(bnr,P) \\ ... alpha is different !
%7 = [[3, 0, 0]~, 1/128625]

It may be surprising that the generator𝛼 is different although the underlying bnf and bid are the same. This defines
unique generators for the ray class group as ideal classes, whether we use bnrinit(,0) or bnrinit(,1). But
the actual ideal representatives (implicit if the flag is 0, computed and stored in the bnr if the flag is 1) are in
general different and this is what happens here. Indeed, the implicit generators are naturally expressed expressed
in terms of bnr.bnf.gen and bnr.bid.gen and then expanded and simplified (in the same ideal class) so that
we obtain ideal representatives for bnr.gen which are as simple as possible. And indeed the quotient of the two
𝛼 found is 1 modulo the conductor (and positive at the infinite places it contains), and this is the only guaranteed
property.

Beware that, when bnr is generated using bnrinit(, cycmod), the results are given in 𝐶𝑙𝑓 modulo cycmod-th
powers:

? bnr2 = bnrinit(K, bnr.mod,, 2); \\ modulo squares
? bnr2.clgp
%9 = [8, [2, 2, 2]] \\ bnr.clgp tensored by Z/2Z
? bnrisprincipal(bnr2,P, 0)
%10 = [1, 0, 0]~

bnrmap(A, B)
This function has two different uses:

• if 𝐴 and 𝐵 are bnr structures for the same bnf attached to moduli 𝑚𝐴 and 𝑚𝐵 with 𝑚𝐵‖𝑚𝐴, return the
canonical surjection from 𝐴 to 𝐵, i.e. from the ray class group moodulo 𝑚𝐴 to the ray class group modulo
𝑚𝐵 . The map is coded by a triple [𝑀, 𝑐𝑦𝑐𝐴, 𝑐𝑦𝑐𝐵 ]: 𝑀 gives the image of the fixed ray class group generators
of 𝐴 in terms of the ones in 𝐵, 𝑐𝑦𝑐𝐴 and 𝑐𝑦𝑐𝐵 are the cyclic structures A.cyc and B.cyc respectively. Note
that this function does not need 𝐴 or 𝐵 to contain explicit generators for the ray class groups: they may be
created using bnrinit(,0).

If 𝐵 is only known modulo 𝑁 -th powers (from bnrinit(,N)), the result is correct provided 𝑁 is a multiple of
the exponent of 𝐴.

• if 𝐴 is a projection map as above and 𝐵 is either a congruence subgroup 𝐻 , or a ray class character 𝜒, or
a discrete logarithm (from bnrisprincipal) modulo 𝑚𝐴 whose conductor divides 𝑚𝐵 , return the image
of the subgroup (resp. the character, the discrete logarighm) as defined modulo 𝑚𝐵 . The main use of this
variant is to compute the primitive subgroup or character attached to a bnr modulo their conductor. This is
more efficient than bnrconductor in two respects: the bnr attached to the conductor need only be computed
once and, most importantly, the ray class group can be computed modulo𝑁 -th powers, where𝑁 is a multiple
of the exponent of 𝐶𝑙𝑚𝐴

/𝐻 (resp. of the order of 𝜒). Whereas bnrconductor is specified to return a bnr
attached to the full ray class group, which may lead to untractable discrete logarithms in the full ray class
group instead of a tiny quotient.

bnrrootnumber(bnr, chi, flag, precision)
If 𝜒 = 𝑐ℎ𝑖 is a character over bnr, not necessarily primitive, let 𝐿(𝑠, 𝜒) =

∑︀
𝑖𝑑 𝜒(𝑖𝑑)𝑁(𝑖𝑑)−𝑠 be the attached

Artin L-function. Returns the so-called Artin root number, i.e. the complex number 𝑊 (𝜒) of modulus 1 such
that

Λ(1 − 𝑠, 𝜒) = 𝑊 (𝜒)Λ(𝑠, 𝜒)

where Λ(𝑠, 𝜒) = 𝐴(𝜒)𝑠/2𝛾𝜒(𝑠)𝐿(𝑠, 𝜒) is the enlarged L-function attached to 𝐿.

You can set 𝑓𝑙𝑎𝑔 = 1 if the character is known to be primitive. Example:
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bnf = bnfinit(x^2 - x - 57);
bnr = bnrinit(bnf, [7,[1,1]]);
bnrrootnumber(bnr, [2,1])

returns the root number of the character 𝜒 of Cl7𝑜𝑜1𝑜𝑜2(Q(
√

229)) defined by 𝜒(𝑔𝑎1𝑔
𝑏
2) = 𝜁2𝑎1 𝜁𝑏2 . Here 𝑔1, 𝑔2 are

the generators of the ray-class group given by bnr.gen and 𝜁1 = 𝑒2𝑖𝜋/𝑁1 , 𝜁2 = 𝑒2𝑖𝜋/𝑁2 where 𝑁1, 𝑁2 are the
orders of 𝑔1 and 𝑔2 respectively (𝑁1 = 6 and 𝑁2 = 3 as bnr.cyc readily tells us).

bnrstark(bnr, subgroup, precision)
bnr being as output by bnrinit, finds a relative equation for the class field corresponding to the modulus in bnr
and the given congruence subgroup (as usual, omit 𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝 if you want the whole ray class group).

The main variable of bnr must not be 𝑥, and the ground field and the class field must be totally real. When the
base field is Q, the vastly simpler galoissubcyclo is used instead. Here is an example:

bnf = bnfinit(y^2 - 3);
bnr = bnrinit(bnf, 5);
bnrstark(bnr)

returns the ray class field of Q(
√

3) modulo 5. Usually, one wants to apply to the result one of

rnfpolredbest(bnf, pol) \\ compute a reduced relative polynomial
rnfpolredbest(bnf, pol, 2) \\ compute a reduced absolute polynomial

The routine uses Stark units and needs to find a suitable auxiliary conductor, which may not exist when the class
field is not cyclic over the base. In this case bnrstark is allowed to return a vector of polynomials defining inde-
pendent relative extensions, whose compositum is the requested class field. We decided that it was useful to keep
the extra information thus made available, hence the user has to take the compositum herself, see nfcompositum.

Even if it exists, the auxiliary conductor may be so large that later computations become unfeasible. (And of
course, Stark’s conjecture may simply be wrong.) In case of difficulties, try bnrclassfield:

? bnr = bnrinit(bnfinit(y^8-12*y^6+36*y^4-36*y^2+9,1), 2);
? bnrstark(bnr)
*** at top-level: bnrstark(bnr)
*** ^-------------
*** bnrstark: need 3919350809720744 coefficients in initzeta.
*** Computation impossible.
? bnrclassfield(bnr)
time = 20 ms.
%2 = [x^2 + (-2/3*y^6 + 7*y^4 - 14*y^2 + 3)]

call(f, A)
𝐴 = [𝑎1, ..., 𝑎𝑛] being a vector and 𝑓 being a function, returns the evaluation of 𝑓(𝑎1, ..., 𝑎𝑛). 𝑓 can also be
the name of a built-in GP function. If #𝐴 = 1, call (𝑓,𝐴) = apply (𝑓,𝐴)[1]. If 𝑓 is variadic, the variadic
arguments must grouped in a vector in the last component of 𝐴.

This function is useful

• when writing a variadic function, to call another one:

fprintf(file,format,args[..]) = write(file,call(strprintf,[format,args]))

• when dealing with function arguments with unspecified arity

The function below implements a global memoization interface:
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memo=Map();
memoize(f,A[..])=
{
my(res);
if(!mapisdefined(memo, [f,A], &res),
res = call(f,A);
mapput(memo,[f,A],res));
res;
}

for example:

? memoize(factor,2^128+1)
%3 = [59649589127497217,1;5704689200685129054721,1]
? ##
*** last result computed in 76 ms.
? memoize(factor,2^128+1)
%4 = [59649589127497217,1;5704689200685129054721,1]
? ##
*** last result computed in 0 ms.
? memoize(ffinit,3,3)
%5 = Mod(1,3)*x^3+Mod(1,3)*x^2+Mod(1,3)*x+Mod(2,3)
? fibo(n)=if(n==0,0,n==1,1,memoize(fibo,n-2)+memoize(fibo,n-1));
? fibo(100)
%7 = 354224848179261915075

• to call operators through their internal names without using alias

matnbelts(M) = call("_*_",matsize(M))

ceil(x)
Ceiling of 𝑥. When 𝑥 is in R, the result is the smallest integer greater than or equal to 𝑥. Applied to a rational
function, 𝑐𝑒𝑖𝑙(𝑥) returns the Euclidean quotient of the numerator by the denominator.

centerlift(x, v)
Same as lift, except that t_INTMOD and t_PADIC components are lifted using centered residues:

• for a t_INTMOD 𝑥 ∈ Z/𝑛Z, the lift 𝑦 is such that −𝑛/2 < 𝑦 <= 𝑛/2.

• a t_PADIC 𝑥 is lifted in the same way as above (modulo 𝑝𝑝𝑎𝑑𝑖𝑐𝑝𝑟𝑒𝑐(𝑥)) if its valuation 𝑣 is nonnegative; if
not, returns the fraction 𝑝𝑣 centerlift(𝑥𝑝−𝑣); in particular, rational reconstruction is not attempted. Use
bestappr for this.

For backward compatibility, centerlift(x,'v) is allowed as an alias for lift(x,'v).

characteristic(x)
Returns the characteristic of the base ring over which 𝑥 is defined (as defined by t_INTMOD and t_FFELT compo-
nents). The function raises an exception if incompatible primes arise from t_FFELT and t_PADIC components.

? characteristic(Mod(1,24)*x + Mod(1,18)*y)
%1 = 6

charconj(cyc, chi)
Let cyc represent a finite abelian group by its elementary divisors, i.e. (𝑑𝑗) represents

∑︀
𝑗<=𝑘 Z/𝑑𝑗Z with
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𝑑𝑘|...‖𝑑1; any object which has a .cyc method is also allowed, e.g. the output of znstar or bnrinit. A char-
acter on this group is given by a row vector 𝜒 = [𝑎1, ..., 𝑎𝑛] such that 𝜒(

∏︀
𝑔
𝑛𝑗

𝑗 ) = exp(2𝜋𝑖
∑︀
𝑎𝑗𝑛𝑗/𝑑𝑗), where

𝑔𝑗 denotes the generator (of order 𝑑𝑗) of the 𝑗-th cyclic component.

This function returns the conjugate character.

? cyc = [15,5]; chi = [1,1];
? charconj(cyc, chi)
%2 = [14, 4]
? bnf = bnfinit(x^2+23);
? bnf.cyc
%4 = [3]
? charconj(bnf, [1])
%5 = [2]

For Dirichlet characters (when cyc is znstar(q,1)), characters in Conrey representation are available, see
dirichletchar (in the PARI manual) or ??character:

? G = znstar(8, 1); \\ (Z/8Z)^*
? charorder(G, 3) \\ Conrey label
%2 = 2
? chi = znconreylog(G, 3);
? charorder(G, chi) \\ Conrey logarithm
%4 = 2

chardiv(cyc, a, b)
Let cyc represent a finite abelian group by its elementary divisors, i.e. (𝑑𝑗) represents

∑︀
𝑗<=𝑘 Z/𝑑𝑗Z with

𝑑𝑘|...‖𝑑1; any object which has a .cyc method is also allowed, e.g. the output of znstar or bnrinit. A char-
acter on this group is given by a row vector 𝑎 = [𝑎1, ..., 𝑎𝑛] such that 𝜒(

∏︀
𝑔
𝑛𝑗

𝑗 ) = exp(2𝜋𝑖
∑︀
𝑎𝑗𝑛𝑗/𝑑𝑗), where

𝑔𝑗 denotes the generator (of order 𝑑𝑗) of the 𝑗-th cyclic component.

Given two characters 𝑎 and 𝑏, return the character 𝑎/𝑏 = 𝑎𝑏.

? cyc = [15,5]; a = [1,1]; b = [2,4];
? chardiv(cyc, a,b)
%2 = [14, 2]
? bnf = bnfinit(x^2+23);
? bnf.cyc
%4 = [3]
? chardiv(bnf, [1], [2])
%5 = [2]

For Dirichlet characters on (Z/𝑁Z)*, additional representations are available (Conrey labels, Conrey logarithm),
see dirichletchar (in the PARI manual) or ??character. If the two characters are in the same format, the
result is given in the same format, otherwise a Conrey logarithm is used.

? G = znstar(100, 1);
? G.cyc
%2 = [20, 2]
? a = [10, 1]; \\ usual representation for characters
? b = 7; \\ Conrey label;
? c = znconreylog(G, 11); \\ Conrey log
? chardiv(G, b,b)
%6 = 1 \\ Conrey label
? chardiv(G, a,b)

(continues on next page)
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%7 = [0, 5]~ \\ Conrey log
? chardiv(G, a,c)
%7 = [0, 14]~ \\ Conrey log

chareval(G, chi, x, z)
Let 𝐺 be an abelian group structure affording a discrete logarithm method, e.g 𝐺 = 𝑧𝑛𝑠𝑡𝑎𝑟(𝑁, 1) for (Z/𝑁Z)*

or a bnr structure, let 𝑥 be an element of 𝐺 and let chi be a character of 𝐺 (see the note below for details). This
function returns the value of chi at 𝑥.

Note on characters. Let𝐾 be some field. If𝐺 is an abelian group, let 𝜒 : 𝐺→ 𝐾* be a character of finite order
and let 𝑜 be a multiple of the character order such that 𝜒(𝑛) = 𝜁𝑐(𝑛) for some fixed 𝜁 ∈ 𝐾* of multiplicative
order 𝑜 and a unique morphism 𝑐 : 𝐺→ (Z/𝑜Z,+). Our usual convention is to write

𝐺 = (Z/𝑜1Z)𝑔1 ⊕ ...⊕ (Z/𝑜𝑑Z)𝑔𝑑

for some generators (𝑔𝑖) of respective order 𝑑𝑖, where the group has exponent 𝑜 := 𝑙𝑐𝑚𝑖𝑜𝑖. Since 𝜁𝑜 = 1, the
vector (𝑐𝑖) in

∏︀
(Z/𝑜𝑖Z) defines a character 𝜒 on 𝐺 via 𝜒(𝑔𝑖) = 𝜁𝑐𝑖(𝑜/𝑜𝑖) for all 𝑖. Classical Dirichlet characters

have values in 𝐾 = C and we can take 𝜁 = exp(2𝑖𝜋/𝑜).

Note on Dirichlet characters. In the special case where bid is attached to𝐺 = (Z/𝑞Z)* (as per G = znstar(q,
1)), the Dirichlet character chi can be written in one of the usual 3 formats: a t_VEC in terms of bid.gen as
above, a t_COL in terms of the Conrey generators, or a t_INT (Conrey label); see dirichletchar (in the PARI
manual) or ??character.

The character value is encoded as follows, depending on the optional argument 𝑧:

• If 𝑧 is omitted: return the rational number 𝑐(𝑥)/𝑜 for 𝑥 coprime to 𝑞, where we normalize 0 <= 𝑐(𝑥) < 𝑜.
If 𝑥 can not be mapped to the group (e.g. 𝑥 is not coprime to the conductor of a Dirichlet or Hecke character)
we return the sentinel value −1.

• If 𝑧 is an integer 𝑜, then we assume that 𝑜 is a multiple of the character order and we return the integer 𝑐(𝑥)
when 𝑥 belongs to the group, and the sentinel value −1 otherwise.

• 𝑧 can be of the form [𝑧𝑒𝑡𝑎, 𝑜], where zeta is an 𝑜-th root of 1 and 𝑜 is a multiple of the character order. We
return 𝜁𝑐(𝑥) if 𝑥 belongs to the group, and the sentinel value 0 otherwise. (Note that this coincides with the
usual extension of Dirichlet characters to Z, or of Hecke characters to general ideals.)

• Finally, 𝑧 can be of the form [𝑣𝑧𝑒𝑡𝑎, 𝑜], where vzeta is a vector of powers 𝜁0, ..., 𝜁𝑜−1 of some 𝑜-th root of
1 and 𝑜 is a multiple of the character order. As above, we return 𝜁𝑐(𝑥) after a table lookup. Or the sentinel
value 0.

chargalois(cyc, ORD)

Let cyc represent a finite abelian group by its elementary divisors (any object which has a .cyc method is also
allowed, i.e. the output of znstar or bnrinit). Return a list of representatives for the Galois orbits of complex
characters of 𝐺. If ORD is present, select characters depending on their orders:

• if ORD is a t_INT, restrict to orders less than this bound;

• if ORD is a t_VEC or t_VECSMALL, restrict to orders in the list.

? G = znstar(96);
? #chargalois(G) \\ 16 orbits of characters mod 96
%2 = 16
? #chargalois(G,4) \\ order less than 4
%3 = 12
? chargalois(G,[1,4]) \\ order 1 or 4; 5 orbits
%4 = [[0, 0, 0], [2, 0, 0], [2, 1, 0], [2, 0, 1], [2, 1, 1]]
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Given a character𝜒, of order𝑛 (charorder(G,chi)), the elements in its orbit are the 𝜑(𝑛) characters𝜒𝑖, (𝑖, 𝑛) =
1.

charker(cyc, chi)
Let cyc represent a finite abelian group by its elementary divisors, i.e. (𝑑𝑗) represents

∑︀
𝑗<=𝑘 Z/𝑑𝑗Z with

𝑑𝑘|...‖𝑑1; any object which has a .cyc method is also allowed, e.g. the output of znstar or bnrinit. A char-
acter on this group is given by a row vector 𝜒 = [𝑎1, ..., 𝑎𝑛] such that 𝜒(

∏︀
𝑔
𝑛𝑗

𝑗 ) = exp(2𝜋𝑖
∑︀
𝑎𝑗𝑛𝑗/𝑑𝑗), where

𝑔𝑗 denotes the generator (of order 𝑑𝑗) of the 𝑗-th cyclic component.

This function returns the kernel of 𝜒, as a matrix 𝐾 in HNF which is a left-divisor of matdiagonal(d). Its
columns express in terms of the 𝑔𝑗 the generators of the subgroup. The determinant of 𝐾 is the kernel index.

? cyc = [15,5]; chi = [1,1];
? charker(cyc, chi)
%2 =
[15 12]

[ 0 1]

? bnf = bnfinit(x^2+23);
? bnf.cyc
%4 = [3]
? charker(bnf, [1])
%5 =
[3]

Note that for Dirichlet characters (when cyc is znstar(q, 1)), characters in Conrey representation are available,
see dirichletchar (in the PARI manual) or ??character.

? G = znstar(8, 1); \\ (Z/8Z)^*
? charker(G, 1) \\ Conrey label for trivial character
%2 =
[1 0]

[0 1]

charmul(cyc, a, b)
Let cyc represent a finite abelian group by its elementary divisors, i.e. (𝑑𝑗) represents

∑︀
𝑗<=𝑘 Z/𝑑𝑗Z with

𝑑𝑘|...‖𝑑1; any object which has a .cyc method is also allowed, e.g. the output of znstar or bnrinit. A char-
acter on this group is given by a row vector 𝑎 = [𝑎1, ..., 𝑎𝑛] such that 𝜒(

∏︀
𝑔
𝑛𝑗

𝑗 ) = exp(2𝜋𝑖
∑︀
𝑎𝑗𝑛𝑗/𝑑𝑗), where

𝑔𝑗 denotes the generator (of order 𝑑𝑗) of the 𝑗-th cyclic component.

Given two characters 𝑎 and 𝑏, return the product character 𝑎𝑏.

? cyc = [15,5]; a = [1,1]; b = [2,4];
? charmul(cyc, a,b)
%2 = [3, 0]
? bnf = bnfinit(x^2+23);
? bnf.cyc
%4 = [3]
? charmul(bnf, [1], [2])
%5 = [0]

For Dirichlet characters on (Z/𝑁Z)*, additional representations are available (Conrey labels, Conrey logarithm),
see dirichletchar (in the PARI manual) or ??character. If the two characters are in the same format, their
product is given in the same format, otherwise a Conrey logarithm is used.
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? G = znstar(100, 1);
? G.cyc
%2 = [20, 2]
? a = [10, 1]; \\ usual representation for characters
? b = 7; \\ Conrey label;
? c = znconreylog(G, 11); \\ Conrey log
? charmul(G, b,b)
%6 = 49 \\ Conrey label
? charmul(G, a,b)
%7 = [0, 15]~ \\ Conrey log
? charmul(G, a,c)
%7 = [0, 6]~ \\ Conrey log

charorder(cyc, chi)
Let cyc represent a finite abelian group by its elementary divisors, i.e. (𝑑𝑗) represents

∑︀
𝑗<=𝑘 Z/𝑑𝑗Z with

𝑑𝑘|...‖𝑑1; any object which has a .cyc method is also allowed, e.g. the output of znstar or bnrinit. A char-
acter on this group is given by a row vector 𝜒 = [𝑎1, ..., 𝑎𝑛] such that 𝜒(

∏︀
𝑔
𝑛𝑗

𝑗 ) = exp(2𝜋𝑖
∑︀
𝑎𝑗𝑛𝑗/𝑑𝑗), where

𝑔𝑗 denotes the generator (of order 𝑑𝑗) of the 𝑗-th cyclic component.

This function returns the order of the character chi.

? cyc = [15,5]; chi = [1,1];
? charorder(cyc, chi)
%2 = 15
? bnf = bnfinit(x^2+23);
? bnf.cyc
%4 = [3]
? charorder(bnf, [1])
%5 = 3

For Dirichlet characters (when cyc is znstar(q, 1)), characters in Conrey representation are available, see
dirichletchar (in the PARI manual) or ??character:

? G = znstar(100, 1); \\ (Z/100Z)^*
? charorder(G, 7) \\ Conrey label
%2 = 4

charpoly(A, v, flag)
characteristic polynomial of𝐴 with respect to the variable 𝑣, i.e. determinant of 𝑣 * 𝐼−𝐴 if𝐴 is a square matrix.

? charpoly([1,2;3,4]);
%1 = x^2 - 5*x - 2
? charpoly([1,2;3,4],, 't)
%2 = t^2 - 5*t - 2

If 𝐴 is not a square matrix, the function returns the characteristic polynomial of the map “multiplication by 𝐴” if
𝐴 is a scalar:

? charpoly(Mod(x+2, x^3-2))
%1 = x^3 - 6*x^2 + 12*x - 10
? charpoly(I)
%2 = x^2 + 1
? charpoly(quadgen(5))

(continues on next page)
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%3 = x^2 - x - 1
? charpoly(ffgen(ffinit(2,4)))
%4 = Mod(1, 2)*x^4 + Mod(1, 2)*x^3 + Mod(1, 2)*x^2 + Mod(1, 2)*x + Mod(1, 2)

The value of 𝑓𝑙𝑎𝑔 is only significant for matrices, and we advise to stick to the default value. Let 𝑛 be the
dimension of 𝐴.

If 𝑓𝑙𝑎𝑔 = 0, same method (Le Verrier’s) as for computing the adjoint matrix, i.e. using the traces of the powers
of 𝐴. Assumes that 𝑛! is invertible; uses 𝑂(𝑛4) scalar operations.

If 𝑓𝑙𝑎𝑔 = 1, uses Lagrange interpolation which is usually the slowest method. Assumes that 𝑛! is invertible; uses
𝑂(𝑛4) scalar operations.

If 𝑓𝑙𝑎𝑔 = 2, uses the Hessenberg form. Assumes that the base ring is a field. Uses 𝑂(𝑛3) scalar operations, but
suffers from coefficient explosion unless the base field is finite or R.

If 𝑓𝑙𝑎𝑔 = 3, uses Berkowitz’s division free algorithm, valid over any ring (commutative, with unit). Uses 𝑂(𝑛4)
scalar operations.

If 𝑓𝑙𝑎𝑔 = 4, 𝑥 must be integral. Uses a modular algorithm: Hessenberg form for various small primes, then
Chinese remainders.

If 𝑓𝑙𝑎𝑔 = 5 (default), uses the “best” method given 𝑥. This means we use Berkowitz unless the base ring is Z
(use 𝑓𝑙𝑎𝑔 = 4) or a field where coefficient explosion does not occur, e.g. a finite field or the reals (use 𝑓𝑙𝑎𝑔 = 2).

charpow(cyc, a, n)
Let cyc represent a finite abelian group by its elementary divisors, i.e. (𝑑𝑗) represents

∑︀
𝑗<=𝑘 Z/𝑑𝑗Z with

𝑑𝑘|...‖𝑑1; any object which has a .cyc method is also allowed, e.g. the output of znstar or bnrinit. A char-
acter on this group is given by a row vector 𝑎 = [𝑎1, ..., 𝑎𝑛] such that 𝜒(

∏︀
𝑔
𝑛𝑗

𝑗 ) = exp(2𝜋𝑖
∑︀
𝑎𝑗𝑛𝑗/𝑑𝑗), where

𝑔𝑗 denotes the generator (of order 𝑑𝑗) of the 𝑗-th cyclic component.

Given 𝑛 ∈ Z and a character 𝑎, return the character 𝑎𝑛.

? cyc = [15,5]; a = [1,1];
? charpow(cyc, a, 3)
%2 = [3, 3]
? charpow(cyc, a, 5)
%2 = [5, 0]
? bnf = bnfinit(x^2+23);
? bnf.cyc
%4 = [3]
? charpow(bnf, [1], 3)
%5 = [0]

For Dirichlet characters on (Z/𝑁Z)*, additional representations are available (Conrey labels, Conrey logarithm),
see dirichletchar (in the PARI manual) or ??character and the output uses the same format as the input.

? G = znstar(100, 1);
? G.cyc
%2 = [20, 2]
? a = [10, 1]; \\ standard representation for characters
? b = 7; \\ Conrey label;
? c = znconreylog(G, 11); \\ Conrey log
? charpow(G, a,3)
%6 = [10, 1] \\ standard representation
? charpow(G, b,3)

(continues on next page)
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%7 = 43 \\ Conrey label
? charpow(G, c,3)
%8 = [1, 8]~ \\ Conrey log

chinese(x, y)
If 𝑥 and 𝑦 are both intmods or both polmods, creates (with the same type) a 𝑧 in the same residue class as 𝑥 and
in the same residue class as 𝑦, if it is possible.

? chinese(Mod(1,2), Mod(2,3))
%1 = Mod(5, 6)
? chinese(Mod(x,x^2-1), Mod(x+1,x^2+1))
%2 = Mod(-1/2*x^2 + x + 1/2, x^4 - 1)

This function also allows vector and matrix arguments, in which case the operation is recursively applied to each
component of the vector or matrix.

? chinese([Mod(1,2),Mod(1,3)], [Mod(1,5),Mod(2,7)])
%3 = [Mod(1, 10), Mod(16, 21)]

For polynomial arguments in the same variable, the function is applied to each coefficient; if the polynomials have
different degrees, the high degree terms are copied verbatim in the result, as if the missing high degree terms in
the polynomial of lowest degree had been Mod(0,1). Since the latter behavior is usually not the desired one, we
propose to convert the polynomials to vectors of the same length first:

? P = x+1; Q = x^2+2*x+1;
? chinese(P*Mod(1,2), Q*Mod(1,3))
%4 = Mod(1, 3)*x^2 + Mod(5, 6)*x + Mod(3, 6)
? chinese(Vec(P,3)*Mod(1,2), Vec(Q,3)*Mod(1,3))
%5 = [Mod(1, 6), Mod(5, 6), Mod(4, 6)]
? Pol(%)
%6 = Mod(1, 6)*x^2 + Mod(5, 6)*x + Mod(4, 6)

If 𝑦 is omitted, and 𝑥 is a vector, chinese is applied recursively to the components of 𝑥, yielding a residue
belonging to the same class as all components of 𝑥.

Finally 𝑐ℎ𝑖𝑛𝑒𝑠𝑒(𝑥, 𝑥) = 𝑥 regardless of the type of 𝑥; this allows vector arguments to contain other data, so long
as they are identical in both vectors.

cmp(x, y)
Gives the result of a comparison between arbitrary objects 𝑥 and 𝑦 (as −1, 0 or 1). The underlying order relation
is transitive, the function returns 0 if and only if 𝑥 === 𝑦. It has no mathematical meaning but satisfies the
following properties when comparing entries of the same type:

• two t_INT s compare as usual (i.e. cmp(𝑥, 𝑦) < 0 if and only if 𝑥 < 𝑦);

• two t_VECSMALL s of the same length compare lexicographically;

• two t_STR s compare lexicographically.

In case all components are equal up to the smallest length of the operands, the more complex is considered to be
larger. More precisely, the longest is the largest; when lengths are equal, we have matrix > vector > scalar. For
example:

? cmp(1, 2)
%1 = -1

(continues on next page)
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? cmp(2, 1)
%2 = 1
? cmp(1, 1.0) \\ note that 1 == 1.0, but (1===1.0) is false.
%3 = -1
? cmp(x + Pi, [])
%4 = -1

This function is mostly useful to handle sorted lists or vectors of arbitrary objects. For instance, if 𝑣 is a vector,
the construction vecsort(v, cmp) is equivalent to Set(v).

component(x, n)
Extracts the 𝑛− 𝑡ℎ-component of 𝑥. This is to be understood as follows: every PARI type has one or two initial
code words. The components are counted, starting at 1, after these code words. In particular if 𝑥 is a vector, this is
indeed the 𝑛− 𝑡ℎ-component of 𝑥, if 𝑥 is a matrix, the 𝑛− 𝑡ℎ column, if 𝑥 is a polynomial, the 𝑛− 𝑡ℎ coefficient
(i.e. of degree 𝑛− 1), and for power series, the 𝑛− 𝑡ℎ significant coefficient.

For polynomials and power series, one should rather use polcoeff, and for vectors and matrices, the [] operator.
Namely, if 𝑥 is a vector, then x[n] represents the 𝑛− 𝑡ℎ component of 𝑥. If 𝑥 is a matrix, x[m,n] represents the
coefficient of row m and column n of the matrix, x[m,] represents the𝑚− 𝑡ℎ row of 𝑥, and x[,n] represents the
𝑛− 𝑡ℎ column of 𝑥.

Using of this function requires detailed knowledge of the structure of the different PARI types, and thus it should
almost never be used directly. Some useful exceptions:

? x = 3 + O(3^5);
? component(x, 2)
%2 = 81 \\ p^(p-adic accuracy)
? component(x, 1)
%3 = 3 \\ p
? q = Qfb(1,2,3);
? component(q, 1)
%5 = 1

concat(x, y)
Concatenation of 𝑥 and 𝑦. If 𝑥 or 𝑦 is not a vector or matrix, it is considered as a one-dimensional vector. All
types are allowed for 𝑥 and 𝑦, but the sizes must be compatible. Note that matrices are concatenated horizontally,
i.e. the number of rows stays the same. Using transpositions, one can concatenate them vertically, but it is often
simpler to use matconcat.

? x = matid(2); y = 2*matid(2);
? concat(x,y)
%2 =
[1 0 2 0]

[0 1 0 2]
? concat(x~,y~)~
%3 =
[1 0]

[0 1]

[2 0]

(continues on next page)
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[0 2]
? matconcat([x;y])
%4 =
[1 0]

[0 1]

[2 0]

[0 2]

To concatenate vectors sideways (i.e. to obtain a two-row or two-column matrix), use Mat instead, or matconcat:

? x = [1,2];
? y = [3,4];
? concat(x,y)
%3 = [1, 2, 3, 4]

? Mat([x,y]~)
%4 =
[1 2]

[3 4]
? matconcat([x;y])
%5 =
[1 2]

[3 4]

Concatenating a row vector to a matrix having the same number of columns will add the row to the matrix (top
row if the vector is 𝑥, i.e. comes first, and bottom row otherwise).

The empty matrix [;] is considered to have a number of rows compatible with any operation, in particular
concatenation. (Note that this is not the case for empty vectors [ ] or [ ]~.)

If 𝑦 is omitted, 𝑥 has to be a row vector or a list, in which case its elements are concatenated, from left to right,
using the above rules.

? concat([1,2], [3,4])
%1 = [1, 2, 3, 4]
? a = [[1,2]~, [3,4]~]; concat(a)
%2 =
[1 3]

[2 4]

? concat([1,2; 3,4], [5,6]~)
%3 =
[1 2 5]

[3 4 6]
? concat([%, [7,8]~, [1,2,3,4]])
%5 =

(continues on next page)
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[1 2 5 7]

[3 4 6 8]

[1 2 3 4]

conj(x)
Conjugate of 𝑥. The meaning of this is clear, except that for real quadratic numbers, it means conjugation in
the real quadratic field. This function has no effect on integers, reals, intmods, fractions or 𝑝-adics. The only
forbidden type is polmod (see conjvec for this).

conjvec(z, precision)
Conjugate vector representation of 𝑧. If 𝑧 is a polmod, equal to Mod(𝑎, 𝑇 ), this gives a vector of length 𝑑𝑒𝑔𝑟𝑒𝑒(𝑇 )
containing:

• the complex embeddings of 𝑧 if 𝑇 has rational coefficients, i.e. the 𝑎(𝑟[𝑖]) where 𝑟 = 𝑝𝑜𝑙𝑟𝑜𝑜𝑡𝑠(𝑇 );

• the conjugates of 𝑧 if 𝑇 has some intmod coefficients;

if 𝑧 is a finite field element, the result is the vector of conjugates [𝑧, 𝑧𝑝, 𝑧𝑝
2

, ..., 𝑧𝑝
𝑛−1

] where 𝑛 = 𝑑𝑒𝑔𝑟𝑒𝑒(𝑇 ).

If 𝑧 is an integer or a rational number, the result is 𝑧. If 𝑧 is a (row or column) vector, the result is a matrix whose
columns are the conjugate vectors of the individual elements of 𝑧.

content(x, D)

Computes the gcd of all the coefficients of 𝑥, when this gcd makes sense. This is the natural definition if 𝑥 is a
polynomial (and by extension a power series) or a vector/matrix. This is in general a weaker notion than the ideal
generated by the coefficients:

? content(2*x+y)
%1 = 1 \\ = gcd(2,y) over Q[y]

If 𝑥 is a scalar, this simply returns the absolute value of 𝑥 if 𝑥 is rational (t_INT or t_FRAC), and either 1 (inexact
input) or 𝑥 (exact input) otherwise; the result should be identical to gcd(x, 0).

The content of a rational function is the ratio of the contents of the numerator and the denominator. In recursive
structures, if a matrix or vector coefficient 𝑥 appears, the gcd is taken not with 𝑥, but with its content:

? content([ [2], 4*matid(3) ])
%1 = 2

The content of a t_VECSMALL is computed assuming the entries are signed integers.

The optional argument 𝐷 allows to control over which ring we compute and get a more predictable behaviour:

• 1: we only consider the underlying Q-structure and the denominator is a (positive) rational number

• a simple variable, say 'x: all entries are considered as rational functions in 𝐾(𝑥) for some field 𝐾 and the
content is an element of 𝐾.

? f = x + 1/y + 1/2;
? content(f) \\ as a t_POL in x
%2 = 1/(2*y)
? content(f, 1) \\ Q-content
%3 = 1/2
? content(f, y) \\ as a rational function in y
%4 = 1/2

(continues on next page)
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? g = x^2*y + y^2*x;
? content(g, x)
%6 = y
? content(g, y)
%7 = x

contfrac(x, b, nmax)
Returns the row vector whose components are the partial quotients of the continued fraction expansion of 𝑥. In
other words, a result [𝑎0, ..., 𝑎𝑛] means that 𝑥 𝑎0 + 1/(𝑎1 + ...+ 1/𝑎𝑛). The output is normalized so that 𝑎𝑛! = 1
(unless we also have 𝑛 = 0).

The number of partial quotients 𝑛 + 1 is limited by nmax. If nmax is omitted, the expansion stops at the last
significant partial quotient.

? \p19
realprecision = 19 significant digits
? contfrac(Pi)
%1 = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2]
? contfrac(Pi,, 3) \\ n = 2
%2 = [3, 7, 15]

𝑥 can also be a rational function or a power series.

If a vector 𝑏 is supplied, the numerators are equal to the coefficients of 𝑏, instead of all equal to 1 as above; more
precisely, 𝑥 (1/𝑏0)(𝑎0 + 𝑏1/(𝑎1 + ...+ 𝑏𝑛/𝑎𝑛)); for a numerical continued fraction (𝑥 real), the 𝑎𝑖 are integers,
as large as possible; if 𝑥 is a rational function, they are polynomials with deg 𝑎𝑖 = deg 𝑏𝑖 + 1. The length of
the result is then equal to the length of 𝑏, unless the next partial quotient cannot be reliably computed, in which
case the expansion stops. This happens when a partial remainder is equal to zero (or too small compared to the
available significant digits for 𝑥 a t_REAL).

A direct implementation of the numerical continued fraction contfrac(x,b) described above would be

\\ "greedy" generalized continued fraction
cf(x, b) =
{ my( a= vector(#b), t );

x *= b[1];
for (i = 1, #b,
a[i] = floor(x);
t = x - a[i]; if (!t || i == #b, break);
x = b[i+1] / t;
); a;
}

There is some degree of freedom when choosing the 𝑎𝑖; the program above can easily be modified to derive
variants of the standard algorithm. In the same vein, although no builtin function implements the related Engel
expansion (a special kind of Egyptian fraction decomposition: 𝑥 = 1/𝑎1 + 1/(𝑎1𝑎2) + ... ), it can be obtained
as follows:

\\ n terms of the Engel expansion of x
engel(x, n = 10) =
{ my( u = x, a = vector(n) );
for (k = 1, n,
a[k] = ceil(1/u);

(continues on next page)
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u = u*a[k] - 1;
if (!u, break);
); a
}

Obsolete hack. (don’t use this): if 𝑏 is an integer, nmax is ignored and the command is understood as
contfrac(:math:`x,, b)`.

contfraceval(CF, t, lim)

Given a continued fraction CF output by contfracinit, evaluate the first lim terms of the continued fraction at
t (all terms if lim is negative or omitted; if positive, lim must be less than or equal to the length of CF.

contfracinit(M, lim)

Given 𝑀 representing the power series 𝑆 =
∑︀

𝑛>=0𝑀 [𝑛+ 1]𝑧𝑛, transform it into a continued fraction in Euler
form, using the quotient-difference algorithm; restrict to 𝑛 <= 𝑙𝑖𝑚 if latter is nonnegative. 𝑀 can be a vector,
a power series, a polynomial; if the limiting parameter lim is present, a rational function is also allowed (and
converted to a power series of that accuracy).

The result is a 2-component vector [𝐴,𝐵] such that 𝑆 = 𝑀 [1]/(1 +𝐴[1]𝑧+𝐵[1]𝑧2/(1 +𝐴[2]𝑧+𝐵[2]𝑧2/(1 +
...1/(1 +𝐴[𝑙𝑖𝑚/2]𝑧)))). Does not work if any coefficient of 𝑀 vanishes, nor for series for which certain partial
denominators vanish.

contfracpnqn(x, n)
When 𝑥 is a vector or a one-row matrix, 𝑥 is considered as the list of partial quotients [𝑎0, 𝑎1, ..., 𝑎𝑛] of a rational
number, and the result is the 2 by 2 matrix [𝑝𝑛, 𝑝𝑛−1; 𝑞𝑛, 𝑞𝑛−1] in the standard notation of continued fractions, so
𝑝𝑛/𝑞𝑛 = 𝑎0 + 1/(𝑎1 + ...+ 1/𝑎𝑛). If 𝑥 is a matrix with two rows [𝑏0, 𝑏1, ..., 𝑏𝑛] and [𝑎0, 𝑎1, ..., 𝑎𝑛], this is then
considered as a generalized continued fraction and we have similarly 𝑝𝑛/𝑞𝑛 = (1/𝑏0)(𝑎0+𝑏1/(𝑎1+...+𝑏𝑛/𝑎𝑛)).
Note that in this case one usually has 𝑏0 = 1.

If 𝑛 >= 0 is present, returns all convergents from 𝑝0/𝑞0 up to 𝑝𝑛/𝑞𝑛. (All convergents if 𝑥 is too small to
compute the 𝑛+ 1 requested convergents.)

? a = contfrac(Pi,10)
%1 = [3, 7, 15, 1, 292, 1, 1, 1, 3]
? allpnqn(x) = contfracpnqn(x,#x) \\ all convergents
? allpnqn(a)
%3 =
[3 22 333 355 103993 104348 208341 312689 1146408]

[1 7 106 113 33102 33215 66317 99532 364913]
? contfracpnqn(a) \\ last two convergents
%4 =
[1146408 312689]

[ 364913 99532]

? contfracpnqn(a,3) \\ first three convergents
%5 =
[3 22 333 355]

[1 7 106 113]

core(n, flag)
If 𝑛 is an integer written as 𝑛 = 𝑑𝑓2 with 𝑑 squarefree, returns 𝑑. If 𝑓𝑙𝑎𝑔 is nonzero, returns the two-element row
vector [𝑑, 𝑓 ]. By convention, we write 0 = 0𝑥12, so core(0, 1) returns [0, 1].

80 Chapter 1. Interface to the PARI library



CyPari2 Documentation, Release 2.1.3

coredisc(n, flag)
A fundamental discriminant is an integer of the form 𝑡 = 1𝑚𝑜𝑑4 or 4𝑡 = 8, 12𝑚𝑜𝑑16, with 𝑡 squarefree (i.e. 1
or the discriminant of a quadratic number field). Given a nonzero integer 𝑛, this routine returns the (unique)
fundamental discriminant 𝑑 such that 𝑛 = 𝑑𝑓2, 𝑓 a positive rational number. If 𝑓𝑙𝑎𝑔 is nonzero, returns the
two-element row vector [𝑑, 𝑓 ]. If 𝑛 is congruent to 0 or 1 modulo 4, 𝑓 is an integer, and a half-integer otherwise.

By convention, coredisc(0, 1)) returns [0, 1].

Note that quaddisc(𝑛) returns the same value as coredisc(𝑛), and also works with rational inputs 𝑛 ∈ Q*.

cos(x, precision)
Cosine of 𝑥. Note that, for real 𝑥, cosine and sine can be obtained simultaneously as

cs(x) = my(z = exp(I*x)); [real(z), imag(z)];

and for general complex 𝑥 as

cs2(x) = my(z = exp(I*x), u = 1/z); [(z+u)/2, (z-u)/2];

Note that the latter function suffers from catastrophic cancellation when 𝑧2 1.

cosh(x, precision)
Hyperbolic cosine of 𝑥.

cotan(x, precision)
Cotangent of 𝑥.

cotanh(x, precision)
Hyperbolic cotangent of 𝑥.

default(key, val)
Returns the default corresponding to keyword key. If val is present, sets the default to val first (which is subject to
string expansion first). Typing default() (or \d) yields the complete default list as well as their current values.
See defaults (in the PARI manual) for an introduction to GP defaults, gp_defaults (in the PARI manual) for
a list of available defaults, and meta (in the PARI manual) for some shortcut alternatives. Note that the shortcuts
are meant for interactive use and usually display more information than default.

denominator(f, D)

Denominator of 𝑓 . The meaning of this is clear when 𝑓 is a rational number or function. If 𝑓 is an integer or a
polynomial, it is treated as a rational number or function, respectively, and the result is equal to 1. For polynomials,
you probably want to use

denominator( content(f) )

instead. As for modular objects, t_INTMOD and t_PADIC have denominator 1, and the denominator of a t_POLMOD
is the denominator of its lift.

If 𝑓 is a recursive structure, for instance a vector or matrix, the lcm of the denominators of its components (a
common denominator) is computed. This also applies for t_COMPLEX s and t_QUAD s.

Warning. Multivariate objects are created according to variable priorities, with possibly surprising side effects
(𝑥/𝑦 is a polynomial, but 𝑦/𝑥 is a rational function). See priority (in the PARI manual).

The optional argument 𝐷 allows to control over which ring we compute the denominator and get a more pre-
dictable behaviour:

• 1: we only consider the underlying Q-structure and the denominator is a (positive) rational integer

• a simple variable, say 'x: all entries as rational functions in𝐾(𝑥) and the denominator is a polynomial in 𝑥.
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? f = x + 1/y + 1/2;
? denominator(f) \\ a t_POL in x
%2 = 1
? denominator(f, 1) \\ Q-denominator
%3 = 2
? denominator(f, x) \\ as a t_POL in x, seen above
%4 = 1
? denominator(f, y) \\ as a rational function in y
%5 = 2*y

deriv(x, v)
Derivative of 𝑥 with respect to the main variable if 𝑣 is omitted, and with respect to 𝑣 otherwise. The derivative
of a scalar type is zero, and the derivative of a vector or matrix is done componentwise. One can use 𝑥′ as a
shortcut if the derivative is with respect to the main variable of 𝑥; and also use 𝑥”, etc., for multiple derivatives
altough derivn is often preferrable.

By definition, the main variable of a t_POLMOD is the main variable among the coefficients from its two poly-
nomial components (representative and modulus); in other words, assuming a polmod represents an element of
𝑅[𝑋]/(𝑇 (𝑋)), the variable 𝑋 is a mute variable and the derivative is taken with respect to the main variable
used in the base ring 𝑅.

? f = (x/y)^5;
? deriv(f)
%2 = 5/y^5*x^4
? f'
%3 = 5/y^5*x^4
? deriv(f, 'x) \\ same since 'x is the main variable
%4 = 5/y^5*x^4
? deriv(f, 'y)
%5 = -5/y^6*x^5

This function also operates on closures, in which case the variable must be omitted. It returns a closure performing
a numerical differentiation as per derivnum:

? f(x) = x^2;
? g = deriv(f)
? g(1)
%3 = 2.0000000000000000000000000000000000000
? f(x) = sin(exp(x));
? deriv(f)(0)
%5 = 0.54030230586813971740093660744297660373
? cos(1)
%6 = 0.54030230586813971740093660744297660373

derivn(x, n, v)
𝑛-th derivative of 𝑥 with respect to the main variable if 𝑣 is omitted, and with respect to 𝑣 otherwise; the integer
𝑛 must be nonnegative. The derivative of a scalar type is zero, and the derivative of a vector or matrix is done
componentwise. One can use 𝑥′, 𝑥”, etc., as a shortcut if the derivative is with respect to the main variable of 𝑥.

By definition, the main variable of a t_POLMOD is the main variable among the coefficients from its two poly-
nomial components (representative and modulus); in other words, assuming a polmod represents an element of
𝑅[𝑋]/(𝑇 (𝑋)), the variable 𝑋 is a mute variable and the derivative is taken with respect to the main variable
used in the base ring 𝑅.
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? f = (x/y)^5;
? derivn(f, 2)
%2 = 20/y^5*x^3
? f''
%3 = 20/y^5*x^3
? derivn(f, 2, 'x) \\ same since 'x is the main variable
%4 = 20/y^5*x^3
? derivn(f, 2, 'y)
%5 = 30/y^7*x^5

This function also operates on closures, in which case the variable must be omitted. It returns a closure performing
a numerical differentiation as per derivnum:

? f(x) = x^10;
? g = derivn(f, 5)
? g(1)
%3 = 30240.000000000000000000000000000000000

? derivn(zeta, 2)(0)
%4 = -2.0063564559085848512101000267299604382
? zeta''(0)
%5 = -2.0063564559085848512101000267299604382

diffop(x, v, d, n)
Let 𝑣 be a vector of variables, and 𝑑 a vector of the same length, return the image of 𝑥 by the 𝑛-power (1 if n is
not given) of the differential operator 𝐷 that assumes the value d[i] on the variable v[i]. The value of 𝐷 on a
scalar type is zero, and𝐷 applies componentwise to a vector or matrix. When applied to a t_POLMOD, if no value
is provided for the variable of the modulus, such value is derived using the implicit function theorem.

Examples. This function can be used to differentiate formal expressions: if 𝐸 = exp(𝑋2) then we have 𝐸′ =
2 *𝑋 * 𝐸. We derivate 𝑋 * 𝑒𝑥𝑝(𝑋2) as follows:

? diffop(E*X,[X,E],[1,2*X*E])
%1 = (2*X^2 + 1)*E

Let Sin and Cos be two function such that 𝑆𝑖𝑛2 +𝐶𝑜𝑠2 = 1 and 𝐶𝑜𝑠′ = −𝑆𝑖𝑛. We can differentiate 𝑆𝑖𝑛/𝐶𝑜𝑠
as follows, PARI inferring the value of 𝑆𝑖𝑛′ from the equation:

? diffop(Mod('Sin/'Cos,'Sin^2+'Cos^2-1),['Cos],[-'Sin])
%1 = Mod(1/Cos^2, Sin^2 + (Cos^2 - 1))

Compute the Bell polynomials (both complete and partial) via the Faa di Bruno formula:

Bell(k,n=-1)=
{ my(x, v, dv, var = i->eval(Str("X",i)));

v = vector(k, i, if (i==1, 'E, var(i-1)));
dv = vector(k, i, if (i==1, 'X*var(1)*'E, var(i)));
x = diffop('E,v,dv,k) / 'E;
if (n < 0, subst(x,'X,1), polcoef(x,n,'X));
}

digits(x, b)
Outputs the vector of the digits of ‖𝑥‖ in base 𝑏, where 𝑥 and 𝑏 are integers (𝑏 = 10 by default). For 𝑥 >= 1, the
number of digits is 𝑙𝑜𝑔𝑖𝑛𝑡(𝑥, 𝑏) + 1. See fromdigits for the reverse operation.
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? digits(1230)
%1 = [1, 2, 3, 0]

? digits(10, 2) \\ base 2
%2 = [1, 0, 1, 0]

By convention, 0 has no digits:

? digits(0)
%3 = []

dilog(x, precision)
Principal branch of the dilogarithm of 𝑥, i.e. analytic continuation of the power series log2(𝑥) =

∑︀
𝑛>=1 𝑥

𝑛/𝑛2.

dirdiv(x, y)
𝑥 and 𝑦 being vectors of perhaps different lengths but with 𝑦[1]! = 0 considered as Dirichlet series, computes the
quotient of 𝑥 by 𝑦, again as a vector.

dirmul(x, y)
𝑥 and 𝑦 being vectors of perhaps different lengths representing the Dirichlet series

∑︀
𝑛 𝑥𝑛𝑛

−𝑠 and
∑︀

𝑛 𝑦𝑛𝑛
−𝑠,

computes the product of 𝑥 by 𝑦, again as a vector.

? dirmul(vector(10,n,1), vector(10,n,moebius(n)))
%1 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

The product length is the minimum of # 𝑥 * 𝑣(𝑦) and # 𝑦 * 𝑣(𝑥), where 𝑣(𝑥) is the index of the first nonzero
coefficient.

? dirmul([0,1], [0,1]);
%2 = [0, 0, 0, 1]

dirpowers(n, x, precision)
For nonnegative 𝑛 and complex number 𝑥, return the vector with 𝑛 components [1𝑥, 2𝑥, ..., 𝑛𝑥].

? dirpowers(5, 2)
%1 = [1, 4, 9, 16, 25]
? dirpowers(5, 1/2)
%2 = [1, 1.414..., 1.732..., 2.000..., 2.236...]

When 𝑛 <= 0, the function returns the empty vector [].

dirpowerssum(n, x, precision)
For positive integer 𝑛 and complex number 𝑥, return the sum 1𝑥 + 2𝑥 + ... + 𝑛𝑥. This is the same as
vecsum(dirpowers(n,x)), but faster and using only 𝑂(

√
𝑛) memory instead of 𝑂(𝑛).

? dirpowers(5, 2)
%1 = [1, 4, 9, 16, 25]
? vecsum(%)
%2 = 55
? dirpowerssum(5, 2)
%3 = 55
? \p200
? dirpowerssum(10^7, 1/2 + I * sqrt(3));
time = 29,884 ms.

(continues on next page)
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? vecsum(dirpowers(10^7, 1/2 + I * sqrt(3)))
time = 41,894 ms.

The penultimate command works with default stack size, the last one requires a stacksize of at least 5GB.

When 𝑛 <= 0, the function returns 0.

dirzetak(nf, b)
Gives as a vector the first 𝑏 coefficients of the Dedekind zeta function of the number field 𝑛𝑓 considered as a
Dirichlet series.

divisors(x, flag)
Creates a row vector whose components are the divisors of 𝑥. The factorization of 𝑥 (as output by factor) can
be used instead. If 𝑓𝑙𝑎𝑔 = 1, return pairs [𝑑, 𝑓𝑎𝑐𝑡𝑜𝑟(𝑑)].

By definition, these divisors are the products of the irreducible factors of 𝑛, as produced by factor(n), raised to
appropriate powers (no negative exponent may occur in the factorization). If 𝑛 is an integer, they are the positive
divisors, in increasing order.

? divisors(12)
%1 = [1, 2, 3, 4, 6, 12]
? divisors(12, 1) \\ include their factorization
%2 = [[1, matrix(0,2)], [2, Mat([2, 1])], [3, Mat([3, 1])],
[4, Mat([2, 2])], [6, [2, 1; 3, 1]], [12, [2, 2; 3, 1]]]

? divisors(x^4 + 2*x^3 + x^2) \\ also works for polynomials
%3 = [1, x, x^2, x + 1, x^2 + x, x^3 + x^2, x^2 + 2*x + 1,
x^3 + 2*x^2 + x, x^4 + 2*x^3 + x^2]

This function requires a lot of memory if 𝑥 has many divisors. The following idiom runs through all divisors
using very little memory, in no particular order this time:

F = factor(x); P = F[,1]; E = F[,2];
forvec(e = vectorv(#E,i,[0,E[i]]), d = factorback(P,e); ...)

If the factorization of 𝑑 is also desired, then [𝑃, 𝑒] almost provides it but not quite: 𝑒 may contain 0 exponents,
which are not allowed in factorizations. These must be sieved out as in:

tofact(P,E) =
my(v = select(x->x, E, 1)); Mat([vecextract(P,v), vecextract(E,v)]);

? tofact([2,3,5,7]~, [4,0,2,0]~)
%4 =
[2 4]

[5 2]

We can then run the above loop with tofact(P,e) instead of, or together with, factorback.

divisorslenstra(N, r, s)
Given three integers 𝑁 > 𝑠 > 𝑟 >= 0 such that (𝑟, 𝑠) = 1 and 𝑠3 > 𝑁 , find all divisors 𝑑 of 𝑁 such that
𝑑 = 𝑟(𝑚𝑜𝑑𝑠). There are at most 11 such divisors (Lenstra).

? N = 245784; r = 19; s = 65 ;
? divisorslenstra(N, r, s)

(continues on next page)
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%2 = [19, 84, 539, 1254, 3724, 245784]
? [ d | d <- divisors(N), d % s == r]
%3 = [19, 84, 539, 1254, 3724, 245784]

When the preconditions are not met, the result is undefined:

? N = 4484075232; r = 7; s = 1303; s^3 > N
%4 = 0
? divisorslenstra(N, r, s)
? [ d | d <- divisors(N), d % s == r ]
%6 = [7, 2613, 9128, 19552, 264516, 3407352, 344928864]

(Divisors were missing but 𝑠3 < 𝑁 .)

divrem(x, y, v)
Creates a column vector with two components, the first being the Euclidean quotient (:math:`x \:math:y`), the
second the Euclidean remainder (:math:`x - (𝑥\:math:y)*:math:y`), of the division of 𝑥 by 𝑦. This avoids the
need to do two divisions if one needs both the quotient and the remainder. If 𝑣 is present, and 𝑥, 𝑦 are multivariate
polynomials, divide with respect to the variable 𝑣.

Beware that divrem(:math:`x,:math:y)[2]` is in general not the same as :math:`x % 𝑦; no GP operator corre-
sponds to it:

? divrem(1/2, 3)[2]
%1 = 1/2
? (1/2) % 3
%2 = 2
? divrem(Mod(2,9), 3)[2]
*** at top-level: divrem(Mod(2,9),3)[2
*** ^--------------------
*** forbidden division t_INTMOD \ t_INT.
? Mod(2,9) % 6
%3 = Mod(2,3)

eint1(x, n, precision)
Exponential integral

∫︀ 𝑜

𝑥
𝑜(𝑒−𝑡)/(𝑡)𝑑𝑡 = 𝑖𝑛𝑐𝑔𝑎𝑚(0, 𝑥), where the latter expression extends the function definition

from real 𝑥 > 0 to all complex 𝑥! = 0.

If 𝑛 is present, we must have 𝑥 > 0; the function returns the 𝑛-dimensional vector [𝑒𝑖𝑛𝑡1(𝑥), ..., 𝑒𝑖𝑛𝑡1(𝑛𝑥)].
Contrary to other transcendental functions, and to the default case (𝑛 omitted), the values are correct up to a
bounded absolute, rather than relative, error 10−𝑛, where 𝑛 is precision(𝑥) if 𝑥 is a t_REAL and defaults to
realprecision otherwise. (In the most important application, to the computation of 𝐿-functions via approxi-
mate functional equations, those values appear as weights in long sums and small individual relative errors are
less useful than controlling the absolute error.) This is faster than repeatedly calling eint1(:math:`i * x)`, but
less precise.

ellE(k, precision)
Complete elliptic integral of the second kind

𝐸(𝑘) =

∫︁ 𝜋/2

0

(1 − 𝑘2 sin(𝑡)2)1/2𝑑𝑡

for the complex parameter 𝑘 using the agm.

86 Chapter 1. Interface to the PARI library



CyPari2 Documentation, Release 2.1.3

ellK(k, precision)
Complete elliptic integral of the first kind

𝐾(𝑘) =

∫︁ 𝜋/2

0

(1 − 𝑘2 sin(𝑡)2)−1/2𝑑𝑡

for the complex parameter 𝑘 using the agm.

ellL1(E, r, precision)
Returns the value at 𝑠 = 1 of the derivative of order 𝑟 of the 𝐿-function of the elliptic curve 𝐸.

? E = ellinit("11a1"); \\ order of vanishing is 0
? ellL1(E)
%2 = 0.2538418608559106843377589233
? E = ellinit("389a1"); \\ order of vanishing is 2
? ellL1(E)
%4 = -5.384067311837218089235032414 E-29
? ellL1(E, 1)
%5 = 0
? ellL1(E, 2)
%6 = 1.518633000576853540460385214

The main use of this function, after computing at low accuracy the order of vanishing using ellanalyticrank,
is to compute the leading term at high accuracy to check (or use) the Birch and Swinnerton-Dyer conjecture:

? \p18
realprecision = 18 significant digits
? E = ellinit("5077a1"); ellanalyticrank(E)
time = 8 ms.
%1 = [3, 10.3910994007158041]
? \p200
realprecision = 202 significant digits (200 digits displayed)
? ellL1(E, 3)
time = 104 ms.
%3 = 10.3910994007158041387518505103609170697263563756570092797[...]

elladd(E, z1, z2)
Sum of the points 𝑧1 and 𝑧2 on the elliptic curve corresponding to 𝐸.

ellak(E, n)
Computes the coefficient 𝑎𝑛 of the 𝐿-function of the elliptic curve 𝐸/Q, i.e. coefficients of a newform of weight
2 by the modularity theorem (Taniyama-Shimura-Weil conjecture). 𝐸 must be an ell structure over Q as output
by ellinit. 𝐸 must be given by an integral model, not necessarily minimal, although a minimal model will
make the function faster.

? E = ellinit([1,-1,0,4,3]);
? ellak(E, 10)
%2 = -3
? e = ellchangecurve(E, [1/5,0,0,0]); \\ made not minimal at 5
? ellak(e, 10) \\ wasteful but works
%3 = -3
? E = ellminimalmodel(e); \\ now minimal
? ellak(E, 5)
%5 = -3
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If the model is not minimal at a number of bad primes, then the function will be slower on those 𝑛 divisible by
the bad primes. The speed should be comparable for other 𝑛:

? for(i=1,10^6, ellak(E,5))
time = 699 ms.
? for(i=1,10^6, ellak(e,5)) \\ 5 is bad, markedly slower
time = 1,079 ms.

? for(i=1,10^5,ellak(E,5*i))
time = 1,477 ms.
? for(i=1,10^5,ellak(e,5*i)) \\ still slower but not so much on average
time = 1,569 ms.

ellan(E, n)
Computes the vector of the first 𝑛 Fourier coefficients 𝑎𝑘 corresponding to the elliptic curve 𝐸 defined over a
number field. If 𝐸 is defined over Q, the curve may be given by an arbitrary model, not necessarily minimal,
although a minimal model will make the function faster. Over a more general number field, the model must be
locally minimal at all primes above 2 and 3.

ellanalyticrank(E, eps, precision)
Returns the order of vanishing at 𝑠 = 1 of the 𝐿-function of the elliptic curve 𝐸 and the value of the first nonzero
derivative. To determine this order, it is assumed that any value less than eps is zero. If eps is omitted, 2−𝑏/2 is
used, where 𝑏 is the current bit precision.

? E = ellinit("11a1"); \\ rank 0
? ellanalyticrank(E)
%2 = [0, 0.2538418608559106843377589233]
? E = ellinit("37a1"); \\ rank 1
? ellanalyticrank(E)
%4 = [1, 0.3059997738340523018204836835]
? E = ellinit("389a1"); \\ rank 2
? ellanalyticrank(E)
%6 = [2, 1.518633000576853540460385214]
? E = ellinit("5077a1"); \\ rank 3
? ellanalyticrank(E)
%8 = [3, 10.39109940071580413875185035]

ellap(E, p)
Let E be an ell structure as output by ellinit, attached to an elliptic curve 𝐸/𝐾. If the field 𝐾 = F𝑞 is finite,
return the trace of Frobenius 𝑡, defined by the equation #𝐸(F𝑞) = 𝑞 + 1 − 𝑡.

For other fields of definition and 𝑝 defining a finite residue field F𝑞 , return the trace of Frobenius for the reduction
of 𝐸: the argument 𝑝 is best left omitted if 𝐾 = Qℓ (else we must have 𝑝 = ℓ) and must be a prime number
(𝐾 = Q) or prime ideal (𝐾 a general number field) with residue field F𝑞 otherwise. The equation need not be
minimal or even integral at 𝑝; of course, a minimal model will be more efficient.

For a number field𝐾, the trace of Frobenius is the 𝑎𝑝 coefficient in the Euler product defining the curve 𝐿-series,
whence the function name:

𝐿(𝐸/𝐾, 𝑠) =
∏︁
𝑏𝑎𝑑𝑝

(1 − 𝑎𝑝(𝑁𝑝)−𝑠)−1
∏︁

𝑔𝑜𝑜𝑑𝑝

(1 − 𝑎𝑝(𝑁𝑝)−𝑠 + (𝑁𝑝)1−2𝑠)−1.

When the characteristic of the finite field is large, the availability of the seadata package will speed up the
computation.
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? E = ellinit([0,1]); \\ y^2 = x^3 + 0.x + 1, defined over Q
? ellap(E, 7) \\ 7 necessary here
%2 = -4 \\ #E(F_7) = 7+1-(-4) = 12
? ellcard(E, 7)
%3 = 12 \\ OK

? E = ellinit([0,1], 11); \\ defined over F_11
? ellap(E) \\ no need to repeat 11
%4 = 0
? ellap(E, 11) \\ ... but it also works
%5 = 0
? ellgroup(E, 13) \\ ouch, inconsistent input!
*** at top-level: ellap(E,13)
*** ^-----------
*** ellap: inconsistent moduli in Rg_to_Fp:
11
13
? a = ffgen(ffinit(11,3), 'a); \\ defines F_q := F_{11^3}
? E = ellinit([a+1,a]); \\ y^2 = x^3 + (a+1)x + a, defined over F_q
? ellap(E)
%8 = -3

If the curve is defined over a more general number field than Q, the maximal ideal 𝑝 must be explicitly given in
idealprimedec format. There is no assumption of local minimality at 𝑝.

? K = nfinit(a^2+1); E = ellinit([1+a,0,1,0,0], K);
? fa = idealfactor(K, E.disc)
%2 =
[ [5, [-2, 1]~, 1, 1, [2, -1; 1, 2]] 1]

[[13, [5, 1]~, 1, 1, [-5, -1; 1, -5]] 2]
? ellap(E, fa[1,1])
%3 = -1 \\ nonsplit multiplicative reduction
? ellap(E, fa[2,1])
%4 = 1 \\ split multiplicative reduction
? P17 = idealprimedec(K,17)[1];
? ellap(E, P17)
%6 = 6 \\ good reduction
? E2 = ellchangecurve(E, [17,0,0,0]);
? ellap(E2, P17)
%8 = 6 \\ same, starting from a nonmiminal model

? P3 = idealprimedec(K,3)[1];
? ellap(E, P3) \\ OK: E is minimal at P3
%10 = -2
? E3 = ellchangecurve(E, [3,0,0,0]);
? ellap(E3, P3) \\ not integral at P3
*** at top-level: ellap(E3,P3)
*** ^------------
*** ellap: impossible inverse in Rg_to_ff: Mod(0, 3).

Algorithms used. If 𝐸/F𝑞 has CM by a principal imaginary quadratic order we use a fast explicit formula
(involving essentially Kronecker symbols and Cornacchia’s algorithm), in 𝑂(log 𝑞)2 bit operations. Otherwise,
we use Shanks-Mestre’s baby-step/giant-step method, which runs in time 𝑂(𝑞1/4) using 𝑂(𝑞1/4) storage, hence
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becomes unreasonable when 𝑞 has about 30 digits. Above this range, the SEA algorithm becomes available,
heuristically in 𝑂(log 𝑞)4, and primes of the order of 200 digits become feasible. In small characteristic we use
Mestre’s (p = 2), Kohel’s (p = 3,5,7,13), Satoh-Harley (all in 𝑂(𝑝2𝑛2)) or Kedlaya’s (in 𝑂(𝑝𝑛3)) algorithms.

ellbil(E, z1, z2, precision)
Deprecated alias for ellheight(E,P,Q).

ellbsd(E, precision)
The object 𝐸 being an elliptic curve over a number field, returns a real number 𝑐 such that the BSD conjecture
predicts that 𝐿(𝑟)

𝐸 (1)/𝑟! = 𝑐𝑅𝑆 where 𝑟 is the rank, 𝑅 the regulator and 𝑆 the cardinal of the Tate-Shafarevich
group.

? e = ellinit([0,-1,1,-10,-20]); \\ rank 0
? ellbsd(e)
%2 = 0.25384186085591068433775892335090946105
? lfun(e,1)
%3 = 0.25384186085591068433775892335090946104
? e = ellinit([0,0,1,-1,0]); \\ rank 1
? P = ellheegner(e);
? ellbsd(e)*ellheight(e,P)
%6 = 0.30599977383405230182048368332167647445
? lfun(e,1,1)
%7 = 0.30599977383405230182048368332167647445
? e = ellinit([1+a,0,1,0,0],nfinit(a^2+1)); \\ rank 0
? ellbsd(e)
%9 = 0.42521832235345764503001271536611593310
? lfun(e,1)
%10 = 0.42521832235345764503001271536611593309

ellcard(E, p)
Let E be an ell structure as output by ellinit, attached to an elliptic curve 𝐸/𝐾. If 𝐾 = F𝑞 is finite, return
the order of the group 𝐸(F𝑞).

? E = ellinit([-3,1], 5); ellcard(E)
%1 = 7
? t = ffgen(3^5,'t); E = ellinit([t,t^2+1]); ellcard(E)
%2 = 217

For other fields of definition and 𝑝 defining a finite residue field F𝑞 , return the order of the reduction of 𝐸: the
argument 𝑝 is best left omitted if 𝐾 = Qℓ (else we must have 𝑝 = ℓ) and must be a prime number (𝐾 = Q)
or prime ideal (𝐾 a general number field) with residue field F𝑞 otherwise. The equation need not be minimal
or even integral at 𝑝; of course, a minimal model will be more efficient. The function considers the group of
nonsingular points of the reduction of a minimal model of the curve at 𝑝, so also makes sense when the curve has
bad reduction.

? E = ellinit([-3,1]);
? factor(E.disc)
%2 =
[2 4]

[3 4]
? ellcard(E, 5) \\ as above !
%3 = 7

(continues on next page)
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(continued from previous page)

? ellcard(E, 2) \\ additive reduction
%4 = 2

When the characteristic of the finite field is large, the availability of the seadata package will speed the compu-
tation. See also ellap for the list of implemented algorithms.

ellchangecurve(E, v)
Changes the data for the elliptic curve 𝐸 by changing the coordinates using the vector v = [u,r,s,t], i.e. if 𝑥′
and 𝑦′ are the new coordinates, then 𝑥 = 𝑢2𝑥′ + 𝑟, 𝑦 = 𝑢3𝑦′ + 𝑠𝑢2𝑥′ + 𝑡. 𝐸 must be an ell structure as output
by ellinit. The special case 𝑣 = 1 is also used instead of [1, 0, 0, 0] to denote the trivial coordinate change.

ellchangepoint(x, v)
Changes the coordinates of the point or vector of points 𝑥 using the vector v = [u,r,s,t], i.e. if 𝑥′ and 𝑦′ are
the new coordinates, then 𝑥 = 𝑢2𝑥′ + 𝑟, 𝑦 = 𝑢3𝑦′ + 𝑠𝑢2𝑥′ + 𝑡 (see also ellchangecurve).

? E0 = ellinit([1,1]); P0 = [0,1]; v = [1,2,3,4];
? E = ellchangecurve(E0, v);
? P = ellchangepoint(P0,v)
%3 = [-2, 3]
? ellisoncurve(E, P)
%4 = 1
? ellchangepointinv(P,v)
%5 = [0, 1]

ellchangepointinv(x, v)
Changes the coordinates of the point or vector of points 𝑥 using the inverse of the isomorphism attached to v
= [u,r,s,t], i.e. if 𝑥′ and 𝑦′ are the old coordinates, then 𝑥 = 𝑢2𝑥′ + 𝑟, 𝑦 = 𝑢3𝑦′ + 𝑠𝑢2𝑥′ + 𝑡 (inverse of
ellchangepoint).

? E0 = ellinit([1,1]); P0 = [0,1]; v = [1,2,3,4];
? E = ellchangecurve(E0, v);
? P = ellchangepoint(P0,v)
%3 = [-2, 3]
? ellisoncurve(E, P)
%4 = 1
? ellchangepointinv(P,v)
%5 = [0, 1] \\ we get back P0

ellconvertname(name)
Converts an elliptic curve name, as found in the elldata database, from a string to a triplet
[𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟, 𝑖𝑠𝑜𝑔𝑒𝑛𝑦𝑐𝑙𝑎𝑠𝑠, 𝑖𝑛𝑑𝑒𝑥]. It will also convert a triplet back to a curve name. Examples:

? ellconvertname("123b1")
%1 = [123, 1, 1]
? ellconvertname(%)
%2 = "123b1"

elldivpol(E, n, v)
𝑛-division polynomial 𝑓𝑛 for the curve 𝐸 in the variable 𝑣. In standard notation, for any affine point 𝑃 = (𝑋,𝑌 )
on the curve and any integer 𝑛 >= 0, we have

[𝑛]𝑃 = (𝜑𝑛(𝑃 )𝜓𝑛(𝑃 ) : 𝜔𝑛(𝑃 ) : 𝜓𝑛(𝑃 )3)
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for some polynomials 𝜑𝑛, 𝜔𝑛, 𝜓𝑛 in Z[𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6][𝑋,𝑌 ]. We have 𝑓𝑛(𝑋) = 𝜓𝑛(𝑋) for 𝑛 odd, and
𝑓𝑛(𝑋) = 𝜓𝑛(𝑋,𝑌 )(2𝑌 + 𝑎1𝑋 + 𝑎3) for 𝑛 even. We have

𝑓0 = 0, 𝑓1 = 1, 𝑓2 = 4𝑋3 + 𝑏2𝑋
2 + 2𝑏4𝑋 + 𝑏6, 𝑓3 = 3𝑋4 + 𝑏2𝑋

3 + 3𝑏4𝑋
2 + 3𝑏6𝑋 + 𝑏8,

𝑓4 = 𝑓2(2𝑋6 + 𝑏2𝑋
5 + 5𝑏4𝑋

4 + 10𝑏6𝑋
3 + 10𝑏8𝑋

2 + (𝑏2𝑏8 − 𝑏4𝑏6)𝑋 + (𝑏8𝑏4 − 𝑏26)), ...

When 𝑛 is odd, the roots of 𝑓𝑛 are the𝑋-coordinates of the affine points in the 𝑛-torsion subgroup 𝐸[𝑛]; when 𝑛
is even, the roots of 𝑓𝑛 are the 𝑋-coordinates of the affine points in 𝐸[𝑛] 𝐸[2] when 𝑛 > 2, resp. in 𝐸[2] when
𝑛 = 2. For 𝑛 < 0, we define 𝑓𝑛 := −𝑓−𝑛.

elleisnum(w, k, flag, precision)
𝑘 being an even positive integer, computes the numerical value of the Eisenstein series of weight 𝑘 at the lattice
𝑤, as given by ellperiods, namely

(2𝑖𝜋/𝜔2)𝑘(1 + 2/𝜁(1 − 𝑘)
∑︁
𝑛>=1

𝑛𝑘−1𝑞𝑛/(1 − 𝑞𝑛)),

where 𝑞 = exp(2𝑖𝜋𝜏) and 𝜏 := 𝜔1/𝜔2 belongs to the complex upper half-plane. It is also possible to directly
input 𝑤 = [𝜔1, 𝜔2], or an elliptic curve 𝐸 as given by ellinit.

? w = ellperiods([1,I]);
? elleisnum(w, 4)
%2 = 2268.8726415508062275167367584190557607
? elleisnum(w, 6)
%3 = -3.977978632282564763 E-33
? E = ellinit([1, 0]);
? elleisnum(E, 4)
%5 = -48.000000000000000000000000000000000000

When flag is nonzero and 𝑘 = 4 or 6, returns the elliptic invariants 𝑔2 or 𝑔3, such that

𝑦2 = 4𝑥3 − 𝑔2𝑥− 𝑔3

is a Weierstrass equation for 𝐸.

? g2 = elleisnum(E, 4, 1)
%6 = -4.0000000000000000000000000000000000000
? g3 = elleisnum(E, 6, 1) \\ ~ 0
%7 = 0.E-114 - 3.909948178422242682 E-57*I

elleta(w, precision)
Returns the quasi-periods [𝜂1, 𝜂2] attached to the lattice basis 𝑤 = [𝜔1, 𝜔2]. Alternatively, w can be an el-
liptic curve 𝐸 as output by ellinit, in which case, the quasi periods attached to the period lattice basis
:math:`E.omega` (namely, :math:`E.eta`) are returned.

? elleta([1, I])
%1 = [3.141592653589793238462643383, 9.424777960769379715387930149*I]

ellformaldifferential(E, serprec, n)
Let 𝜔 := 𝑑𝑥/(2𝑦 + 𝑎1𝑥 + 𝑎3) be the invariant differential form attached to the model 𝐸 of some elliptic curve
(ellinit form), and 𝜂 := 𝑥(𝑡)𝜔. Return 𝑛 terms (seriesprecision by default) of 𝑓(𝑡), 𝑔(𝑡) two power series
in the formal parameter 𝑡 = −𝑥/𝑦 such that 𝜔 = 𝑓(𝑡)𝑑𝑡, 𝜂 = 𝑔(𝑡)𝑑𝑡:

𝑓(𝑡) = 1 + 𝑎1𝑡+ (𝑎21 + 𝑎2)𝑡2 + ..., 𝑔(𝑡) = 𝑡−2 + ...

92 Chapter 1. Interface to the PARI library



CyPari2 Documentation, Release 2.1.3

? E = ellinit([-1,1/4]); [f,g] = ellformaldifferential(E,7,'t);
? f
%2 = 1 - 2*t^4 + 3/4*t^6 + O(t^7)
? g
%3 = t^-2 - t^2 + 1/2*t^4 + O(t^5)

ellformalexp(E, serprec, n)
The elliptic formal exponential Exp attached to 𝐸 is the isomorphism from the formal additive law to the formal
group of 𝐸. It is normalized so as to be the inverse of the elliptic logarithm (see ellformallog): 𝐸𝑥𝑝𝑜𝐿 = Id.
Return 𝑛 terms of this power series:

? E=ellinit([-1,1/4]); Exp = ellformalexp(E,10,'z)
%1 = z + 2/5*z^5 - 3/28*z^7 + 2/15*z^9 + O(z^11)
? L = ellformallog(E,10,'t);
? subst(Exp,z,L)
%3 = t + O(t^11)

ellformallog(E, serprec, n)
The formal elliptic logarithm is a series 𝐿 in 𝑡𝐾[[𝑡]] such that 𝑑𝐿 = 𝜔 = 𝑑𝑥/(2𝑦 + 𝑎1𝑥 + 𝑎3), the canonical
invariant differential attached to the model𝐸. It gives an isomorphism from the formal group of𝐸 to the additive
formal group.

? E = ellinit([-1,1/4]); L = ellformallog(E, 9, 't)
%1 = t - 2/5*t^5 + 3/28*t^7 + 2/3*t^9 + O(t^10)
? [f,g] = ellformaldifferential(E,8,'t);
? L' - f
%3 = O(t^8)

ellformalpoint(E, serprec, n)
If 𝐸 is an elliptic curve, return the coordinates 𝑥(𝑡), 𝑦(𝑡) in the formal group of the elliptic curve 𝐸 in the formal
parameter 𝑡 = −𝑥/𝑦 at 𝑜𝑜:

𝑥 = 𝑡−2 − 𝑎1𝑡
−1 − 𝑎2 − 𝑎3𝑡+ ...

𝑦 = −𝑡−3 − 𝑎1𝑡
−2 − 𝑎2𝑡

−1 − 𝑎3 + ...

Return 𝑛 terms (seriesprecision by default) of these two power series, whose coefficients are in
Z[𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6].

? E = ellinit([0,0,1,-1,0]); [x,y] = ellformalpoint(E,8,'t);
? x
%2 = t^-2 - t + t^2 - t^4 + 2*t^5 + O(t^6)
? y
%3 = -t^-3 + 1 - t + t^3 - 2*t^4 + O(t^5)
? E = ellinit([0,1/2]); ellformalpoint(E,7)
%4 = [x^-2 - 1/2*x^4 + O(x^5), -x^-3 + 1/2*x^3 + O(x^4)]

ellformalw(E, serprec, n)
Return the formal power series 𝑤 attached to the elliptic curve 𝐸, in the variable 𝑡:

𝑤(𝑡) = 𝑡3(1 + 𝑎1𝑡+ (𝑎2 + 𝑎21)𝑡2 + ...+𝑂(𝑡𝑛)),

which is the formal expansion of −1/𝑦 in the formal parameter 𝑡 := −𝑥/𝑦 at 𝑜𝑜 (take 𝑛 = 𝑠𝑒𝑟𝑖𝑒𝑠𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 if 𝑛
is omitted). The coefficients of 𝑤 belong to Z[𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6].

1.1. Guide to real precision in the PARI interface 93



CyPari2 Documentation, Release 2.1.3

? E=ellinit([3,2,-4,-2,5]); ellformalw(E, 5, 't)
%1 = t^3 + 3*t^4 + 11*t^5 + 35*t^6 + 101*t^7 + O(t^8)

ellfromeqn(P)
Given a genus 1 plane curve, defined by the affine equation 𝑓(𝑥, 𝑦) = 0, return the coefficients [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6]
of a Weierstrass equation for its Jacobian. This allows to recover a Weierstrass model for an elliptic curve given by
a general plane cubic or by a binary quartic or biquadratic model. The function implements the 𝑓 : −−− > 𝑓*

formulae of Artin, Tate and Villegas (Advances in Math. 198 (2005), pp. 366–382).

In the example below, the function is used to convert between twisted Edwards coordinates and Weierstrass co-
ordinates.

? e = ellfromeqn(a*x^2+y^2 - (1+d*x^2*y^2))
%1 = [0, -a - d, 0, -4*d*a, 4*d*a^2 + 4*d^2*a]
? E = ellinit(ellfromeqn(y^2-x^2 - 1 +(121665/121666*x^2*y^2)),2^255-19);
? isprime(ellcard(E) / 8)
%3 = 1

The elliptic curve attached to the sum of two cubes is given by

? ellfromeqn(x^3+y^3 - a)
%1 = [0, 0, -9*a, 0, -27*a^2]

Congruent number problem. Let 𝑛 be an integer, if 𝑎2 + 𝑏2 = 𝑐2 and 𝑎𝑏 = 2𝑛, then by substituting 𝑏 by 2𝑛/𝑎
in the first equation, we get ((𝑎2 + (2𝑛/𝑎)2) − 𝑐2)𝑎2 = 0. We set 𝑥 = 𝑎, 𝑦 = 𝑎𝑐.

? En = ellfromeqn((x^2 + (2*n/x)^2 - (y/x)^2)*x^2)
%1 = [0, 0, 0, -16*n^2, 0]

For example 23 is congruent since the curve has a point of infinite order, namely:

? ellheegner( ellinit(subst(En, n, 23)) )
%2 = [168100/289, 68053440/4913]

ellfromj(j)
Returns the coefficients [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6] of a fixed elliptic curve with 𝑗-invariant 𝑗.

ellgenerators(E)
If 𝐸 is an elliptic curve over the rationals, return a Z-basis of the free part of the Mordell-Weil group attached
to 𝐸. This relies on the elldata database being installed and referencing the curve, and so is only available for
curves over Z of small conductors. If 𝐸 is an elliptic curve over a finite field F𝑞 as output by ellinit, return a
minimal set of generators for the group 𝐸(F𝑞).

Caution. When the group is not cyclic, of shape Z/𝑑1Z𝑥Z/𝑑2Z with 𝑑2‖𝑑1, the points [𝑃,𝑄] returned by
ellgenerators need not have order 𝑑1 and 𝑑2: it is true that 𝑃 has order 𝑑1, but we only know that𝑄 is a generator
of 𝐸(F𝑞)/ < 𝑃 > and that the Weil pairing 𝑤(𝑃,𝑄) has order 𝑑2, see ??ellgroup. If you need generators
[𝑃,𝑅] with 𝑅 of order 𝑑2, find 𝑥 such that 𝑅 = 𝑄− [𝑥]𝑃 has order 𝑑2 by solving the discrete logarithm problem
[𝑑2]𝑄 = [𝑥]([𝑑2]𝑃 ) in a cyclic group of order 𝑑1/𝑑2. This will be very expensive if 𝑑1/𝑑2 has a large prime
factor.

ellglobalred(E)
Let 𝐸 be an ell structure as output by ellinit attached to an elliptic curve defined over a number field. This
function calculates the arithmetic conductor and the global Tamagawa number 𝑐. The result [𝑁, 𝑣, 𝑐, 𝐹, 𝐿] is
slightly different if 𝐸 is defined over Q (domain 𝐷 = 1 in ellinit) or over a number field (domain 𝐷 is a
number field structure, including nfinit(x) representing Q !):
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• 𝑁 is the arithmetic conductor of the curve,

• 𝑣 is an obsolete field, left in place for backward compatibility. If 𝐸 is defined over Q, 𝑣 gives the coordinate
change for 𝐸 to the standard minimal integral model (ellminimalmodel provides it in a cheaper way); if 𝐸
is defined over another number field, 𝑣 gives a coordinate change to an integral model (ellintegralmodel
provides it in a cheaper way).

• 𝑐 is the product of the local Tamagawa numbers 𝑐𝑝, a quantity which enters in the Birch and Swinnerton-Dyer
conjecture,

• 𝐹 is the factorization of 𝑁 ,

• 𝐿 is a vector, whose 𝑖-th entry contains the local data at the 𝑖-th prime ideal divisor of 𝑁 , i.e. L[i] =
elllocalred(E,F[i,1]). If𝐸 is defined overQ, the local coordinate change has been deleted and replaced
by a 0; if𝐸 is defined over another number field the local coordinate change to a local minimal model is given
relative to the integral model afforded by 𝑣 (so either start from an integral model so that 𝑣 be trivial, or apply
𝑣 first).

ellgroup(E, p, flag)
Let E be an ell structure as output by ellinit, attached to an elliptic curve𝐸/𝐾. We first describle the function
when the field 𝐾 = F𝑞 is finite, it computes the structure of the finite abelian group 𝐸(F𝑞):

• if 𝑓𝑙𝑎𝑔 = 0, return the structure [] (trivial group) or [𝑑1] (nontrivial cyclic group) or [𝑑1, 𝑑2] (noncyclic
group) of 𝐸(F𝑞) Z/𝑑1Z𝑥Z/𝑑2Z, with 𝑑2‖𝑑1.

• if 𝑓𝑙𝑎𝑔 = 1, return a triple [ℎ, 𝑐𝑦𝑐, 𝑔𝑒𝑛], where ℎ is the curve cardinality, cyc gives the group struc-
ture as a product of cyclic groups (as per 𝑓𝑙𝑎𝑔 = 0). More precisely, if 𝑑2 > 1, the output is
[𝑑1𝑑2, [𝑑1, 𝑑2], [𝑃,𝑄]] where 𝑃 is of order 𝑑1 and [𝑃,𝑄] generates the curve. Caution. It is not guaran-
teed that 𝑄 has order 𝑑2, which in the worst case requires an expensive discrete log computation. Only that
ellweilpairing(𝐸,𝑃,𝑄, 𝑑1) has order 𝑑2.

For other fields of definition and 𝑝 defining a finite residue field F𝑞 , return the structure of the reduction of 𝐸:
the argument 𝑝 is best left omitted if 𝐾 = Qℓ (else we must have 𝑝 = ℓ) and must be a prime number (𝐾 = Q)
or prime ideal (𝐾 a general number field) with residue field F𝑞 otherwise. The curve is allowed to have bad
reduction at 𝑝 and in this case we consider the (cyclic) group of nonsingular points for the reduction of a minimal
model at 𝑝.

If 𝑓𝑙𝑎𝑔 = 0, the equation not be minimal or even integral at 𝑝; of course, a minimal model will be more efficient.

If 𝑓𝑙𝑎𝑔 = 1, the requested generators depend on the model, which must then be minimal at 𝑝, otherwise an
exception is thrown. Use ellintegralmodel and/or ellocalred first to reduce to this case.

? E = ellinit([0,1]); \\ y^2 = x^3 + 0.x + 1, defined over Q
? ellgroup(E, 7)
%2 = [6, 2] \\ Z/6 x Z/2, noncyclic
? E = ellinit([0,1] * Mod(1,11)); \\ defined over F_11
? ellgroup(E) \\ no need to repeat 11
%4 = [12]
? ellgroup(E, 11) \\ ... but it also works
%5 = [12]
? ellgroup(E, 13) \\ ouch, inconsistent input!
*** at top-level: ellgroup(E,13)
*** ^--------------
*** ellgroup: inconsistent moduli in Rg_to_Fp:
11
13
? ellgroup(E, 7, 1)
%6 = [12, [6, 2], [[Mod(2, 7), Mod(4, 7)], [Mod(4, 7), Mod(4, 7)]]]
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Let us now consider curves of bad reduction, in this case we return the structure of the (cyclic) group of nonsingular
points, satisfying #𝐸𝑛𝑠(F𝑝) = 𝑝− 𝑎𝑝:

? E = ellinit([0,5]);
? ellgroup(E, 5, 1)
%2 = [5, [5], [[Mod(4, 5), Mod(2, 5)]]]
? ellap(E, 5)
%3 = 0 \\ additive reduction at 5
? E = ellinit([0,-1,0,35,0]);
? ellgroup(E, 5, 1)
%5 = [4, [4], [[Mod(2, 5), Mod(2, 5)]]]
? ellap(E, 5)
%6 = 1 \\ split multiplicative reduction at 5
? ellgroup(E, 7, 1)
%7 = [8, [8], [[Mod(3, 7), Mod(5, 7)]]]
? ellap(E, 7)
%8 = -1 \\ nonsplit multiplicative reduction at 7

ellheegner(E)
Let𝐸 be an elliptic curve over the rationals, assumed to be of (analytic) rank 1. This returns a nontorsion rational
point on the curve, whose canonical height is equal to the product of the elliptic regulator by the analytic Sha.

This uses the Heegner point method, described in Cohen GTM 239; the complexity is proportional to the product
of the square root of the conductor and the height of the point (thus, it is preferable to apply it to strong Weil
curves).

? E = ellinit([-157^2,0]);
? u = ellheegner(E); print(u[1], "\n", u[2])
69648970982596494254458225/166136231668185267540804
538962435089604615078004307258785218335/67716816556077455999228495435742408
? ellheegner(ellinit([0,1])) \\ E has rank 0 !
*** at top-level: ellheegner(E=ellinit
*** ^--------------------
*** ellheegner: The curve has even analytic rank.

ellheight(E, P, Q, precision)
Let 𝐸 be an elliptic curve defined over 𝐾 = Q or a number field, as output by ellinit; it needs not be given by
a minimal model although the computation will be faster if it is.

• Without arguments 𝑃,𝑄, returns the Faltings height of the curve 𝐸 using Deligne normalization. For a
rational curve, the normalization is such that the function returns -(1/2)*log(ellminimalmodel(E).
area).

• If the argument 𝑃 ∈ 𝐸(𝐾) is present, returns the global Néron-Tate height ℎ(𝑃 ) of the point, using the
normalization in Cremona’s Algorithms for modular elliptic curves.

• If the argument𝑄 ∈ 𝐸(𝐾) is also present, computes the value of the bilinear form (ℎ(𝑃+𝑄)−ℎ(𝑃−𝑄))/4.

ellheightmatrix(E, x, precision)
𝑥 being a vector of points, this function outputs the Gram matrix of 𝑥 with respect to the Néron-Tate height, in
other words, the (𝑖, 𝑗) component of the matrix is equal to ellbil(:math:`E,x[𝑖],x[𝑗])`. The rank of this ma-
trix, at least in some approximate sense, gives the rank of the set of points, and if 𝑥 is a basis of the Mordell-Weil
group of𝐸, its determinant is equal to the regulator of𝐸. Note our height normalization follows Cremona’s Algo-
rithms for modular elliptic curves: this matrix should be divided by 2 to be in accordance with, e.g., Silverman’s
normalizations.
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ellidentify(E)
Look up the elliptic curve 𝐸, defined by an arbitrary model over Q, in the elldata database. Return [[N, M,
G], C] where𝑁 is the curve name in Cremona’s elliptic curve database,𝑀 is the minimal model,𝐺 is a Z-basis
of the free part of the Mordell-Weil group 𝐸(Q) and 𝐶 is the change of coordinates from 𝐸 to 𝑀 , suitable for
ellchangecurve.

ellinit(x, D, precision)
Initialize an ell structure, attached to the elliptic curve 𝐸. 𝐸 is either

• a 5-component vector [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6] defining the elliptic curve with Weierstrass equation

𝑌 2 + 𝑎1𝑋𝑌 + 𝑎3𝑌 = 𝑋3 + 𝑎2𝑋
2 + 𝑎4𝑋 + 𝑎6,

• a 2-component vector [𝑎4, 𝑎6] defining the elliptic curve with short Weierstrass equation

𝑌 2 = 𝑋3 + 𝑎4𝑋 + 𝑎6,

• a character string in Cremona’s notation, e.g. "11a1", in which case the curve is retrieved from the elldata
database if available.

The optional argument 𝐷 describes the domain over which the curve is defined:

• the t_INT 1 (default): the field of rational numbers Q.

• a t_INT 𝑝, where 𝑝 is a prime number: the prime finite field F𝑝.

• an t_INTMOD Mod(a, p), where 𝑝 is a prime number: the prime finite field F𝑝.

• a t_FFELT, as returned by ffgen: the corresponding finite field F𝑞 .

• a t_PADIC,𝑂(𝑝𝑛): the field Q𝑝, where 𝑝-adic quantities will be computed to a relative accuracy of 𝑛 digits.
We advise to input a model defined over Q for such curves. In any case, if you input an approximate model
with t_PADIC coefficients, it will be replaced by a lift to Q (an exact model “close” to the one that was input)
and all quantities will then be computed in terms of this lifted model, at the given accuracy.

• a t_REAL 𝑥: the field C of complex numbers, where floating point quantities are by default computed to a
relative accuracy of precision(𝑥). If no such argument is given, the value of realprecision at the time
ellinit is called will be used.

• a number field 𝐾, given by a nf or bnf structure; a bnf is required for ellminimalmodel.

• a prime ideal 𝑝, given by a prid structure; valid if 𝑥 is a curve defined over a number field𝐾 and the equation
is integral and minimal at 𝑝.

This argument 𝐷 is indicative: the curve coefficients are checked for compatibility, possibly changing 𝐷; for
instance if 𝐷 = 1 and an t_INTMOD is found. If inconsistencies are detected, an error is raised:

? ellinit([1 + O(5), 1], O(7));
*** at top-level: ellinit([1+O(5),1],O
*** ^--------------------
*** ellinit: inconsistent moduli in ellinit: 7 != 5

If the curve coefficients are too general to fit any of the above domain categories, only basic operations, such as
point addition, will be supported later.

If the curve (seen over the domain 𝐷) is singular, fail and return an empty vector [].

? E = ellinit([0,0,0,0,1]); \\ y^2 = x^3 + 1, over Q
? E = ellinit([0,1]); \\ the same curve, short form
? E = ellinit("36a1"); \\ sill the same curve, Cremona's notations
? E = ellinit([0,1], 2) \\ over F2: singular curve

(continues on next page)
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%4 = []
? E = ellinit(['a4,'a6] * Mod(1,5)); \\ over F_5[a4,a6], basic support !

The result of ellinit is an ell structure. It contains at least the following information in its components:

𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6, 𝑏2, 𝑏4, 𝑏6, 𝑏8, 𝑐4, 𝑐6,∆, 𝑗.

All are accessible via member functions. In particular, the discriminant is :math:`E.disc`, and the 𝑗-invariant is
:math:`E.j`.

? E = ellinit([a4, a6]);
? E.disc
%2 = -64*a4^3 - 432*a6^2
? E.j
%3 = -6912*a4^3/(-4*a4^3 - 27*a6^2)

Further components contain domain-specific data, which are in general dynamic: only computed when needed,
and then cached in the structure.

? E = ellinit([2,3], 10^60+7); \\ E over F_p, p large
? ellap(E)
time = 4,440 ms.
%2 = -1376268269510579884904540406082
? ellcard(E); \\ now instantaneous !
time = 0 ms.
? ellgenerators(E);
time = 5,965 ms.
? ellgenerators(E); \\ second time instantaneous
time = 0 ms.

See the description of member functions related to elliptic curves at the beginning of this section.

ellintegralmodel(E, v)
Let 𝐸 be an ell structure over a number field 𝐾 or Q𝑝. This function returns an integral model. If 𝑣 is
present, sets 𝑣 = [𝑢, 0, 0, 0] to the corresponding change of variable: the return value is identical to that of
ellchangecurve(E, v).

? e = ellinit([1/17,1/42]);
? e = ellintegralmodel(e,&v);
? e[1..5]
%3 = [0, 0, 0, 15287762448, 3154568630095008]
? v
%4 = [1/714, 0, 0, 0]

ellisdivisible(E, P, n, Q)

Given 𝐸/𝐾 a number field and 𝑃 in 𝐸(𝐾) return 1 if 𝑃 = [𝑛]𝑅 for some 𝑅 in 𝐸(𝐾) and set 𝑄 to one such 𝑅;
and return 0 otherwise. The integer 𝑛 >= 0 may be given as ellxn(E,n), if many points need to be tested.

? K = nfinit(polcyclo(11,t));
? E = ellinit([0,-1,1,0,0], K);
? P = [0,0];
? ellorder(E,P)
%4 = 5

(continues on next page)
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? ellisdivisible(E,P,5, &Q)
%5 = 1
? lift(Q)
%6 = [-t^7-t^6-t^5-t^4+1, -t^9-2*t^8-2*t^7-3*t^6-3*t^5-2*t^4-2*t^3-t^2-1]
? ellorder(E, Q)
%7 = 25

The algebraic complexity of the underlying algorithm is in 𝑂(𝑛4), so it is advisable to first factor 𝑛, then use a
chain of checks attached to the prime divisors of 𝑛: the function will do it itself unless 𝑛 is given in ellxn form.

ellisogeny(E, G, only_image, x, y)
Given an elliptic curve 𝐸, a finite subgroup 𝐺 of 𝐸 is given either as a generating point 𝑃 (for a cyclic 𝐺) or
as a polynomial whose roots vanish on the 𝑥-coordinates of the nonzero elements of 𝐺 (general case and more
efficient if available). This function returns the [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6] invariants of the quotient elliptic curve 𝐸/𝐺
and (if only_image is zero (the default)) a vector of rational functions [𝑓, 𝑔, ℎ] such that the isogeny 𝐸 → 𝐸/𝐺
is given by (𝑥, 𝑦) : −−− > (𝑓(𝑥)/ℎ(𝑥)2, 𝑔(𝑥, 𝑦)/ℎ(𝑥)3).

? E = ellinit([0,1]);
? elltors(E)
%2 = [6, [6], [[2, 3]]]
? ellisogeny(E, [2,3], 1) \\ Weierstrass model for E/<P>
%3 = [0, 0, 0, -135, -594]
? ellisogeny(E,[-1,0])
%4 = [[0,0,0,-15,22], [x^3+2*x^2+4*x+3, y*x^3+3*y*x^2-2*y, x+1]]

ellisogenyapply(f, g)
Given an isogeny of elliptic curves 𝑓 : 𝐸′ → 𝐸 (being the result of a call to ellisogeny), apply 𝑓 to 𝑔:

• if 𝑔 is a point 𝑃 in the domain of 𝑓 , return the image 𝑓(𝑃 );

• if 𝑔 : 𝐸” → 𝐸′ is a compatible isogeny, return the composite isogeny 𝑓𝑜𝑔 : 𝐸” → 𝐸.

? one = ffgen(101, 't)^0;
? E = ellinit([6, 53, 85, 32, 34] * one);
? P = [84, 71] * one;
? ellorder(E, P)
%4 = 5
? [F, f] = ellisogeny(E, P); \\ f: E->F = E/<P>
? ellisogenyapply(f, P)
%6 = [0]
? F = ellinit(F);
? Q = [89, 44] * one;
? ellorder(F, Q)
%9 = 2
? [G, g] = ellisogeny(F, Q); \\ g: F->G = F/<Q>
? gof = ellisogenyapply(g, f); \\ gof: E -> G

ellisomat(E, p, fl)
Given an elliptic curve 𝐸 defined over a number field 𝐾, compute representatives of the isomorphism classes of
elliptic curves defined over 𝐾 and 𝐾-isogenous to 𝐸. We assume that 𝐸 does not have CM over 𝐾 (otherwise
that set would be infinite). For any such curve 𝐸𝑖, let 𝑓𝑖 : 𝐸 → 𝐸𝑖 be a rational isogeny of minimal degree and
let 𝑔𝑖 : 𝐸𝑖 → 𝐸 be the dual isogeny; and let 𝑀 be the matrix such that 𝑀𝑖,𝑗 is the minimal degree for an isogeny
𝐸𝑖 → 𝐸𝑗 .
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The function returns a vector [𝐿,𝑀 ] where 𝐿 is a list of triples [𝐸𝑖, 𝑓𝑖, 𝑔𝑖] (𝑓𝑙𝑎𝑔 = 0), or simply the list of 𝐸𝑖

(𝑓𝑙𝑎𝑔 = 1, which saves time). The curves 𝐸𝑖 are given in [𝑎4, 𝑎6] form and the first curve 𝐸1 is isomorphic to 𝐸
by 𝑓1.

If 𝑝 is set, it must be a prime number; in this which case only isogenies of degree a power of 𝑝 are considered.

Over a number field, the possible isogeny degrees are determined by Billerey algorithm.

? E = ellinit("14a1");
? [L,M] = ellisomat(E);
? LE = apply(x->x[1], L) \\ list of curves
%3 = [[215/48,-5291/864],[-675/16,6831/32],[-8185/48,-742643/864],
[-1705/48,-57707/864],[-13635/16,306207/32],[-131065/48,-47449331/864]]
? L[2][2] \\ isogeny f_2
%4 = [x^3+3/4*x^2+19/2*x-311/12,
1/2*x^4+(y+1)*x^3+(y-4)*x^2+(-9*y+23)*x+(55*y+55/2),x+1/3]
? L[2][3] \\ dual isogeny g_2
%5 = [1/9*x^3-1/4*x^2-141/16*x+5613/64,
-1/18*x^4+(1/27*y-1/3)*x^3+(-1/12*y+87/16)*x^2+(49/16*y-48)*x
+(-3601/64*y+16947/512),x-3/4]
? apply(E->ellidentify(ellinit(E))[1][1], LE)
%6 = ["14a1","14a4","14a3","14a2","14a6","14a5"]
? M
%7 =
[1 3 3 2 6 6]

[3 1 9 6 2 18]

[3 9 1 6 18 2]

[2 6 6 1 3 3]

[6 2 18 3 1 9]

[6 18 2 3 9 1]

ellisoncurve(E, z)
Gives 1 (i.e. true) if the point 𝑧 is on the elliptic curve 𝐸, 0 otherwise. If 𝐸 or 𝑧 have imprecise coefficients, an
attempt is made to take this into account, i.e. an imprecise equality is checked, not a precise one. It is allowed for
𝑧 to be a vector of points in which case a vector (of the same type) is returned.

ellisotree(E)
Given an elliptic curve 𝐸 defined over Q or a set of Q-isogenous curves as given by ellisomat, return a pair
[𝐿,𝑀 ] where

• 𝐿 lists the minimal models of the isomorphism classes of elliptic curves Q-isogenous to 𝐸 (or in the set of
isogenous curves),

• 𝑀 is the adjacency matrix of the prime degree isogenies tree: there is an edge from 𝐸𝑖 to 𝐸𝑗 if there is an
isogeny 𝐸𝑖 → 𝐸𝑗 of prime degree such that the Néron differential forms are preserved.

? E = ellinit("14a1");
? [L,M] = ellisotree(E);
? M
%3 =
[0 0 3 2 0 0]

(continues on next page)
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[3 0 0 0 2 0]

[0 0 0 0 0 2]

[0 0 0 0 0 3]

[0 0 0 3 0 0]

[0 0 0 0 0 0]
? [L2,M2] = ellisotree(ellisomat(E,2,1));
%4 =
[0 2]

[0 0]
? [L3,M3] = ellisotree(ellisomat(E,3,1));
? M3
%6 =
[0 0 3]

[3 0 0]

[0 0 0]

Compare with the result of ellisomat.

? [L,M]=ellisomat(E,,1);
? M
%7 =
[1 3 3 2 6 6]

[3 1 9 6 2 18]

[3 9 1 6 18 2]

[2 6 6 1 3 3]

[6 2 18 3 1 9]

[6 18 2 3 9 1]

ellissupersingular(E, p)
Return 1 if the elliptic curve 𝐸 defined over a number field, Q𝑝 or a finite field is supersingular at 𝑝, and 0
otherwise. If the curve is defined over a number field, 𝑝 must be explicitly given, and must be a prime number,
resp. a maximal ideal, if the curve is defined over Q, resp. a general number field: we return 1 if and only if 𝐸
has supersingular good reduction at 𝑝.

Alternatively, 𝐸 can be given by its 𝑗-invariant in a finite field. In this case 𝑝 must be omitted.

? setrand(1); \\ make the choice of g deterministic
? g = ffprimroot(ffgen(7^5))
%1 = 4*x^4 + 5*x^3 + 6*x^2 + 5*x + 6
? [g^n | n <- [1 .. 7^5 - 1], ellissupersingular(g^n)]

(continues on next page)
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%2 = [6]

? K = nfinit(y^3-2); P = idealprimedec(K, 2)[1];
? E = ellinit([y,1], K);
? ellissupersingular(E, P)
%5 = 1
? Q = idealprimedec(K,5)[1];
? ellissupersingular(E, Q)
%6 = 0

ellj(x, precision)
Elliptic 𝑗-invariant. 𝑥 must be a complex number with positive imaginary part, or convertible into a power series
or a 𝑝-adic number with positive valuation.

elllocalred(E, p)
Calculates the Kodaira type of the local fiber of the elliptic curve 𝐸 at 𝑝. 𝐸 must be an ell structure as output
by ellinit, over Qℓ (𝑝 better left omitted, else equal to ℓ) over Q (𝑝 a rational prime) or a number field 𝐾
(𝑝 a maximal ideal given by a prid structure). The result is a 4-component vector [𝑓, 𝑘𝑜𝑑, 𝑣, 𝑐]. Here 𝑓 is the
exponent of 𝑝 in the arithmetic conductor of 𝐸, and 𝑘𝑜𝑑 is the Kodaira type which is coded as follows:

1 means good reduction (type I:math:_0), 2, 3 and 4 mean types II, III and IV respectively, 4+𝜈 with 𝜈 > 0 means
type I:math:_nu; finally the opposite values −1, −2, etc. refer to the starred types I:math:_0^*, II:math:^*, etc.
The third component 𝑣 is itself a vector [𝑢, 𝑟, 𝑠, 𝑡] giving the coordinate changes done during the local reduction;
𝑢 = 1 if and only if the given equation was already minimal at 𝑝. Finally, the last component 𝑐 is the local
Tamagawa number 𝑐𝑝.

elllog(E, P, G, o)
Given two points 𝑃 and 𝐺 on the elliptic curve 𝐸/F𝑞 , returns the discrete logarithm of 𝑃 in base 𝐺, i.e. the
smallest nonnegative integer 𝑛 such that 𝑃 = [𝑛]𝐺. See znlog for the limitations of the underlying discrete log
algorithms. If present, 𝑜 represents the order of 𝐺, see DLfun (in the PARI manual); the preferred format for this
parameter is [N, factor(N)], where 𝑁 is the order of 𝐺.

If no 𝑜 is given, assume that 𝐺 generates the curve. The function also assumes that 𝑃 is a multiple of 𝐺.

? a = ffgen(ffinit(2,8),'a);
? E = ellinit([a,1,0,0,1]); \\ over F_{2^8}
? x = a^3; y = ellordinate(E,x)[1];
? P = [x,y]; G = ellmul(E, P, 113);
? ord = [242, factor(242)]; \\ P generates a group of order 242. Initialize.
? ellorder(E, G, ord)
%4 = 242
? e = elllog(E, P, G, ord)
%5 = 15
? ellmul(E,G,e) == P
%6 = 1

elllseries(E, s, A, precision)
This function is deprecated, use lfun(E,s) instead.

𝐸 being an elliptic curve, given by an arbitrary model over Q as output by ellinit, this function computes the
value of the 𝐿-series of 𝐸 at the (complex) point 𝑠. This function uses an 𝑂(𝑁1/2) algorithm, where 𝑁 is the
conductor.

The optional parameter𝐴 fixes a cutoff point for the integral and is best left omitted; the result must be independent
of 𝐴, up to realprecision, so this allows to check the function’s accuracy.
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ellminimaldisc(E)
𝐸 being an elliptic curve defined over a number field output by ellinit, return the minimal discriminant ideal
of E.

ellminimalmodel(E, v)
Let 𝐸 be an ell structure over a number field 𝐾. This function determines whether 𝐸 admits a global minimal
integral model. If so, it returns it and sets 𝑣 = [𝑢, 𝑟, 𝑠, 𝑡] to the corresponding change of variable: the return value
is identical to that of ellchangecurve(E, v).

Else return the (nonprincipal) Weierstrass class of 𝐸, i.e. the class of
∏︀
𝑝(𝑣𝑝Δ−𝛿𝑝)/12 where ∆ = 𝐸.𝑑𝑖𝑠𝑐 is the

model’s discriminant and 𝑝𝛿𝑝 is the local minimal discriminant. This function requires either that 𝐸 be defined
over the rational field Q (with domain 𝐷 = 1 in ellinit), in which case a global minimal model always exists,
or over a number field given by a bnf structure. The Weierstrass class is given in bnfisprincipal format, i.e.
in terms of the K.gen generators.

The resulting model has integral coefficients and is everywhere minimal, the coefficients 𝑎1 and 𝑎3 are reduced
modulo 2 (in terms of the fixed integral basis K.zk) and 𝑎2 is reduced modulo 3. Over Q, we further require that
𝑎1 and 𝑎3 be 0 or 1, that 𝑎2 be 0 or 1 and that 𝑢 > 0 in the change of variable: both the model and the change of
variable 𝑣 are then unique.

? e = ellinit([6,6,12,55,233]); \\ over Q
? E = ellminimalmodel(e, &v);
? E[1..5]
%3 = [0, 0, 0, 1, 1]
? v
%4 = [2, -5, -3, 9]

? K = bnfinit(a^2-65); \\ over a nonprincipal number field
? K.cyc
%2 = [2]
? u = Mod(8+a, K.pol);
? E = ellinit([1,40*u+1,0,25*u^2,0], K);
? ellminimalmodel(E) \\ no global minimal model exists over Z_K
%6 = [1]~

ellminimaltwist(E, flag)
Let𝐸 be an elliptic curve defined over Q, return a discriminant𝐷 such that the twist of𝐸 by𝐷 is minimal among
all possible quadratic twists, i.e. if 𝑓𝑙𝑎𝑔 = 0, its minimal model has minimal discriminant, or if 𝑓𝑙𝑎𝑔 = 1, it has
minimal conductor.

In the example below, we find a curve with 𝑗-invariant 3 and minimal conductor.

? E = ellminimalmodel(ellinit(ellfromj(3)));
? ellglobalred(E)[1]
%2 = 357075
? D = ellminimaltwist(E,1)
%3 = -15
? E2 = ellminimalmodel(ellinit(elltwist(E,D)));
? ellglobalred(E2)[1]
%5 = 14283

In the example below, 𝑓𝑙𝑎𝑔 = 0 and 𝑓𝑙𝑎𝑔 = 1 give different results.

? E = ellinit([1,0]);
? D0 = ellminimaltwist(E,0)

(continues on next page)
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%7 = 1
? D1 = ellminimaltwist(E,1)
%8 = 8
? E0 = ellminimalmodel(ellinit(elltwist(E,D0)));
? [E0.disc, ellglobalred(E0)[1]]
%10 = [-64, 64]
? E1 = ellminimalmodel(ellinit(elltwist(E,D1)));
? [E1.disc, ellglobalred(E1)[1]]
%12 = [-4096, 32]

ellmoddegree(e)
𝑒 being an elliptic curve defined over Q output by ellinit, compute the modular degree of 𝑒 divided by the
square of the Manin constant 𝑐. It is conjectured that 𝑐 = 1 for the strong Weil curve in the isogeny class (optimal
quotient of 𝐽0(𝑁)) and this can be proven using ellweilcurve when the conductor 𝑁 is moderate.

? E = ellinit("11a1"); \\ from Cremona table: strong Weil curve and c = 1
? [v,smith] = ellweilcurve(E); smith \\ proof of the above
%2 = [[1, 1], [5, 1], [1, 1/5]]
? ellmoddegree(E)
%3 = 1
? [ellidentify(e)[1][1] | e<-v]
%4 = ["11a1", "11a2", "11a3"]
? ellmoddegree(ellinit("11a2"))
%5 = 5
? ellmoddegree(ellinit("11a3"))
%6 = 1/5

The modular degree of 11a1 is 1 (because ellweilcurve or Cremona’s table prove that the Manin constant is
1 for this curve); the output of ellweilcurve also proves that the Manin constants of 11a2 and 11a3 are 1 and
5 respectively, so the actual modular degree of both 11a2 and 11a3 is 5.

ellmodulareqn(N, x, y)
Given a prime 𝑁 < 500, return a vector [𝑃, 𝑡] where 𝑃 (𝑥, 𝑦) is a modular equation of level 𝑁 , i.e. a bivariate
polynomial with integer coefficients; 𝑡 indicates the type of this equation: either canonical (𝑡 = 0) or Atkin
(𝑡 = 1). This function requires the seadata package and its only use is to give access to the package contents.
See polmodular for a more general and more flexible function.

Let 𝑗 be the 𝑗-invariant function. The polynomial 𝑃 satisfies the functional equation,

𝑃 (𝑓, 𝑗) = 𝑃 (𝑓‖𝑊𝑁 , 𝑗‖𝑊𝑁 ) = 0

for some modular function 𝑓 = 𝑓𝑁 (hand-picked for each fixed 𝑁 to minimize its size, see below), where
𝑊𝑁 (𝜏) = −1/(𝑁𝜏) is the Atkin-Lehner involution. These two equations allow to compute the values of the
classical modular polynomial Φ𝑁 , such that Φ𝑁 (𝑗(𝜏), 𝑗(𝑁𝜏)) = 0, while being much smaller than the latter.
More precisely, we have 𝑗(𝑊𝑁 (𝜏)) = 𝑗(𝑁𝜏); the function 𝑓 is invariant under Γ0(𝑁) and also satisfies

• for Atkin type: 𝑓‖𝑊𝑁 = 𝑓 ;

• for canonical type: let 𝑠 = 12/gcd(12, 𝑁 −1), then 𝑓‖𝑊𝑁 = 𝑁𝑠/𝑓 . In this case, 𝑓 has a simple definition:
𝑓(𝜏) = 𝑁𝑠(𝜂(𝑁𝜏)/𝜂(𝜏))2𝑠, where 𝜂 is Dedekind’s eta function.

The following GP function returns values of the classical modular polynomial by eliminating 𝑓𝑁 (𝜏) in the above
functional equation, for 𝑁 <= 31 or 𝑁 ∈ 41, 47, 59, 71.
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classicaleqn(N, X='X, Y='Y)=
{
my([P,t] = ellmodulareqn(N), Q, d);
if (poldegree(P,'y) > 2, error("level unavailable in classicaleqn"));
if (t == 0, \\ Canonical
my(s = 12/gcd(12,N-1));
Q = 'x^(N+1) * substvec(P,['x,'y],[N^s/'x,Y]);
d = N^(s*(2*N+1)) * (-1)^(N+1);
, \\ Atkin
Q = subst(P,'y,Y);
d = (X-Y)^(N+1));
polresultant(subst(P,'y,X), Q) / d;
}

ellmul(E, z, n)
Computes [𝑛]𝑧, where 𝑧 is a point on the elliptic curve 𝐸. The exponent 𝑛 is in Z, or may be a complex quadratic
integer if the curve 𝐸 has complex multiplication by 𝑛 (if not, an error message is issued).

? Ei = ellinit([1,0]); z = [0,0];
? ellmul(Ei, z, 10)
%2 = [0] \\ unsurprising: z has order 2
? ellmul(Ei, z, I)
%3 = [0, 0] \\ Ei has complex multiplication by Z[i]
? ellmul(Ei, z, quadgen(-4))
%4 = [0, 0] \\ an alternative syntax for the same query
? Ej = ellinit([0,1]); z = [-1,0];
? ellmul(Ej, z, I)
*** at top-level: ellmul(Ej,z,I)
*** ^--------------
*** ellmul: not a complex multiplication in ellmul.
? ellmul(Ej, z, 1+quadgen(-3))
%6 = [1 - w, 0]

The simple-minded algorithm for the CM case assumes that we are in characteristic 0, and that the quadratic order
to which 𝑛 belongs has small discriminant.

ellneg(E, z)
Opposite of the point 𝑧 on elliptic curve 𝐸.

ellnonsingularmultiple(E, P)
Given an elliptic curve 𝐸/Q (more precisely, a model defined over Q of a curve) and a rational point 𝑃 ∈ 𝐸(Q),
returns the pair [𝑅,𝑛], where 𝑛 is the least positive integer such that 𝑅 := [𝑛]𝑃 has good reduction at every
prime. More precisely, its image in a minimal model is everywhere nonsingular.

? e = ellinit("57a1"); P = [2,-2];
? ellnonsingularmultiple(e, P)
%2 = [[1, -1], 2]
? e = ellinit("396b2"); P = [35, -198];
? [R,n] = ellnonsingularmultiple(e, P);
? n
%5 = 12

ellorder(E, z, o)
Gives the order of the point 𝑧 on the elliptic curve 𝐸, defined over a finite field or a number field. Return (the
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impossible value) zero if the point has infinite order.

? E = ellinit([-157^2,0]); \\ the "157-is-congruent" curve
? P = [2,2]; ellorder(E, P)
%2 = 2
? P = ellheegner(E); ellorder(E, P) \\ infinite order
%3 = 0
? K = nfinit(polcyclo(11,t)); E=ellinit("11a3", K); T = elltors(E);
? ellorder(E, T.gen[1])
%5 = 25
? E = ellinit(ellfromj(ffgen(5^10)));
? ellcard(E)
%7 = 9762580
? P = random(E); ellorder(E, P)
%8 = 4881290
? p = 2^160+7; E = ellinit([1,2], p);
? N = ellcard(E)
%9 = 1461501637330902918203686560289225285992592471152
? o = [N, factor(N)];
? for(i=1,100, ellorder(E,random(E)))
time = 260 ms.

The parameter 𝑜, is now mostly useless, and kept for backward compatibility. If present, it represents a nonzero
multiple of the order of 𝑧, see DLfun (in the PARI manual); the preferred format for this parameter is [ord,
factor(ord)], where ord is the cardinality of the curve. It is no longer needed since PARI is now able to
compute it over large finite fields (was restricted to small prime fields at the time this feature was introduced),
and caches the result in 𝐸 so that it is computed and factored only once. Modifying the last example, we see that
including this extra parameter provides no improvement:

? o = [N, factor(N)];
? for(i=1,100, ellorder(E,random(E),o))
time = 260 ms.

ellordinate(E, x, precision)
Gives a 0, 1 or 2-component vector containing the 𝑦-coordinates of the points of the curve 𝐸 having 𝑥 as 𝑥-
coordinate.

ellpadicL(E, p, n, s, r, D)

Returns the value (or 𝑟-th derivative) on a character 𝜒𝑠 of Z*
𝑝 of the 𝑝-adic 𝐿-function of the elliptic curve 𝐸/Q,

twisted by 𝐷, given modulo 𝑝𝑛.

Characters. The set of continuous characters of𝐺𝑎𝑙(Q(𝜇𝑝𝑜𝑜)/Q) is identified to Z*
𝑝 via the cyclotomic character

𝜒 with values in Q𝑝
*. Denote by 𝜏 : Z*

𝑝 → Z*
𝑝 the Teichmüller character, with values in the (𝑝 − 1)-th roots of

1 for 𝑝! = 2, and −1, 1 for 𝑝 = 2; finally, let < 𝜒 >= 𝜒𝜏−1, with values in 1 + 2𝑝Z𝑝. In GP, the continuous
character of 𝐺𝑎𝑙(Q(𝜇𝑝𝑜𝑜)/Q) given by < 𝜒 >𝑠1 𝜏𝑠2 is represented by the pair of integers 𝑠 = (𝑠1, 𝑠2), with
𝑠1 ∈ Z𝑝 and 𝑠2𝑚𝑜𝑑𝑝− 1 for 𝑝 > 2, (resp. mod 2 for 𝑝 = 2); 𝑠 may be also an integer, representing (𝑠, 𝑠) or 𝜒𝑠.

The :math:`p-adic 𝐿 function.` The 𝑝-adic 𝐿 function 𝐿𝑝 is defined on the set of continuous characters of
𝐺𝑎𝑙(Q(𝜇𝑝𝑜𝑜)/Q), as

∫︀
Z*
𝑝
𝜒𝑠𝑑𝜇 for a certain 𝑝-adic distribution 𝜇 on Z*

𝑝. The derivative is given by

𝐿(𝑟)
𝑝 (𝐸,𝜒𝑠) =

∫︁
Z*
𝑝

log𝑟
𝑝(𝑎)𝜒𝑠(𝑎)𝑑𝜇(𝑎).

More precisely:

• When 𝐸 has good supersingular reduction, 𝐿𝑝 takes its values in 𝐷 := 𝐻1
𝑑𝑅(𝐸/Q) ⊗Q Q𝑝 and satisfies
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(1 − 𝑝−1𝐹 )−2𝐿𝑝(𝐸,𝜒0) = (𝐿(𝐸, 1)/Ω).𝜔

𝑤ℎ𝑒𝑟𝑒 : 𝑚𝑎𝑡ℎ : ‘𝐹 ‘𝑖𝑠𝑡ℎ𝑒𝐹𝑟𝑜𝑏𝑒𝑛𝑖𝑢𝑠, : 𝑚𝑎𝑡ℎ : ‘𝐿(𝐸, 1)‘𝑖𝑠𝑡ℎ𝑒𝑣𝑎𝑙𝑢𝑒𝑜𝑓𝑡ℎ𝑒𝑐𝑜𝑚𝑝𝑙𝑒𝑥 : 𝑚𝑎𝑡ℎ : ‘𝐿‘𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑡 : 𝑚𝑎𝑡ℎ : ‘1‘, : 𝑚𝑎𝑡ℎ : ‘𝜔‘𝑖𝑠𝑡ℎ𝑒𝑁𝑟𝑜𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙𝑎𝑛𝑑 : 𝑚𝑎𝑡ℎ : ‘Ω‘𝑡ℎ𝑒𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑𝑝𝑒𝑟𝑖𝑜𝑑𝑜𝑛 : 𝑚𝑎𝑡ℎ : ‘𝐸(R)‘.𝐻𝑒𝑟𝑒, : 𝑚𝑎𝑡ℎ : ‘𝜒0‘𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠𝑡ℎ𝑒𝑡𝑟𝑖𝑣𝑖𝑎𝑙𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟.

The function returns the components of 𝐿(𝑟)
𝑝 (𝐸,𝜒𝑠) in the basis (𝜔, 𝐹𝜔).

• When 𝐸 has ordinary good reduction, this method only defines the projection of 𝐿𝑝(𝐸,𝜒𝑠) on the 𝛼-
eigenspace, where 𝛼 is the unit eigenvalue for 𝐹 . This is what the function returns. We have

(1 − 𝛼−1)−2𝐿𝑝,𝛼(𝐸,𝜒0) = 𝐿(𝐸, 1)/Ω.

Two supersingular examples:

? cxL(e) = bestappr( ellL1(e) / e.omega[1] );

? e = ellinit("17a1"); p=3; \\ supersingular, a3 = 0
? L = ellpadicL(e,p,4);
? F = [0,-p;1,ellap(e,p)]; \\ Frobenius matrix in the basis (omega,F(omega))
? (1-p^(-1)*F)^-2 * L / cxL(e)
%5 = [1 + O(3^5), O(3^5)]~ \\ [1,0]~

? e = ellinit("116a1"); p=3; \\ supersingular, a3 != 0~
? L = ellpadicL(e,p,4);
? F = [0,-p; 1,ellap(e,p)];
? (1-p^(-1)*F)^-2*L~ / cxL(e)
%9 = [1 + O(3^4), O(3^5)]~

Good ordinary reduction:

? e = ellinit("17a1"); p=5; ap = ellap(e,p)
%1 = -2 \\ ordinary
? L = ellpadicL(e,p,4)
%2 = 4 + 3*5 + 4*5^2 + 2*5^3 + O(5^4)
? al = padicappr(x^2 - ap*x + p, ap + O(p^7))[1];
? (1-al^(-1))^(-2) * L / cxL(e)
%4 = 1 + O(5^4)

Twist and Teichmüller:

? e = ellinit("17a1"); p=5; \\ ordinary
\\ 2nd derivative at tau^1, twist by -7
? ellpadicL(e, p, 4, [0,1], 2, -7)
%2 = 2*5^2 + 5^3 + O(5^4)

We give an example of non split multiplicative reduction (see ellpadicbsd for more examples).

? e=ellinit("15a1"); p=3; n=5;
? L = ellpadicL(e,p,n)
%2 = 2 + 3 + 3^2 + 3^3 + 3^4 + O(3^5)
? (1 - ellap(e,p))^(-1) * L / cxL(e)
%3 = 1 + O(3^5)

This function is a special case of mspadicL and it also appears as the first term of mspadicseries:

? e = ellinit("17a1"); p=5;
? L = ellpadicL(e,p,4)

(continues on next page)
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%2 = 4 + 3*5 + 4*5^2 + 2*5^3 + O(5^4)
? [M,phi] = msfromell(e, 1);
? Mp = mspadicinit(M, p, 4);
? mu = mspadicmoments(Mp, phi);
? mspadicL(mu)
%6 = 4 + 3*5 + 4*5^2 + 2*5^3 + 2*5^4 + 5^5 + O(5^6)
? mspadicseries(mu)
%7 = (4 + 3*5 + 4*5^2 + 2*5^3 + 2*5^4 + 5^5 + O(5^6))
+ (3 + 3*5 + 5^2 + 5^3 + O(5^4))*x
+ (2 + 3*5 + 5^2 + O(5^3))*x^2
+ (3 + 4*5 + 4*5^2 + O(5^3))*x^3
+ (3 + 2*5 + O(5^2))*x^4 + O(x^5)

These are more cumbersome than ellpadicL but allow to compute at different characters, or successive deriva-
tives, or to twist by a quadratic character essentially for the cost of a single call to ellpadicL due to precompu-
tations.

ellpadicbsd(E, p, n, D)

Given an elliptic curve 𝐸 over Q, its quadratic twist 𝐸𝐷 and a prime number 𝑝, this function is a 𝑝-adic analog
of the complex functions ellanalyticrank and ellbsd. It calls ellpadicL with initial accuracy 𝑝𝑛 and may
increase it internally; it returns a vector [𝑟, 𝐿𝑝] where

• 𝐿𝑝 is a 𝑝-adic number (resp. a pair of 𝑝-adic numbers if𝐸 has good supersingular reduction) defined modulo
𝑝𝑁 , conjecturally equal to 𝑅𝑝𝑆, where 𝑅𝑝 is the 𝑝-adic regulator as given by ellpadicregulator (in the
basis (𝜔, 𝐹𝜔)) and 𝑆 is the cardinal of the Tate-Shafarevich group for the quadratic twist 𝐸𝐷.

• 𝑟 is an upper bound for the analytic rank of the 𝑝-adic 𝐿-function attached to 𝐸𝐷: we know for sure that
the 𝑖-th derivative of 𝐿𝑝(𝐸𝐷, .) at 𝜒0 is 𝑂(𝑝𝑁 ) for all 𝑖 < 𝑟 and that its 𝑟-th derivative is nonzero; it is
expected that the true analytic rank is equal to the rank of the Mordell-Weil group 𝐸𝐷(Q), plus 1 if the
reduction of 𝐸𝐷 at 𝑝 is split multiplicative; if 𝑟 = 0, then both the analytic rank and the Mordell-Weil rank
are unconditionnally 0.

Recall that the 𝑝-adic BSD conjecture (Mazur, Tate, Teitelbaum, Bernardi, Perrin-Riou) predicts an explicit link
between 𝑅𝑝𝑆 and

(1 − 𝑝−1𝐹 )−2.𝐿(𝑟)
𝑝 (𝐸𝐷, 𝜒

0)/𝑟!

where 𝑟 is the analytic rank of the 𝑝-adic 𝐿-function attached to 𝐸𝐷 and 𝐹 is the Frobenius on 𝐻1
𝑑𝑅; see

ellpadicL for definitions.

? E = ellinit("11a1"); p = 7; n = 5; \\ good ordinary
? ellpadicbsd(E, 7, 5) \\ rank 0,
%2 = [0, 1 + O(7^5)]

? E = ellinit("91a1"); p = 7; n = 5; \\ non split multiplicative
? [r,Lp] = ellpadicbsd(E, p, n)
%5 = [1, 2*7 + 6*7^2 + 3*7^3 + 7^4 + O(7^5)]
? R = ellpadicregulator(E, p, n, E.gen)
%6 = 2*7 + 6*7^2 + 3*7^3 + 7^4 + 5*7^5 + O(7^6)
? sha = Lp/R
%7 = 1 + O(7^4)

? E = ellinit("91b1"); p = 7; n = 5; \\ split multiplicative
? [r,Lp] = ellpadicbsd(E, p, n)

(continues on next page)

108 Chapter 1. Interface to the PARI library



CyPari2 Documentation, Release 2.1.3

(continued from previous page)

%9 = [2, 2*7 + 7^2 + 5*7^3 + O(7^4)]
? ellpadicregulator(E, p, n, E.gen)
%10 = 2*7 + 7^2 + 5*7^3 + 6*7^4 + 2*7^5 + O(7^6)
? [rC, LC] = ellanalyticrank(E);
? [r, rC]
%12 = [2, 1] \\ r = rC+1 because of split multiplicative reduction

? E = ellinit("53a1"); p = 5; n = 5; \\ supersingular
? [r, Lp] = ellpadicbsd(E, p, n);
? r
%15 = 1
? Lp
%16 = [3*5 + 2*5^2 + 2*5^5 + O(5^6), \
5 + 3*5^2 + 4*5^3 + 2*5^4 + 5^5 + O(5^6)]
? R = ellpadicregulator(E, p, n, E.gen)
%17 = [3*5 + 2*5^2 + 2*5^5 + O(5^6), 5 + 3*5^2 + 4*5^3 + 2*5^4 + O(5^5)]
\\ expect Lp = R*#Sha, hence (conjecturally) #Sha = 1

? E = ellinit("84a1"); p = 11; n = 6; D = -443;
? [r,Lp] = ellpadicbsd(E, 11, 6, D) \\ Mordell-Weil rank 0, no regulator
%19 = [0, 3 + 2*11 + O(11^6)]
? lift(Lp) \\ expected cardinal for Sha is 5^2
%20 = 25
? ellpadicbsd(E, 3, 12, D) \\ at 3
%21 = [1, 1 + 2*3 + 2*3^2 + O(3^8)]
? ellpadicbsd(E, 7, 8, D) \\ and at 7
%22 = [0, 4 + 3*7 + O(7^8)]

ellpadicfrobenius(E, p, n)
If 𝑝 > 2 is a prime and 𝐸 is an elliptic curve on Q with good reduction at 𝑝, return the matrix of the Frobenius
endomorphism 𝜙 on the crystalline module 𝐷𝑝(𝐸) = Q𝑝 ⊗ 𝐻1

𝑑𝑅(𝐸/Q) with respect to the basis of the given
model (𝜔, 𝜂 = 𝑥𝜔), where 𝜔 = 𝑑𝑥/(2𝑦 + 𝑎1𝑥+ 𝑎3) is the invariant differential. The characteristic polynomial
of 𝜙 is 𝑥2 − 𝑎𝑝𝑥+ 𝑝. The matrix is computed to absolute 𝑝-adic precision 𝑝𝑛.

? E = ellinit([1,-1,1,0,0]);
? F = ellpadicfrobenius(E,5,3);
? lift(F)
%3 =
[120 29]

[ 55 5]
? charpoly(F)
%4 = x^2 + O(5^3)*x + (5 + O(5^3))
? ellap(E, 5)
%5 = 0

ellpadicheight(E, p, n, P, Q)

Cyclotomic 𝑝-adic height of the rational point 𝑃 on the elliptic curve𝐸 (defined over Q), given to 𝑛 𝑝-adic digits.
If the argument 𝑄 is present, computes the value of the bilinear form (ℎ(𝑃 +𝑄) − ℎ(𝑃 −𝑄))/4.

Let𝐷 := 𝐻1
𝑑𝑅(𝐸)⊗QQ𝑝 be the Q𝑝 vector space spanned by 𝜔 (invariant differential 𝑑𝑥/(2𝑦+𝑎1𝑥+𝑎3) related

to the given model) and 𝜂 = 𝑥𝜔. Then the cyclotomic 𝑝-adic height ℎ𝐸 associates to 𝑃 ∈ 𝐸(Q) an element
𝑓𝜔 + 𝑔𝜂 in 𝐷. This routine returns the vector [𝑓, 𝑔] to 𝑛 𝑝-adic digits. If 𝑃 ∈ 𝐸(Q) is in the kernel of reduction
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mod 𝑝 and if its reduction at all finite places is non singular, then 𝑔 = −(log𝐸 𝑃 )2, where log𝐸 is the logarithm
for the formal group of 𝐸 at 𝑝.

If furthermore the model is of the form 𝑌 2 = 𝑋3 + 𝑎𝑋 + 𝑏 and 𝑃 = (𝑥, 𝑦), then

𝑓 = log𝑝(𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟(𝑥)) − 2 log𝑝(𝜎(𝑃 ))

where 𝜎(𝑃 ) is given by ellsigma(𝐸,𝑃 ).

Recall (Advanced topics in the arithmetic of elliptic curves, Theorem 3.2) that the local height function over the
complex numbers is of the form

𝜆(𝑧) = − log(‖𝐸.𝑑𝑖𝑠𝑐‖)/6 + ℜ(𝑧𝜂(𝑧)) − 2 log(𝜎(𝑧)).

(N.B. our normalization for local and global heights is twice that of Silverman’s).

? E = ellinit([1,-1,1,0,0]); P = [0,0];
? ellpadicheight(E,5,3, P)
%2 = [3*5 + 5^2 + 2*5^3 + O(5^4), 5^2 + 4*5^4 + O(5^5)]
? E = ellinit("11a1"); P = [5,5]; \\ torsion point
? ellpadicheight(E,19,6, P)
%4 = [0, 0]
? E = ellinit([0,0,1,-4,2]); P = [-2,1];
? ellpadicheight(E,3,3, P)
%6 = [2*3^2 + 2*3^3 + 3^4 + O(3^5), 2*3^2 + 3^4 + O(3^5)]
? ellpadicheight(E,3,5, P, elladd(E,P,P))
%7 = [3^2 + 2*3^3 + O(3^7), 3^2 + 3^3 + 2*3^4 + 3^5 + O(3^7)]

• When𝐸 has good ordinary reduction at 𝑝 or non split multiplicative reduction, the “canonical” 𝑝-adic height
is given by

s2 = ellpadics2(E,p,n);
ellpadicheight(E, p, n, P) * [1,-s2]~

Since 𝑠2 does not depend on 𝑃 , it is preferable to compute it only once:

? E = ellinit("5077a1"); p = 5; n = 7; \\ rank 3
? s2 = ellpadics2(E,p,n);
? M = ellpadicheightmatrix(E,p, n, E.gen) * [1,-s2]~;
? matdet(M) \\ p-adic regulator on the points in E.gen
%4 = 5 + 5^2 + 4*5^3 + 2*5^4 + 2*5^5 + 2*5^6 + O(5^7)

• When 𝐸 has split multiplicative reduction at 𝑝 (Tate curve), the “canonical” 𝑝-adic height is given by

Ep = ellinit(E[1..5], O(p^(n))); \\ E seen as a Tate curve over Qp
[u2,u,q] = Ep.tate;
ellpadicheight(E, p, n, P) * [1,-s2 + 1/log(q)/u2]]~

where 𝑠2 is as above. For example,

? E = ellinit("91b1"); P =[-1, 3]; p = 7; n = 5;
? Ep = ellinit(E[1..5], O(p^(n)));
? s2 = ellpadics2(E,p,n);
? [u2,u,q] = Ep.tate;

(continues on next page)
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? H = ellpadicheight(E,p, n, P) * [1,-s2 + 1/log(q)/u2]~
%5 = 2*7 + 7^2 + 5*7^3 + 6*7^4 + 2*7^5 + O(7^6)

These normalizations are chosen so that 𝑝-adic BSD conjectures are easy to state, see ellpadicbsd.

ellpadicheightmatrix(E, p, n, Q)

𝑄 being a vector of points, this function returns the “Gram matrix” [𝐹,𝐺] of the cyclotomic 𝑝-adic height
ℎ𝐸 with respect to the basis (𝜔, 𝜂) of 𝐷 = 𝐻1

𝑑𝑅(𝐸) ⊗Q Q𝑝 given to 𝑛 𝑝-adic digits. In other words, if
ellpadicheight(𝐸, 𝑝, 𝑛,𝑄[𝑖], 𝑄[𝑗]) = [𝑓, 𝑔], corresponding to 𝑓𝜔+𝑔𝜂 in𝐷, then 𝐹 [𝑖, 𝑗] = 𝑓 and𝐺[𝑖, 𝑗] = 𝑔.

? E = ellinit([0,0,1,-7,6]); Q = [[-2,3],[-1,3]]; p = 5; n = 5;
? [F,G] = ellpadicheightmatrix(E,p,n,Q);
? lift(F) \\ p-adic entries, integral approximation for readability
%3 =
[2364 3100]

[3100 3119]

? G
%4 =
[25225 46975]

[46975 61850]

? [F,G] * [1,-ellpadics2(E,p,n)]~
%5 =
[4 + 2*5 + 4*5^2 + 3*5^3 + O(5^5) 4*5^2 + 4*5^3 + 5^4 + O(5^5)]

[ 4*5^2 + 4*5^3 + 5^4 + O(5^5) 4 + 3*5 + 4*5^2 + 4*5^3 + 5^4 + O(5^5)]

ellpadiclambdamu(E, p, D, i)
Let 𝑝 be a prime number and let 𝐸/Q be a rational elliptic curve with good or bad multiplicative reduction at 𝑝.
Return the Iwasawa invariants 𝜆 and 𝜇 for the 𝑝-adic 𝐿 function 𝐿𝑝(𝐸), twisted by (𝐷/.) and the 𝑖-th power of
the Teichmüller character 𝜏 , see ellpadicL for details about 𝐿𝑝(𝐸).

Let 𝜒 be the cyclotomic character and choose 𝛾 in 𝐺𝑎𝑙(Q𝑝(𝜇𝑝𝑜𝑜)/Q𝑝) such that 𝜒(𝛾) = 1 + 2𝑝. Let 𝐿(𝑖),𝐷 ∈
Q𝑝[[𝑋]] ⊗𝐷𝑐𝑟𝑖𝑠 such that

(< 𝜒 >𝑠 𝜏 𝑖)(𝐿(𝑖),𝐷(𝛾 − 1)) = 𝐿𝑝(𝐸,< 𝜒 >𝑠 𝜏 𝑖(𝐷/.)).

• When 𝐸 has good ordinary or bad multiplicative reduction at 𝑝. By Weierstrass’s preparation theorem the
series 𝐿(𝑖),𝐷 can be written 𝑝𝜇(𝑋𝜆 + 𝑝𝐺(𝑋)) up to a 𝑝-adic unit, where 𝐺(𝑋) ∈ Z𝑝[𝑋]. The function
returns [𝜆, 𝜇].

• When 𝐸 has good supersingular reduction, we define a sequence of polynomials 𝑃𝑛 in Q𝑝[𝑋] of degree
< 𝑝𝑛 (and bounded denominators), such that

𝐿(𝑖),𝐷 = 𝑃𝑛𝜙
𝑛+1𝜔𝐸 − 𝜉𝑛𝑃𝑛−1𝜙

𝑛+2𝜔𝐸𝑚𝑜𝑑((1 +𝑋)𝑝
𝑛

− 1)Q𝑝[𝑋] ⊗𝐷𝑐𝑟𝑖𝑠,

𝑤ℎ𝑒𝑟𝑒 : 𝑚𝑎𝑡ℎ : ‘𝜉𝑛 = 𝑝𝑜𝑙𝑐𝑦𝑐𝑙𝑜(𝑝𝑛, 1 +𝑋)‘.𝐿𝑒𝑡 : 𝑚𝑎𝑡ℎ : ‘𝜆𝑛, 𝜇𝑛‘𝑏𝑒𝑡ℎ𝑒𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠𝑜𝑓 : 𝑚𝑎𝑡ℎ : ‘𝑃𝑛‘.𝑊𝑒𝑓𝑖𝑛𝑑𝑡ℎ𝑎𝑡

• 𝜇𝑛 is nonnegative and decreasing for 𝑛 of given parity hence 𝜇2𝑛 tends to a limit 𝜇+ and 𝜇2𝑛+1 tends to a
limit 𝜇− (both conjecturally 0).

• there exists integers 𝜆+, 𝜆− in Z (denoted with a in the reference below) such that
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lim
𝑛→𝑜𝑜

𝜆2𝑛 + 1/(𝑝+ 1) = 𝜆+𝑎𝑛𝑑 lim
𝑛→𝑜𝑜

𝜆2𝑛+1 + 𝑝/(𝑝+ 1) = 𝜆−.

𝑇ℎ𝑒𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑟𝑒𝑡𝑢𝑟𝑛𝑠 : 𝑚𝑎𝑡ℎ : ‘[[𝜆+, 𝜆−], [𝜇+, 𝜇−]]‘.

Reference: B. Perrin-Riou, Arithmétique des courbes elliptiques à réduction supersinguli\`ere en 𝑝, Experimental
Mathematics, 12, 2003, pp. 155-186.

ellpadiclog(E, p, n, P)
Given𝐸 defined over𝐾 = Q orQ𝑝 and𝑃 = [𝑥, 𝑦] on𝐸(𝐾) in the kernel of reduction mod 𝑝, let 𝑡(𝑃 ) = −𝑥/𝑦 be
the formal group parameter; this function returns𝐿(𝑡), where𝐿 denotes the formal logarithm (mapping the formal
group of𝐸 to the additive formal group) attached to the canonical invariant differential: 𝑑𝐿 = 𝑑𝑥/(2𝑦+𝑎1𝑥+𝑎3).

? E = ellinit([0,0,1,-4,2]); P = [-2,1];
? ellpadiclog(E,2,10,P)
%2 = 2 + 2^3 + 2^8 + 2^9 + 2^10 + O(2^11)
? E = ellinit([17,42]);
? p=3; Ep = ellinit(E,p); \\ E mod p
? P=[114,1218]; ellorder(Ep,P) \\ the order of P on (E mod p) is 2
%5 = 2
? Q = ellmul(E,P,2) \\ we need a point of the form 2*P
%6 = [200257/7056, 90637343/592704]
? ellpadiclog(E,3,10,Q)
%7 = 3 + 2*3^2 + 3^3 + 3^4 + 3^5 + 3^6 + 2*3^8 + 3^9 + 2*3^10 + O(3^11)

ellpadicregulator(E, p, n, S)
Let 𝐸/Q be an elliptic curve. Return the determinant of the Gram matrix of the vector of points 𝑆 = (𝑆1, ..., 𝑆𝑟)
with respect to the “canonical” cyclotomic 𝑝-adic height on 𝐸, given to 𝑛 (𝑝-adic) digits.

When 𝐸 has ordinary reduction at 𝑝, this is the expected Gram deteterminant in Q𝑝.

In the case of supersingular reduction of 𝐸 at 𝑝, the definition requires care: the regulator 𝑅 is an element of
𝐷 := 𝐻1

𝑑𝑅(𝐸) ⊗Q Q𝑝, which is a two-dimensional Q𝑝-vector space spanned by 𝜔 and 𝜂 = 𝑥𝜔 (which are
defined over Q) or equivalently but now over Q𝑝 by 𝜔 and 𝐹𝜔 where 𝐹 is the Frobenius endomorphism on 𝐷 as
defined in ellpadicfrobenius. On𝐷 we define the cyclotomic height ℎ𝐸 = 𝑓𝜔+ 𝑔𝜂 (see ellpadicheight)
and a canonical alternating bilinear form [., .]𝐷 such that [𝜔, 𝜂]𝐷 = 1.

For any 𝜈 ∈ 𝐷, we can define a height ℎ𝜈 := [ℎ𝐸 , 𝜈]𝐷 from𝐸(Q) to Q𝑝 and< ., . >𝜈 the attached bilinear form.
In particular, if ℎ𝐸 = 𝑓𝜔 + 𝑔𝜂, then ℎ𝜂 = [ℎ𝐸 , 𝜂]𝐷 = f and ℎ𝜔 = [ℎ𝐸 , 𝜔]𝐷 = −𝑔 hence ℎ𝐸 = ℎ𝜂𝜔 − ℎ𝜔𝜂.
Then, 𝑅 is the unique element of 𝐷 such that

[𝜔, 𝜈]𝑟−1
𝐷 [𝑅, 𝜈]𝐷 = det(< 𝑆𝑖, 𝑆𝑗 >𝜈)

for all 𝜈 ∈ 𝐷 not in Q𝑝𝜔. The ellpadicregulator function returns 𝑅 in the basis (𝜔, 𝐹𝜔), which was chosen
so that 𝑝-adic BSD conjectures are easy to state, see ellpadicbsd.

Note that by definition

[𝑅, 𝜂]𝐷 = det(< 𝑆𝑖, 𝑆𝑗 >𝜂)

and

[𝑅,𝜔 + 𝜂]𝐷 = det(< 𝑆𝑖, 𝑆𝑗 >𝜔+𝜂).

ellpadics2(E, p, n)
If 𝑝 > 2 is a prime and 𝐸/Q is an elliptic curve with ordinary good reduction at 𝑝, returns the slope of the
unit eigenvector of ellpadicfrobenius(E,p,n), i.e., the action of Frobenius 𝜙 on the crystalline module
𝐷𝑝(𝐸) = Q𝑝 ⊗ 𝐻1

𝑑𝑅(𝐸/Q) in the basis of the given model (𝜔, 𝜂 = 𝑥𝜔), where 𝜔 is the invariant differential
𝑑𝑥/(2𝑦 + 𝑎1𝑥+ 𝑎3). In other words, 𝜂 + 𝑠2𝜔 is an eigenvector for the unit eigenvalue of 𝜙.
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? e=ellinit([17,42]);
? ellpadics2(e,13,4)
%2 = 10 + 2*13 + 6*13^3 + O(13^4)

This slope is the unique 𝑐 ∈ 3−1Z𝑝 such that the odd solution 𝜎(𝑡) = 𝑡+𝑂(𝑡2) of

−𝑑((1)/(𝜎)(𝑑𝜎)/(𝜔)) = (𝑥(𝑡) + 𝑐)𝜔

is in 𝑡Z𝑝[[𝑡]].

It is equal to 𝑏2/12 − 𝐸2/12 where 𝐸2 is the value of the Katz 𝑝-adic Eisenstein series of weight 2 on (𝐸,𝜔).
This is used to construct a canonical 𝑝-adic height when 𝐸 has good ordinary reduction at 𝑝 as follows

s2 = ellpadics2(E,p,n);
h(E,p,n, P, s2) = ellpadicheight(E, [p,[1,-s2]],n, P);

Since 𝑠2 does not depend on the point 𝑃 , we compute it only once.

ellperiods(w, flag, precision)
Let 𝑤 describe a complex period lattice (𝑤 = [𝑤1, 𝑤2] or an ellinit structure). Returns normalized periods
[𝑊1,𝑊2] generating the same lattice such that 𝜏 := 𝑊1/𝑊2 has positive imaginary part and lies in the standard
fundamental domain for 𝑆𝐿2(Z).

If 𝑓𝑙𝑎𝑔 = 1, the function returns [[𝑊1,𝑊2], [𝜂1, 𝜂2]], where 𝜂1 and 𝜂2 are the quasi-periods attached to [𝑊1,𝑊2],
satisfying 𝜂2𝑊1 − 𝜂1𝑊2 = 2𝑖𝜋.

The output of this function is meant to be used as the first argument given to ellwp, ellzeta, ellsigma or elleisnum.
Quasi-periods are needed by ellzeta and ellsigma only.

? L = ellperiods([1,I],1);
? [w1,w2] = L[1]; [e1,e2] = L[2];
? e2*w1 - e1*w2
%3 = 6.2831853071795864769252867665590057684*I
? ellzeta(L, 1/2 + 2*I)
%4 = 1.5707963... - 6.283185307...*I
? ellzeta([1,I], 1/2 + 2*I) \\ same but less efficient
%4 = 1.5707963... - 6.283185307...*I

ellpointtoz(E, P, precision)
If 𝐸/C C/Λ is a complex elliptic curve (Λ = 𝐸.𝑜𝑚𝑒𝑔𝑎), computes a complex number 𝑧, well-defined modulo
the lattice Λ, corresponding to the point 𝑃 ; i.e. such that 𝑃 = [℘Λ(𝑧), ℘′

Λ(𝑧)] satisfies the equation

𝑦2 = 4𝑥3 − 𝑔2𝑥− 𝑔3,

where 𝑔2, 𝑔3 are the elliptic invariants.

If 𝐸 is defined over R and 𝑃 ∈ 𝐸(R), we have more precisely, 0 ≤ ℜ(𝑡) < 𝑤1 and 0 <= ℑ(𝑡) < ℑ(𝑤2), where
(𝑤1, 𝑤2) are the real and complex periods of 𝐸.

? E = ellinit([0,1]); P = [2,3];
? z = ellpointtoz(E, P)
%2 = 3.5054552633136356529375476976257353387
? ellwp(E, z)
%3 = 2.0000000000000000000000000000000000000
? ellztopoint(E, z) - P
%4 = [2.548947057811923643 E-57, 7.646841173435770930 E-57]

(continues on next page)
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? ellpointtoz(E, [0]) \\ the point at infinity
%5 = 0

If 𝐸 is defined over a general number field, the function returns the values corresponding to the various complex
embeddings of the curve and of the point, in the same order as E.nf.roots:

? E=ellinit([-22032-15552*x,0], nfinit(x^2-2));
? P=[-72*x-108,0];
? ellisoncurve(E,P)
%3 = 1
? ellpointtoz(E,P)
%4 = [-0.52751724240790530394437835702346995884*I,
-0.090507650025885335533571758708283389896*I]
? E.nf.roots
%5 = [-1.4142135623730950488016887242096980786, \\ x-> -sqrt(2)
1.4142135623730950488016887242096980786] \\ x-> sqrt(2)

If 𝐸/Q𝑝 has multiplicative reduction, then 𝐸/Q̄𝑝 is analytically isomorphic to Q̄*
𝑝/𝑞

Z (Tate curve) for some
𝑝-adic integer 𝑞. The behavior is then as follows:

• If the reduction is split (𝐸.𝑡𝑎𝑡𝑒[2] is a t_PADIC), we have an isomorphism 𝜑 : 𝐸(Q𝑝)Q*
𝑝/𝑞

Z and the function
returns 𝜑(𝑃 ) ∈ Q𝑝.

• If the reduction is not split (𝐸.𝑡𝑎𝑡𝑒[2] is a t_POLMOD), we only have an isomorphism 𝜑 : 𝐸(𝐾) 𝐾*/𝑞Z over
the unramified quadratic extension 𝐾/Q𝑝. In this case, the output 𝜑(𝑃 ) ∈ 𝐾 is a t_POLMOD.

? E = ellinit([0,-1,1,0,0], O(11^5)); P = [0,0];
? [u2,u,q] = E.tate; type(u) \\ split multiplicative reduction
%2 = "t_PADIC"
? ellmul(E, P, 5) \\ P has order 5
%3 = [0]
? z = ellpointtoz(E, [0,0])
%4 = 3 + 11^2 + 2*11^3 + 3*11^4 + 6*11^5 + 10*11^6 + 8*11^7 + O(11^8)
? z^5
%5 = 1 + O(11^9)
? E = ellinit(ellfromj(1/4), O(2^6)); x=1/2; y=ellordinate(E,x)[1];
? z = ellpointtoz(E,[x,y]); \\ t_POLMOD of t_POL with t_PADIC coeffs
? liftint(z) \\ lift all p-adics
%8 = Mod(8*u + 7, u^2 + 437)

ellpow(E, z, n)
Deprecated alias for ellmul.

ellratpoints(E, h, flag)
𝐸 being an integral model of elliptic curve , return a vector containing the affine rational points on the curve of
naive height less than ℎ. If 𝑓𝑙𝑎𝑔 = 1, stop as soon as a point is found; return either an empty vector or a vector
containing a single point. See hyperellratpoints for how ℎ can be specified.

? E=ellinit([-25,1]);
? ellratpoints(E,10)
%2 = [[-5,1],[-5,-1],[-3,7],[-3,-7],[-1,5],[-1,-5],
[0,1],[0,-1],[5,1],[5,-1],[7,13],[7,-13]]
? ellratpoints(E,10,1)
%3 = [[-5,1]]

114 Chapter 1. Interface to the PARI library



CyPari2 Documentation, Release 2.1.3

ellrootno(E, p)
𝐸 being an ell structure over Q as output by ellinit, this function computes the local root number of its 𝐿-
series at the place 𝑝 (at the infinite place if 𝑝 = 0). If 𝑝 is omitted, return the global root number and in this case
the curve can also be defined over a number field.

Note that the global root number is the sign of the functional equation and conjecturally is the parity of the rank
of the Mordell-Weil group. The equation for 𝐸 needs not be minimal at 𝑝, but if the model is already minimal
the function will run faster.

ellsea(E, tors)
Let 𝐸 be an ell structure as output by ellinit, defined over a finite field F𝑞 . This low-level function computes
the order of the group 𝐸(F𝑞) using the SEA algorithm; compared to the high-level function ellcard, which
includes SEA among its choice of algorithms, the tors argument allows to speed up a search for curves having
almost prime order and whose quadratic twist may also have almost prime order. When tors is set to a nonzero
value, the function returns 0 as soon as it detects that the order has a small prime factor not dividing tors; SEA
considers modular polynomials of increasing prime degree ℓ and we return 0 as soon as we hit an ℓ (coprime to
tors) dividing #𝐸(F𝑞):

? ellsea(ellinit([1,1], 2^56+3477), 1)
%1 = 72057594135613381
? forprime(p=2^128,oo, q = ellcard(ellinit([1,1],p)); if(isprime(q),break))
time = 6,571 ms.
? forprime(p=2^128,oo, q = ellsea(ellinit([1,1],p),1);if(isprime(q),break))
time = 522 ms.

In particular, set tors to 1 if you want a curve with prime order, to 2 if you want to allow a cofactor which is a
power of two (e.g. for Edwards’s curves), etc. The early exit on bad curves yields a massive speedup compared
to running the cardinal algorithm to completion.

When tors is negative, similar checks are performed for the quadratic twist of the curve.

The following function returns a curve of prime order over F𝑝.

cryptocurve(p) =
{
while(1,
my(E, N, j = Mod(random(p), p));
E = ellinit(ellfromj(j));
N = ellsea(E, 1); if (!N, continue);
if (isprime(N), return(E));
\\ try the quadratic twist for free
if (isprime(2*p+2 - N), return(ellinit(elltwist(E))));
);
}
? p = randomprime([2^255, 2^256]);
? E = cryptocurve(p); \\ insist on prime order
%2 = 47,447ms

The same example without early abort (using ellcard(E) instead of ellsea(E, 1)) runs for about 5 minutes
before finding a suitable curve.

The availability of the seadata package will speed up the computation, and is strongly recommended. The
generic function ellcard should be preferred when you only want to compute the cardinal of a given curve
without caring about it having almost prime order:

• If the characteristic is too small (𝑝 <= 7) or the field cardinality is tiny (𝑞 <= 523) the generic algo-
rithm ellcard is used instead and the tors argument is ignored. (The reason for this is that SEA is not
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implemented for 𝑝 <= 7 and that if 𝑞 <= 523 it is likely to run into an infinite loop.)

• If the field cardinality is smaller than about 250, the generic algorithm will be faster.

• Contrary to ellcard, ellsea does not store the computed cardinality in 𝐸.

ellsearch(N)

This function finds all curves in the elldata database satisfying the constraint defined by the argument 𝑁 :

• if 𝑁 is a character string, it selects a given curve, e.g. "11a1", or curves in the given isogeny class, e.g.
"11a", or curves with given conductor, e.g. "11";

• if 𝑁 is a vector of integers, it encodes the same constraints as the character string above, according to the
ellconvertname correspondance, e.g. [11,0,1] for "11a1", [11,0] for "11a" and [11] for "11";

• if 𝑁 is an integer, curves with conductor 𝑁 are selected.

If 𝑁 codes a full curve name, for instance "11a1" or [11,0,1], the output format is [𝑁, [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6], 𝐺]
where [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6] are the coefficients of the Weierstrass equation of the curve and 𝐺 is a Z-basis of the
free part of the Mordell-Weil group attached to the curve.

? ellsearch("11a3")
%1 = ["11a3", [0, -1, 1, 0, 0], []]
? ellsearch([11,0,3])
%2 = ["11a3", [0, -1, 1, 0, 0], []]

If 𝑁 is not a full curve name, then the output is a vector of all matching curves in the above format:

? ellsearch("11a")
%1 = [["11a1", [0, -1, 1, -10, -20], []],
["11a2", [0, -1, 1, -7820, -263580], []],
["11a3", [0, -1, 1, 0, 0], []]]
? ellsearch("11b")
%2 = []

ellsigma(L, z, flag, precision)
Computes the value at 𝑧 of the Weierstrass 𝜎 function attached to the lattice 𝐿 as given by ellperiods(, 1):
including quasi-periods is useful, otherwise there are recomputed from scratch for each new 𝑧.

𝜎(𝑧, 𝐿) = 𝑧
∏︁

𝜔∈𝐿*

(1 − (𝑧)/(𝜔))𝑒(𝑧)/(𝜔)+(𝑧2)/(2𝜔2).

It is also possible to directly input 𝐿 = [𝜔1, 𝜔2], or an elliptic curve 𝐸 as given by ellinit (𝐿 = 𝐸.𝑜𝑚𝑒𝑔𝑎).

? w = ellperiods([1,I], 1);
? ellsigma(w, 1/2)
%2 = 0.47494937998792065033250463632798296855
? E = ellinit([1,0]);
? ellsigma(E) \\ at 'x, implicitly at default seriesprecision
%4 = x + 1/60*x^5 - 1/10080*x^9 - 23/259459200*x^13 + O(x^17)

If 𝑓𝑙𝑎𝑔 = 1, computes an arbitrary determination of log(𝜎(𝑧)).

ellsub(E, z1, z2)
Difference of the points 𝑧1 and 𝑧2 on the elliptic curve corresponding to 𝐸.

elltamagawa(E)
The object 𝐸 being an elliptic curve over a number field, returns the global Tamagawa number of the curve
(including the factor at infinite places).
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? e = ellinit([1, -1, 1, -3002, 63929]); \\ curve "90c6" from elldata
? elltamagawa(e)
%2 = 288
? [elllocalred(e,p)[4] | p<-[2,3,5]]
%3 = [6, 4, 6]
? vecprod(%) \\ since e.disc > 0 the factor at infinity is 2
%4 = 144

elltaniyama(E, serprec)
Computes the modular parametrization of the elliptic curve 𝐸/Q, where 𝐸 is an ell structure as out-
put by ellinit. This returns a two-component vector [𝑢, 𝑣] of power series, given to 𝑛 significant terms
(seriesprecision by default), characterized by the following two properties. First the point (𝑢, 𝑣) satisfies
the equation of the elliptic curve. Second, let 𝑁 be the conductor of 𝐸 and Φ : 𝑋0(𝑁) → 𝐸 be a modular
parametrization; the pullback by Φ of the Néron differential 𝑑𝑢/(2𝑣 + 𝑎1𝑢+ 𝑎3) is equal to 2𝑖𝜋𝑓(𝑧)𝑑𝑧, a holo-
morphic differential form. The variable used in the power series for 𝑢 and 𝑣 is 𝑥, which is implicitly understood
to be equal to exp(2𝑖𝜋𝑧).

The algorithm assumes that 𝐸 is a strong Weil curve and that the Manin constant is equal to 1: in fact, 𝑓(𝑥) =∑︀
𝑛>0 𝑒𝑙𝑙𝑎𝑘(𝐸,𝑛)𝑥𝑛.

elltatepairing(E, P, Q, m)

Let 𝐸 be an elliptic curve defined over a finite field 𝑘 and 𝑚 >= 1 be an integer. This function computes the
(nonreduced) Tate pairing of the points 𝑃 and 𝑄 on 𝐸, where 𝑃 is an 𝑚-torsion point. More precisely, let 𝑓𝑚,𝑃

denote a Miller function with divisor 𝑚[𝑃 ] −𝑚[𝑂𝐸 ]; the algorithm returns 𝑓𝑚,𝑃 (𝑄) ∈ 𝑘*/(𝑘*)𝑚.

elltors(E)
If 𝐸 is an elliptic curve defined over a number field or a finite field, outputs the torsion subgroup of 𝐸 as a 3-
component vector [t,v1,v2], where t is the order of the torsion group, v1 gives the structure of the torsion
group as a product of cyclic groups (sorted by decreasing order), and v2 gives generators for these cyclic groups.
𝐸 must be an ell structure as output by ellinit.

? E = ellinit([-1,0]);
? elltors(E)
%1 = [4, [2, 2], [[0, 0], [1, 0]]]

Here, the torsion subgroup is isomorphic to Z/2Z𝑥Z/2Z, with generators [0, 0] and [1, 0].

elltwist(E, P)
Returns the coefficients [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6] of the twist of the elliptic curve 𝐸 by the quadratic extension of the
coefficient ring defined by 𝑃 (when 𝑃 is a polynomial) or quadpoly(P) when 𝑃 is an integer. If 𝐸 is defined
over a finite field, then 𝑃 can be omitted, in which case a random model of the unique nontrivial twist is returned.
If 𝐸 is defined over a number field, the model should be replaced by a minimal model (if one exists).

Example: Twist by discriminant −3:

? elltwist(ellinit([0,a2,0,a4,a6]),-3)
%1 = [0,-3*a2,0,9*a4,-27*a6]

Twist by the Artin-Schreier extension given by 𝑥2 + 𝑥+ 𝑇 in characteristic 2:

? lift(elltwist(ellinit([a1,a2,a3,a4,a6]*Mod(1,2)),x^2+x+T))
%1 = [a1,a2+a1^2*T,a3,a4,a6+a3^2*T]

Twist of an elliptic curve defined over a finite field:
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? E=ellinit([1,7]*Mod(1,19));lift(elltwist(E))
%1 = [0,0,0,11,12]

ellweilcurve(E, ms)
If 𝐸′ is an elliptic curve over Q, let 𝐿𝐸′ be the sub-Z-module of HomΓ0(𝑁)(∆0,Q) attached to 𝐸′ (It is given by
𝑥[3] if [𝑀,𝑥] = 𝑚𝑠𝑓𝑟𝑜𝑚𝑒𝑙𝑙(𝐸′).)

On the other hand, if 𝑁 is the conductor of 𝐸 and 𝑓 is the modular form for Γ0(𝑁) attached to 𝐸, let 𝐿𝑓 be
the lattice of the 𝑓 -component of HomΓ0(𝑁)(∆0,Q) given by the elements 𝜑 such that 𝜑(0, 𝛾−10) ∈ Z for all
𝛾 ∈ Γ0(𝑁) (see mslattice).

Let 𝐸′ run through the isomorphism classes of elliptic curves isogenous to 𝐸 as given by ellisomat (and in the
same order). This function returns a pair [vE,vS] where vE contains minimal models for the𝐸′ and vS contains
the list of Smith invariants for the lattices 𝐿𝐸′ in 𝐿𝑓 . The function also accepts the output of ellisomat, i.e. the
isogeny class. If the optional argument ms is present, it contains the output of msfromell(vE, 0), i.e. the new
modular symbol space 𝑀 of level 𝑁 and a vector of triples [𝑥+, 𝑥−, 𝐿] attached to each curve 𝐸′.

In particular, the strong Weil curve amongst the curves isogenous to𝐸 is the one whose Smith invariants are [𝑐, 𝑐],
where 𝑐 is the Manin constant, conjecturally equal to 1.

? E = ellinit("11a3");
? [vE, vS] = ellweilcurve(E);
? [n] = [ i | i<-[1..#vS], vS[i]==[1,1] ] \\ lattice with invariant [1,1]
%3 = [2]
? ellidentify(vE[n]) \\ ... corresponds to strong Weil curve
%4 = [["11a1", [0, -1, 1, -10, -20], []], [1, 0, 0, 0]]

? [vE, vS] = ellweilcurve(E, &ms); \\ vE,vS are as above
? [M, vx] = ms; msdim(M) \\ ... but ms contains more information
%6 = 3
? #vx
%7 = 3
? vx[1]
%8 = [[1/25, -1/10, -1/10]~, [0, 1/2, -1/2]~, [1/25,0; -3/5,1; 2/5,-1]]
? forell(E, 11,11, print(msfromell(ellinit(E[1]), 1)[2]))
[1/5, -1/2, -1/2]~
[1, -5/2, -5/2]~
[1/25, -1/10, -1/10]~

The last example prints the modular symbols 𝑥+ in 𝑀+ attached to the curves 11a1, 11a2 and 11a3.

ellweilpairing(E, P, Q, m)

Let 𝐸 be an elliptic curve defined over a finite field and 𝑚 >= 1 be an integer. This function computes the Weil
pairing of the two𝑚-torsion points 𝑃 and𝑄 on𝐸, which is an alternating bilinear map. More precisely, let 𝑓𝑚,𝑅

denote a Miller function with divisor 𝑚[𝑅] −𝑚[𝑂𝐸 ]; the algorithm returns the 𝑚-th root of unity

𝜀(𝑃,𝑄)𝑚.𝑓𝑚,𝑃 (𝑄)/𝑓𝑚,𝑄(𝑃 ),

where 𝑓(𝑅) is the extended evaluation of 𝑓 at the divisor [𝑅]− [𝑂𝐸 ] and 𝜀(𝑃,𝑄) ∈ 1 is given by Weil reciprocity:
𝜀(𝑃,𝑄) = 1 if and only if 𝑃,𝑄,𝑂𝐸 are not pairwise distinct.

ellwp(w, z, flag, precision)
Computes the value at 𝑧 of the Weierstrass ℘ function attached to the lattice 𝑤 as given by ellperiods. It is also
possible to directly input 𝑤 = [𝜔1, 𝜔2], or an elliptic curve 𝐸 as given by ellinit (𝑤 = 𝐸.𝑜𝑚𝑒𝑔𝑎).
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? w = ellperiods([1,I]);
? ellwp(w, 1/2)
%2 = 6.8751858180203728274900957798105571978
? E = ellinit([1,1]);
? ellwp(E, 1/2)
%4 = 3.9413112427016474646048282462709151389

One can also compute the series expansion around 𝑧 = 0:

? E = ellinit([1,0]);
? ellwp(E) \\ 'x implicitly at default seriesprecision
%5 = x^-2 - 1/5*x^2 + 1/75*x^6 - 2/4875*x^10 + O(x^14)
? ellwp(E, x + O(x^12)) \\ explicit precision
%6 = x^-2 - 1/5*x^2 + 1/75*x^6 + O(x^9)

Optional flag means 0 (default): compute only ℘(𝑧), 1: compute [℘(𝑧), ℘′(𝑧)].

For instance, the Dickson elliptic functions sm and sn can be implemented as follows

smcm(z) =
{ my(a, b, E = ellinit([0,-1/(4*27)])); \\ ell. invariants (g2,g3)=(0,1/27)
[a,b] = ellwp(E, z, 1);
[6*a / (1-3*b), (3*b+1)/(3*b-1)];
}
? [s,c] = smcm(0.5);
? s
%2 = 0.4898258757782682170733218609
? c
%3 = 0.9591820206453842491187464098
? s^3+c^3
%4 = 1.000000000000000000000000000
? smcm('x + O('x^11))
%5 = [x - 1/6*x^4 + 2/63*x^7 - 13/2268*x^10 + O(x^11),
1 - 1/3*x^3 + 1/18*x^6 - 23/2268*x^9 + O(x^10)]

ellxn(E, n, v)
For any affine point 𝑃 = (𝑡, 𝑢) on the curve 𝐸, we have

[𝑛]𝑃 = (𝜑𝑛(𝑃 )𝜓𝑛(𝑃 ) : 𝜔𝑛(𝑃 ) : 𝜓𝑛(𝑃 )3)

for some 𝜑𝑛, 𝜔𝑛, 𝜓𝑛 in Z[𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6][𝑡, 𝑢] modulo the curve equation. This function returns a pair [𝐴,𝐵]
of polynomials in Z[𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6][𝑣] such that [𝐴(𝑡), 𝐵(𝑡)] = [𝜑𝑛(𝑃 ), 𝜓𝑛(𝑃 )2] in the function field of 𝐸,
whose quotient give the abscissa of [𝑛]𝑃 . If 𝑃 is an 𝑛-torsion point, then 𝐵(𝑡) = 0.

? E = ellinit([17,42]); [t,u] = [114,1218];
? T = ellxn(E, 2, 'X)
%2 = [X^4 - 34*X^2 - 336*X + 289, 4*X^3 + 68*X + 168]
? [a,b] = subst(T,'X,t);
%3 = [168416137, 5934096]
? a / b == ellmul(E, [t,u], 2)[1]
%4 = 1

ellzeta(w, z, precision)
Computes the value at 𝑧 of the Weierstrass 𝜁 function attached to the lattice 𝑤 as given by ellperiods(, 1):
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including quasi-periods is useful, otherwise there are recomputed from scratch for each new 𝑧.

𝜁(𝑧, 𝐿) = (1)/(𝑧) + 𝑧2
∑︁
𝜔∈𝐿*

(1)/(𝜔2(𝑧 − 𝜔)).

It is also possible to directly input 𝑤 = [𝜔1, 𝜔2], or an elliptic curve 𝐸 as given by ellinit (𝑤 = 𝐸.𝑜𝑚𝑒𝑔𝑎).
The quasi-periods of 𝜁, such that

𝜁(𝑧 + 𝑎𝜔1 + 𝑏𝜔2) = 𝜁(𝑧) + 𝑎𝜂1 + 𝑏𝜂2

for integers 𝑎 and 𝑏 are obtained as 𝜂𝑖 = 2𝜁(𝜔𝑖/2). Or using directly elleta.

? w = ellperiods([1,I],1);
? ellzeta(w, 1/2)
%2 = 1.5707963267948966192313216916397514421
? E = ellinit([1,0]);
? ellzeta(E, E.omega[1]/2)
%4 = 0.84721308479397908660649912348219163647

One can also compute the series expansion around 𝑧 = 0 (the quasi-periods are useless in this case):

? E = ellinit([0,1]);
? ellzeta(E) \\ at 'x, implicitly at default seriesprecision
%4 = x^-1 + 1/35*x^5 - 1/7007*x^11 + O(x^15)
? ellzeta(E, x + O(x^20)) \\ explicit precision
%5 = x^-1 + 1/35*x^5 - 1/7007*x^11 + 1/1440257*x^17 + O(x^18)

ellztopoint(E, z, precision)
𝐸 being an ell as output by ellinit, computes the coordinates [𝑥, 𝑦] on the curve𝐸 corresponding to the complex
or 𝑝-adic parameter 𝑧. Hence this is the inverse function of ellpointtoz.

• If 𝐸 is defined over a 𝑝-adic field and has multiplicative reduction, then 𝑧 is understood as an element on the
Tate curve �̄�*

𝑝/𝑞
Z.

? E = ellinit([0,-1,1,0,0], O(11^5));
? [u2,u,q] = E.tate; type(u)
%2 = "t_PADIC" \\ split multiplicative reduction
? z = ellpointtoz(E, [0,0])
%3 = 3 + 11^2 + 2*11^3 + 3*11^4 + 6*11^5 + 10*11^6 + 8*11^7 + O(11^8)
? ellztopoint(E,z)
%4 = [O(11^9), O(11^9)]

? E = ellinit(ellfromj(1/4), O(2^6)); x=1/2; y=ellordinate(E,x)[1];
? z = ellpointtoz(E,[x,y]); \\ nonsplit: t_POLMOD with t_PADIC coefficients
? P = ellztopoint(E, z);
? P[1] \\ y coordinate is analogous, more complicated
%8 = Mod(O(2^4)*x + (2^-1 + O(2^5)), x^2 + (1 + 2^2 + 2^4 + 2^5 + O(2^7)))

• If 𝐸 is defined over the complex numbers (for instance over Q), 𝑧 is understood as a complex number in
C/Λ𝐸 . If the short Weierstrass equation is 𝑦2 = 4𝑥3 − 𝑔2𝑥 − 𝑔3, then [𝑥, 𝑦] represents the Weierstrass
℘-function and its derivative. For a general Weierstrass equation we have

𝑥 = ℘(𝑧) − 𝑏2/12, 𝑦 = ℘′(𝑧)/2 − (𝑎1𝑥+ 𝑎3)/2.

𝐼𝑓 : 𝑚𝑎𝑡ℎ : ‘𝑧‘𝑖𝑠𝑖𝑛𝑡ℎ𝑒𝑙𝑎𝑡𝑡𝑖𝑐𝑒𝑑𝑒𝑓𝑖𝑛𝑖𝑛𝑔 : 𝑚𝑎𝑡ℎ : ‘𝐸‘𝑜𝑣𝑒𝑟 : 𝑚𝑎𝑡ℎ : ‘C‘, 𝑡ℎ𝑒𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑠𝑡ℎ𝑒𝑝𝑜𝑖𝑛𝑡𝑎𝑡𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 : 𝑚𝑎𝑡ℎ : ‘[0]‘.
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? E = ellinit([0,1]); P = [2,3];
? z = ellpointtoz(E, P)
%2 = 3.5054552633136356529375476976257353387
? ellwp(E, z)
%3 = 2.0000000000000000000000000000000000000
? ellztopoint(E, z) - P
%4 = [2.548947057811923643 E-57, 7.646841173435770930 E-57]
? ellztopoint(E, 0)
%5 = [0] \\ point at infinity

erfc(x, precision)

Complementary error function, analytic continuation of (2/
√
𝜋)

∫︀ 𝑜

𝑥
𝑜𝑒−𝑡2𝑑𝑡 = 𝑠𝑖𝑔𝑛(𝑥)𝑖𝑛𝑐𝑔𝑎𝑚(1/2, 𝑥2)/

√
𝜋

for real 𝑥! = 0. The latter expression extends the function definition from real 𝑥 to complex 𝑥 with positive real
part (or zero real part and positive imaginary part). This is extended to the whole complex plane by the functional
equation 𝑒𝑟𝑓𝑐(−𝑥) = 2 − 𝑒𝑟𝑓𝑐(𝑥).

? erfc(0)
%1 = 1.0000000000000000000000000000000000000
? erfc(1)
%2 = 0.15729920705028513065877936491739074071
? erfc(1+I)
%3 = -0.31615128169794764488027108024367036903
- 0.19045346923783468628410886196916244244*I

errname(E)
Returns the type of the error message E as a string.

? iferr(1 / 0, E, print(errname(E)))
e_INV
? ?? e_INV
[...]
* "e_INV". Tried to invert a noninvertible object x in function s.
[...]

eta(z, flag, precision)
Variants of Dedekind’s 𝜂 function. If 𝑓𝑙𝑎𝑔 = 0, return

∏︀𝑜
𝑛=1 𝑜(1 − 𝑞𝑛), where 𝑞 depends on 𝑥 in the following

way:

• 𝑞 = 𝑒2𝑖𝜋𝑥 if 𝑥 is a complex number (which must then have positive imaginary part); notice that the factor
𝑞1/24 is missing!

• 𝑞 = 𝑥 if 𝑥 is a t_PADIC, or can be converted to a power series (which must then have positive valuation).

If 𝑓𝑙𝑎𝑔 is nonzero, 𝑥 is converted to a complex number and we return the true 𝜂 function, 𝑞1/24
∏︀𝑜

𝑛=1 𝑜(1− 𝑞𝑛),
where 𝑞 = 𝑒2𝑖𝜋𝑥.

eulerfrac(n)
Euler number 𝐸𝑛, where 𝐸0 = 1, 𝐸1 = 0, 𝐸2 = −1,. . . , are integers such that

(1)/(cosh 𝑡) =
∑︁
𝑛>=0

(𝐸𝑛)/(𝑛!)𝑡𝑛.

The argument 𝑛 should be a nonnegative integer.
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? vector(10,i,eulerfrac(i))
%1 = [0, -1, 0, 5, 0, -61, 0, 1385, 0, -50521]
? eulerfrac(20000);
? sizedigit(%))
%3 = 73416

eulerianpol(n, v)
Eulerian polynomial 𝐴𝑛 in variable 𝑣.

? eulerianpol(2)
%1 = x + 1
? eulerianpol(5, 't)
%2 = t^4 + 26*t^3 + 66*t^2 + 26*t + 1

eulerphi(x)
Euler’s 𝜑 (totient) function of the integer ‖𝑥‖, in other words ‖(Z/𝑥Z)*‖.

? eulerphi(40)
%1 = 16

According to this definition we let 𝜑(0) := 2, since Z* = −1, 1; this is consistent with znstar(0): we have
znstar:math:`(n).no = eulerphi(n)` for all 𝑛 ∈ Z.

eulerpol(n, v)
Euler polynomial 𝐸𝑛 in variable 𝑣.

? eulerpol(1)
%1 = x - 1/2
? eulerpol(3)
%2 = x^3 - 3/2*x^2 + 1/4

eulervec(n)
Returns a vector containing, as rational numbers, the nonzero Euler numbers 𝐸0, 𝐸2,. . . , 𝐸2𝑛:

? eulervec(5) \\ E_0, E_2..., E_10
%1 = [1, -1, 5, -61, 1385, -50521]
? eulerfrac(10)
%2 = -50521

This routine uses more memory but is a little faster than repeated calls to eulerfrac:

? forstep(n = 2, 8000, 2, eulerfrac(n))
time = 46,851 ms.
? eulervec(4000);
time = 30,588 ms.

exp(x, precision)
Exponential of 𝑥. 𝑝-adic arguments with positive valuation are accepted.

expm1(x, precision)
Return exp(𝑥) − 1, computed in a way that is also accurate when the real part of 𝑥 is near 0. A naive direct
computation would suffer from catastrophic cancellation; PARI’s direct computation of exp(𝑥) alleviates this
well known problem at the expense of computing exp(𝑥) to a higher accuracy when 𝑥 is small. Using expm1 is
recommended instead:
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? default(realprecision, 10000); x = 1e-100;
? a = expm1(x);
time = 4 ms.
? b = exp(x)-1;
time = 4 ms.
? default(realprecision, 10040); x = 1e-100;
? c = expm1(x); \\ reference point
? abs(a-c)/c \\ relative error in expm1(x)
%7 = 1.4027986153764843997 E-10019
? abs(b-c)/c \\ relative error in exp(x)-1
%8 = 1.7907031188259675794 E-9919

As the example above shows, when 𝑥 is near 0, expm1 is more accurate than exp(x)-1.

exponent(x)
When 𝑥 is a t_REAL, the result is the binary exponent 𝑒 of 𝑥. For a nonzero 𝑥, this is the unique integer 𝑒 such
that 2𝑒 <= ‖𝑥‖ < 2𝑒+1. For a real 0, this returns the PARI exponent 𝑒 attached to 𝑥 (which may represent any
floating-point number less than 2𝑒 in absolute value).

? exponent(Pi)
%1 = 1
? exponent(4.0)
%2 = 2
? exponent(0.0)
%3 = -128
? default(realbitprecision)
%4 = 128

This definition extends naturally to nonzero integers, and the exponent of an exact 0 is −𝑜𝑜 by convention.

For convenience, we define the exponent of a t_FRAC 𝑎/𝑏 as the difference of exponent(𝑎) and exponent(𝑏);
note that, if 𝑒′ denotes the exponent of :math:`a/b * 1.0`, then the exponent 𝑒 we return is either 𝑒′ or 𝑒′ + 1,
thus 2𝑒+1 is an upper bound for ‖𝑎/𝑏‖.

? [ exponent(9), exponent(10), exponent(9/10), exponent(9/10*1.) ]
%5 = [3, 3, 0, -1]

For a PARI object of type t_COMPLEX, t_POL, t_SER, t_VEC, t_COL, t_MAT this returns the largest exponent
found among the components of 𝑥. Hence 2𝑒+1 is a quick upper bound for the sup norm of real matrices or
polynomials; and 2𝑒+(3/2) for complex ones.

? exponent(3*x^2 + 15*x - 100)
%5 = 6
? exponent(0)
%6 = -oo

exportall()

Declare all current dynamic variables as exported variables. Such variables are visible inside parallel sections in
place of global variables.

? fun(x)=x^2+1;
? parvector(10,i,fun(i))
*** mt: please use export(fun).
? exportall()

(continues on next page)
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? parvector(10,i,fun(i))
%4 = [2,5,10,17,26,37,50,65,82,101]

extern(str)
The string str is the name of an external command (i.e. one you would type from your UNIX shell prompt). This
command is immediately run and its output fed into gp, just as if read from a file.

externstr(str)
The string str is the name of an external command (i.e. one you would type from your UNIX shell prompt). This
command is immediately run and its output is returned as a vector of GP strings, one component per output line.

factor(x, D)

Factor 𝑥 over domain 𝐷; if 𝐷 is omitted, it is determined from 𝑥. For instance, if 𝑥 is an integer, it is factored
in Z, if it is a polynomial with rational coefficients, it is factored in Q[𝑥], etc., see below for details. The result
is a two-column matrix: the first contains the irreducibles dividing 𝑥 (rational or Gaussian primes, irreducible
polynomials), and the second the exponents. By convention, 0 is factored as 01.

:math:`x in mathbb{Q}.` See factorint for the algorithms used. The factorization includes the unit −1 when
𝑥 < 0 and all other factors are positive; a denominator is factored with negative exponents. The factors are sorted
in increasing order.

? factor(-7/106)
%1 =
[-1 1]

[ 2 -1]

[ 7 1]

[53 -1]

By convention, 1 is factored as matrix(0,2) (the empty factorization, printed as [;]).

Large rational “primes” > 264 in the factorization are in fact pseudoprimes (see ispseudoprime), a priori not
rigorously proven primes. Use isprime to prove primality of these factors, as in

? fa = factor(2^2^7 + 1)
%2 =
[59649589127497217 1]

[5704689200685129054721 1]

? isprime( fa[,1] )
%3 = [1, 1]~ \\ both entries are proven primes

Another possibility is to globally set the default factor_proven, which will perform a rigorous primality proof
for each pseudoprime factor but will slow down PARI.

A t_INT argument 𝐷 can be added, meaning that we only trial divide by all primes 𝑝 < 𝐷 and the addprimes
entries, then skip all expensive factorization methods. The limit 𝐷 must be nonnegative. In this case, one entry
in the factorization may be a composite number: all factors less than 𝐷2 and primes from the addprimes table
are actual primes. But (at most) one entry may not verify this criterion, and it may be prime or composite: it is
only known to be coprime to all other entries and not a pure power..
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? factor(2^2^7 +1, 10^5)
%4 =
[340282366920938463463374607431768211457 1]

Deprecated feature. Setting 𝐷 = 0 is the same as setting it to 𝑝𝑟𝑖𝑚𝑒𝑙𝑖𝑚𝑖𝑡+ 1.

This routine uses trial division and perfect power tests, and should not be used for huge values of𝐷 (at most 109,
say): factorint(, 1 + 8) will in general be faster. The latter does not guarantee that all small prime factors
are found, but it also finds larger factors and in a more efficient way.

? F = (2^2^7 + 1) * 1009 * (10^5+3); factor(F, 10^5) \\ fast, incomplete
time = 0 ms.
%5 =
[1009 1]

[34029257539194609161727850866999116450334371 1]

? factor(F, 10^9) \\ slow
time = 3,260 ms.
%6 =
[1009 1]

[100003 1]

[340282366920938463463374607431768211457 1]

? factorint(F, 1+8) \\ much faster and all small primes were found
time = 8 ms.
%7 =
[1009 1]

[100003 1]

[340282366920938463463374607431768211457 1]

? factor(F) \\ complete factorization
time = 60 ms.
%8 =
[1009 1]

[100003 1]

[59649589127497217 1]

[5704689200685129054721 1]

Setting 𝐷 = 𝐼 will factor in the Gaussian integers Z[𝑖]:

:math:`x in mathbb{Q} (i).` The factorization is performed with Gaussian primes in Z[𝑖] and includes Gaussian
units in 1, 𝑖; factors are sorted by increasing norm. Except for a possible leading unit, the Gaussian factors are
normalized: rational factors are positive and irrational factors have positive imaginary part (a canonical represneta.

Unless factor_proven is set, large factors are actually pseudoprimes, not proven primes; a rational factor is
prime if less than 264 and an irrational one if its norm is less than 264.
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? factor(5*I)
%9 =
[ 2 + I 1]

[1 + 2*I 1]

One can force the factorization of a rational number by setting the domain 𝐷 = 𝐼:

? factor(-5, I)
%10 =
[ I 1]

[ 2 + I 1]

[1 + 2*I 1]
? factorback(%)
%11 = -5

Univariate polynomials and rational functions. PARI can factor univariate polynomials in𝐾[𝑡]. The following
base fields𝐾 are currently supported: Q,R,C,Q𝑝, finite fields and number fields. See factormod and factorff
for the algorithms used over finite fields and nffactor for the algorithms over number fields. The irreducible
factors are sorted by increasing degree and normalized: they are monic except when 𝐾 = Q where they are
primitive in Z[𝑡].

The content is not included in the factorization, in particular factorback will in general recover the original
𝑥 only up to multiplication by an element of 𝐾*: when 𝐾! = Q, this scalar is pollead(𝑥) (since irreducible
factors are monic); and when 𝐾 = Q you can either ask for the Q-content explicitly of use factorback:

? P = t^2 + 5*t/2 + 1; F = factor(P)
%12 =
[t + 2 1]

[2*t + 1 1]

? content(P, 1) \\ Q-content
%13 = 1/2

? pollead(factorback(F)) / pollead(P)
%14 = 2

You can specify 𝐾 using the optional “domain” argument 𝐷 as follows

• 𝐾 = Q : 𝐷 a rational number (t_INT or t_FRAC),

• 𝐾 = Z/𝑝Z with 𝑝 prime : 𝐷 a t_INTMOD modulo 𝑝; factoring modulo a composite number is not supported.

• 𝐾 = F𝑞 : 𝐷 a t_FFELT encoding the finite field; you can also use a t_POLMOD of t_INTMOD modulo a
prime 𝑝 but this is usualy less convenient;

• 𝐾 = Q[𝑋]/(𝑇 ) a number field : 𝐷 a t_POLMOD modulo 𝑇 ,

• 𝐾 = Q(𝑖) (alternate syntax for special case): 𝐷 = 𝐼 ,

• 𝐾 = Q(𝑤) a quadratic number field (alternate syntax for special case): 𝐷 a t_QUAD,

• 𝐾 = R : 𝐷 a real number (t_REAL); truncate the factorization at accuracy precision(𝐷). If 𝑥 is inexact
and precision(𝑥) is less than precision(𝐷), then the precision of 𝑥 is used instead.
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• 𝐾 = C : 𝐷 a complex number with a t_REAL component, e.g. I * 1.; truncate the factorization as for
𝐾 = R,

• 𝐾 = Q𝑝 : 𝐷 a t_PADIC; truncate the factorization at 𝑝-adic accuracy padicprec(𝐷), possibly less if 𝑥 is
inexact with insufficient 𝑝-adic accuracy;

? T = x^2+1;
? factor(T, 1); \\ over Q
? factor(T, Mod(1,3)) \\ over F_3
? factor(T, ffgen(ffinit(3,2,'t))^0) \\ over F_{3^2}
? factor(T, Mod(Mod(1,3), t^2+t+2)) \\ over F_{3^2}, again
? factor(T, O(3^6)) \\ over Q_3, precision 6
? factor(T, 1.) \\ over R, current precision
? factor(T, I*1.) \\ over C
? factor(T, Mod(1, y^3-2)) \\ over Q(2^{1/3})

In most cases, it is possible and simpler to call a specialized variant rather than use the above scheme:

? factormod(T, 3) \\ over F_3
? factormod(T, [t^2+t+2, 3]) \\ over F_{3^2}
? factormod(T, ffgen(3^2, 't)) \\ over F_{3^2}
? factorpadic(T, 3,6) \\ over Q_3, precision 6
? nffactor(y^3-2, T) \\ over Q(2^{1/3})
? polroots(T) \\ over C
? polrootsreal(T) \\ over R (real polynomial)

It is also possible to let the routine use the smallest field containing all coefficients, taking into account quotient
structures induced by t_INTMOD s and t_POLMOD s (e.g. if a coefficient in Z/𝑛Z is known, all rational numbers
encountered are first mapped to Z/𝑛Z; different moduli will produce an error):

? T = x^2+1;
? factor(T); \\ over Q
? factor(T*Mod(1,3)) \\ over F_3
? factor(T*ffgen(ffinit(3,2,'t))^0) \\ over F_{3^2}
? factor(T*Mod(Mod(1,3), t^2+t+2)) \\ over F_{3^2}, again
? factor(T*(1 + O(3^6)) \\ over Q_3, precision 6
? factor(T*1.) \\ over R, current precision
? factor(T*(1.+0.*I)) \\ over C
? factor(T*Mod(1, y^3-2)) \\ over Q(2^{1/3})

Multiplying by a suitable field element equal to 1 ∈ 𝐾 in this way is error-prone and is not recommanded.
Factoring existing polynomials with obvious fields of coefficients is fine, the domain argument 𝐷 should be used
instead ad hoc conversions.

Note on inexact polynomials. Polynomials with inexact coefficients (e.g. floating point or 𝑝-adic numbers) are
first rounded to an exact representation, then factored to (potentially) infinite accuracy and we return a truncated
approximation of that virtual factorization. To avoid pitfalls, we advise to only factor exact polynomials:

? factor(x^2-1+O(2^2)) \\ rounded to x^2 + 3, irreducible in Q_2
%1 =
[(1 + O(2^2))*x^2 + O(2^2)*x + (1 + 2 + O(2^2)) 1]

? factor(x^2-1+O(2^3)) \\ rounded to x^2 + 7, reducible !
%2 =
[ (1 + O(2^3))*x + (1 + 2 + O(2^3)) 1]

(continues on next page)
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[(1 + O(2^3))*x + (1 + 2^2 + O(2^3)) 1]

? factor(x^2-1, O(2^2)) \\ no ambiguity now
%3 =
[ (1 + O(2^2))*x + (1 + O(2^2)) 1]

[(1 + O(2^2))*x + (1 + 2 + O(2^2)) 1]

Note about inseparable polynomials. Polynomials with inexact coefficients are considered to be squarefree:
indeed, there exist a squarefree polynomial arbitrarily close to the input, and they cannot be distinguished at the
input accuracy. This means that irreducible factors are repeated according to their apparent multiplicity. On
the contrary, using a specialized function such as factorpadic with an exact rational input yields the correct
multiplicity when the (now exact) input is not separable. Compare:

? factor(z^2 + O(5^2)))
%1 =
[(1 + O(5^2))*z + O(5^2) 1]

[(1 + O(5^2))*z + O(5^2) 1]
? factor(z^2, O(5^2))
%2 =
[1 + O(5^2))*z + O(5^2) 2]

Multivariate polynomials and rational functions. PARI recursively factors multivariate polynomials in
𝐾[𝑡1, ..., 𝑡𝑑] for the same fields 𝐾 as above and the argument 𝐷 is used in the same way to specify 𝐾. The
irreducible factors are sorted by their main variable (least priority first) then by increasing degree.

? factor(x^2 + y^2, Mod(1,5))
%1 =
[ x + Mod(2, 5)*y 1]

[Mod(1, 5)*x + Mod(3, 5)*y 1]

? factor(x^2 + y^2, O(5^2))
%2 =
[ (1 + O(5^2))*x + (O(5^2)*y^2 + (2 + 5 + O(5^2))*y + O(5^2)) 1]

[(1 + O(5^2))*x + (O(5^2)*y^2 + (3 + 3*5 + O(5^2))*y + O(5^2)) 1]

? lift(%)
%3 =
[ x + 7*y 1]

[x + 18*y 1]

Note that the implementation does not really support inexact real fields (R or C) and usually misses factors even
if the input is exact:

? factor(x^2 + y^2, I) \\ over Q(i)
%4 =
[x - I*y 1]

(continues on next page)
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[x + I*y 1]

? factor(x^2 + y^2, I*1.) \\ over C
%5 =
[x^2 + y^2 1]

factorback(f, e)
Gives back the factored object corresponding to a factorization. The integer 1 corresponds to the empty factor-
ization.

If 𝑒 is present, 𝑒 and 𝑓 must be vectors of the same length (𝑒 being integral), and the corresponding factorization
is the product of the 𝑓 [𝑖]𝑒[𝑖].

If not, and 𝑓 is vector, it is understood as in the preceding case with 𝑒 a vector of 1s: we return the product of the
𝑓 [𝑖]. Finally, 𝑓 can be a regular factorization, as produced with any factor command. A few examples:

? factor(12)
%1 =
[2 2]

[3 1]

? factorback(%)
%2 = 12
? factorback([2,3], [2,1]) \\ 2^3 * 3^1
%3 = 12
? factorback([5,2,3])
%4 = 30

factorcantor(x, p)
This function is obsolete, use factormod.

factorff(x, p, a)
Obsolete, kept for backward compatibility: use factormod.

factorial(x, precision)
Factorial of 𝑥. The expression 𝑥! gives a result which is an integer, while 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙(𝑥) gives a real number.

factorint(x, flag)
Factors the integer 𝑛 into a product of pseudoprimes (see ispseudoprime), using a combination of the Shanks
SQUFOF and Pollard Rho method (with modifications due to Brent), Lenstra’s ECM (with modifications by
Montgomery), and MPQS (the latter adapted from the LiDIA code with the kind permission of the LiDIA main-
tainers), as well as a search for pure powers. The output is a two-column matrix as for factor: the first column
contains the “prime” divisors of 𝑛, the second one contains the (positive) exponents.

By convention 0 is factored as 01, and 1 as the empty factorization; also the divisors are by default not proven
primes if they are larger than 264, they only failed the BPSW compositeness test (see ispseudoprime). Use
isprime on the result if you want to guarantee primality or set the factor_proven default to 1. Entries of the
private prime tables (see addprimes) are also included as is.

This gives direct access to the integer factoring engine called by most arithmetical functions. flag is optional; its
binary digits mean 1: avoid MPQS, 2: skip first stage ECM (we may still fall back to it later), 4: avoid Rho and
SQUFOF, 8: don’t run final ECM (as a result, a huge composite may be declared to be prime). Note that a (strong)
probabilistic primality test is used; thus composites might not be detected, although no example is known.
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You are invited to play with the flag settings and watch the internals at work by using gp’s debug default parameter
(level 3 shows just the outline, 4 turns on time keeping, 5 and above show an increasing amount of internal details).

factormod(f, D, flag)
Factors the polynomial 𝑓 over the finite field defined by the domain 𝐷 as follows:

• 𝐷 = 𝑝 a prime: factor over F𝑝;

• 𝐷 = [𝑇, 𝑝] for a prime 𝑝 and 𝑇 (𝑦) an irreducible polynomial over F𝑝: factor over F𝑝[𝑦]/(𝑇 ) (as usual the
main variable of 𝑇 must have lower priority than the main variable of 𝑓 );

• 𝐷 a t_FFELT: factor over the attached field;

• 𝐷 omitted: factor over the field of definition of 𝑓 , which must be a finite field.

The coefficients of 𝑓 must be operation-compatible with the corresponding finite field. The result is a two-
column matrix, the first column being the irreducible polynomials dividing 𝑓 , and the second the exponents. By
convention, the 0 polynomial factors as 01; a nonzero constant polynomial has empty factorization, a 0𝑥2 matrix.
The irreducible factors are ordered by increasing degree and the result is canonical: it will not change across
multiple calls or sessions.

? factormod(x^2 + 1, 3) \\ over F_3
%1 =
[Mod(1, 3)*x^2 + Mod(1, 3) 1]
? liftall( factormod(x^2 + 1, [t^2+1, 3]) ) \\ over F_9
%2 =
[ x + t 1]

[x + 2*t 1]

\\ same, now letting GP choose a model
? T = ffinit(3,2,'t)
%3 = Mod(1, 3)*t^2 + Mod(1, 3)*t + Mod(2, 3)
? liftall( factormod(x^2 + 1, [T, 3]) )
%4 = \\ t is a root of T !
[ x + (t + 2) 1]

[x + (2*t + 1) 1]
? t = ffgen(t^2+Mod(1,3)); factormod(x^2 + t^0) \\ same using t_FFELT
%5 =
[ x + t 1]

[x + 2*t 1]
? factormod(x^2+Mod(1,3))
%6 =
[Mod(1, 3)*x^2 + Mod(1, 3) 1]
? liftall( factormod(x^2 + Mod(Mod(1,3), y^2+1)) )
%7 =
[ x + y 1]

[x + 2*y 1]

If 𝑓𝑙𝑎𝑔 is nonzero, outputs only the degrees of the irreducible polynomials (for example to compute an 𝐿-
function). By convention, a constant polynomial (including the 0 polynomial) has empty factorization. The
degrees appear in increasing order but need not correspond to the ordering with 𝑓𝑙𝑎𝑔 = 0 when multiplicities are
present.
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? f = x^3 + 2*x^2 + x + 2;
? factormod(f, 5) \\ (x+2)^2 * (x+3)
%1 =
[Mod(1, 5)*x + Mod(2, 5) 2]

[Mod(1, 5)*x + Mod(3, 5) 1]
? factormod(f, 5, 1) \\ (deg 1) * (deg 1)^2
%2 =
[1 1]

[1 2]

factormodDDF(f, D)

Distinct-degree factorization of the squarefree polynomial 𝑓 over the finite field defined by the domain 𝐷 as
follows:

• 𝐷 = 𝑝 a prime: factor over F𝑝;

• 𝐷 = [𝑇, 𝑝] for a prime 𝑝 and 𝑇 an irreducible polynomial over F𝑝: factor over F𝑝[𝑥]/(𝑇 );

• 𝐷 a t_FFELT: factor over the attached field;

• 𝐷 omitted: factor over the field of definition of 𝑓 , which must be a finite field.

This is somewhat faster than full factorization. The coefficients of 𝑓 must be operation-compatible with the
corresponding finite field. The result is a two-column matrix:

• the first column contains monic (squarefree) pairwise coprime polynomials dividing 𝑓 , all of whose irre-
ducible factors have degree 𝑑;

• the second column contains the degrees of the irreducible factors.

The factors are ordered by increasing degree and the result is canonical: it will not change across multiple calls
or sessions.

? f = (x^2 + 1) * (x^2-1);
? factormodSQF(f,3) \\ squarefree over F_3
%2 =
[Mod(1, 3)*x^4 + Mod(2, 3) 1]

? factormodDDF(f, 3)
%3 =
[Mod(1, 3)*x^2 + Mod(2, 3) 1] \\ two degree 1 factors

[Mod(1, 3)*x^2 + Mod(1, 3) 2] \\ irred of degree 2

? for(i=1,10^5,factormodDDF(f,3))
time = 424 ms.
? for(i=1,10^5,factormod(f,3)) \\ full factorization is slower
time = 464 ms.

? liftall( factormodDDF(x^2 + 1, [3, t^2+1]) ) \\ over F_9
%6 =
[x^2 + 1 1] \\ product of two degree 1 factors

? t = ffgen(t^2+Mod(1,3)); factormodDDF(x^2 + t^0) \\ same using t_FFELT
%7 =

(continues on next page)
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[x^2 + 1 1]

? factormodDDF(x^2-Mod(1,3))
%8 =
[Mod(1, 3)*x^2 + Mod(2, 3) 1]

factormodSQF(f, D)

Squarefree factorization of the polynomial 𝑓 over the finite field defined by the domain 𝐷 as follows:

• 𝐷 = 𝑝 a prime: factor over F𝑝;

• 𝐷 = [𝑇, 𝑝] for a prime 𝑝 and 𝑇 an irreducible polynomial over F𝑝: factor over F𝑝[𝑥]/(𝑇 );

• 𝐷 a t_FFELT: factor over the attached field;

• 𝐷 omitted: factor over the field of definition of 𝑓 , which must be a finite field.

This is somewhat faster than full factorization. The coefficients of 𝑓 must be operation-compatible with the
corresponding finite field. The result is a two-column matrix:

• the first column contains monic squarefree pairwise coprime polynomials dividing 𝑓 ;

• the second column contains the power to which the polynomial in column 1 divides 𝑓 ;

The factors are ordered by increasing degree and the result is canonical: it will not change across multiple calls
or sessions.

? f = (x^2 + 1)^3 * (x^2-1)^2;
? factormodSQF(f, 3) \\ over F_3
%1 =
[Mod(1, 3)*x^2 + Mod(2, 3) 2]

[Mod(1, 3)*x^2 + Mod(1, 3) 3]

? for(i=1,10^5,factormodSQF(f,3))
time = 192 ms.
? for(i=1,10^5,factormod(f,3)) \\ full factorization is slower
time = 409 ms.

? liftall( factormodSQF((x^2 + 1)^3, [3, t^2+1]) ) \\ over F_9
%4 =
[x^2 + 1 3]

? t = ffgen(t^2+Mod(1,3)); factormodSQF((x^2 + t^0)^3) \\ same using t_FFELT
%5 =
[x^2 + 1 3]

? factormodSQF(x^8 + x^7 + x^6 + x^2 + x + Mod(1,2))
%6 =
[ Mod(1, 2)*x + Mod(1, 2) 2]

[Mod(1, 2)*x^2 + Mod(1, 2)*x + Mod(1, 2) 3]

factornf(x, t)
This function is obsolete, use nffactor.

132 Chapter 1. Interface to the PARI library



CyPari2 Documentation, Release 2.1.3

factorization of the univariate polynomial 𝑥 over the number field defined by the (univariate) polynomial 𝑡. 𝑥may
have coefficients in Q or in the number field. The algorithm reduces to factorization over Q (Trager’s trick). The
direct approach of nffactor, which uses van Hoeij’s method in a relative setting, is in general faster.

The main variable of 𝑡 must be of lower priority than that of 𝑥 (see priority (in the PARI manual)). However
if nonrational number field elements occur (as polmods or polynomials) as coefficients of 𝑥, the variable of these
polmods must be the same as the main variable of 𝑡. For example

? factornf(x^2 + Mod(y, y^2+1), y^2+1);
? factornf(x^2 + y, y^2+1); \\ these two are OK
? factornf(x^2 + Mod(z,z^2+1), y^2+1)
*** at top-level: factornf(x^2+Mod(z,z
*** ^--------------------
*** factornf: inconsistent data in rnf function.
? factornf(x^2 + z, y^2+1)
*** at top-level: factornf(x^2+z,y^2+1
*** ^--------------------
*** factornf: incorrect variable in rnf function.

factorpadic(pol, p, r)
𝑝-adic factorization of the polynomial pol to precision 𝑟, the result being a two-column matrix as in factor.
Note that this is not the same as a factorization over Z/𝑝𝑟Z (polynomials over that ring do not form a unique
factorization domain, anyway), but approximations in Q/𝑝𝑟Z of the true factorization in Q𝑝[𝑋].

? factorpadic(x^2 + 9, 3,5)
%1 =
[(1 + O(3^5))*x^2 + O(3^5)*x + (3^2 + O(3^5)) 1]
? factorpadic(x^2 + 1, 5,3)
%2 =
[ (1 + O(5^3))*x + (2 + 5 + 2*5^2 + O(5^3)) 1]

[(1 + O(5^3))*x + (3 + 3*5 + 2*5^2 + O(5^3)) 1]

The factors are normalized so that their leading coefficient is a power of 𝑝. The method used is a modified version
of the round 4 algorithm of Zassenhaus.

If pol has inexact t_PADIC coefficients, this is not always well-defined; in this case, the polynomial is first made
integral by dividing out the 𝑝-adic content, then lifted to Z using truncate coefficientwise. Hence we actually
factor exactly a polynomial which is only 𝑝-adically close to the input. To avoid pitfalls, we advise to only factor
polynomials with exact rational coefficients.

ffcompomap(f, g)
Let 𝑘, 𝑙, 𝑚 be three finite fields and 𝑓 a (partial) map from 𝑙 to 𝑚 and 𝑔 a (partial) map from 𝑘 to 𝑙, return the
(partial) map 𝑓𝑜𝑔 from 𝑘 to 𝑚.

a = ffgen([3,5],'a); b = ffgen([3,10],'b); c = ffgen([3,20],'c);
m = ffembed(a, b); n = ffembed(b, c);
rm = ffinvmap(m); rn = ffinvmap(n);
nm = ffcompomap(n,m);
ffmap(n,ffmap(m,a)) == ffmap(nm, a)
%5 = 1
ffcompomap(rm, rn) == ffinvmap(nm)
%6 = 1

ffembed(a, b)
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Given two finite fields elements 𝑎 and 𝑏, return a map embedding the definition field of 𝑎 to the definition field of
𝑏. Assume that the latter contains the former.

? a = ffgen([3,5],'a);
? b = ffgen([3,10],'b);
? m = ffembed(a, b);
? A = ffmap(m, a);
? minpoly(A) == minpoly(a)
%5 = 1

ffextend(a, P, v)
Extend the field 𝐾 of definition of 𝑎 by a root of the polynomial 𝑃 ∈ 𝐾[𝑋] assumed to be irreducible over 𝐾.
Return [𝑟,𝑚] where 𝑟 is a root of 𝑃 in the extension field 𝐿 and𝑚 is a map from𝐾 to 𝐿, see ffmap. If 𝑣 is given,
the variable name is used to display the generator of 𝐿, else the name of the variable of 𝑃 is used. A generator of
𝐿 can be recovered using 𝑏 = 𝑓𝑓𝑔𝑒𝑛(𝑟). The image of 𝑃 in 𝐿[𝑋] can be recovered using 𝑃𝐿 = 𝑓𝑓𝑚𝑎𝑝(𝑚,𝑃 ).

? a = ffgen([3,5],'a);
? P = x^2-a; polisirreducible(P)
%2 = 1
? [r,m] = ffextend(a, P, 'b);
? r
%3 = b^9+2*b^8+b^7+2*b^6+b^4+1
? subst(ffmap(m, P), x, r)
%4 = 0
? ffgen(r)
%5 = b

fffrobenius(m, n)
Return the 𝑛-th power of the Frobenius map over the field of definition of 𝑚.

? a = ffgen([3,5],'a);
? f = fffrobenius(a);
? ffmap(f,a) == a^3
%3 = 1
? g = fffrobenius(a, 5);
? ffmap(g,a) == a
%5 = 1
? h = fffrobenius(a, 2);
? h == ffcompomap(f,f)
%7 = 1

ffgen(k, v)
Return a generator for the finite field 𝑘 as a t_FFELT. The field 𝑘 can be given by

• its order 𝑞

• the pair [𝑝, 𝑓 ] where 𝑞 = 𝑝𝑓

• a monic irreducible polynomial with t_INTMOD coefficients modulo a prime.

• a t_FFELT belonging to 𝑘.

If v is given, the variable name is used to display 𝑔, else the variable of the polynomial or the t_FFELT is used,
else 𝑥 is used.
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When only the order is specified, the function uses the polynomial generated by ffinit and is deterministic: two
calls to the function with the same parameters will always give the same generator.

For efficiency, the characteristic is not checked to be prime; similarly if a polynomial is given, we do not check
whether it is irreducible.

To obtain a multiplicative generator, call ffprimroot on the result.

? g = ffgen(16, 't);
? g.mod \\ recover the underlying polynomial.
%2 = t^4+t^3+t^2+t+1
? g.pol \\ lift g as a t_POL
%3 = t
? g.p \\ recover the characteristic
%4 = 2
? fforder(g) \\ g is not a multiplicative generator
%5 = 5
? a = ffprimroot(g) \\ recover a multiplicative generator
%6 = t^3+t^2+t
? fforder(a)
%7 = 15

ffinit(p, n, v)
Computes a monic polynomial of degree 𝑛 which is irreducible over F𝑝, where 𝑝 is assumed to be prime. This
function uses a fast variant of Adleman and Lenstra’s algorithm.

It is useful in conjunction with ffgen; for instance if P = ffinit(3,2), you can represent elements in F32 in
term of g = ffgen(P,'t). This can be abbreviated as g = ffgen(3^2, 't), where the defining polynomial
𝑃 can be later recovered as g.mod.

ffinvmap(m)

𝑚 being a map from 𝐾 to 𝐿 two finite fields, return the partial map 𝑝 from 𝐿 to 𝐾 such that for all 𝑘 ∈ 𝐾,
𝑝(𝑚(𝑘)) = 𝑘.

? a = ffgen([3,5],'a);
? b = ffgen([3,10],'b);
? m = ffembed(a, b);
? p = ffinvmap(m);
? u = random(a);
? v = ffmap(m, u);
? ffmap(p, v^2+v+2) == u^2+u+2
%7 = 1
? ffmap(p, b)
%8 = []

fflog(x, g, o)
Discrete logarithm of the finite field element 𝑥 in base 𝑔, i.e. an 𝑒 in Z such that 𝑔𝑒 = 𝑜. If present, 𝑜 represents
the multiplicative order of 𝑔, see DLfun (in the PARI manual); the preferred format for this parameter is [ord,
factor(ord)], where ord is the order of 𝑔. It may be set as a side effect of calling ffprimroot. The result is
undefined if 𝑒 does not exist. This function uses

• a combination of generic discrete log algorithms (see znlog)

• a cubic sieve index calculus algorithm for large fields of degree at least 5.

• Coppersmith’s algorithm for fields of characteristic at most 5.
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? t = ffgen(ffinit(7,5));
? o = fforder(t)
%2 = 5602 \\ not a primitive root.
? fflog(t^10,t)
%3 = 10
? fflog(t^10,t, o)
%4 = 10
? g = ffprimroot(t, &o);
? o \\ order is 16806, bundled with its factorization matrix
%6 = [16806, [2, 1; 3, 1; 2801, 1]]
? fforder(g, o)
%7 = 16806
? fflog(g^10000, g, o)
%8 = 10000

ffmap(m, x)
Given a (partial) map𝑚 between two finite fields, return the image of 𝑥 by𝑚. The function is applied recursively
to the component of vectors, matrices and polynomials. If 𝑚 is a partial map that is not defined at 𝑥, return [].

? a = ffgen([3,5],'a);
? b = ffgen([3,10],'b);
? m = ffembed(a, b);
? P = x^2+a*x+1;
? Q = ffmap(m,P);
? ffmap(m,poldisc(P)) == poldisc(Q)
%6 = 1

ffmaprel(m, x)
Given a (partial) map 𝑚 between two finite fields, express 𝑥 as an algebraic element over the codomain of 𝑚 in a
way which is compatible with 𝑚. The function is applied recursively to the component of vectors, matrices and
polynomials.

? a = ffgen([3,5],'a);
? b = ffgen([3,10],'b);
? m = ffembed(a, b);
? mi= ffinvmap(m);
? R = ffmaprel(mi,b)
%5 = Mod(b,b^2+(a+1)*b+(a^2+2*a+2))

In particular, this function can be used to compute the relative minimal polynomial, norm and trace:

? minpoly(R)
%6 = x^2+(a+1)*x+(a^2+2*a+2)
? trace(R)
%7 = 2*a+2
? norm(R)
%8 = a^2+2*a+2

ffnbirred(q, n, fl)
Computes the number of monic irreducible polynomials over F𝑞 of degree exactly 𝑛, (𝑓𝑙𝑎𝑔 = 0 or omitted) or at
most 𝑛 (𝑓𝑙𝑎𝑔 = 1).

fforder(x, o)
Multiplicative order of the finite field element 𝑥. If 𝑜 is present, it represents a multiple of the order of the
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element, see DLfun (in the PARI manual); the preferred format for this parameter is [N, factor(N)], where N
is the cardinality of the multiplicative group of the underlying finite field.

? t = ffgen(ffinit(nextprime(10^8), 5));
? g = ffprimroot(t, &o); \\ o will be useful!
? fforder(g^1000000, o)
time = 0 ms.
%5 = 5000001750000245000017150000600250008403
? fforder(g^1000000)
time = 16 ms. \\ noticeably slower, same result of course
%6 = 5000001750000245000017150000600250008403

ffprimroot(x, o)
Return a primitive root of the multiplicative group of the definition field of the finite field element 𝑥 (not neces-
sarily the same as the field generated by 𝑥). If present, 𝑜 is set to a vector [ord, fa], where ord is the order of
the group and fa its factorization factor(ord). This last parameter is useful in fflog and fforder, see DLfun
(in the PARI manual).

? t = ffgen(ffinit(nextprime(10^7), 5));
? g = ffprimroot(t, &o);
? o[1]
%3 = 100000950003610006859006516052476098
? o[2]
%4 =
[2 1]

[7 2]

[31 1]

[41 1]

[67 1]

[1523 1]

[10498781 1]

[15992881 1]

[46858913131 1]

? fflog(g^1000000, g, o)
time = 1,312 ms.
%5 = 1000000

fft(w, P)
Let 𝑤 = [1, 𝑧, ..., 𝑧𝑁−1] from some primitive𝑁 -roots of unity 𝑧 where𝑁 is a power of 2, and 𝑃 be a polynomial
< 𝑁 , return the unnormalized discrete Fourier transform of 𝑃 , 𝑃 (𝑤[𝑖]), 1 <= 𝑖 <= 𝑁 . Also allow 𝑃 to be a
vector [𝑝0, ..., 𝑝𝑛] representing the polynomial

∑︀
𝑝𝑖𝑋

𝑖. Composing fft and fftinv returns𝑁 times the original
input coefficients.

? w = rootsof1(4); fft(w, x^3+x+1)
(continues on next page)
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(continued from previous page)

%1 = [3, 1, -1, 1]
? fftinv(w, %)
%2 = [4, 4, 0, 4]
? Polrev(%) / 4
%3 = x^3 + x + 1
? w = powers(znprimroot(5),3); fft(w, x^3+x+1)
%4 = [Mod(3,5),Mod(1,5),Mod(4,5),Mod(1,5)]
? fftinv(w, %)
%5 = [Mod(4,5),Mod(4,5),Mod(0,5),Mod(4,5)]

fftinv(w, P)
Let 𝑤 = [1, 𝑧, ..., 𝑧𝑁−1] from some primitive𝑁 -roots of unity 𝑧 where𝑁 is a power of 2, and 𝑃 be a polynomial
< 𝑁 , return the unnormalized discrete Fourier transform of 𝑃 , 𝑃 (1/𝑤[𝑖]), 1 <= 𝑖 <= 𝑁 . Also allow 𝑃 to be a
vector [𝑝0, ..., 𝑝𝑛] representing the polynomial

∑︀
𝑝𝑖𝑋

𝑖. Composing fft and fftinv returns𝑁 times the original
input coefficients.

? w = rootsof1(4); fft(w, x^3+x+1)
%1 = [3, 1, -1, 1]
? fftinv(w, %)
%2 = [4, 4, 0, 4]
? Polrev(%) / 4
%3 = x^3 + x + 1

? N = 512; w = rootsof1(N); T = random(1000 * x^(N-1));
? U = fft(w, T);
time = 3 ms.
? V = vector(N, i, subst(T, 'x, w[i]));
time = 65 ms.
? exponent(V - U)
%7 = -97
? round(Polrev(fftinv(w,U) / N)) == T
%8 = 1

fibonacci(x)
𝑥− 𝑡ℎ Fibonacci number.

fileclose(n)
Close the file descriptor 𝑛, created via fileopen or fileextern. Finitely many files can be opened at a given
time, closing them recycles file descriptors and avoids running out of them:

? n = 0; while(n++, fileopen("/tmp/test", "w"))
*** at top-level: n=0;while(n++,fileopen("/tmp/test","w"))
*** ^--------------------------
*** fileopen: error opening requested file: `/tmp/test'.
*** Break loop: type 'break' to go back to GP prompt
break> n
65533

This is a limitation of the operating system and does not depend on PARI: if you open too many files in gp without
closing them, the operating system will also prevent unrelated applications from opening files. Independently,
your operating system (e.g. Windows) may prevent other applications from accessing or deleting your file while
it is opened by gp. Quitting gp implicitly calls this function on all opened file descriptors.
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On files opened for writing, this function also forces a write of all buffered data to the file system and completes
all pending write operations. This function is implicitly called for all open file descriptors when exiting gp but it
is cleaner and safer to call it explicitly, for instance in case of a gp crash or general system failure, which could
cause data loss.

? n = fileopen("./here");
? while(l = fileread(n), print(l));
? fileclose(n);

? n = fileopen("./there", "w");
? for (i = 1, 100, filewrite(n, i^2+1))
? fileclose(n)

Until a fileclose, there is no guarantee that the file on disk contains all the expected data from previous
filewrite s. (And even then the operating system may delay the actual write to hardware.)

Closing a file twice raises an exception:

? n = fileopen("/tmp/test");
? fileclose(n)
? fileclose(n)
*** at top-level: fileclose(n)
*** ^------------
*** fileclose: invalid file descriptor 0

fileextern(str)
The string str is the name of an external command, i.e. one you would type from your UNIX shell prompt. This
command is immediately run and the function returns a file descriptor attached to the command output as if it
were read from a file.

? n = fileextern("ls -l");
? while(l = filereadstr(n), print(l))
? fileclose(n)

If the secure default is set, this function will raise en exception.

fileflush(n)
Flushes the file descriptor 𝑛, created via fileopen or fileextern. On files opened for writing, this function
forces a write of all buffered data to the file system and completes all pending write operations. This function is
implicitly called by fileclose but you may want to call it explicitly at synchronization points, for instance after
writing a large result to file and before printing diagnostics on screen. (In order to be sure that the file contains
the expected content on inspection.)

If 𝑛 is omitted, flush all descriptors to output streams.

? n = fileopen("./here", "w");
? for (i = 1, 10^5, \
filewrite(n, i^2+1); \
if (i % 10000 == 0, fileflush(n)))

Until a fileflush or fileclose, there is no guarantee that the file contains all the expected data from previous
filewrite s.

fileopen(path, mode)
Open the file pointed to by ‘path’ and return a file descriptor which can be used with other file functions.

The mode can be
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• "r" (default): open for reading; allow fileread and filereadstr.

• "w": open for writing, discarding existing content; allow filewrite, filewrite1.

• "a": open for writing, appending to existing content; same operations allowed as "w".

Eventually, the file should be closed and the descriptor recycled using fileclose.

? n = fileopen("./here"); \\ "r" by default
? while (l = filereadstr(n), print(l)) \\ print successive lines
? fileclose(n) \\ done

In read mode, raise an exception if the file does not exist or the user does not have read permission. In write
mode, raise an exception if the file cannot be written to. Trying to read or write to a file that was not opend with
the right mode raises an exception.

? n = fileopen("./read", "r");
? filewrite(n, "test") \\ not open for writing
*** at top-level: filewrite(n,"test")
*** ^-------------------
*** filewrite: invalid file descriptor 0

fileread(n)
Read a logical line from the file attached to the descriptor 𝑛, opened for reading with fileopen. Return 0 at end
of file.

A logical line is a full command as it is prepared by gp’s preprocessor (skipping blanks and comments or assem-
bling multiline commands between braces) before being fed to the interpreter. The function filereadstr would
read a raw line exactly as input, up to the next carriage return \n.

Compare raw lines

? n = fileopen("examples/bench.gp");
? while(l = filereadstr(n), print(l));
{
u=v=p=q=1;
for (k=1, 2000,
[u,v] = [v,u+v];
p *= v; q = lcm(q,v);
if (k%50 == 0,
print(k, " ", log(p)/log(q))
)
)
}

and logical lines

? n = fileopen("examples/bench.gp");
? while(l = fileread(n), print(l));
u=v=p=q=1;for(k=1,2000,[u,v]=[v,u+v];p*=v;q=lcm(q,v);[...]

filereadstr(n)
Read a raw line from the file attached to the descriptor 𝑛, opened for reading with fileopen, discarding the
terminating newline. In other words the line is read exactly as input, up to the next carriage return \n. By com-
parison, fileread would read a logical line, as assembled by gp’s preprocessor (skipping blanks and comments
for instance).
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filewrite(n, s)
Write the string 𝑠 to the file attached to descriptor 𝑛, ending with a newline. The file must have been
opened with fileopen in "w" or "a" mode. There is no guarantee that 𝑠 is completely written to disk until
fileclose:math:`(n)` is executed, which is automatic when quitting gp.

If the newline is not desired, use filewrite1.

Variant. The high-level function write is expensive when many consecutive writes are expected because it
cannot use buffering. The low-level interface fileopen / filewrite / fileclose is more efficient:

? f = "/tmp/bigfile";
? for (i = 1, 10^5, write(f, i^2+1))
time = 240 ms.

? v = vector(10^5, i, i^2+1);
time = 10 ms. \\ computing the values is fast
? write("/tmp/bigfile2",v)
time = 12 ms. \\ writing them in one operation is fast

? n = fileopen("/tmp/bigfile", "w");
? for (i = 1, 10^5, filewrite(n, i^2+1))
time = 24 ms. \\ low-level write is ten times faster
? fileclose(n);

In the final example, the file needs not be in a consistent state until the ending fileclose is evaluated, e.g. some
lines might be half-written or not present at all even though the corresponding filewrite was executed already.
Both a single high-level write and a succession of low-level filewrite s achieve the same efficiency, but the
latter is often more natural. In fact, concatenating naively the entries to be written is quadratic in the number of
entries, hence much more expensive than the original write operations:

? v = []; for (i = 1, 10^5, v = concat(v,i))
time = 1min, 41,456 ms.

filewrite1(n, s)
Write the string 𝑠 to the file attached to descriptor 𝑛. The file must have been opened with fileopen in "w" or
"a" mode.

If you want to append a newline at the end of 𝑠, you can use Str(s,"\n") or filewrite.

floor(x)
Floor of 𝑥. When 𝑥 is in R, the result is the largest integer smaller than or equal to 𝑥. Applied to a rational
function, 𝑓𝑙𝑜𝑜𝑟(𝑥) returns the Euclidean quotient of the numerator by the denominator.

fold(f, A)
Apply the t_CLOSURE f of arity 2 to the entries of A, in order to return f(...f(f(A[1],A[2]),A[3])...,
A[#A]).

? fold((x,y)->x*y, [1,2,3,4])
%1 = 24
? fold((x,y)->[x,y], [1,2,3,4])
%2 = [[[1, 2], 3], 4]
? fold((x,f)->f(x), [2,sqr,sqr,sqr])
%3 = 256
? fold((x,y)->(x+y)/(1-x*y),[1..5])
%4 = -9/19

(continues on next page)
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? bestappr(tan(sum(i=1,5,atan(i))))
%5 = -9/19

frac(x)
Fractional part of 𝑥. Identical to 𝑥− 𝑓𝑙𝑜𝑜𝑟(𝑥). If 𝑥 is real, the result is in [0, 1[.

fromdigits(x, b)
Gives the integer formed by the elements of 𝑥 seen as the digits of a number in base 𝑏 (𝑏 = 10 by default). This
is the reverse of digits:

? digits(1234,5)
%1 = [1,4,4,1,4]
? fromdigits([1,4,4,1,4],5)
%2 = 1234

By convention, 0 has no digits:

? fromdigits([])
%3 = 0

galoischardet(gal, chi, o)
Let 𝐺 be the group attached to the galoisinit structure gal, and let 𝜒 be the character of some representation
𝜌 of the group 𝐺, where a polynomial variable is to be interpreted as an 𝑜-th root of 1. For instance, if [T,o] =
galoischartable(gal) the characters 𝜒 are input as the columns of T.

Return the degree-1 character det 𝜌 as the list of det 𝜌(𝑔), where 𝑔 runs through representatives of the conjugacy
classes in galoisconjclasses(gal), with the same ordering.

? P = x^5 - x^4 - 5*x^3 + 4*x^2 + 3*x - 1;
? polgalois(P)
%2 = [10, 1, 1, "D(5) = 5:2"]
? K = nfsplitting(P);
? gal = galoisinit(K); \\ dihedral of order 10
? [T,o] = galoischartable(gal);
? chi = T[,1]; \\ trivial character
? galoischardet(gal, chi, o)
%7 = [1, 1, 1, 1]~
? [galoischardet(gal, T[,i], o) | i <- [1..#T]] \\ all characters
%8 = [[1, 1, 1, 1]~, [1, 1, -1, 1]~, [1, 1, -1, 1]~, [1, 1, -1, 1]~]

galoischarpoly(gal, chi, o)
Let 𝐺 be the group attached to the galoisinit structure gal, and let 𝜒 be the character of some representa-
tion 𝜌 of the group 𝐺, where a polynomial variable is to be interpreted as an 𝑜-th root of 1, e.g., if [T,o] =
galoischartable(gal) and 𝜒 is a column of T. Return the list of characteristic polynomials det(1 − 𝜌(𝑔)𝑇 ),
where 𝑔 runs through representatives of the conjugacy classes in galoisconjclasses(gal), with the same
ordering.

? T = x^5 - x^4 - 5*x^3 + 4*x^2 + 3*x - 1;
? polgalois(T)
%2 = [10, 1, 1, "D(5) = 5:2"]
? K = nfsplitting(T);
? gal = galoisinit(K); \\ dihedral of order 10
? [T,o] = galoischartable(gal);

(continues on next page)
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? o
%5 = 5
? galoischarpoly(gal, T[,1], o) \\ T[,1] is the trivial character
%6 = [-x + 1, -x + 1, -x + 1, -x + 1]~
? galoischarpoly(gal, T[,3], o)
%7 = [x^2 - 2*x + 1,
x^2 + (y^3 + y^2 + 1)*x + 1,
-x^2 + 1,
x^2 + (-y^3 - y^2)*x + 1]~

galoischartable(gal)
Compute the character table of𝐺, where𝐺 is the underlying group of the galoisinit structure gal. The input gal
is also allowed to be a t_VEC of permutations that is closed under products. Let 𝑁 be the number of conjugacy
classes of 𝐺. Return a t_VEC [𝑀, 𝑒] where 𝑒 >= 1 is an integer and 𝑀 is a square t_MAT of size 𝑁 giving the
character table of 𝐺.

• Each column corresponds to an irreducible character; the characters are ordered by increasing dimension and
the first column is the trivial character (hence contains only 1’s).

• Each row corresponds to a conjugacy class; the conjugacy classes are ordered as specified by
galoisconjclasses(gal), in particular the first row corresponds to the identity and gives the dimension
𝜒(1) of the irreducible representation attached to the successive characters 𝜒.

The value 𝑀 [𝑖, 𝑗] of the character 𝑗 at the conjugacy class 𝑖 is represented by a polynomial in y whose variable
should be interpreted as an 𝑒-th root of unity, i.e. as the lift of

Mod(y, polcyclo(e,'y))

(Note that 𝑀 is the transpose of the usual orientation for character tables.)

The integer 𝑒 divides the exponent of the group 𝐺 and is chosen as small as posible; for instance 𝑒 = 1 when the
characters are all defined over Q, as is the case for 𝑆𝑛. Examples:

? K = nfsplitting(x^4+x+1);
? gal = galoisinit(K);
? [M,e] = galoischartable(gal);
? M~ \\ take the transpose to get the usual orientation
%4 =
[1 1 1 1 1]

[1 -1 -1 1 1]

[2 0 0 -1 2]

[3 -1 1 0 -1]

[3 1 -1 0 -1]
? e
%5 = 1
? {G = [Vecsmall([1, 2, 3, 4, 5]), Vecsmall([1, 5, 4, 3, 2]),
Vecsmall([2, 1, 5, 4, 3]), Vecsmall([2, 3, 4, 5, 1]),
Vecsmall([3, 2, 1, 5, 4]), Vecsmall([3, 4, 5, 1, 2]),
Vecsmall([4, 3, 2, 1, 5]), Vecsmall([4, 5, 1, 2, 3]),
Vecsmall([5, 1, 2, 3, 4]), Vecsmall([5, 4, 3, 2, 1])];}

(continues on next page)
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\\G = D10
? [M,e] = galoischartable(G);
? M~
%8 =
[1 1 1 1]

[1 -1 1 1]

[2 0 -y^3 - y^2 - 1 y^3 + y^2]

[2 0 y^3 + y^2 -y^3 - y^2 - 1]
? e
%9 = 5

galoisconjclasses(gal)
gal being output by galoisinit, return the list of conjugacy classes of the underlying group. The ordering of
the classes is consistent with galoischartable and the trivial class comes first.

? G = galoisinit(x^6+108);
? galoisidentify(G)
%2 = [6, 1] \\ S_3
? S = galoisconjclasses(G)
%3 = [[Vecsmall([1,2,3,4,5,6])],
[Vecsmall([3,1,2,6,4,5]),Vecsmall([2,3,1,5,6,4])],
[Vecsmall([6,5,4,3,2,1]),Vecsmall([5,4,6,2,1,3]),
Vecsmall([4,6,5,1,3,2])]]
? [[permorder(c[1]),#c] | c <- S ]
%4 = [[1,1], [3,2], [2,3]]

This command also accepts subgroups returned by galoissubgroups:

? subs = galoissubgroups(G); H = subs[5];
? galoisidentify(H)
%2 = [2, 1] \\ Z/2
? S = galoisconjclasses(subgroups_of_G[5]);
? [[permorder(c[1]),#c] | c <- S ]
%4 = [[1,1], [2,1]]

galoisexport(gal, flag)
gal being be a Galois group as output by galoisinit, export the underlying permutation group as a string
suitable for (no flags or 𝑓𝑙𝑎𝑔 = 0) GAP or (𝑓𝑙𝑎𝑔 = 1) Magma. The following example compute the index of the
underlying abstract group in the GAP library:

? G = galoisinit(x^6+108);
? s = galoisexport(G)
%2 = "Group((1, 2, 3)(4, 5, 6), (1, 4)(2, 6)(3, 5))"
? extern("echo \"IdGroup("s");\" | gap -q")
%3 = [6, 1]
? galoisidentify(G)
%4 = [6, 1]

This command also accepts subgroups returned by galoissubgroups.
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To import a GAP permutation into gp (for galoissubfields for instance), the following GAP function may be
useful:

PermToGP := function(p, n)
return Permuted([1..n],p);
end;

gap> p:= (1,26)(2,5)(3,17)(4,32)(6,9)(7,11)(8,24)(10,13)(12,15)(14,27)
(16,22)(18,28)(19,20)(21,29)(23,31)(25,30)
gap> PermToGP(p,32);
[ 26, 5, 17, 32, 2, 9, 11, 24, 6, 13, 7, 15, 10, 27, 12, 22, 3, 28, 20, 19,
29, 16, 31, 8, 30, 1, 14, 18, 21, 25, 23, 4 ]

galoisfixedfield(gal, perm, flag, v)
gal being be a Galois group as output by galoisinit and perm an element of 𝑔𝑎𝑙.𝑔𝑟𝑜𝑢𝑝, a vector of such
elements or a subgroup of gal as returned by galoissubgroups, computes the fixed field of gal by the automorphism
defined by the permutations perm of the roots 𝑔𝑎𝑙.𝑟𝑜𝑜𝑡𝑠. 𝑃 is guaranteed to be squarefree modulo 𝑔𝑎𝑙.𝑝.

If no flags or 𝑓𝑙𝑎𝑔 = 0, output format is the same as for nfsubfield, returning [𝑃, 𝑥] such that 𝑃 is a polynomial
defining the fixed field, and 𝑥 is a root of 𝑃 expressed as a polmod in 𝑔𝑎𝑙.𝑝𝑜𝑙.

If 𝑓𝑙𝑎𝑔 = 1 return only the polynomial 𝑃 .

If 𝑓𝑙𝑎𝑔 = 2 return [𝑃, 𝑥, 𝐹 ] where 𝑃 and 𝑥 are as above and 𝐹 is the factorization of 𝑔𝑎𝑙.𝑝𝑜𝑙 over the field defined
by 𝑃 , where variable 𝑣 (𝑦 by default) stands for a root of 𝑃 . The priority of 𝑣 must be less than the priority of the
variable of 𝑔𝑎𝑙.𝑝𝑜𝑙 (see priority (in the PARI manual)). In this case, 𝑃 is also expressed in the variable 𝑣 for
compatibility with 𝐹 . Example:

? G = galoisinit(x^4+1);
? galoisfixedfield(G,G.group[2],2)
%2 = [y^2 - 2, Mod(- x^3 + x, x^4 + 1), [x^2 - y*x + 1, x^2 + y*x + 1]]

computes the factorization 𝑥4 + 1 = (𝑥2 −
√

2𝑥+ 1)(𝑥2 +
√

2𝑥+ 1)

galoisgetgroup(a, b)
Query the galpol package for a group of order 𝑎 with index 𝑏 in the GAP4 Small Group library, by Hans Ulrich
Besche, Bettina Eick and Eamonn O’Brien.

The current version of galpol supports groups of order 𝑎 <= 143. If 𝑏 is omitted, return the number of isomor-
phism classes of groups of order 𝑎.

galoisgetname(a, b)
Query the galpol package for a string describing the group of order 𝑎 with index 𝑏 in the GAP4 Small Group
library, by Hans Ulrich Besche, Bettina Eick and Eamonn O’Brien. The strings were generated using the GAP4
function StructureDescription. The command below outputs the names of all abstract groups of order 12:

? o = 12; N = galoisgetgroup(o); \\ # of abstract groups of order 12
? for(i=1, N, print(i, ". ", galoisgetname(o,i)))
1. C3 : C4
2. C12
3. A4
4. D12
5. C6 x C2

The current version of galpol supports groups of order 𝑎 <= 143. For 𝑎 >= 16, it is possible for different
groups to have the same name:
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? o = 20; N = galoisgetgroup(o);
? for(i=1, N, print(i, ". ", galoisgetname(o,i)))
1. C5 : C4
2. C20
3. C5 : C4
4. D20
5. C10 x C2

galoisgetpol(a, b, s)
Query the galpol package for a polynomial with Galois group isomorphic to GAP4(a,b), totally real if 𝑠 = 1
(default) and totally complex if 𝑠 = 2. The current version of galpol supports groups of order 𝑎 <= 143. The
output is a vector [pol, den] where

• pol is the polynomial of degree 𝑎

• den is the denominator of nfgaloisconj(pol). Pass it as an optional argument to galoisinit or
nfgaloisconj to speed them up:

? [pol,den] = galoisgetpol(64,4,1);
? G = galoisinit(pol);
time = 352ms
? galoisinit(pol, den); \\ passing 'den' speeds up the computation
time = 264ms
? % == %`
%4 = 1 \\ same answer

If 𝑏 and 𝑠 are omitted, return the number of isomorphism classes of groups of order 𝑎.

galoisidentify(gal)
gal being be a Galois group as output by galoisinit, output the isomorphism class of the underlying abstract
group as a two-components vector [𝑜, 𝑖], where 𝑜 is the group order, and 𝑖 is the group index in the GAP4 Small
Group library, by Hans Ulrich Besche, Bettina Eick and Eamonn O’Brien.

This command also accepts subgroups returned by galoissubgroups.

The current implementation is limited to degree less or equal to 127. Some larger “easy” orders are also supported.

The output is similar to the output of the function IdGroup in GAP4. Note that GAP4 IdGroup handles all groups
of order less than 2000 except 1024, so you can use galoisexport and GAP4 to identify large Galois groups.

galoisinit(pol, den)
Computes the Galois group and all necessary information for computing the fixed fields of the Galois extension
𝐾/Q where 𝐾 is the number field defined by 𝑝𝑜𝑙 (monic irreducible polynomial in Z[𝑋] or a number field as
output by nfinit). The extension 𝐾/Q must be Galois with Galois group “weakly” super-solvable, see below;
returns 0 otherwise. Hence this permits to quickly check whether a polynomial of order strictly less than 48 is
Galois or not.

The algorithm used is an improved version of the paper “An efficient algorithm for the computation of Galois
automorphisms”, Bill Allombert, Math. Comp, vol. 73, 245, 2001, pp. 359–375.

A group 𝐺 is said to be “weakly” super-solvable if there exists a normal series

1 = 𝐻0 ▷ 𝐻1 ▷ ... ▷ 𝐻𝑛−1 ▷ 𝐻𝑛

such that each 𝐻𝑖 is normal in 𝐺 and for 𝑖 < 𝑛, each quotient group 𝐻𝑖+1/𝐻𝑖 is cyclic, and either 𝐻𝑛 = 𝐺
(then 𝐺 is super-solvable) or 𝐺/𝐻𝑛 is isomorphic to either 𝐴4, 𝑆4 or the group (3𝑥3) : 4 (GAP4(36,9)) then
[𝑜1, ..., 𝑜𝑔] ends by [3, 3, 4].
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In practice, almost all small groups are WKSS, the exceptions having order 48(2), 56(1), 60(1), 72(3), 75(1),
80(1), 96(10), 112(1), 120(3) and >= 144.

This function is a prerequisite for most of the galois𝑥𝑥𝑥 routines. For instance:

P = x^6 + 108;
G = galoisinit(P);
L = galoissubgroups(G);
vector(#L, i, galoisisabelian(L[i],1))
vector(#L, i, galoisidentify(L[i]))

The output is an 8-component vector gal.

𝑔𝑎𝑙[1] contains the polynomial pol (:emphasis:`gal.pol`).

𝑔𝑎𝑙[2] is a three-components vector [𝑝, 𝑒, 𝑞] where 𝑝 is a prime number (:emphasis:`gal.p`) such that pol
totally split modulo 𝑝 , 𝑒 is an integer and 𝑞 = 𝑝𝑒 (:emphasis:`gal.mod`) is the modulus of the roots in
:emphasis:`gal.roots`.

𝑔𝑎𝑙[3] is a vector 𝐿 containing the 𝑝-adic roots of pol as integers implicitly modulo :emphasis:`gal.mod`.
(:emphasis:`gal.roots`).

𝑔𝑎𝑙[4] is the inverse of the Vandermonde matrix of the 𝑝-adic roots of pol, multiplied by 𝑔𝑎𝑙[5].

𝑔𝑎𝑙[5] is a multiple of the least common denominator of the automorphisms expressed as polynomial in a root of
pol.

𝑔𝑎𝑙[6] is the Galois group 𝐺 expressed as a vector of permutations of 𝐿 (:emphasis:`gal.group`).

𝑔𝑎𝑙[7] is a generating subset 𝑆 = [𝑠1, ..., 𝑠𝑔] of 𝐺 expressed as a vector of permutations of 𝐿
(:emphasis:`gal.gen`).

𝑔𝑎𝑙[8] contains the relative orders [𝑜1, ..., 𝑜𝑔] of the generators of 𝑆 (:emphasis:`gal.orders`).

Let 𝐻𝑛 be as above, we have the following properties:

* if 𝐺/𝐻𝑛 𝐴4 then [𝑜1, ..., 𝑜𝑔] ends by [2, 2, 3].

* if 𝐺/𝐻𝑛 𝑆4 then [𝑜1, ..., 𝑜𝑔] ends by [2, 2, 3, 2].

* if 𝐺/𝐻𝑛 (3𝑥3) : 4 (GAP4(36,9)) then [𝑜1, ..., 𝑜𝑔] ends by [3, 3, 4].

* for 1 <= 𝑖 <= 𝑔 the subgroup of 𝐺 generated by [𝑠1, ..., 𝑠𝑖] is normal, with the exception of 𝑖 = 𝑔 − 2 in the
𝐴4 case and of 𝑖 = 𝑔 − 3 in the 𝑆4 case.

* the relative order 𝑜𝑖 of 𝑠𝑖 is its order in the quotient group 𝐺/ < 𝑠1, ..., 𝑠𝑖−1 >, with the same exceptions.

* for any 𝑥 ∈ 𝐺 there exists a unique family [𝑒1, ..., 𝑒𝑔] such that (no exceptions):

– for 1 <= 𝑖 <= 𝑔 we have 0 <= 𝑒𝑖 < 𝑜𝑖

– 𝑥 = 𝑔𝑒11 𝑔
𝑒2
2 ...𝑔

𝑒𝑛
𝑛

If present 𝑑𝑒𝑛 must be a suitable value for 𝑔𝑎𝑙[5].

galoisisabelian(gal, flag)
gal being as output by galoisinit, return 0 if gal is not an abelian group, and the HNF matrix of gal over
gal.gen if 𝑓𝑙𝑎𝑔 = 0, 1 if 𝑓𝑙𝑎𝑔 = 1, and the SNF matrix of gal if 𝑓𝑙𝑎𝑔 = 2.

This command also accepts subgroups returned by galoissubgroups.

galoisisnormal(gal, subgrp)
gal being as output by galoisinit, and subgrp a subgroup of gal as output by galoissubgroups,return 1 if
subgrp is a normal subgroup of gal, else return 0.
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This command also accepts subgroups returned by galoissubgroups.

galoispermtopol(gal, perm)

gal being a Galois group as output by galoisinit and perm a element of 𝑔𝑎𝑙.𝑔𝑟𝑜𝑢𝑝, return the polynomial
defining the Galois automorphism, as output by nfgaloisconj, attached to the permutation perm of the roots
𝑔𝑎𝑙.𝑟𝑜𝑜𝑡𝑠. perm can also be a vector or matrix, in this case, galoispermtopol is applied to all components
recursively.

Note that

G = galoisinit(pol);
galoispermtopol(G, G[6])~

is equivalent to nfgaloisconj(pol), if degree of pol is greater or equal to 2.

galoissubcyclo(N, H, fl, v)
Computes the subextension of Q(𝜁𝑛) fixed by the subgroup 𝐻 ⊂ (Z/𝑛Z)*. By the Kronecker-Weber theorem,
all abelian number fields can be generated in this way (uniquely if 𝑛 is taken to be minimal).

The pair (𝑛,𝐻) is deduced from the parameters (𝑁,𝐻) as follows

• 𝑁 an integer: then 𝑛 = 𝑁 ;𝐻 is a generator, i.e. an integer or an integer modulo 𝑛; or a vector of generators.

• 𝑁 the output of znstar(𝑛) or znstar(𝑛, 1). 𝐻 as in the first case above, or a matrix, taken to be a HNF left
divisor of the SNF for (Z/𝑛Z)* (:math:`N.cyc`), giving the generators of 𝐻 in terms of :math:`N.gen`.

• 𝑁 the output of bnrinit(bnfinit(y), :math:`m)` where 𝑚 is a module. 𝐻 as in the first case, or a
matrix taken to be a HNF left divisor of the SNF for the ray class group modulo𝑚 (of type :math:`N.cyc`),
giving the generators of 𝐻 in terms of :math:`N.bid.gen` ( = :math:`N`.gen if 𝑁 includes generators).

In this last case, beware that𝐻 is understood relatively to𝑁 ; in particular, if the infinite place does not divide the
module, e.g if 𝑚 is an integer, then it is not a subgroup of (Z/𝑛Z)*, but of its quotient by 1.

If 𝑓𝑙 = 0, compute a polynomial (in the variable v) defining the subfield of Q(𝜁𝑛) fixed by the subgroup H of
(Z/𝑛Z)*.

If 𝑓𝑙 = 1, compute only the conductor of the abelian extension, as a module.

If 𝑓𝑙 = 2, output [𝑝𝑜𝑙,𝑁 ], where 𝑝𝑜𝑙 is the polynomial as output when 𝑓𝑙 = 0 and 𝑁 the conductor as output
when 𝑓𝑙 = 1.

The following function can be used to compute all subfields of Q(𝜁𝑛) (of exact degree d, if d is set):

subcyclo(n, d = -1)=
{ my(bnr,L,IndexBound);
IndexBound = if (d < 0, n, [d]);
bnr = bnrinit(bnfinit(y), [n,[1]]);
L = subgrouplist(bnr, IndexBound, 1);
vector(#L,i, galoissubcyclo(bnr,L[i]));
}

Setting L = subgrouplist(bnr, IndexBound) would produce subfields of exact conductor 𝑛𝑜𝑜.

galoissubfields(G, flag, v)
Outputs all the subfields of the Galois group G, as a vector. This works by applying galoisfixedfield to all
subgroups. The meaning of flag is the same as for galoisfixedfield.

galoissubgroups(G)

Outputs all the subgroups of the Galois group gal. A subgroup is a vector [gen, orders], with the same meaning
as for 𝑔𝑎𝑙.𝑔𝑒𝑛 and 𝑔𝑎𝑙.𝑜𝑟𝑑𝑒𝑟𝑠. Hence gen is a vector of permutations generating the subgroup, and orders is the
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relatives orders of the generators. The cardinality of a subgroup is the product of the relative orders. Such sub-
group can be used instead of a Galois group in the following command: galoisisabelian, galoissubgroups,
galoisexport and galoisidentify.

To get the subfield fixed by a subgroup sub of gal, use

galoisfixedfield(gal,sub[1])

gamma(s, precision)
For 𝑠 a complex number, evaluates Euler’s gamma function

Γ(𝑠) =

∫︁ 𝑜

0

𝑜𝑡𝑠−1 exp(−𝑡)𝑑𝑡.

Error if 𝑠 is a nonpositive integer, where Γ has a pole.

For 𝑠 a t_PADIC, evaluates the Morita gamma function at 𝑠, that is the unique continuous 𝑝-adic function on the
𝑝-adic integers extending Γ𝑝(𝑘) = (−1)𝑘

∏︀′
𝑗<𝑘 𝑗, where the prime means that 𝑝 does not divide 𝑗.

? gamma(1/4 + O(5^10))
%1= 1 + 4*5 + 3*5^4 + 5^6 + 5^7 + 4*5^9 + O(5^10)
? algdep(%,4)
%2 = x^4 + 4*x^2 + 5

gammah(x, precision)
Gamma function evaluated at the argument 𝑥+ 1/2.

gammamellininv(G, t, m, precision)
Returns the value at 𝑡 of the inverse Mellin transform 𝐺 initialized by gammamellininvinit. If the optional
parameter 𝑚 is present, return the 𝑚-th derivative 𝐺(𝑚)(𝑡).

? G = gammamellininvinit([0]);
? gammamellininv(G, 2) - 2*exp(-Pi*2^2)
%2 = -4.484155085839414627 E-44

The shortcut

gammamellininv(A,t,m)

for

gammamellininv(gammamellininvinit(A,m), t)

is available.

gammamellininvasymp(A, serprec, n)
Return the first 𝑛 terms of the asymptotic expansion at infinity of the 𝑚-th derivative 𝐾(𝑚)(𝑡) of the inverse
Mellin transform of the function

𝑓(𝑠) = ΓR(𝑠+ 𝑎1)...ΓR(𝑠+ 𝑎𝑑),

where A is the vector [𝑎1, ..., 𝑎𝑑] and ΓR(𝑠) = 𝜋−𝑠/2Γ(𝑠/2) (Euler’s gamma). The result is a vector [𝑀 [1]...𝑀 [𝑛]]
with M[1] = 1, such that

𝐾(𝑚)(𝑡) =
√︁

2𝑑+1/𝑑𝑡𝑎+𝑚(2/𝑑−1)𝑒−𝑑𝜋𝑡2/𝑑
∑︁
𝑛>=0

𝑀 [𝑛+ 1](𝜋𝑡2/𝑑)−𝑛

with 𝑎 = (1 − 𝑑+
∑︀

1<=𝑗<=𝑑 𝑎𝑗)/𝑑. We also allow 𝐴 to be the output of gammamellininvinit.
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gammamellininvinit(A, m, precision)
Initialize data for the computation by gammamellininv of the𝑚-th derivative of the inverse Mellin transform of
the function

𝑓(𝑠) = ΓR(𝑠+ 𝑎1)...ΓR(𝑠+ 𝑎𝑑)

where A is the vector [𝑎1, ..., 𝑎𝑑] and ΓR(𝑠) = 𝜋−𝑠/2Γ(𝑠/2) (Euler’s gamma). This is the special case of Meijer’s
𝐺 functions used to compute 𝐿-values via the approximate functional equation. By extension, 𝐴 is allowed to be
an Ldata or an Linit, understood as the inverse Mellin transform of the 𝐿-function gamma factor.

Caveat. Contrary to the PARI convention, this function guarantees an absolute (rather than relative) error bound.

For instance, the inverse Mellin transform of ΓR(𝑠) is 2 exp(−𝜋𝑧2):

? G = gammamellininvinit([0]);
? gammamellininv(G, 2) - 2*exp(-Pi*2^2)
%2 = -4.484155085839414627 E-44

The inverse Mellin transform of ΓR(𝑠+1) is 2𝑧 exp(−𝜋𝑧2), and its second derivative is 4𝜋𝑧 exp(−𝜋𝑧2)(2𝜋𝑧2−
3):

? G = gammamellininvinit([1], 2);
? a(z) = 4*Pi*z*exp(-Pi*z^2)*(2*Pi*z^2-3);
? b(z) = gammamellininv(G,z);
? t(z) = b(z) - a(z);
? t(3/2)
%3 = -1.4693679385278593850 E-39

gcd(x, y)
Creates the greatest common divisor of 𝑥 and 𝑦. If you also need the 𝑢 and 𝑣 such that 𝑥 *𝑢+ 𝑦 * 𝑣 = gcd(𝑥, 𝑦),
use the gcdext function. 𝑥 and 𝑦 can have rather quite general types, for instance both rational numbers. If 𝑦 is
omitted and 𝑥 is a vector, returns the 𝑔𝑐𝑑 of all components of 𝑥, i.e. this is equivalent to content(x).

When 𝑥 and 𝑦 are both given and one of them is a vector/matrix type, the GCD is again taken recursively on
each component, but in a different way. If 𝑦 is a vector, resp. matrix, then the result has the same type as 𝑦, and
components equal to gcd(x, y[i]), resp. gcd(x, y[,i]). Else if 𝑥 is a vector/matrix the result has the same
type as 𝑥 and an analogous definition. Note that for these types, gcd is not commutative.

The algorithm used is a naive Euclid except for the following inputs:

• integers: use modified right-shift binary (“plus-minus” variant).

• univariate polynomials with coefficients in the same number field (in particular rational): use modular gcd
algorithm.

• general polynomials: use the subresultant algorithm if coefficient explosion is likely (non modular coeffi-
cients).

If 𝑢 and 𝑣 are polynomials in the same variable with inexact coefficients, their gcd is defined to be scalar, so that

? a = x + 0.0; gcd(a,a)
%1 = 1
? b = y*x + O(y); gcd(b,b)
%2 = y
? c = 4*x + O(2^3); gcd(c,c)
%3 = 4
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A good quantitative check to decide whether such a gcd “should be” nontrivial, is to use polresultant: a value
close to 0 means that a small deformation of the inputs has nontrivial gcd. You may also use gcdext, which does
try to compute an approximate gcd 𝑑 and provides 𝑢, 𝑣 to check whether 𝑢𝑥+ 𝑣𝑦 is close to 𝑑.

gcdext(x, y)
Returns [𝑢, 𝑣, 𝑑] such that 𝑑 is the gcd of 𝑥, 𝑦, 𝑥 * 𝑢+ 𝑦 * 𝑣 = gcd(𝑥, 𝑦), and 𝑢 and 𝑣 minimal in a natural sense.
The arguments must be integers or polynomials.

? [u, v, d] = gcdext(32,102)
%1 = [16, -5, 2]
? d
%2 = 2
? gcdext(x^2-x, x^2+x-2)
%3 = [-1/2, 1/2, x - 1]

If 𝑥, 𝑦 are polynomials in the same variable and inexact coefficients, then compute 𝑢, 𝑣, 𝑑 such that 𝑥*𝑢+𝑦*𝑣 = 𝑑,
where 𝑑 approximately divides both and 𝑥 and 𝑦; in particular, we do not obtain gcd(x,y) which is defined to
be a scalar in this case:

? a = x + 0.0; gcd(a,a)
%1 = 1

? gcdext(a,a)
%2 = [0, 1, x + 0.E-28]

? gcdext(x-Pi, 6*x^2-zeta(2))
%3 = [-6*x - 18.8495559, 1, 57.5726923]

For inexact inputs, the output is thus not well defined mathematically, but you obtain explicit polynomials to check
whether the approximation is close enough for your needs.

genus2red(PQ, p)
Let 𝑃𝑄 be a polynomial 𝑃 , resp. a vector [𝑃,𝑄] of polynomials, with rational coefficients. Determines the
reduction at 𝑝 > 2 of the (proper, smooth) genus 2 curve 𝐶/Q, defined by the hyperelliptic equation 𝑦2 = 𝑃 (𝑥),
resp. 𝑦2 +𝑄(𝑥) * 𝑦 = 𝑃 (𝑥). (The special fiber 𝑋𝑝 of the minimal regular model 𝑋 of 𝐶 over Z.)

If 𝑝 is omitted, determines the reduction type for all (odd) prime divisors of the discriminant.

This function was rewritten from an implementation of Liu’s algorithm by Cohen and Liu (1994),
genus2reduction-0.3, see http://www.math.u-bordeaux.fr/~liu/G2R/.

CAVEAT. The function interface may change: for the time being, it returns [𝑁,𝐹𝑎𝑁, 𝑇, 𝑉 ] where 𝑁 is either
the local conductor at 𝑝 or the global conductor, FaN is its factorization, 𝑦2 = 𝑇 defines a minimal model over
Z[1/2] and 𝑉 describes the reduction type at the various considered 𝑝. Unfortunately, the program is not complete
for 𝑝 = 2, and we may return the odd part of the conductor only: this is the case if the factorization includes the
(impossible) term 2−1; if the factorization contains another power of 2, then this is the exact local conductor at 2
and 𝑁 is the global conductor.

? default(debuglevel, 1);
? genus2red(x^6 + 3*x^3 + 63, 3)
(potential) stable reduction: [1, []]
reduction at p: [III{9}] page 184, [3, 3], f = 10
%1 = [59049, Mat([3, 10]), x^6 + 3*x^3 + 63, [3, [1, []],
["[III{9}] page 184", [3, 3]]]]
? [N, FaN, T, V] = genus2red(x^3-x^2-1, x^2-x); \\ X_1(13), global reduction
p = 13

(continues on next page)
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(continued from previous page)

(potential) stable reduction: [5, [Mod(0, 13), Mod(0, 13)]]
reduction at p: [I{0}-II-0] page 159, [], f = 2
? N
%3 = 169
? FaN
%4 = Mat([13, 2]) \\ in particular, good reduction at 2 !
? T
%5 = x^6 + 58*x^5 + 1401*x^4 + 18038*x^3 + 130546*x^2 + 503516*x + 808561
? V
%6 = [[13, [5, [Mod(0, 13), Mod(0, 13)]], ["[I{0}-II-0] page 159", []]]]

We now first describe the format of the vector 𝑉 = 𝑉𝑝 in the case where 𝑝 was specified (local reduction at 𝑝): it
is a triple [𝑝, 𝑠𝑡𝑎𝑏𝑙𝑒, 𝑟𝑒𝑑]. The component 𝑠𝑡𝑎𝑏𝑙𝑒 = [𝑡𝑦𝑝𝑒, 𝑣𝑒𝑐𝑗] contains information about the stable reduction
after a field extension; depending on type s, the stable reduction is

• 1: smooth (i.e. the curve has potentially good reduction). The Jacobian 𝐽(𝐶) has potentially good reduction.

• 2: an elliptic curve 𝐸 with an ordinary double point; vecj contains 𝑗 mod 𝑝, the modular invariant of 𝐸.
The (potential) semi-abelian reduction of 𝐽(𝐶) is the extension of an elliptic curve (with modular invariant
𝑗 mod 𝑝) by a torus.

• 3: a projective line with two ordinary double points. The Jacobian 𝐽(𝐶) has potentially multiplicative
reduction.

• 4: the union of two projective lines crossing transversally at three points. The Jacobian 𝐽(𝐶) has potentially
multiplicative reduction.

• 5: the union of two elliptic curves 𝐸1 and 𝐸2 intersecting transversally at one point; vecj contains their
modular invariants 𝑗1 and 𝑗2, which may live in a quadratic extension of F𝑝 and need not be distinct. The
Jacobian 𝐽(𝐶) has potentially good reduction, isomorphic to the product of the reductions of 𝐸1 and 𝐸2.

• 6: the union of an elliptic curve 𝐸 and a projective line which has an ordinary double point, and these two
components intersect transversally at one point; vecj contains 𝑗 mod 𝑝, the modular invariant of 𝐸. The
(potential) semi-abelian reduction of 𝐽(𝐶) is the extension of an elliptic curve (with modular invariant 𝑗
mod 𝑝) by a torus.

• 7: as in type 6, but the two components are both singular. The Jacobian 𝐽(𝐶) has potentially multiplicative
reduction.

The component 𝑟𝑒𝑑 = [𝑁𝑈𝑡𝑦𝑝𝑒, 𝑛𝑒𝑟𝑜𝑛] contains two data concerning the reduction at 𝑝 without any ramified
field extension.

The NUtype is a t_STR describing the reduction at 𝑝 of𝐶, following Namikawa-Ueno, The complete classification
of fibers in pencils of curves of genus two, Manuscripta Math., vol. 9, (1973), pages 143-186. The reduction
symbol is followed by the corresponding page number or page range in this article.

The second datum neron is the group of connected components (over an algebraic closure of F𝑝) of the Néron
model of 𝐽(𝐶), given as a finite abelian group (vector of elementary divisors).

If 𝑝 = 2, the red component may be omitted altogether (and replaced by [], in the case where the program could
not compute it. When 𝑝 was not specified, 𝑉 is the vector of all 𝑉𝑝, for all considered 𝑝.

Notes about Namikawa-Ueno types.
• A lower index is denoted between braces: for instance, [I{2}-II-5] means [I_2-II-5].

• If 𝐾 and 𝐾 ′ are Kodaira symbols for singular fibers of elliptic curves, then [:math:`K-𝐾 ′-m]` and
[:math:`K'-𝐾-m]` are the same.
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We define a total ordering on Kodaira symbol by fixing 𝐼 < 𝐼* < 𝐼𝐼 < 𝐼𝐼*, .... If the reduction type is the same,
we order by the number of components, e.g. 𝐼2 < 𝐼4, etc. Then we normalize our output so that 𝐾 <= 𝐾 ′.

• [:math:`K-𝐾 ′-−1]` is [:math:`K-𝐾 ′-𝛼]` in the notation of Namikawa-Ueno.

• The figure [2I_0-m] in Namikawa-Ueno, page 159, must be denoted by [2I_0-(m+1)].

getabstime()

Returns the CPU time (in milliseconds) elapsed since gp startup. This provides a reentrant version of gettime:

my (t = getabstime());
...
print("Time: ", strtime(getabstime() - t));

For a version giving wall-clock time, see getwalltime.

getcache()

Returns information about various auto-growing caches. For each resource, we report its name, its size, the
number of cache misses (since the last extension), the largest cache miss and the size of the cache in bytes.

The caches are initially empty, then set automatically to a small inexpensive default value, then grow on demand
up to some maximal value. Their size never decreases, they are only freed on exit.

The current caches are

• Hurwitz class numbers 𝐻(𝐷) for ‖𝐷‖ <= 𝑁 , computed in time 𝑂(𝑁3/2) using 𝑂(𝑁) space.

• Factorizations of small integers up to 𝑁 , computed in time 𝑂(𝑁1+𝜀) using 𝑂(𝑁 log𝑁) space.

• Divisors of small integers up to 𝑁 , computed in time 𝑂(𝑁1+𝜀) using 𝑂(𝑁 log𝑁) space.

• Coredisc’s of negative integers down to −𝑁 , computed in time 𝑂(𝑁1+𝜀) using 𝑂(𝑁) space.

• Primitive dihedral forms of weight 1 and level up to 𝑁 , computed in time 𝑂(𝑁2+𝜀) and space 𝑂(𝑁2).

? getcache() \\ on startup, all caches are empty
%1 =
[ "Factors" 0 0 0 0]

[ "Divisors" 0 0 0 0]

[ "H" 0 0 0 0]

["CorediscF" 0 0 0 0]

[ "Dihedral" 0 0 0 0]
? mfdim([500,1,0],0); \\ nontrivial computation
time = 540 ms.
? getcache()
%3 =
[ "Factors" 50000 0 0 4479272]

["Divisors" 50000 1 100000 5189808]

[ "H" 50000 0 0 400008]

["Dihedral" 1000 0 0 2278208]
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getenv(s)
Return the value of the environment variable s if it is defined, otherwise return 0.

getheap()

Returns a two-component row vector giving the number of objects on the heap and the amount of memory they
occupy in long words. Useful mainly for debugging purposes.

getlocalbitprec(precision)
Returns the current dynamic bit precision.

getlocalprec(precision)
Returns the current dynamic precision, in decimal digits.

getrand()

Returns the current value of the seed used by the pseudo-random number generator random. Useful mainly for
debugging purposes, to reproduce a specific chain of computations. The returned value is technical (reproduces
an internal state array), and can only be used as an argument to setrand.

getstack()

Returns the current value of 𝑡𝑜𝑝− 𝑎𝑣𝑚𝑎, i.e. the number of bytes used up to now on the stack. Useful mainly for
debugging purposes.

gettime()

Returns the CPU time (in milliseconds) used since either the last call to gettime, or to the beginning of the
containing GP instruction (if inside gp), whichever came last.

For a reentrant version, see getabstime.

For a version giving wall-clock time, see getwalltime.

getwalltime()

Returns the time (in milliseconds) elapsed since 00:00:00 UTC Thursday 1, January 1970 (the Unix epoch).

my (t = getwalltime());
...
print("Time: ", strtime(getwalltime() - t));

halfgcd(x, y)
Let inputs 𝑥 and 𝑦 be both integers, or both polynomials in the same variable. Return a vector [M, [a,b]~],
where 𝑀 is an invertible 2𝑥2 matrix such that M*[x,y]~ = [a,b]~, where 𝑏 is small. More precisely,

• polynomial case: det𝑀 has degree 0 and we have

deg 𝑎 >= 𝑐𝑒𝑖𝑙max(deg 𝑥, deg 𝑦))/2 > deg 𝑏.

• integer case: det𝑀 = 1 and we have

𝑎 >= 𝑐𝑒𝑖𝑙
√︀

max(‖𝑥‖, ‖𝑦‖) > 𝑏.

𝐴𝑠𝑠𝑢𝑚𝑖𝑛𝑔 : 𝑚𝑎𝑡ℎ : ‘𝑥‘𝑎𝑛𝑑 : 𝑚𝑎𝑡ℎ : ‘𝑦‘𝑎𝑟𝑒𝑛𝑜𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒, 𝑡ℎ𝑒𝑛 : 𝑚𝑎𝑡ℎ : ‘𝑀−1‘ℎ𝑎𝑠𝑛𝑜𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠, 𝑎𝑛𝑑 : 𝑚𝑎𝑡ℎ : ‘ det𝑀 ‘𝑖𝑠𝑒𝑞𝑢𝑎𝑙𝑡𝑜𝑡ℎ𝑒𝑠𝑖𝑔𝑛𝑜𝑓𝑏𝑜𝑡ℎ𝑚𝑎𝑖𝑛𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑡𝑒𝑟𝑚𝑠 : 𝑚𝑎𝑡ℎ : ‘𝑀 [1, 1]‘𝑎𝑛𝑑 : 𝑚𝑎𝑡ℎ : ‘𝑀 [2, 2]‘.

hammingweight(x)
If 𝑥 is a t_INT, return the binary Hamming weight of ‖𝑥‖. Otherwise 𝑥 must be of type t_POL, t_VEC, t_COL,
t_VECSMALL, or t_MAT and the function returns the number of nonzero coefficients of 𝑥.
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? hammingweight(15)
%1 = 4
? hammingweight(x^100 + 2*x + 1)
%2 = 3
? hammingweight([Mod(1,2), 2, Mod(0,3)])
%3 = 2
? hammingweight(matid(100))
%4 = 100

hilbert(x, y, p)
Hilbert symbol of 𝑥 and 𝑦 modulo the prime 𝑝, 𝑝 = 0 meaning the place at infinity (the result is undefined if
𝑝! = 0 is not prime).

It is possible to omit 𝑝, in which case we take 𝑝 = 0 if both 𝑥 and 𝑦 are rational, or one of them is a real number.
And take 𝑝 = 𝑞 if one of 𝑥, 𝑦 is a t_INTMOD modulo 𝑞 or a 𝑞-adic. (Incompatible types will raise an error.)

hyperellcharpoly(X)
𝑋 being a nonsingular hyperelliptic curve defined over a finite field, return the characteristic polynomial of the
Frobenius automorphism. 𝑋 can be given either by a squarefree polynomial 𝑃 such that 𝑋 : 𝑦2 = 𝑃 (𝑥) or by a
vector [𝑃,𝑄] such that 𝑋 : 𝑦2 +𝑄(𝑥)𝑦 = 𝑃 (𝑥) and 𝑄2 + 4𝑃 is squarefree.

hyperellpadicfrobenius(Q, q, n)
Let𝑋 be the curve defined by 𝑦2 = 𝑄(𝑥), where𝑄 is a polynomial of degree 𝑑 overQ and 𝑞 >= 𝑑 is a prime such
that 𝑋 has good reduction at 𝑞. Return the matrix of the Frobenius endomorphism 𝜙 on the crystalline module
𝐷𝑝(𝑋) = Q𝑝⊗𝐻1

𝑑𝑅(𝑋/Q) with respect to the basis of the given model (𝜔, 𝑥𝜔, ..., 𝑥𝑔−1𝜔), where 𝜔 = 𝑑𝑥/(2𝑦)
is the invariant differential, where 𝑔 is the genus of 𝑋 (either 𝑑 = 2𝑔 + 1 or 𝑑 = 2𝑔 + 2). The characteristic
polynomial of 𝜙 is the numerator of the zeta-function of the reduction of the curve 𝑋 modulo 𝑞. The matrix is
computed to absolute 𝑞-adic precision 𝑞𝑛.

Alternatively, 𝑞 may be of the form [𝑇, 𝑝] where 𝑝 is a prime, 𝑇 is a polynomial with integral coefficients whose
projection to F𝑝[𝑡] is irreducible, 𝑋 is defined over 𝐾 = Q[𝑡]/(𝑇 ) and has good reduction to the finite field
F𝑞 = F𝑝[𝑡]/(𝑇 ). The matrix of 𝜙 on 𝐷𝑞(𝑋) = Q𝑞 ⊗𝐻1

𝑑𝑅(𝑋/𝐾) is computed to absolute 𝑝-adic precision 𝑝𝑛.

? M=hyperellpadicfrobenius(x^5+'a*x+1,['a^2+1,3],10);
? liftall(M)
[48107*a + 38874 9222*a + 54290 41941*a + 8931 39672*a + 28651]

[ 21458*a + 4763 3652*a + 22205 31111*a + 42559 39834*a + 40207]

[ 13329*a + 4140 45270*a + 25803 1377*a + 32931 55980*a + 21267]

[15086*a + 26714 33424*a + 4898 41830*a + 48013 5913*a + 24088]
? centerlift(simplify(liftpol(charpoly(M))))
%8 = x^4+4*x^2+81
? hyperellcharpoly((x^5+Mod(a,a^2+1)*x+1)*Mod(1,3))
%9 = x^4+4*x^2+81

hyperellratpoints(X, h, flag)
𝑋 being a nonsingular hyperelliptic curve given by an rational model, return a vector containing the affine rational
points on the curve of naive height less than ℎ.a If 𝑓𝑙𝑎𝑔 = 1, stop as soon as a point is found; return either an
empty vector or a vector containing a single point.

𝑋 is given either by a squarefree polynomial 𝑃 such that 𝑋 : 𝑦2 = 𝑃 (𝑥) or by a vector [𝑃,𝑄] such that
𝑋 : 𝑦2 +𝑄(𝑥)𝑦 = 𝑃 (𝑥) and 𝑄2 + 4𝑃 is squarefree.

The parameter ℎ can be
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• an integer𝐻: find the points [𝑛/𝑑, 𝑦] whose abscissas 𝑥 = 𝑛/𝑑 have naive height ( = max(‖𝑛‖, 𝑑)) less than
𝐻;

• a vector [𝑁,𝐷] with 𝐷 <= 𝑁 : find the points [𝑛/𝑑, 𝑦] with ‖𝑛‖ <= 𝑁 , 𝑑 <= 𝐷.

• a vector [𝑁, [𝐷1, 𝐷2]] with𝐷1 < 𝐷2 <= 𝑁 find the points [𝑛/𝑑, 𝑦] with ‖𝑛‖ <= 𝑁 and𝐷1 <= 𝑑 <= 𝐷2.

hypergeom(N, D, z, precision)
General hypergeometric function, where N and D are the vector of parameters in the numerator and denominator
respectively, evaluated at the complex argument 𝑧.

This function implements hypergeometric functions

𝑝𝐹𝑞((𝑎𝑖)1<=𝑖<=𝑝, (𝑏𝑗)1<=𝑗<=𝑞; 𝑧) =
∑︁
𝑛>=0

(
∏︁

1<=𝑖<=𝑝

(𝑎𝑖)𝑛)/(
∏︁

1<=𝑗<=𝑞

(𝑏𝑗)𝑛)(𝑧𝑛)/(𝑛!),

where (𝑎)𝑛 = 𝑎(𝑎 + 1)...(𝑎 + 𝑛 − 1) is the rising Pochammer symbol. For this to make sense, none of the 𝑏𝑗
must be a negative or zero integer. The corresponding general GP command is

hypergeom([a1,a2,...,ap], [b1,b2,...,bq], z)

Whenever 𝑝 = 1 or 𝑞 = 1, a one-element vector can be replaced by the element it contains. Whenever 𝑝 = 0 or
𝑞 = 0, an empty vector can be omitted. For instance hypergeom(,b,z) computes 0𝐹1(; 𝑏; 𝑧).

We distinguish three kinds of such functions according to their radius of convergence 𝑅:

• 𝑞 >= 𝑝: 𝑅 = 𝑜𝑜.

• 𝑞 = 𝑝 − 1: 𝑅 = 1. Nonetheless, by integral representations, 𝑝𝐹𝑞 can be analytically continued outside the
disc of convergence.

• 𝑞 <= 𝑝− 2: 𝑅 = 0. By integral representations, one can make sense of the function in a suitable domain.

The list of implemented functions and their domain of validity in our implementation is as follows:

F01: hypergeom(,a,z) (or [a]). This is essentially a Bessel function and computed as such. 𝑅 = 𝑜𝑜.

F10: hypergeom(a,,z) This is (1 − 𝑧)−𝑎.

F11: hypergeom(a,b,z) is the Kummer confluent hypergeometric function, computed by summing the series.
𝑅 = 𝑜𝑜

F20: hypergeom([a,b],,z). 𝑅 = 0, computed as

(1)/(Γ(𝑎))

∫︁ 𝑜

0

𝑜𝑡𝑎−1(1 − 𝑧𝑡)−𝑏𝑒−𝑡𝑑𝑡.

F21: hypergeom([a,b],c,z) (or [c]). 𝑅 = 1, extended by

(Γ(𝑐))/(Γ(𝑏)Γ(𝑐− 𝑏))

∫︁ 1

0

𝑡𝑏−1(1 − 𝑡)𝑐−𝑏−1(1 − 𝑧𝑡)𝑎𝑑𝑡.

This is Gauss’s Hypergeometric function, and almost all of the implementation work is done for this function.

F31: hypergeom([a,b,c],d,z) (or [d]). 𝑅 = 0, computed as

(1)/(Γ(𝑎))

∫︁ 𝑜

0

𝑜𝑡𝑎−1𝑒−𝑡
2 𝐹1(𝑏, 𝑐; 𝑑; 𝑡𝑧)𝑑𝑡.

F32: hypergeom([a,b,c],[d,e],z). 𝑅 = 1, extended by

(Γ(𝑒))/(Γ(𝑐)Γ(𝑒− 𝑐))

∫︁ 1

0

𝑡𝑐−1(1 − 𝑡)𝑒−𝑐−1
2 𝐹1(𝑎, 𝑏; 𝑑; 𝑡𝑧)𝑑𝑡.

For other inputs: if 𝑅 = 𝑜𝑜 or 𝑅 = 1 and ‖𝑧‖ < 1 − 𝜀 is not too close to the circle of convergence, we simply
sum the series.

156 Chapter 1. Interface to the PARI library



CyPari2 Documentation, Release 2.1.3

? hypergeom([3,2], 3.4, 0.7) \\ 2F1(3,2; 3.4; 0.7)
%1 = 7.9999999999999999999999999999999999999
? a=5/3; T1=hypergeom([1,1,1],[a,a],1) \\ 3F2(1,1,1; a,a; 1)
%2 = 3.1958592952314032651578713968927593818
? T2=hypergeom([2,1,1],[a+1,a+1],1)
%3 = 1.6752931349345765309211012564734179541
? T3=hypergeom([2*a-1,1,1],[a+1,a+1],1)
%4 = 1.9721037126267142061807688820853354440
? T1 + (a-1)^2/(a^2*(2*a-3)) * (T2-2*(a-1)*T3) \\
- gamma(a)^2/((2*a-3)*gamma(2*a-2))
%5 = -1.880790961315660013 E-37 \\ ~ 0

This identity is due to Bercu.

hyperu(a, b, z, precision)
𝑈 -confluent hypergeometric function with complex parameters 𝑎, 𝑏, 𝑧. Note that 2𝐹0(𝑎, 𝑏, 𝑧) = (−𝑧)−𝑎𝑈(𝑎, 𝑎+
1 − 𝑏,−1/𝑧),

? hyperu(1, 3/2, I)
%1 = 0.23219... - 0.80952...*I
? -I * hypergeom([1, 1+1-3/2], [], -1/I)
%2 = 0.23219... - 0.80952...*I

idealadd(nf, x, y)
Sum of the two ideals 𝑥 and 𝑦 in the number field 𝑛𝑓 . The result is given in HNF.

? K = nfinit(x^2 + 1);
? a = idealadd(K, 2, x + 1) \\ ideal generated by 2 and 1+I
%2 =
[2 1]

[0 1]
? pr = idealprimedec(K, 5)[1]; \\ a prime ideal above 5
? idealadd(K, a, pr) \\ coprime, as expected
%4 =
[1 0]

[0 1]

This function cannot be used to add arbitrary Z-modules, since it assumes that its arguments are ideals:

? b = Mat([1,0]~);
? idealadd(K, b, b) \\ only square t_MATs represent ideals
*** idealadd: nonsquare t_MAT in idealtyp.
? c = [2, 0; 2, 0]; idealadd(K, c, c) \\ nonsense
%6 =
[2 0]

[0 2]
? d = [1, 0; 0, 2]; idealadd(K, d, d) \\ nonsense
%7 =
[1 0]

[0 1]
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In the last two examples, we get wrong results since the matrices 𝑐 and 𝑑 do not correspond to an ideal: the Z-span
of their columns (as usual interpreted as coordinates with respect to the integer basis K.zk) is not an𝑂𝐾-module.
To add arbitrary Z-modules generated by the columns of matrices 𝐴 and 𝐵, use mathnf(concat(A,B)).

idealaddtoone(nf, x, y)
𝑥 and 𝑦 being two co-prime integral ideals (given in any form), this gives a two-component row vector [𝑎, 𝑏] such
that 𝑎 ∈ 𝑥, 𝑏 ∈ 𝑦 and 𝑎+ 𝑏 = 1.

The alternative syntax 𝑖𝑑𝑒𝑎𝑙𝑎𝑑𝑑𝑡𝑜𝑜𝑛𝑒(𝑛𝑓, 𝑣), is supported, where 𝑣 is a 𝑘-component vector of ideals (given in
any form) which sum to Z𝐾 . This outputs a 𝑘-component vector 𝑒 such that 𝑒[𝑖] ∈ 𝑥[𝑖] for 1 <= 𝑖 <= 𝑘 and∑︀

1<=𝑖<=𝑘 𝑒[𝑖] = 1.

idealappr(nf, x, flag)
If 𝑥 is a fractional ideal (given in any form), gives an element 𝛼 in 𝑛𝑓 such that for all prime ideals 𝑝 such that
the valuation of 𝑥 at 𝑝 is nonzero, we have 𝑣𝑝(𝛼) = 𝑣𝑝(𝑥), and 𝑣𝑝(𝛼) >= 0 for all other 𝑝.

The argument 𝑥 may also be given as a prime ideal factorization, as output by idealfactor, but allowing zero
exponents. This yields an element 𝛼 such that for all prime ideals 𝑝 occurring in 𝑥, 𝑣𝑝(𝛼) = 𝑣𝑝(𝑥); for all other
prime ideals, 𝑣𝑝(𝛼) >= 0.

flag is deprecated (ignored), kept for backward compatibility.

idealchinese(nf, x, y)
𝑥 being a prime ideal factorization (i.e. a 2-columns matrix whose first column contains prime ideals and the
second column contains integral exponents), 𝑦 a vector of elements in 𝑛𝑓 indexed by the ideals in 𝑥, computes
an element 𝑏 such that

𝑣𝑝(𝑏− 𝑦𝑝) >= 𝑣𝑝(𝑥) for all prime ideals in 𝑥 and 𝑣𝑝(𝑏) >= 0 for all other 𝑝.

? K = nfinit(t^2-2);
? x = idealfactor(K, 2^2*3)
%2 =
[[2, [0, 1]~, 2, 1, [0, 2; 1, 0]] 4]

[ [3, [3, 0]~, 1, 2, 1] 1]
? y = [t,1];
? idealchinese(K, x, y)
%4 = [4, -3]~

The argument 𝑥may also be of the form [𝑥, 𝑠] where the first component is as above and 𝑠 is a vector of signs, with
𝑟1 components 𝑠𝑖 in −1, 0, 1: if 𝜎𝑖 denotes the 𝑖-th real embedding of the number field, the element 𝑏 returned
satisfies further 𝑠𝑖𝑔𝑛(𝜎𝑖(𝑏)) = 𝑠𝑖 for all 𝑖 such that 𝑠𝑖 = 1. In other words, the sign is fixed to 𝑠𝑖 at the 𝑖-th
embedding whenever 𝑠𝑖 is nonzero.

? idealchinese(K, [x, [1,1]], y)
%5 = [16, -3]~
? idealchinese(K, [x, [-1,-1]], y)
%6 = [-20, -3]~
? idealchinese(K, [x, [1,-1]], y)
%7 = [4, -3]~

If 𝑦 is omitted, return a data structure which can be used in place of 𝑥 in later calls and allows to solve many
chinese remainder problems for a given 𝑥 more efficiently.

? C = idealchinese(K, [x, [1,1]]);
? idealchinese(K, C, y) \\ as above
%9 = [16, -3]~

(continues on next page)
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(continued from previous page)

? for(i=1,10^4, idealchinese(K,C,y)) \\ ... but faster !
time = 80 ms.
? for(i=1,10^4, idealchinese(K,[x,[1,1]],y))
time = 224 ms.

Finally, this structure is itself allowed in place of 𝑥, the new 𝑠 overriding the one already present in the structure.
This allows to initialize for different sign conditions more efficiently when the underlying ideal factorization
remains the same.

? D = idealchinese(K, [C, [1,-1]]); \\ replaces [1,1]
? idealchinese(K, D, y)
%13 = [4, -3]~
? for(i=1,10^4,idealchinese(K,[C,[1,-1]]))
time = 40 ms. \\ faster than starting from scratch
? for(i=1,10^4,idealchinese(K,[x,[1,-1]]))
time = 128 ms.

idealcoprime(nf, x, y)
Given two integral ideals 𝑥 and 𝑦 in the number field 𝑛𝑓 , returns a 𝛽 in the field, such that 𝛽.𝑥 is an integral ideal
coprime to 𝑦.

idealdiv(nf, x, y, flag)
Quotient 𝑥.𝑦−1 of the two ideals 𝑥 and 𝑦 in the number field 𝑛𝑓 . The result is given in HNF.

If 𝑓𝑙𝑎𝑔 is nonzero, the quotient 𝑥.𝑦−1 is assumed to be an integral ideal. This can be much faster when the norm
of the quotient is small even though the norms of 𝑥 and 𝑦 are large. More precisely, the algorithm cheaply removes
all maximal ideals above rational primes such that 𝑣𝑝(𝑁𝑥) = 𝑣𝑝(𝑁𝑦).

idealdown(nf, x)
Let 𝑛𝑓 be a number field as output by nfinit, and 𝑥 a fractional ideal. This function returns the nonnegative
rational generator of 𝑥 ∩Q. If 𝑥 is an extended ideal, the extended part is ignored.

? nf = nfinit(y^2+1);
? idealdown(nf, -1/2)
%2 = 1/2
? idealdown(nf, (y+1)/3)
%3 = 2/3
? idealdown(nf, [2, 11]~)
%4 = 125
? x = idealprimedec(nf, 2)[1]; idealdown(nf, x)
%5 = 2
? idealdown(nf, [130, 94; 0, 2])
%6 = 130

idealfactor(nf, x, lim)

Factors into prime ideal powers the ideal 𝑥 in the number field 𝑛𝑓 . The output format is similar to the factor
function, and the prime ideals are represented in the form output by the idealprimedec function. If lim is set,
return partial factorization, including only prime ideals above rational primes < 𝑙𝑖𝑚.

? nf = nfinit(x^3-2);
? idealfactor(nf, x) \\ a prime ideal above 2
%2 =
[[2, [0, 1, 0]~, 3, 1, ...] 1]

(continues on next page)
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(continued from previous page)

? A = idealhnf(nf, 6*x, 4+2*x+x^2)
%3 =
[6 0 4]

[0 6 2]

[0 0 1]

? idealfactor(nf, A)
%4 =
[[2, [0, 1, 0]~, 3, 1, ...] 2]

[[3, [1, 1, 0]~, 3, 1, ...] 2]

? idealfactor(nf, A, 3) \\ restrict to primes above p < 3
%5 =
[[2, [0, 1, 0]~, 3, 1, ...] 2]

idealfactorback(nf, f, e, flag)
Gives back the ideal corresponding to a factorization. The integer 1 corresponds to the empty factorization. If 𝑒
is present, 𝑒 and 𝑓 must be vectors of the same length (𝑒 being integral), and the corresponding factorization is
the product of the 𝑓 [𝑖]𝑒[𝑖].

If not, and 𝑓 is vector, it is understood as in the preceding case with 𝑒 a vector of 1s: we return the product of the
𝑓 [𝑖]. Finally, 𝑓 can be a regular factorization, as produced by idealfactor.

? nf = nfinit(y^2+1); idealfactor(nf, 4 + 2*y)
%1 =
[[2, [1, 1]~, 2, 1, [1, 1]~] 2]

[[5, [2, 1]~, 1, 1, [-2, 1]~] 1]

? idealfactorback(nf, %)
%2 =
[10 4]

[0 2]

? f = %1[,1]; e = %1[,2]; idealfactorback(nf, f, e)
%3 =
[10 4]

[0 2]

? % == idealhnf(nf, 4 + 2*y)
%4 = 1

If flag is nonzero, perform ideal reductions (idealred) along the way. This is most useful if the ideals involved
are all extended ideals (for instance with trivial principal part), so that the principal parts extracted by idealred
are not lost. Here is an example:
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? f = vector(#f, i, [f[i], [;]]); \\ transform to extended ideals
? idealfactorback(nf, f, e, 1)
%6 = [[1, 0; 0, 1], [2, 1; [2, 1]~, 1]]
? nffactorback(nf, %[2])
%7 = [4, 2]~

The extended ideal returned in %6 is the trivial ideal 1, extended with a principal generator given in factored form.
We use nffactorback to recover it in standard form.

idealfrobenius(nf, gal, pr)
Let𝐾 be the number field defined by 𝑛𝑓 and assume𝐾/Q be a Galois extension with Galois group given gal =
galoisinit(nf), and that pr is an unramified prime ideal 𝑝 in prid format. This function returns a permutation
of gal.group which defines the Frobenius element Frob𝑝 attached to 𝑝. If 𝑝 is the unique prime number in 𝑝,
then Frob(𝑥) = 𝑥𝑝𝑚𝑜𝑑𝑝 for all 𝑥 ∈ Z𝐾 .

? nf = nfinit(polcyclo(31));
? gal = galoisinit(nf);
? pr = idealprimedec(nf,101)[1];
? g = idealfrobenius(nf,gal,pr);
? galoispermtopol(gal,g)
%5 = x^8

This is correct since 101 = 8𝑚𝑜𝑑31.

idealhnf(nf, u, v)
Gives the Hermite normal form of the ideal 𝑢Z𝐾 + 𝑣Z𝐾 , where 𝑢 and 𝑣 are elements of the number field 𝐾
defined by nf.

? nf = nfinit(y^3 - 2);
? idealhnf(nf, 2, y+1)
%2 =
[1 0 0]

[0 1 0]

[0 0 1]
? idealhnf(nf, y/2, [0,0,1/3]~)
%3 =
[1/3 0 0]

[0 1/6 0]

[0 0 1/6]

If 𝑏 is omitted, returns the HNF of the ideal defined by 𝑢: 𝑢may be an algebraic number (defining a principal ideal),
a maximal ideal (as given by idealprimedec or idealfactor), or a matrix whose columns give generators for
the ideal. This last format is a little complicated, but useful to reduce general modules to the canonical form once
in a while:

• if strictly less than 𝑁 = [𝐾 : Q] generators are given, 𝑢 is the Z𝐾-module they generate,

• if 𝑁 or more are given, it is assumed that they form a Z-basis of the ideal, in particular that the matrix has
maximal rank 𝑁 . This acts as mathnf since the Z𝐾-module structure is (taken for granted hence) not taken
into account in this case.
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? idealhnf(nf, idealprimedec(nf,2)[1])
%4 =
[2 0 0]

[0 1 0]

[0 0 1]
? idealhnf(nf, [1,2;2,3;3,4])
%5 =
[1 0 0]

[0 1 0]

[0 0 1]

Finally, when 𝐾 is quadratic with discriminant 𝐷𝐾 , we allow 𝑢 = Qfb(a,b,c), provided 𝑏2 − 4𝑎𝑐 = 𝐷𝐾 . As
usual, this represents the ideal 𝑎Z + (1/2)(−𝑏+

√
𝐷𝐾)Z.

? K = nfinit(x^2 - 60); K.disc
%1 = 60
? idealhnf(K, qfbprimeform(60,2))
%2 =
[2 1]

[0 1]
? idealhnf(K, Qfb(1,2,3))
*** at top-level: idealhnf(K,Qfb(1,2,3
*** ^--------------------
*** idealhnf: Qfb(1, 2, 3) has discriminant != 60 in idealhnf.

idealintersect(nf, A, B)
Intersection of the two ideals 𝐴 and 𝐵 in the number field 𝑛𝑓 . The result is given in HNF.

? nf = nfinit(x^2+1);
? idealintersect(nf, 2, x+1)
%2 =
[2 0]

[0 2]

This function does not apply to general Z-modules, e.g. orders, since its arguments are replaced by the ideals they
generate. The following script intersects Z-modules 𝐴 and 𝐵 given by matrices of compatible dimensions with
integer coefficients:

ZM_intersect(A,B) =
{ my(Ker = matkerint(concat(A,B)));
mathnf( A * Ker[1..#A,] )
}

idealinv(nf, x)
Inverse of the ideal 𝑥 in the number field 𝑛𝑓 , given in HNF. If 𝑥 is an extended ideal, its principal part is suitably
updated: i.e. inverting [𝐼, 𝑡], yields [𝐼−1, 1/𝑡].

162 Chapter 1. Interface to the PARI library



CyPari2 Documentation, Release 2.1.3

idealismaximal(nf, x)
Given nf a number field as output by nfinit and an ideal 𝑥, return 0 if 𝑥 is not a maximal ideal. Otherwise return
a prid structure nf attached to the ideal. This function uses ispseudoprime and may return a wrong result in
case the underlying rational pseudoprime is not an actual prime number: apply isprime(pr.p) to guarantee
correctness. If 𝑥 is an extended ideal, the extended part is ignored.

? K = nfinit(y^2 + 1);
? idealismaximal(K, 3) \\ 3 is inert
%2 = [3, [3, 0]~, 1, 2, 1]
? idealismaximal(K, 5) \\ 5 is not
%3 = 0
? pr = idealprimedec(K,5)[1] \\ already a prid
%4 = [5, [-2, 1]~, 1, 1, [2, -1; 1, 2]]
? idealismaximal(K, pr) \\ trivial check
%5 = [5, [-2, 1]~, 1, 1, [2, -1; 1, 2]]
? x = idealhnf(K, pr)
%6 =
[5 3]

[0 1]
? idealismaximal(K, x) \\ converts from matrix form to prid
%7 = [5, [-2, 1]~, 1, 1, [2, -1; 1, 2]]

This function is noticeably faster than idealfactor since it never involves an actually factorization, in particular
when 𝑥 ∩ Z is not a prime number.

idealispower(nf, A, n, B)
Let nf be a number field and 𝑛 > 0 be a positive integer. Return 1 if the fractional ideal𝐴 = 𝐵𝑛 is an 𝑛-th power
and 0 otherwise. If the argument 𝐵 is present, set it to the 𝑛-th root of 𝐴, in HNF.

? K = nfinit(x^3 - 2);
? A = [46875, 30966, 9573; 0, 3, 0; 0, 0, 3];
? idealispower(K, A, 3, &B)
%3 = 1
? B
%4 =
[75 22 41]

[ 0 1 0]

[ 0 0 1]

? A = [9375, 2841, 198; 0, 3, 0; 0, 0, 3];
? idealispower(K, A, 3)
%5 = 0

ideallist(nf, bound, flag)
Computes the list of all ideals of norm less or equal to bound in the number field nf. The result is a row vector
with exactly bound components. Each component is itself a row vector containing the information about ideals
of a given norm, in no specific order, depending on the value of 𝑓𝑙𝑎𝑔:

The possible values of 𝑓𝑙𝑎𝑔 are:

0: give the bid attached to the ideals, without generators.

1: as 0, but include the generators in the bid.
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2: in this case, nf must be a bnf with units. Each component is of the form [𝑏𝑖𝑑, 𝑈 ], where bid is as case 0 and
𝑈 is a vector of discrete logarithms of the units. More precisely, it gives the ideallog s with respect to bid of
(𝜁, 𝑢1, ..., 𝑢𝑟) where 𝜁 is the torsion unit generator bnf.tu[2] and (𝑢𝑖) are the fundamental units in bnf.fu.
This structure is technical, and only meant to be used in conjunction with bnrclassnolist or bnrdisclist.

3: as 2, but include the generators in the bid.

4: give only the HNF of the ideal.

? nf = nfinit(x^2+1);
? L = ideallist(nf, 100);
? L[1]
%3 = [[1, 0; 0, 1]] \\ A single ideal of norm 1
? #L[65]
%4 = 4 \\ There are 4 ideals of norm 4 in Z[i]

If one wants more information, one could do instead:

? nf = nfinit(x^2+1);
? L = ideallist(nf, 100, 0);
? l = L[25]; vector(#l, i, l[i].clgp)
%3 = [[20, [20]], [16, [4, 4]], [20, [20]]]
? l[1].mod
%4 = [[25, 18; 0, 1], []]
? l[2].mod
%5 = [[5, 0; 0, 5], []]
? l[3].mod
%6 = [[25, 7; 0, 1], []]

where we ask for the structures of the (Z[𝑖]/𝐼)* for all three ideals of norm 25. In fact, for all moduli with finite
part of norm 25 and trivial Archimedean part, as the last 3 commands show. See ideallistarch to treat general
moduli.

ideallistarch(nf, list, arch)
list is a vector of vectors of bid’s, as output by ideallist with flag 0 to 3. Return a vector of vectors with the
same number of components as the original list. The leaves give information about moduli whose finite part is as
in original list, in the same order, and Archimedean part is now arch (it was originally trivial). The information
contained is of the same kind as was present in the input; see ideallist, in particular the meaning of flag.

? bnf = bnfinit(x^2-2);
? bnf.sign
%2 = [2, 0] \\ two places at infinity
? L = ideallist(bnf, 100, 0);
? l = L[98]; vector(#l, i, l[i].clgp)
%4 = [[42, [42]], [36, [6, 6]], [42, [42]]]
? La = ideallistarch(bnf, L, [1,1]); \\ add them to the modulus
? l = La[98]; vector(#l, i, l[i].clgp)
%6 = [[168, [42, 2, 2]], [144, [6, 6, 2, 2]], [168, [42, 2, 2]]]

Of course, the results above are obvious: adding 𝑡 places at infinity will add 𝑡 copies of Z/2Z to (Z𝐾/𝑓)*. The
following application is more typical:

? L = ideallist(bnf, 100, 2); \\ units are required now
? La = ideallistarch(bnf, L, [1,1]);
? H = bnrclassnolist(bnf, La);

(continues on next page)
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(continued from previous page)

? H[98];
%4 = [2, 12, 2]

ideallog(nf, x, bid)
𝑛𝑓 is a number field, bid is as output by idealstar(nf, D,...) and 𝑥 an element of nf which must have
valuation equal to 0 at all prime ideals in the support of 𝐷 and need not be integral. This function computes
the discrete logarithm of 𝑥 on the generators given in :emphasis:`bid.gen`. In other words, if 𝑔𝑖 are these
generators, of orders 𝑑𝑖 respectively, the result is a column vector of integers (𝑥𝑖) such that 0 <= 𝑥𝑖 < 𝑑𝑖 and

𝑥 =
∏︁
𝑖

𝑔𝑥𝑖
𝑖 (𝑚𝑜𝑑*𝐷).

Note that when the support of D contains places at infinity, this congruence implies also sign conditions on the
attached real embeddings. See znlog for the limitations of the underlying discrete log algorithms.

When nf is omitted, take it to be the rational number field. In that case, 𝑥 must be a t_INT and bid must have
been initialized by znstar(N,1).

idealmin(nf, ix, vdir)
This function is useless and kept for backward compatibility only, use :literal:`idealred`. Computes a pseudo-
minimum of the ideal 𝑥 in the direction vdir in the number field nf.

idealmul(nf, x, y, flag)
Ideal multiplication of the ideals 𝑥 and 𝑦 in the number field nf ; the result is the ideal product in HNF. If either
𝑥 or 𝑦 are extended ideals, their principal part is suitably updated: i.e. multiplying [𝐼, 𝑡], [𝐽, 𝑢] yields [𝐼𝐽, 𝑡𝑢];
multiplying 𝐼 and [𝐽, 𝑢] yields [𝐼𝐽, 𝑢].

? nf = nfinit(x^2 + 1);
? idealmul(nf, 2, x+1)
%2 =
[4 2]

[0 2]
? idealmul(nf, [2, x], x+1) \\ extended ideal * ideal
%3 = [[4, 2; 0, 2], x]
? idealmul(nf, [2, x], [x+1, x]) \\ two extended ideals
%4 = [[4, 2; 0, 2], [-1, 0]~]

If 𝑓𝑙𝑎𝑔 is nonzero, reduce the result using idealred.

idealnorm(nf, x)
Computes the norm of the ideal 𝑥 in the number field 𝑛𝑓 .

idealnumden(nf, x)
Returns [𝐴,𝐵], where 𝐴,𝐵 are coprime integer ideals such that 𝑥 = 𝐴/𝐵, in the number field 𝑛𝑓 .

? nf = nfinit(x^2+1);
? idealnumden(nf, (x+1)/2)
%2 = [[1, 0; 0, 1], [2, 1; 0, 1]]

idealpow(nf, x, k, flag)
Computes the 𝑘-th power of the ideal 𝑥 in the number field 𝑛𝑓 ; 𝑘 ∈ Z. If 𝑥 is an extended ideal, its principal part
is suitably updated: i.e. raising [𝐼, 𝑡] to the 𝑘-th power, yields [𝐼𝑘, 𝑡𝑘].

If 𝑓𝑙𝑎𝑔 is nonzero, reduce the result using idealred, throughout the (binary) powering process; in particular,
this is not the same as 𝑖𝑑𝑒𝑎𝑙𝑝𝑜𝑤(𝑛𝑓, 𝑥, 𝑘) followed by reduction.
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idealprimedec(nf, p, f )
Computes the prime ideal decomposition of the (positive) prime number 𝑝 in the number field 𝐾 represented by
nf. If a nonprime 𝑝 is given the result is undefined. If 𝑓 is present and nonzero, restrict the result to primes of
residue degree <= 𝑓 .

The result is a vector of prid structures, each representing one of the prime ideals above 𝑝 in the number field
𝑛𝑓 . The representation 𝑝𝑟 = [𝑝, 𝑎, 𝑒, 𝑓,𝑚𝑏] of a prime ideal means the following: 𝑎 is an algebraic integer in the
maximal order Z𝐾 and the prime ideal is equal to 𝑝 = 𝑝Z𝐾 + 𝑎Z𝐾 ; 𝑒 is the ramification index; 𝑓 is the residual
index; finally, mb is the multiplication table attached to the algebraic integer 𝑏 is such that 𝑝−1 = Z𝐾 + 𝑏/𝑝Z𝐾 ,
which is used internally to compute valuations. In other words if 𝑝 is inert, then mb is the integer 1, and otherwise
it is a square t_MAT whose 𝑗-th column is 𝑏.𝑛𝑓.𝑧𝑘[𝑗].

The algebraic number 𝑎 is guaranteed to have a valuation equal to 1 at the prime ideal (this is automatic if 𝑒 > 1).

The components of pr should be accessed by member functions: pr.p, pr.e, pr.f, and pr.gen (returns the
vector [𝑝, 𝑎]):

? K = nfinit(x^3-2);
? P = idealprimedec(K, 5);
? #P \\ 2 primes above 5 in Q(2^(1/3))
%3 = 2
? [p1,p2] = P;
? [p1.e, p1.f] \\ the first is unramified of degree 1
%5 = [1, 1]
? [p2.e, p2.f] \\ the second is unramified of degree 2
%6 = [1, 2]
? p1.gen
%7 = [5, [2, 1, 0]~]
? nfbasistoalg(K, %[2]) \\ a uniformizer for p1
%8 = Mod(x + 2, x^3 - 2)
? #idealprimedec(K, 5, 1) \\ restrict to f = 1
%9 = 1 \\ now only p1

idealprincipalunits(nf, pr, k)
Given a prime ideal in idealprimedec format, returns the multiplicative group (1+𝑝𝑟)/(1+𝑝𝑟𝑘) as an abelian
group. This function is much faster than idealstar when the norm of pr is large, since it avoids (useless) work
in the multiplicative group of the residue field.

? K = nfinit(y^2+1);
? P = idealprimedec(K,2)[1];
? G = idealprincipalunits(K, P, 20);
? G.cyc
%4 = [512, 256, 4] \\ Z/512 x Z/256 x Z/4
? G.gen
%5 = [[-1, -2]~, 1021, [0, -1]~] \\ minimal generators of given order

idealramgroups(nf, gal, pr)
Let 𝐾 be the number field defined by nf and assume that 𝐾/Q is Galois with Galois group 𝐺 given by gal =
galoisinit(nf). Let pr be the prime ideal 𝑃 in prid format. This function returns a vector 𝑔 of subgroups of
gal as follows:

• g[1] is the decomposition group of 𝑃 ,

• g[2] is 𝐺0(𝑃 ), the inertia group of 𝑃 ,

and for 𝑖 >= 2,
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• g[i] is 𝐺𝑖−2(𝑃 ), the 𝑖− 2-th ramification group of 𝑃 .

The length of 𝑔 is the number of nontrivial groups in the sequence, thus is 0 if 𝑒 = 1 and 𝑓 = 1, and 1 if 𝑓 > 1
and 𝑒 = 1. The following function computes the cardinality of a subgroup of 𝐺, as given by the components of
𝑔:

card(H) =my(o=H[2]); prod(i=1,#o,o[i]);

? nf=nfinit(x^6+3); gal=galoisinit(nf); pr=idealprimedec(nf,3)[1];
? g = idealramgroups(nf, gal, pr);
? apply(card,g)
%3 = [6, 6, 3, 3, 3] \\ cardinalities of the G_i

? nf=nfinit(x^6+108); gal=galoisinit(nf); pr=idealprimedec(nf,2)[1];
? iso=idealramgroups(nf,gal,pr)[2]
%5 = [[Vecsmall([2, 3, 1, 5, 6, 4])], Vecsmall([3])]
? nfdisc(galoisfixedfield(gal,iso,1))
%6 = -3

The field fixed by the inertia group of 2 is not ramified at 2.

idealred(nf, I, v)
LLL reduction of the ideal 𝐼 in the number field 𝐾 attached to nf, along the direction 𝑣. The 𝑣 parameter is best
left omitted, but if it is present, it must be an 𝑛𝑓.𝑟1 + 𝑛𝑓.𝑟2-component vector of nonnegative integers. (What
counts is the relative magnitude of the entries: if all entries are equal, the effect is the same as if the vector had
been omitted.)

This function finds an 𝑎 ∈ 𝐾* such that 𝐽 = (𝑎)𝐼 is “small” and integral (see the end for technical details). The
result is the Hermite normal form of the “reduced” ideal 𝐽 .

? K = nfinit(y^2+1);
? P = idealprimedec(K,5)[1];
? idealred(K, P)
%3 =
[1 0]

[0 1]

More often than not, a principal ideal yields the unit ideal as above. This is a quick and dirty way to check if ideals
are principal, but it is not a necessary condition: a nontrivial result does not prove that the ideal is nonprincipal.
For guaranteed results, see bnfisprincipal, which requires the computation of a full bnf structure.

If the input is an extended ideal [𝐼, 𝑠], the output is [𝐽, 𝑠𝑎]; in this way, one keeps track of the principal ideal part:

? idealred(K, [P, 1])
%5 = [[1, 0; 0, 1], [2, -1]~]

meaning that 𝑃 is generated by [2,−1]. The number field element in the extended part is an algebraic number in
any form or a factorization matrix (in terms of number field elements, not ideals!). In the latter case, elements
stay in factored form, which is a convenient way to avoid coefficient explosion; see also idealpow.

Technical note. The routine computes an LLL-reduced basis for the lattice 𝐼−1 equipped with the quadratic form

‖‖𝑥‖‖2𝑣 =

𝑟1+𝑟2∑︁
𝑖=1

2𝑣𝑖𝜀𝑖‖𝜎𝑖(𝑥)‖2,
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where as usual the 𝜎𝑖 are the (real and) complex embeddings and 𝜀𝑖 = 1, resp. 2, for a real, resp. complex place.
The element 𝑎 is simply the first vector in the LLL basis. The only reason you may want to try to change some
directions and set some 𝑣𝑖! = 0 is to randomize the elements found for a fixed ideal, which is heuristically useful
in index calculus algorithms like bnfinit and bnfisprincipal.

Even more technical note. In fact, the above is a white lie. We do not use ‖‖.‖‖𝑣 exactly but a rescaled rounded
variant which gets us faster and simpler LLLs. There’s no harm since we are not using any theoretical property
of 𝑎 after all, except that it belongs to 𝐼−1 and that 𝑎𝐼 is “expected to be small”.

idealredmodpower(nf, x, n, B)
Let nf be a number field, 𝑥 an ideal in nf and 𝑛 > 0 be a positive integer. Return a number field element 𝑏 such
that 𝑥𝑏𝑛 = 𝑣 is small. If 𝑥 is integral, then 𝑣 is also integral.

More precisely, idealnumden reduces the problem to 𝑥 integral. Then, factoring out the prime ideals dividing a
rational prime 𝑝 <= 𝐵, we rewrite 𝑥 = 𝐼𝐽𝑛 where the ideals 𝐼 and 𝐽 are both integral and 𝐼 is𝐵-smooth. Then
we return a small element 𝑏 in 𝐽−1.

The bound 𝐵 avoids a costly complete factorization of 𝑥; as soon as the 𝑛-core of 𝑥 is 𝐵-smooth (i.e., as soon as
𝐼 is 𝑛-power free), then 𝐽 is as large as possible and so is the expected reduction.

? T = x^6+108; nf = nfinit(T); a = Mod(x,T);
? setrand(1); u = (2*a^2+a+3)*random(2^1000*x^6)^6;
? sizebyte(u)
%3 = 4864
? b = idealredmodpower(nf,u,2);
? v2 = nfeltmul(nf,u, nfeltpow(nf,b,2))
%5 = [34, 47, 15, 35, 9, 3]~
? b = idealredmodpower(nf,u,6);
? v6 = nfeltmul(nf,u, nfeltpow(nf,b,6))
%7 = [3, 0, 2, 6, -7, 1]~

The last element v6, obtained by reducing modulo 6-th powers instead of squares, looks smaller than v2 but its
norm is actually a little larger:

? idealnorm(nf,v2)
%8 = 81309
? idealnorm(nf,v6)
%9 = 731781

idealstar(nf, N, flag, cycmod)
Outputs a bid structure, necessary for computing in the finite abelian group𝐺 = (Z𝐾/𝑁)*. Here, nf is a number
field and𝑁 is a modulus: either an ideal in any form, or a row vector whose first component is an ideal and whose
second component is a row vector of 𝑟1 0 or 1. Ideals can also be given by a factorization into prime ideals, as
produced by idealfactor.

If the positive integer cycmod is present, only compute the group modulo cycmod-th powers, which may save
a lot of time when some maximal ideals in the modulus have a huge residue field. Whereas you might only be
interested in quadratic or cubic residuosity; see also bnrinit for applications in class field theory.

This bid is used in ideallog to compute discrete logarithms. It also contains useful information which
can be conveniently retrieved as :emphasis:`bid.mod` (the modulus), :emphasis:`bid.clgp` (𝐺 as a finite
abelian group), :emphasis:`bid.no` (the cardinality of 𝐺), :emphasis:`bid.cyc` (elementary divisors) and
:emphasis:`bid.gen` (generators).

If 𝑓𝑙𝑎𝑔 = 1 (default), the result is a bid structure without generators: they are well defined but not explicitly
computed, which saves time.

If 𝑓𝑙𝑎𝑔 = 2, as 𝑓𝑙𝑎𝑔 = 1, but including generators.
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If 𝑓𝑙𝑎𝑔 = 0, only outputs (Z𝐾/𝑁)* as an abelian group, i.e as a 3-component vector [ℎ, 𝑑, 𝑔]: ℎ is the order, 𝑑 is
the vector of SNF cyclic components and 𝑔 the corresponding generators.

If nf is omitted, we take it to be the rational number fields, 𝑁 must be an integer and we return the structure of
(Z/𝑁Z)*. In other words idealstar(, N, flag) is short for

idealstar(nfinit(x), N, flag)

but faster. The alternative syntax znstar(N, flag) is also available for an analogous effect but, due to an
unfortunate historical oversight, the default value of flag is different in the two functions (znstar does not
initialize by default, you probably want znstar(N,1)).

idealtwoelt(nf, x, a)
Computes a two-element representation of the ideal 𝑥 in the number field 𝑛𝑓 , combining a random search and an
approximation theorem; 𝑥 is an ideal in any form (possibly an extended ideal, whose principal part is ignored)

• When called as idealtwoelt(nf,x), the result is a row vector [𝑎, 𝛼] with two components such that 𝑥 =
𝑎Z𝐾 + 𝛼Z𝐾 and 𝑎 is chosen to be the positive generator of 𝑥 ∩ Z, unless 𝑥 was given as a principal ideal
in which case we may choose 𝑎 = 0. The algorithm uses a fast lazy factorization of 𝑥 ∩ Z and runs in
randomized polynomial time.

? K = nfinit(t^5-23);
? x = idealhnf(K, t^2*(t+1), t^3*(t+1))
%2 = \\ some random ideal of norm 552*23
[552 23 23 529 23]

[ 0 23 0 0 0]

[ 0 0 1 0 0]

[ 0 0 0 1 0]

[ 0 0 0 0 1]

? [a,alpha] = idealtwoelt(K, x)
%3 = [552, [23, 0, 1, 0, 0]~]
? nfbasistoalg(K, alpha)
%4 = Mod(t^2 + 23, t^5 - 23)

• When called as idealtwoelt(nf,x,a) with an explicit nonzero 𝑎 supplied as third argument, the function
assumes that 𝑎 ∈ 𝑥 and returns 𝛼 ∈ 𝑥 such that 𝑥 = 𝑎Z𝐾 + 𝛼Z𝐾 . Note that we must factor 𝑎 in this case,
and the algorithm is generally slower than the default variant and gives larger generators:

? alpha2 = idealtwoelt(K, x, 552)
%5 = [-161, -161, -183, -207, 0]~
? idealhnf(K, 552, alpha2) == x
%6 = 1

Note that, in both cases, the return value is not recognized as an ideal by GP functions; one must use idealhnf
as above to recover a valid ideal structure from the two-element representation.

idealval(nf, x, pr)
Gives the valuation of the ideal 𝑥 at the prime ideal pr in the number field 𝑛𝑓 , where pr is in idealprimedec
format. The valuation of the 0 ideal is +oo.
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imag(x)
Imaginary part of 𝑥. When 𝑥 is a quadratic number, this is the coefficient of 𝜔 in the “canonical” integral basis
(1, 𝜔).

? imag(3 + I)
%1 = 1
? x = 3 + quadgen(-23);
? imag(x) \\ as a quadratic number
%3 = 1
? imag(x * 1.) \\ as a complex number
%4 = 2.3979157616563597707987190320813469600

incgam(s, x, g, precision)
Incomplete gamma function

∫︀ 𝑜

𝑥
𝑜𝑒−𝑡𝑡𝑠−1𝑑𝑡, extended by analytic continuation to all complex 𝑥, 𝑠 not both 0. The

relative error is bounded in terms of the precision of 𝑠 (the accuracy of 𝑥 is ignored when determining the output
precision). When 𝑔 is given, assume that 𝑔 = Γ(𝑠). For small ‖𝑥‖, this will speed up the computation.

incgamc(s, x, precision)
Complementary incomplete gamma function. The arguments 𝑥 and 𝑠 are complex numbers such that 𝑠 is not
a pole of Γ and ‖𝑥‖/(‖𝑠‖ + 1) is not much larger than 1 (otherwise the convergence is very slow). The result
returned is

∫︀ 𝑥

0
𝑒−𝑡𝑡𝑠−1𝑑𝑡.

input()

Reads a string, interpreted as a GP expression, from the input file, usually standard input (i.e. the keyboard). If a
sequence of expressions is given, the result is the result of the last expression of the sequence. When using this
instruction, it is useful to prompt for the string by using the print1 function. Note that in the present version
2.19 of pari.el, when using gp under GNU Emacs (see emacs (in the PARI manual)) one must prompt for the
string, with a string which ends with the same prompt as any of the previous ones (a "? " will do for instance).

install(name, code, gpname, lib)
Loads from dynamic library lib the function name. Assigns to it the name gpname in this gp session, with
prototype code (see below). If gpname is omitted, uses name. If lib is omitted, all symbols known to gp are
available: this includes the whole of libpari.so and possibly others (such as libc.so).

Most importantly, install gives you access to all nonstatic functions defined in the PARI library. For instance,
the function

GEN addii(GEN x, GEN y)

adds two PARI integers, and is not directly accessible under gp (it is eventually called by the + operator of course):

? install("addii", "GG")
? addii(1, 2)
%1 = 3

It also allows to add external functions to the gp interpreter. For instance, it makes the function system obsolete:

? install(system, vs, sys,/*omitted*/)
? sys("ls gp*")
gp.c gp.h gp_rl.c

This works because system is part of libc.so, which is linked to gp. It is also possible to compile a shared
library yourself and provide it to gp in this way: use gp2c, or do it manually (see the modules_build variable
in pari.cfg for hints).

170 Chapter 1. Interface to the PARI library



CyPari2 Documentation, Release 2.1.3

Re-installing a function will print a warning and update the prototype code if needed. However, it will not reload
a symbol from the library, even if the latter has been recompiled.

Prototype. We only give a simplified description here, covering most functions, but there are many more possi-
bilities. The full documentation is available in libpari.dvi, see

??prototype

• First character i, l, u, v : return type int / long / ulong / void. (Default: GEN)

• One letter for each mandatory argument, in the same order as they appear in the argument list: G (GEN), &
(GEN*), L (long), U (ulong), s (char *), n (variable).

• p to supply realprecision (usually long prec in the argument list), b to supply realbitprecision
(usually long bitprec), P to supply seriesprecision (usually long precdl).

We also have special constructs for optional arguments and default values:

• DG (optional GEN, NULL if omitted),

• D& (optional GEN*, NULL if omitted),

• Dn (optional variable, −1 if omitted),

For instance the prototype corresponding to

long issquareall(GEN x, GEN *n = NULL)

is lGD&.

Caution. This function may not work on all systems, especially when gp has been compiled statically. In that
case, the first use of an installed function will provoke a Segmentation Fault (this should never happen with a
dynamically linked executable). If you intend to use this function, please check first on some harmless example
such as the one above that it works properly on your machine.

intformal(x, v)
formal integration of 𝑥 with respect to the variable 𝑣 (wrt. the main variable if 𝑣 is omitted). Since PARI cannot
represent logarithmic or arctangent terms, any such term in the result will yield an error:

? intformal(x^2)
%1 = 1/3*x^3
? intformal(x^2, y)
%2 = y*x^2
? intformal(1/x)
*** at top-level: intformal(1/x)
*** ^--------------
*** intformal: domain error in intformal: residue(series, pole) != 0

The argument 𝑥 can be of any type. When 𝑥 is a rational function, we assume that the base ring is an integral
domain of characteristic zero.

By definition, the main variable of a t_POLMOD is the main variable among the coefficients from its two poly-
nomial components (representative and modulus); in other words, assuming a polmod represents an element of
𝑅[𝑋]/(𝑇 (𝑋)), the variable 𝑋 is a mute variable and the integral is taken with respect to the main variable used
in the base ring 𝑅. In particular, it is meaningless to integrate with respect to the main variable of x.mod:

? intformal(Mod(1,x^2+1), 'x)
*** intformal: incorrect priority in intformal: variable x = x
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intnumgaussinit(n, precision)
Initialize tables for 𝑛-point Gauss-Legendre integration of a smooth function 𝑓 on a compact interval [𝑎, 𝑏]. If
𝑛 is omitted, make a default choice 𝑛 𝐵/4, where 𝐵 is realbitprecision, suitable for analytic functions on
[−1, 1]. The error is bounded by

((𝑏− 𝑎)2𝑛+1(𝑛!)4)/((2𝑛+ 1)!(2𝑛)!)(𝑓 (2𝑛))/((2𝑛)!)(𝜉), 𝑎 < 𝜉 < 𝑏.

If 𝑟 denotes the distance of the nearest pole to the interval [𝑎, 𝑏], then this is of the order of ((𝑏− 𝑎)/(4𝑟))2𝑛. In
particular, the integral must be subdivided if the interval length 𝑏 − 𝑎 becomes close to 4𝑟. The default choice
𝑛 𝐵/4 makes this quantity of order 2−𝐵 when 𝑏− 𝑎 = 𝑟, as is the case when integrating 1/(1 + 𝑡) on [0, 1] for
instance. If the interval length increases, 𝑛 should be increased as well.

Specifically, the function returns a pair of vectors [𝑥,𝑤], where 𝑥 contains the nonnegative roots of the 𝑛-th
Legendre polynomial 𝑃𝑛 and 𝑤 the corresponding Gaussian integration weights 𝑄𝑛(𝑥𝑗)/𝑃

′
𝑛(𝑥𝑗) = 2/((1 −

𝑥2𝑗 )𝑃 ′
𝑛(𝑥𝑗))

2 such that ∫︁ 1

−1

𝑓(𝑡)𝑑𝑡 𝑤𝑗𝑓(𝑥𝑗).

? T = intnumgaussinit();
? intnumgauss(t=-1,1,exp(t), T) - exp(1)+exp(-1)
%1 = -5.877471754111437540 E-39
? intnumgauss(t=-10,10,exp(t), T) - exp(10)+exp(-10)
%2 = -8.358367809712546836 E-35
? intnumgauss(t=-1,1,1/(1+t^2), T) - Pi/2 \\ b - a = 2r
%3 = -9.490148553624725335 E-22 \\ ... loses half the accuracy

? T = intnumgaussinit(50);
? intnumgauss(t=-1,1,1/(1+t^2), T) - Pi/2
%5 = -1.1754943508222875080 E-38
? intnumgauss(t=-5,5,1/(1+t^2), T) - 2*atan(5)
%6 = -1.2[...]E-8

On the other hand, we recommend to split the integral and change variables rather than increasing 𝑛 too much,
see intnumgauss.

intnuminit(a, b, m, precision)
Initialize tables for integration from 𝑎 to 𝑏, where 𝑎 and 𝑏 are coded as in intnum. Only the compact-
ness, the possible existence of singularities, the speed of decrease or the oscillations at infinity are taken
into account, and not the values. For instance intnuminit(-1,1) is equivalent to intnuminit(0,Pi), and
intnuminit([0,-1/2],oo) is equivalent to intnuminit([-1,-1/2], -oo); on the other hand, the order
matters and intnuminit([0,-1/2], [1,-1/3]) is not equivalent to intnuminit([0,-1/3], [1,-1/2])
!

If 𝑚 is present, it must be nonnegative and we multiply the default number of sampling points by 2𝑚 (increasing
the running time by a similar factor).

The result is technical and liable to change in the future, but we document it here for completeness. Let 𝑥 = 𝜑(𝑡),
𝑡 ∈]− 𝑜𝑜, 𝑜𝑜[ be an internally chosen change of variable, achieving double exponential decrease of the integrand
at infinity. The integrator intnum will compute

ℎ
∑︁

‖𝑛‖<𝑁

𝜑′(𝑛ℎ)𝐹 (𝜑(𝑛ℎ))

for some integration step ℎ and truncation parameter 𝑁 . In basic use, let
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[h, x0, w0, xp, wp, xm, wm] = intnuminit(a,b);

• ℎ is the integration step

• 𝑥0 = 𝜑(0) and 𝑤0 = 𝜑′(0),

• xp contains the 𝜑(𝑛ℎ), 0 < 𝑛 < 𝑁 ,

• xm contains the 𝜑(𝑛ℎ), 0 < −𝑛 < 𝑁 , or is empty.

• wp contains the 𝜑′(𝑛ℎ), 0 < 𝑛 < 𝑁 ,

• wm contains the 𝜑′(𝑛ℎ), 0 < −𝑛 < 𝑁 , or is empty.

The arrays xm and wm are left empty when 𝜑 is an odd function. In complicated situations, intnuminit may
return up to 3 such arrays, corresponding to a splitting of up to 3 integrals of basic type.

If the functions to be integrated later are of the form 𝐹 = 𝑓(𝑡)𝑘(𝑡, 𝑧) for some kernel 𝑘 (e.g. Fourier, Laplace,
Mellin,. . . ), it is useful to also precompute the values of 𝑓(𝜑(𝑛ℎ)), which is accomplished by intfuncinit. The
hard part is to determine the behavior of 𝐹 at endpoints, depending on 𝑧.

isfundamental(D)

True (1) if𝐷 is equal to 1 or to the discriminant of a quadratic field, false (0) otherwise. 𝐷 can be input in factored
form as for arithmetic functions:

? isfundamental(factor(-8))
%1 = 1
\\ count fundamental discriminants up to 10^8
? c = 0; forfactored(d = 1, 10^8, if (isfundamental(d), c++)); c
time = 40,840 ms.
%2 = 30396325
? c = 0; for(d = 1, 10^8, if (isfundamental(d), c++)); c
time = 1min, 33,593 ms. \\ slower !
%3 = 30396325

ispolygonal(x, s, N)

True (1) if the integer 𝑥 is an s-gonal number, false (0) if not. The parameter 𝑠 > 2 must be a t_INT. If 𝑁 is
given, set it to 𝑛 if 𝑥 is the 𝑛-th 𝑠-gonal number.

? ispolygonal(36, 3, &N)
%1 = 1
? N

ispower(x, k, n)
If 𝑘 is given, returns true (1) if 𝑥 is a 𝑘-th power, false (0) if not. What it means to be a 𝑘-th power depends on
the type of 𝑥; see issquare for details.

If 𝑘 is omitted, only integers and fractions are allowed for 𝑥 and the function returns the maximal 𝑘 >= 2 such
that 𝑥 = 𝑛𝑘 is a perfect power, or 0 if no such 𝑘 exist; in particular ispower(-1), ispower(0), and ispower(1)
all return 0.

If a third argument 𝑛 is given and 𝑥 is indeed a 𝑘-th power, sets 𝑛 to a 𝑘-th root of 𝑥.

For a t_FFELT x, instead of omitting k (which is not allowed for this type), it may be natural to set

k = (x.p ^ x.f - 1) / fforder(x)
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ispowerful(x)
True (1) if 𝑥 is a powerful integer, false (0) if not; an integer is powerful if and only if its valuation at all primes
dividing 𝑥 is greater than 1.

? ispowerful(50)
%1 = 0
? ispowerful(100)
%2 = 1
? ispowerful(5^3*(10^1000+1)^2)
%3 = 1

isprime(x, flag)
True (1) if 𝑥 is a prime number, false (0) otherwise. A prime number is a positive integer having exactly two
distinct divisors among the natural numbers, namely 1 and itself.

This routine proves or disproves rigorously that a number is prime, which can be very slow when 𝑥 is indeed a
large prime integer. For instance a 1000 digits prime should require 15 to 30 minutes with default algorithms.
Use ispseudoprime to quickly check for compositeness. Use primecert in order to obtain a primality proof
instead of a yes/no answer; see also factor.

The function accepts vector/matrices arguments, and is then applied componentwise.

If 𝑓𝑙𝑎𝑔 = 0, use a combination of

• Baillie-Pomerance-Selfridge-Wagstaff compositeness test (see ispseudoprime),

• Selfridge “𝑝− 1” test if 𝑥− 1 is smooth enough,

• Adleman-Pomerance-Rumely-Cohen-Lenstra (APRCL) for general medium-sized 𝑥 (less than 1500 bits),

• Atkin-Morain’s Elliptic Curve Primality Prover (ECPP) for general large 𝑥.

If 𝑓𝑙𝑎𝑔 = 1, use Selfridge-Pocklington-Lehmer “𝑝 − 1” test; this requires partially factoring various auxilliary
integers and is likely to be very slow.

If 𝑓𝑙𝑎𝑔 = 2, use APRCL only.

If 𝑓𝑙𝑎𝑔 = 3, use ECPP only.

isprimepower(x, n)
If 𝑥 = 𝑝𝑘 is a prime power (𝑝 prime, 𝑘 > 0), return 𝑘, else return 0. If a second argument 𝑛 is given and 𝑥 is
indeed the 𝑘-th power of a prime 𝑝, sets 𝑛 to 𝑝.

ispseudoprime(x, flag)
True (1) if 𝑥 is a strong pseudo prime (see below), false (0) otherwise. If this function returns false, 𝑥 is not
prime; if, on the other hand it returns true, it is only highly likely that 𝑥 is a prime number. Use isprime (which
is of course much slower) to prove that 𝑥 is indeed prime. The function accepts vector/matrices arguments, and
is then applied componentwise.

If 𝑓𝑙𝑎𝑔 = 0, checks whether 𝑥 has no small prime divisors (up to 101 included) and is a Baillie-Pomerance-
Selfridge-Wagstaff pseudo prime. Such a pseudo prime passes a Rabin-Miller test for base 2, followed by a Lucas
test for the sequence (𝑃, 1), where 𝑃 >= 3 is the smallest odd integer such that 𝑃 2 − 4 is not a square mod 𝑥.
(Technically, we are using an “almost extra strong Lucas test” that checks whether 𝑉𝑛 is 2, without computing
𝑈𝑛.)

There are no known composite numbers passing the above test, although it is expected that infinitely many such
numbers exist. In particular, all composites <= 264 are correctly detected (checked using http://www.cecm.
sfu.ca/Pseudoprimes/index-2-to-64.html).

If 𝑓𝑙𝑎𝑔 > 0, checks whether 𝑥 is a strong Miller-Rabin pseudo prime for 𝑓𝑙𝑎𝑔 randomly chosen bases (with
end-matching to catch square roots of −1).
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ispseudoprimepower(x, n)
If 𝑥 = 𝑝𝑘 is a pseudo-prime power (𝑝 pseudo-prime as per ispseudoprime, 𝑘 > 0), return 𝑘, else return 0. If a
second argument 𝑛 is given and 𝑥 is indeed the 𝑘-th power of a prime 𝑝, sets 𝑛 to 𝑝.

More precisely, 𝑘 is always the largest integer such that 𝑥 = 𝑛𝑘 for some integer 𝑛 and, when 𝑛 <= 264 the
function returns 𝑘 > 0 if and only if 𝑛 is indeed prime. When 𝑛 > 264 is larger than the threshold, the function
may return 1 even though 𝑛 is composite: it only passed an ispseudoprime(n) test.

issquare(x, n)
True (1) if 𝑥 is a square, false (0) if not. What “being a square” means depends on the type of 𝑥: all t_COMPLEX
are squares, as well as all nonnegative t_REAL; for exact types such as t_INT, t_FRAC and t_INTMOD, squares
are numbers of the form 𝑠2 with 𝑠 in Z, Q and Z/𝑁Z respectively.

? issquare(3) \\ as an integer
%1 = 0
? issquare(3.) \\ as a real number
%2 = 1
? issquare(Mod(7, 8)) \\ in Z/8Z
%3 = 0
? issquare( 5 + O(13^4) ) \\ in Q_13
%4 = 0

If 𝑛 is given, a square root of 𝑥 is put into 𝑛.

? issquare(4, &n)
%1 = 1
? n
%2 = 2

For polynomials, either we detect that the characteristic is 2 (and check directly odd and even-power monomials)
or we assume that 2 is invertible and check whether squaring the truncated power series for the square root yields
the original input.

For t_POLMOD 𝑥, we only support t_POLMOD s of t_INTMOD s encoding finite fields, assuming without checking
that the intmod modulus 𝑝 is prime and that the polmod modulus is irreducible modulo 𝑝.

? issquare(Mod(Mod(2,3), x^2+1), &n)
%1 = 1
? n
%2 = Mod(Mod(2, 3)*x, Mod(1, 3)*x^2 + Mod(1, 3))

issquarefree(x)
True (1) if 𝑥 is squarefree, false (0) if not. Here 𝑥 can be an integer or a polynomial with coefficients in an integral
domain.

? issquarefree(12)
%1 = 0
? issquarefree(6)
%2 = 1
? issquarefree(x^3+x^2)
%3 = 0
? issquarefree(Mod(1,4)*(x^2+x+1)) \\ Z/4Z is not a domain !
*** at top-level: issquarefree(Mod(1,4)*(x^2+x+1))
*** ^--------------------------------
*** issquarefree: impossible inverse in Fp_inv: Mod(2, 4).
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A polynomial is declared squarefree if gcd(𝑥, 𝑥′) is 1. In particular a nonzero polynomial with inexact coefficients
is considered to be squarefree. Note that this may be inconsistent with factor, which first rounds the input to
some exact approximation before factoring in the apropriate domain; this is correct when the input is not close to
an inseparable polynomial (the resultant of 𝑥 and 𝑥′ is not close to 0).

An integer can be input in factored form as in arithmetic functions.

? issquarefree(factor(6))
%1 = 1
\\ count squarefree integers up to 10^8
? c = 0; for(d = 1, 10^8, if (issquarefree(d), c++)); c
time = 3min, 2,590 ms.
%2 = 60792694
? c = 0; forfactored(d = 1, 10^8, if (issquarefree(d), c++)); c
time = 45,348 ms. \\ faster !
%3 = 60792694

istotient(x, N)

True (1) if 𝑥 = 𝜑(𝑛) for some integer 𝑛, false (0) if not.

? istotient(14)
%1 = 0
? istotient(100)
%2 = 0

If 𝑁 is given, set 𝑁 = 𝑛 as well.

? istotient(4, &n)
%1 = 1
? n
%2 = 10

kill(sym)

Restores the symbol sym to its “undefined” status, and deletes any help messages attached to sym using addhelp.
Variable names remain known to the interpreter and keep their former priority: you cannot make a variable “less
important” by killing it!

? z = y = 1; y
%1 = 1
? kill(y)
? y \\ restored to ``undefined'' status
%2 = y
? variable()
%3 = [x, y, z] \\ but the variable name y is still known, with y > z !

For the same reason, killing a user function (which is an ordinary variable holding a t_CLOSURE) does not remove
its name from the list of variable names.

If the symbol is attached to a variable — user functions being an important special case —, one may use the quote
operator a = 'a to reset variables to their starting values. However, this will not delete a help message attached
to a, and is also slightly slower than kill(a).

? x = 1; addhelp(x, "foo"); x
%1 = 1
? x = 'x; x \\ same as 'kill', except we don't delete help.

(continues on next page)
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%2 = x
? ?x
foo

On the other hand, kill is the only way to remove aliases and installed functions.

? alias(fun, sin);
? kill(fun);

? install(addii, GG);
? kill(addii);

kronecker(x, y)
Kronecker symbol (𝑥‖𝑦), where 𝑥 and 𝑦 must be of type integer. By definition, this is the extension of Legendre
symbol to Z𝑥Z by total multiplicativity in both arguments with the following special rules for 𝑦 = 0,−1 or 2:

• (𝑥‖0) = 1 if ‖𝑥‖ = 1 and 0 otherwise.

• (𝑥‖ − 1) = 1 if 𝑥 >= 0 and −1 otherwise.

• (𝑥‖2) = 0 if 𝑥 is even and 1 if 𝑥 = 1,−1𝑚𝑜𝑑8 and −1 if 𝑥 = 3,−3𝑚𝑜𝑑8.

lambertw(y, precision)
Lambert𝑊 function, solution of the implicit equation 𝑥𝑒𝑥 = 𝑦, for a positive real number 𝑦. This is the restriction
to the positive reals of the complex principal branch𝑊0, which is not implemented outside ofR*

+. Other branches
𝑊𝑘 for 𝑘! = 0 are not implemented either.

laurentseries(f, serprec, M, precision)
Expand 𝑓 as a Laurent series around 𝑥 = 0 to order 𝑀 . This function computes 𝑓(𝑥 + 𝑂(𝑥𝑛)) until 𝑛 is large
enough: it must be possible to evaluate 𝑓 on a power series with 0 constant term.

? laurentseries(t->sin(t)/(1-cos(t)), 5)
%1 = 2*x^-1 - 1/6*x - 1/360*x^3 - 1/15120*x^5 + O(x^6)
? laurentseries(log)
*** at top-level: laurentseries(log)
*** ^------------------
*** in function laurentseries: log
*** ^---
*** log: domain error in log: series valuation != 0

Note that individual Laurent coefficients of order <= 𝑀 can be retrieved from 𝑠 = 𝑙𝑎𝑢𝑟𝑒𝑛𝑡𝑠𝑒𝑟𝑖𝑒𝑠(𝑓,𝑀) via
polcoef(s,i) for any 𝑖 <= 𝑀 . The series 𝑠 may occasionally be more precise that the required 𝑂(𝑥𝑀+1).

With respect to successive calls to derivnum, laurentseries is both faster and more precise:

? laurentseries(t->log(3+t),1)
%1 = 1.0986122886681096913952452369225257047 + 1/3*x - 1/18*x^2 + O(x^3)
? derivnum(t=0,log(3+t),1)
%2 = 0.33333333333333333333333333333333333333
? derivnum(t=0,log(3+t),2)
%3 = -0.11111111111111111111111111111111111111

? f = x->sin(exp(x));
? polcoef(laurentseries(x->f(x+2), 1), 1)
%5 = 3.3129294231043339804683687620360224365

(continues on next page)
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? exp(2) * cos(exp(2));
%6 = 3.3129294231043339804683687620360224365
? derivnum(x = 2, f(x))
%7 = 3.3129294231043339804683687620360224364 \\ 1 ulp off

? default(realprecision,115);
? for(i=1,10^4, laurentseries(x->f(x+2),1))
time = 279 ms.
? for(i=1,10^4, derivnum(x=2,f(x))) \\ ... and slower
time = 1,134 ms.

lcm(x, y)
Least common multiple of 𝑥 and 𝑦, i.e. such that lcm(𝑥, 𝑦) * gcd(𝑥, 𝑦) = 𝑥 * 𝑦, up to units. If 𝑦 is omitted and 𝑥
is a vector, returns the 𝑙𝑐𝑚 of all components of 𝑥. For integer arguments, return the nonnegative lcm.

When 𝑥 and 𝑦 are both given and one of them is a vector/matrix type, the LCM is again taken recursively on
each component, but in a different way. If 𝑦 is a vector, resp. matrix, then the result has the same type as 𝑦, and
components equal to lcm(x, y[i]), resp. lcm(x, y[,i]). Else if 𝑥 is a vector/matrix the result has the same
type as 𝑥 and an analogous definition. Note that for these types, lcm is not commutative.

Note that lcm(v) is quite different from

l = v[1]; for (i = 1, #v, l = lcm(l, v[i]))

Indeed, lcm(v) is a scalar, but l may not be (if one of the v[i] is a vector/matrix). The computation uses a
divide-conquer tree and should be much more efficient, especially when using the GMP multiprecision kernel
(and more subquadratic algorithms become available):

? v = vector(10^5, i, random);
? lcm(v);
time = 546 ms.
? l = v[1]; for (i = 1, #v, l = lcm(l, v[i]))
time = 4,561 ms.

length(x)
Length of 𝑥; #𝑥 is a shortcut for length(𝑥). This is mostly useful for

• vectors: dimension (0 for empty vectors),

• lists: number of entries (0 for empty lists),

• maps: number of entries (0 for empty maps),

• matrices: number of columns,

• character strings: number of actual characters (without trailing \0, should you expect it from 𝐶 char*).

? #"a string"
%1 = 8
? #[3,2,1]
%2 = 3
? #[]
%3 = 0
? #matrix(2,5)
%4 = 5
? L = List([1,2,3,4]); #L

(continues on next page)
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%5 = 4
? M = Map([a,b; c,d; e,f]); #M
%6 = 3

The routine is in fact defined for arbitrary GP types, but is awkward and useless in other cases: it returns the
number of non-code words in 𝑥, e.g. the effective length minus 2 for integers since the t_INT type has two code
words.

lex(x, y)
Gives the result of a lexicographic comparison between 𝑥 and 𝑦 (as −1, 0 or 1). This is to be interpreted in quite a
wide sense: it is admissible to compare objects of different types (scalars, vectors, matrices), provided the scalars
can be compared, as well as vectors/matrices of different lengths; finally, when comparing two scalars, a complex
number 𝑎+ 𝐼 * 𝑏 is interpreted as a vector [𝑎, 𝑏] and a real number 𝑎 as [𝑎, 0]. The comparison is recursive.

In case all components are equal up to the smallest length of the operands, the more complex is considered to be
larger. More precisely, the longest is the largest; when lengths are equal, we have matrix > vector > scalar. For
example:

? lex([1,3], [1,2,5])
%1 = 1
? lex([1,3], [1,3,-1])
%2 = -1
? lex([1], [[1]])
%3 = -1
? lex([1], [1]~)
%4 = 0
? lex(2 - I, 1)
%5 = 1
? lex(2 - I, 2)
%6 = 2

lfun(L, s, D, precision)
Compute the L-function value 𝐿(𝑠), or if D is set, the derivative of order D at 𝑠. The parameter L is either an
Lmath, an Ldata (created by lfuncreate, or an Linit (created by lfuninit), preferrably the latter if many values
are to be computed.

The argument 𝑠 is also allowed to be a power series; for instance, if 𝑠 = 𝛼 + 𝑥 + 𝑂(𝑥𝑛), the function returns
the Taylor expansion of order 𝑛 around 𝛼. The result is given with absolute error less than 2−𝐵 , where 𝐵 =
𝑟𝑒𝑎𝑙𝑏𝑖𝑡𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.

Caveat. The requested precision has a major impact on runtimes. It is advised to manipulate precision
via realbitprecision as explained above instead of realprecision as the latter allows less granularity:
realprecision increases by increments of 64 bits, i.e. 19 decimal digits at a time.

? lfun(x^2+1, 2) \\ Lmath: Dedekind zeta for Q(i) at 2
%1 = 1.5067030099229850308865650481820713960

? L = lfuncreate(ellinit("5077a1")); \\ Ldata: Hasse-Weil zeta function
? lfun(L, 1+x+O(x^4)) \\ zero of order 3 at the central point
%3 = 0.E-58 - 5.[...] E-40*x + 9.[...] E-40*x^2 + 1.7318[...]*x^3 + O(x^4)

\\ Linit: zeta(1/2+it), |t| < 100, and derivative
? L = lfuninit(1, [100], 1);
? T = lfunzeros(L, [1,25]);

(continues on next page)
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%5 = [14.134725[...], 21.022039[...]]
? z = 1/2 + I*T[1];
? abs( lfun(L, z) )
%7 = 8.7066865533412207420780392991125136196 E-39
? abs( lfun(L, z, 1) )
%8 = 0.79316043335650611601389756527435211412 \\ simple zero

lfunabelianrelinit(bnfL, bnfK, polrel, sdom, der, precision)
Returns the Linit structure attached to the Dedekind zeta function of the number field 𝐿 (see lfuninit), given
a subfield 𝐾 such that 𝐿/𝐾 is abelian. Here polrel defines 𝐿 over 𝐾, as usual with the priority of the variable
of bnfK lower than that of polrel. sdom and der are as in lfuninit.

? D = -47; K = bnfinit(y^2-D);
? rel = quadhilbert(D); T = rnfequation(K.pol, rel); \\ degree 10
? L = lfunabelianrelinit(T,K,rel, [2,0,0]); \\ at 2
time = 84 ms.
? lfun(L, 2)
%4 = 1.0154213394402443929880666894468182650
? lfun(T, 2) \\ using parisize > 300MB
time = 652 ms.
%5 = 1.0154213394402443929880666894468182656

As the example shows, using the (abelian) relative structure is more efficient than a direct computation. The
difference becomes drastic as the absolute degree increases while the subfield degree remains constant.

lfunan(L, n, precision)
Compute the first 𝑛 terms of the Dirichlet series attached to the 𝐿-function given by L (Lmath, Ldata or Linit).

? lfunan(1, 10) \\ Riemann zeta
%1 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
? lfunan(5, 10) \\ Dirichlet L-function for kronecker(5,.)
%2 = [1, -1, -1, 1, 0, 1, -1, -1, 1, 0]

lfunartin(nf, gal, rho, n, precision)
Returns the Ldata structure attached to the Artin 𝐿-function provided by the representation 𝜌 of the Galois group
of the extension𝐾/Q, defined over the cyclotomic field Q(𝜁𝑛), where nf is the nfinit structure attached to𝐾, gal
is the galoisinit structure attached to 𝐾/Q, and rho is given either

• by the values of its character on the conjugacy classes (see galoisconjclasses and galoischartable)

• or by the matrices that are the images of the generators :emphasis:`gal.gen`.

Cyclotomic numbers in rho are represented by polynomials, whose variable is understood as the complex number
exp(2𝑖𝜋/𝑛).

In the following example we build the Artin𝐿-functions attached to the two irreducible degree 2 representations of
the dihedral group𝐷10 defined overQ(𝜁5), for the extension𝐻/Qwhere𝐻 is the Hilbert class field ofQ(

√
−47).

We show numerically some identities involving Dedekind 𝜁 functions and Hecke 𝐿 series.

? P = quadhilbert(-47)
%1 = x^5 + 2*x^4 + 2*x^3 + x^2 - 1
? N = nfinit(nfsplitting(P));
? G = galoisinit(N); \\ D_10
? [T,n] = galoischartable(G);

(continues on next page)
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? T \\ columns give the irreducible characters
%5 =
[1 1 2 2]

[1 -1 0 0]

[1 1 -y^3 - y^2 - 1 y^3 + y^2]

[1 1 y^3 + y^2 -y^3 - y^2 - 1]
? n
%6 = 5
? L2 = lfunartin(N,G, T[,2], n);
? L3 = lfunartin(N,G, T[,3], n);
? L4 = lfunartin(N,G, T[,4], n);
? s = 1 + x + O(x^4);
? lfun(-47,s) - lfun(L2,s)
%11 ~ 0
? lfun(1,s)*lfun(-47,s)*lfun(L3,s)^2*lfun(L4,s)^2 - lfun(N,s)
%12 ~ 0
? lfun(1,s)*lfun(L3,s)*lfun(L4,s) - lfun(P,s)
%13 ~ 0
? bnr = bnrinit(bnfinit(x^2+47),1,1);
? bnr.cyc
%15 = [5] \\ Z/5Z: 4 nontrivial ray class characters
? lfun([bnr,[1]], s) - lfun(L3, s)
%16 ~ 0
? lfun([bnr,[2]], s) - lfun(L4, s)
%17 ~ 0
? lfun([bnr,[3]], s) - lfun(L3, s)
%18 ~ 0
? lfun([bnr,[4]], s) - lfun(L4, s)
%19 ~ 0

The first identity identifies the nontrivial abelian character with (−47, .); the second is the factorization of the
regular representation of 𝐷10; the third is the factorization of the natural representation of 𝐷10 ⊂ 𝑆5; and the
final four are the expressions of the degree 2 representations as induced from degree 1 representations.

lfuncheckfeq(L, t, precision)
Given the data attached to an 𝐿-function (Lmath, Ldata or Linit), check whether the functional equation is
satisfied. This is most useful for an Ldata constructed “by hand”, via lfuncreate, to detect mistakes.

If the function has poles, the polar part must be specified. The routine returns a bit accuracy 𝑏 such that ‖𝑤−𝑤‖ <
2𝑏, where 𝑤 is the root number contained in data, and

𝑤 = 𝜃(1/𝑡)𝑡−𝑘/𝜃(𝑡)

is a computed value derived from the assumed functional equation. If the parameter 𝑡 is omitted, we try
random samples on the real line in the segment [1, 1.25]. Of course, a large negative value of the order of
realbitprecision is expected but if 𝜃 is very small all over the sampled segment, you should first increase
realbitprecision by − log2 ‖𝜃(𝑡)‖ (which is positive if 𝜃 is small) to get a meaningful result.

If 𝑡 is given, it should be close to the unit disc for efficiency and such that 𝜃(𝑡)! = 0. We then check the functional
equation at that 𝑡. Again, if 𝜃(𝑡) is very small, you should first increase realbitprecision to get a useful result.
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? \pb 128 \\ 128 bits of accuracy
? default(realbitprecision)
%1 = 128
? L = lfuncreate(1); \\ Riemann zeta
? lfuncheckfeq(L)
%3 = -124

i.e. the given data is consistent to within 4 bits for the particular check consisting of estimating the root number
from all other given quantities. Checking away from the unit disc will either fail with a precision error, or give
disappointing results (if 𝜃(1/𝑡) is large it will be computed with a large absolute error)

? lfuncheckfeq(L, 2+I)
%4 = -115
? lfuncheckfeq(L,10)
*** at top-level: lfuncheckfeq(L,10)
*** ^------------------
*** lfuncheckfeq: precision too low in lfuncheckfeq.

lfunconductor(L, setN, flag, precision)
Compute the conductor of the given 𝐿-function (if the structure contains a conductor, it is ignored). Two methods
are available, depending on what we know about the conductor, encoded in the setN parameter:

• setN is a scalar: we know nothing but expect that the conductor lies in the interval [1, 𝑠𝑒𝑡𝑁 ].

If flag is 0 (default), give either the conductor found as an integer, or a vector (possibly empty) of conductors
found. If flag is 1, same but give the computed floating point approximations to the conductors found, without
rounding to integers. It flag is 2, give all the conductors found, even those far from integers.

Caveat. This is a heuristic program and the result is not proven in any way:

? L = lfuncreate(857); \\ Dirichlet L function for kronecker(857,.)
? \p19
realprecision = 19 significant digits
? lfunconductor(L)
%2 = [17, 857]
? lfunconductor(L,,1) \\ don't round
%3 = [16.99999999999999999, 857.0000000000000000]

? \p38
realprecision = 38 significant digits
? lfunconductor(L)
%4 = 857

Increasing setN or increasing realbitprecision slows down the program but gives better accuracy for the
result. This algorithm should only be used if the primes dividing the conductor are unknown, which is uncommon.

• setN is a vector of possible conductors; for instance of the form D1 * divisors(D2), where 𝐷1 is the
known part of the conductor and 𝐷2 is a multiple of the contribution of the bad primes.

In that case, flag is ignored and the routine uses lfuncheckfeq. It returns [𝑁, 𝑒] where𝑁 is the best conductor
in the list and 𝑒 is the value of lfuncheckfeq for that 𝑁 . When no suitable conductor exist or there is a tie
among best potential conductors, return the empty vector [].

? E = ellinit([0,0,0,4,0]); /* Elliptic curve y^2 = x^3+4x */
? E.disc \\ |disc E| = 2^12

(continues on next page)
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%2 = -4096
\\ create Ldata by hand. Guess that root number is 1 and conductor N
? L(N) = lfuncreate([n->ellan(E,n), 0, [0,1], 2, N, 1]);
\\ lfunconductor ignores conductor = 1 in Ldata !
? lfunconductor(L(1), divisors(E.disc))
%5 = [32, -127]
? fordiv(E.disc, d, print(d,": ",lfuncheckfeq(L(d)))) \\ direct check
1: 0
2: 0
4: -1
8: -2
16: -3
32: -127
64: -3
128: -2
256: -2
512: -1
1024: -1
2048: 0
4096: 0

The above code assumed that root number was 1; had we set it to −1, none of the lfuncheckfeq values would
have been acceptable:

? L2 = lfuncreate([n->ellan(E,n), 0, [0,1], 2, 0, -1]);
? lfunconductor(L2, divisors(E.disc))
%7 = []

lfuncost(L, sdom, der, precision)
Estimate the cost of running lfuninit(L,sdom,der) at current bit precision. Returns [𝑡, 𝑏], to indicate that 𝑡
coefficients 𝑎𝑛 will be computed, as well as 𝑡 values of gammamellininv, all at bit accuracy 𝑏. A subsequent call
to lfun at 𝑠 evaluates a polynomial of degree 𝑡 at exp(ℎ𝑠) for some real parameter ℎ, at the same bit accuracy 𝑏.
If 𝐿 is already an Linit, then sdom and der are ignored and are best left omitted; the bit accuracy is also inferred
from 𝐿: in short we get an estimate of the cost of using that particular Linit.

? \pb 128
? lfuncost(1, [100]) \\ for zeta(1/2+I*t), |t| < 100
%1 = [7, 242] \\ 7 coefficients, 242 bits
? lfuncost(1, [1/2, 100]) \\ for zeta(s) in the critical strip, |Im s| < 100
%2 = [7, 246] \\ now 246 bits
? lfuncost(1, [100], 10) \\ for zeta(1/2+I*t), |t| < 100
%3 = [8, 263] \\ 10th derivative increases the cost by a small amount
? lfuncost(1, [10^5])
%3 = [158, 113438] \\ larger imaginary part: huge accuracy increase

? L = lfuncreate(polcyclo(5)); \\ Dedekind zeta for Q(zeta_5)
? lfuncost(L, [100]) \\ at s = 1/2+I*t), |t| < 100
%5 = [11457, 582]
? lfuncost(L, [200]) \\ twice higher
%6 = [36294, 1035]
? lfuncost(L, [10^4]) \\ much higher: very costly !
%7 = [70256473, 45452]

(continues on next page)
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? \pb 256
? lfuncost(L, [100]); \\ doubling bit accuracy
%8 = [17080, 710]

In fact, some 𝐿 functions can be factorized algebraically by the lfuninit call, e.g. the Dedekind zeta function of
abelian fields, leading to much faster evaluations than the above upper bounds. In that case, the function returns
a vector of costs as above for each individual function in the product actually evaluated:

? L = lfuncreate(polcyclo(5)); \\ Dedekind zeta for Q(zeta_5)
? lfuncost(L, [100]) \\ a priori cost
%2 = [11457, 582]
? L = lfuninit(L, [100]); \\ actually perform all initializations
? lfuncost(L)
%4 = [[16, 242], [16, 242], [7, 242]]

The Dedekind function of this abelian quartic field is the product of four Dirichlet 𝐿-functions attached to the
trivial character, a nontrivial real character and two complex conjugate characters. The nontrivial characters
happen to have the same conductor (hence same evaluation costs), and correspond to two evaluations only since
the two conjugate characters are evaluated simultaneously. For a total of three 𝐿-functions evaluations, which
explains the three components above. Note that the actual cost is much lower than the a priori cost in this case.

lfuncreate(obj)
This low-level routine creates Ldata structures, needed by lfun functions, describing an 𝐿-function and its func-
tional equation. We advise using a high-level constructor when one is available, see ??lfun, and this function
accepts them:

? L = lfuncreate(1); \\ Riemann zeta
? L = lfuncreate(5); \\ Dirichlet L-function for quadratic character (5/.)
? L = lfuncreate(x^2+1); \\ Dedekind zeta for Q(i)
? L = lfuncreate(ellinit([0,1])); \\ L-function of E/Q: y^2=x^3+1

One can then use, e.g., lfun(L,s) to directly evaluate the respective𝐿-functions at 𝑠, or lfuninit(L, [c,w,h]
to initialize computations in the rectangular box ℜ(𝑠− 𝑐) <= 𝑤, ℑ(𝑠) <= ℎ.

We now describe the low-level interface, used to input nonbuiltin𝐿-functions. The input is now a 6 or 7 component
vector 𝑉 = [𝑎, 𝑎𝑠𝑡𝑎𝑟, 𝑉 𝑔𝑎, 𝑘,𝑁, 𝑒𝑝𝑠, 𝑝𝑜𝑙𝑒𝑠], whose components are as follows:

• V[1] = a encodes the Dirichlet series coefficients (𝑎𝑛). The preferred format is a closure of arity 1: n- >
vector(n,i,a(i)) giving the vector of the first 𝑛 coefficients. The closure is allowed to return a vector
of more than 𝑛 coefficients (only the first 𝑛 will be considered) or even less than 𝑛, in which case loss of
accuracy will occur and a warning that #an is less than expected is issued. This allows to precompute and
store a fixed large number of Dirichlet coefficients in a vector 𝑣 and use the closure n- > v, which does not
depend on 𝑛. As a shorthand for this latter case, you can input the vector 𝑣 itself instead of the closure.

? z = lfuncreate([n->vector(n,i,1), 1, [0], 1, 1, 1, 1]); \\ Riemann zeta
? lfun(z,2) - Pi^2/6
%2 = -5.877471754111437540 E-39

A second format is limited to 𝐿-functions affording an Euler product. It is a closure of arity 2 (p,d)- > F(p)
giving the local factor 𝐿𝑝(𝑋) at 𝑝 as a rational function, to be evaluated at 𝑝−𝑠 as in direuler; 𝑑 is set to
logint(𝑛, 𝑝) + 1, where 𝑛 is the total number of Dirichlet coefficients (𝑎1, ..., 𝑎𝑛) that will be computed. In
other words, the smallest integer 𝑑 such that 𝑝𝑑 > 𝑛. This parameter 𝑑 allows to compute only part of 𝐿𝑝 when
𝑝 is large and 𝐿𝑝 expensive to compute: any polynomial (or t_SER) congruent to 𝐿𝑝 modulo 𝑋𝑑 is acceptable
since only the coefficients of 𝑋0, ..., 𝑋𝑑−1 are needed to expand the Dirichlet series. The closure can of course
ignore this parameter:

184 Chapter 1. Interface to the PARI library



CyPari2 Documentation, Release 2.1.3

? z = lfuncreate([(p,d)->1/(1-x), 1, [0], 1, 1, 1, 1]); \\ Riemann zeta
? lfun(z,2) - Pi^2/6
%4 = -5.877471754111437540 E-39

One can describe separately the generic local factors coefficients and the bad local factors by setting 𝑑𝑖𝑟 =
[𝐹,𝐿𝑏𝑎𝑑], were 𝐿𝑏𝑎𝑑 = [[𝑝1, 𝐿𝑝1

], ..., [𝑝𝑘, 𝐿𝑝𝑘
]], where 𝐹 describes the generic local factors as above, except that

when 𝑝 = 𝑝𝑖 for some 𝑖 <= 𝑘, the coefficient 𝑎𝑝 is directly set to 𝐿𝑝𝑖
instead of calling 𝐹 .

N = 15;
E = ellinit([1, 1, 1, -10, -10]); \\ = "15a1"
F(p,d) = 1 / (1 - ellap(E,p)*'x + p*'x^2);
Lbad = [[3, 1/(1+'x)], [5, 1/(1-'x)]];
L = lfuncreate([[F,Lbad], 0, [0,1], 2, N, ellrootno(E)]);

Of course, in this case, lfuncreate(E) is preferable!

• V[2] = astar is the Dirichlet series coefficients of the dual function, encoded as a above. The sentinel
values 0 and 1 may be used for the special cases where 𝑎 = 𝑎* and 𝑎 = 𝑎*, respectively.

• V[3] = Vga is the vector of 𝛼𝑗 such that the gamma factor of the 𝐿-function is equal to

𝛾𝐴(𝑠) =
∏︁

1<=𝑗<=𝑑

ΓR(𝑠+ 𝛼𝑗),

𝑤ℎ𝑒𝑟𝑒 : 𝑚𝑎𝑡ℎ : ‘ΓR(𝑠) = 𝜋−𝑠/2Γ(𝑠/2)‘.𝑇ℎ𝑖𝑠𝑠𝑎𝑚𝑒𝑠𝑦𝑛𝑡𝑎𝑥𝑖𝑠𝑢𝑠𝑒𝑑𝑖𝑛𝑡ℎ𝑒 : 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 : ‘𝑔𝑎𝑚𝑚𝑎𝑚𝑒𝑙𝑙𝑖𝑛𝑖𝑛𝑣‘𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠.𝐼𝑛𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟𝑡ℎ𝑒𝑙𝑒𝑛𝑔𝑡ℎ : 𝑚𝑎𝑡ℎ : ‘𝑑‘𝑜𝑓 : 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 : ‘𝑉 𝑔𝑎‘𝑖𝑠𝑡ℎ𝑒𝑑𝑒𝑔𝑟𝑒𝑒𝑜𝑓𝑡ℎ𝑒 : 𝑚𝑎𝑡ℎ : ‘𝐿‘ − 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛.𝐼𝑛𝑡ℎ𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝑡ℎ𝑒 : 𝑚𝑎𝑡ℎ : ‘𝛼𝑗 ‘𝑎𝑟𝑒𝑎𝑠𝑠𝑢𝑚𝑒𝑑𝑡𝑜𝑏𝑒𝑒𝑥𝑎𝑐𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑠.𝐻𝑜𝑤𝑒𝑣𝑒𝑟𝑤ℎ𝑒𝑛𝑐𝑎𝑙𝑙𝑖𝑛𝑔𝑡ℎ𝑒𝑡𝑎𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠𝑤𝑖𝑡ℎ : 𝑒𝑚𝑝ℎ𝑎𝑠𝑖𝑠 : ‘𝑐𝑜𝑚𝑝𝑙𝑒𝑥‘(𝑎𝑠𝑜𝑝𝑝𝑜𝑠𝑒𝑑𝑡𝑜𝑟𝑒𝑎𝑙)𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡𝑠, 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠𝑜𝑐𝑐𝑢𝑟𝑤ℎ𝑖𝑐ℎ𝑚𝑎𝑦𝑔𝑖𝑣𝑒𝑤𝑟𝑜𝑛𝑔𝑟𝑒𝑠𝑢𝑙𝑡𝑠𝑤ℎ𝑒𝑛𝑡ℎ𝑒 : 𝑚𝑎𝑡ℎ : ‘𝛼𝑗 ‘𝑎𝑟𝑒𝑛𝑜𝑡𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙.

• V[4] = k is a positive integer 𝑘. The functional equation relates values at 𝑠 and 𝑘 − 𝑠. For instance, for
an Artin 𝐿-series such as a Dedekind zeta function we have 𝑘 = 1, for an elliptic curve 𝑘 = 2, and for a
modular form, 𝑘 is its weight. For motivic 𝐿-functions, the motivic weight 𝑤 is 𝑤 = 𝑘 − 1.

By default we assume that 𝑎𝑛 = 𝑂𝜖(𝑛
𝑘1+𝜖), where 𝑘1 = 𝑤 and even 𝑘1 = 𝑤/2 when the 𝐿 function has no pole

(Ramanujan-Petersson). If this is not the case, you can replace the 𝑘 argument by a vector [𝑘, 𝑘1], where 𝑘1 is the
upper bound you can assume.

• V[5] = N is the conductor, an integer 𝑁 >= 1, such that Λ(𝑠) = 𝑁𝑠/2𝛾𝐴(𝑠)𝐿(𝑠) with 𝛾𝐴(𝑠) as above.

• V[6] = eps is the root number 𝜀, i.e., the complex number (usually of modulus 1) such that Λ(𝑎, 𝑘 − 𝑠) =
𝜀Λ(𝑎*, 𝑠).

• The last optional component V[7] = poles encodes the poles of the 𝐿 or Λ-functions, and is omitted if
they have no poles. A polar part is given by a list of 2-component vectors [𝛽, 𝑃𝛽(𝑥)], where 𝛽 is a pole and
the power series 𝑃𝛽(𝑥) describes the attached polar part, such that 𝐿(𝑠) − 𝑃𝛽(𝑠 − 𝛽) is holomorphic in a
neighbourhood of 𝛽. For instance 𝑃𝛽 = 𝑟/𝑥 + 𝑂(1) for a simple pole at 𝛽 or 𝑟1/𝑥2 + 𝑟2/𝑥 + 𝑂(1) for a
double pole. The type of the list describing the polar part allows to distinguish between 𝐿 and Λ: a t_VEC is
attached to 𝐿, and a t_COL is attached to Λ. Unless 𝑎 = 𝑎* (coded by astar equal to 0 or 1), it is mandatory
to specify the polar part of Λ rather than those of 𝐿 since the poles of 𝐿* cannot be infered from the latter !
Whereas the functional equation allows to deduce the polar part of Λ* from the polar part of Λ.

Finally, if 𝑎 = 𝑎*, we allow a shortcut to describe the frequent situation where 𝐿 has at most simple pole, at
𝑠 = 𝑘, with residue 𝑟 a complex scalar: you may then input 𝑝𝑜𝑙𝑒𝑠 = 𝑟. This value 𝑟 can be set to 0 if unknown
and it will be computed.

When one component is not exact. Alternatively, obj can be a closure of arity 0 returning the above vector to the
current real precision. This is needed if some components are not available exactly but only through floating point
approximations. The closure allows algorithms to recompute them to higher accuracy when needed. Compare
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? Ld1() = [n->lfunan(Mod(2,7),n),1,[0],1,7,((-13-3*sqrt(-3))/14)^(1/6)];
? Ld2 = [n->lfunan(Mod(2,7),n),1,[0],1,7,((-13-3*sqrt(-3))/14)^(1/6)];
? L1 = lfuncreate(Ld1);
? L2 = lfuncreate(Ld2);
? lfun(L1,1/2+I*200) \\ OK
%5 = 0.55943925130316677665287870224047183265 -
0.42492662223174071305478563967365980756*I
? lfun(L2,1/2+I*200) \\ all accuracy lost
%6 = 0.E-38 + 0.E-38*I

The accuracy lost in Ld2 is due to the root number being given to an insufficient precision. To see what happens
try

? Ld3() = printf("prec needed: %ld bits",getlocalbitprec());Ld1()
? L3 = lfuncreate(Ld3);
prec needed: 64 bits
? z3 = lfun(L3,1/2+I*200)
prec needed: 384 bits
%16 = 0.55943925130316677665287870224047183265 -
0.42492662223174071305478563967365980756*I

lfundiv(L1, L2, precision)
Creates the Ldata structure (without initialization) corresponding to the quotient of the Dirichlet series 𝐿1 and
𝐿2 given by L1 and L2. Assume that 𝑣𝑧(𝐿1) >= 𝑣𝑧(𝐿2) at all complex numbers 𝑧: the construction may not
create new poles, nor increase the order of existing ones.

lfundual(L, precision)
Creates the Ldata structure (without initialization) corresponding to the dual L-function 𝐿 of 𝐿. If 𝑘 and 𝜀 are
respectively the weight and root number of 𝐿, then the following formula holds outside poles, up to numerical
errors:

Λ(𝐿, 𝑠) = 𝜀Λ(𝐿, 𝑘 − 𝑠).

? L = lfunqf(matdiagonal([1,2,3,4]));
? eps = lfunrootres(L)[3]; k = L[4];
? M = lfundual(L); lfuncheckfeq(M)
%3 = -127
? s= 1+Pi*I;
? a = lfunlambda(L,s);
? b = eps * lfunlambda(M,k-s);
? exponent(a - b)
%7 = -130

lfunetaquo(M)

Returns the Ldata structure attached to the 𝐿 function attached to the modular form 𝑧 : − − − >∏︀𝑛
𝑖=1 𝜂(𝑀𝑖,1𝑧)

𝑀𝑖,2 It is currently assumed that 𝑓 is a self-dual cuspidal form on Γ0(𝑁) for some 𝑁 . For in-
stance, the 𝐿-function

∑︀
𝜏(𝑛)𝑛−𝑠 attached to Ramanujan’s ∆ function is encoded as follows

? L = lfunetaquo(Mat([1,24]));
? lfunan(L, 100) \\ first 100 values of tau(n)

For convenience, a t_VEC is also accepted instead of a factorization matrix with a single row:
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? L = lfunetaquo([1,24]); \\ same as above

lfungenus2(F)
Returns the Ldata structure attached to the 𝐿 function attached to the genus-2 curve defined by 𝑦2 = 𝐹 (𝑥) or
𝑦2 +𝑄(𝑥)𝑦 = 𝑃 (𝑥) if 𝐹 = [𝑃,𝑄]. Currently, the model needs to be minimal at 2, and if the conductor is even,
its valuation at 2 might be incorrect (a warning is issued).

lfunhardy(L, t, precision)
Variant of the Hardy 𝑍-function given by L, used for plotting or locating zeros of 𝐿(𝑘/2 + 𝑖𝑡) on the critical line.
The precise definition is as follows: let 𝑘/2 be the center of the critical strip, 𝑑 be the degree, 𝑉 𝑔𝑎 = (𝛼𝑗)𝑗<=𝑑

given the gamma factors, and 𝜀 be the root number; we set 𝑠 = 𝑘/2 + 𝑖𝑡 = 𝜌𝑒𝑖𝜃 and 2𝐸 = 𝑑(𝑘/2 − 1) +
ℜ(

∑︀
1<=𝑗<=𝑑 𝛼𝑗). Assume first that Λ is self-dual, then the computed function at 𝑡 is equal to

𝑍(𝑡) = 𝜀−1/2Λ(𝑠).𝜌−𝐸𝑒𝑑𝑡𝜃/2,

which is a real function of 𝑡 vanishing exactly when 𝐿(𝑘/2 + 𝑖𝑡) does on the critical line. The normalizing factor
‖𝑠‖−𝐸𝑒𝑑𝑡𝜃/2 compensates the exponential decrease of 𝛾𝐴(𝑠) as 𝑡 → 𝑜𝑜 so that 𝑍(𝑡) 1. For non-self-dual Λ, the
definition is the same except we drop the 𝜀−1/2 term (which is not well defined since it depends on the chosen
dual sequence 𝑎*(𝑛)): 𝑍(𝑡) is still of the order of 1 and still vanishes where 𝐿(𝑘/2 + 𝑖𝑡) does, but it needs no
longer be real-valued.

? T = 100; \\ maximal height
? L = lfuninit(1, [T]); \\ initialize for zeta(1/2+it), |t|<T
? \p19 \\ no need for large accuracy
? ploth(t = 0, T, lfunhardy(L,t))

Using lfuninit is critical for this particular applications since thousands of values are computed. Make sure to
initialize up to the maximal 𝑡 needed: otherwise expect to see many warnings for unsufficient initialization and
suffer major slowdowns.

lfuninit(L, sdom, der, precision)
Initalization function for all functions linked to the computation of the 𝐿-function 𝐿(𝑠) encoded by L, where 𝑠
belongs to the rectangular domain 𝑠𝑑𝑜𝑚 = [𝑐𝑒𝑛𝑡𝑒𝑟, 𝑤, ℎ] centered on the real axis, ‖ℜ(𝑠) − 𝑐𝑒𝑛𝑡𝑒𝑟‖ <= 𝑤,
‖ℑ(𝑠)‖ <= ℎ, where all three components of sdom are real and𝑤, ℎ are nonnegative. der is the maximum order
of derivation that will be used. The subdomain [𝑘/2, 0, ℎ] on the critical line (up to height ℎ) can be encoded as
[ℎ] for brevity. The subdomain [𝑘/2, 𝑤, ℎ] centered on the critical line can be encoded as [𝑤, ℎ] for brevity.

The argument L is an Lmath, an Ldata or an Linit. See ??Ldata and ??lfuncreate for how to create it.

The height ℎ of the domain is a crucial parameter: if you only need 𝐿(𝑠) for real 𝑠, set ℎ to 0. The running time
is roughly proportional to

(𝐵/𝑑+ 𝜋ℎ/4)𝑑/2+3𝑁1/2,

where𝐵 is the default bit accuracy, 𝑑 is the degree of the𝐿-function, and𝑁 is the conductor (the exponent 𝑑/2+3
is reduced to 𝑑/2 + 2 when 𝑑 = 1 and 𝑑 = 2). There is also a dependency on 𝑤, which is less crucial, but make
sure to use the smallest rectangular domain that you need.

? L0 = lfuncreate(1); \\ Riemann zeta
? L = lfuninit(L0, [1/2, 0, 100]); \\ for zeta(1/2+it), |t| < 100
? lfun(L, 1/2 + I)
? L = lfuninit(L0, [100]); \\ same as above !
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lfunlambda(L, s, D, precision)
Compute the completed 𝐿-function Λ(𝑠) = 𝑁𝑠/2𝛾(𝑠)𝐿(𝑠), or if D is set, the derivative of order D at 𝑠. The pa-
rameter L is either an Lmath, an Ldata (created by lfuncreate, or an Linit (created by lfuninit), preferrably
the latter if many values are to be computed.

The result is given with absolute error less than 2−𝐵‖𝛾(𝑠)𝑁𝑠/2‖, where 𝐵 = 𝑟𝑒𝑎𝑙𝑏𝑖𝑡𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.

lfunmf(mf, F, precision)
If 𝐹 is a modular form in mf, output the L-functions corresponding to its [Q(𝐹 ) : Q(𝜒)] complex embeddings,
ready for use with the lfun package. If 𝐹 is omitted, output the 𝐿-functions attached to all eigenforms in the
new space; the result is a vector whose length is the number of Galois orbits of newforms. Each entry contains
the vector of 𝐿-functions corresponding to the 𝑑 complex embeddings of an orbit of dimension 𝑑 over Q(𝜒).

? mf = mfinit([35,2],0);mffields(mf)
%1 = [y, y^2 - y - 4]
? f = mfeigenbasis(mf)[2]; mfparams(f) \\ orbit of dimension two
%2 = [35, 2, 1, y^2 - y - 4, t - 1]
? [L1,L2] = lfunmf(mf, f); \\ Two L-functions
? lfun(L1,1)
%4 = 0.81018461849460161754947375433874745585
? lfun(L2,1)
%5 = 0.46007635204895314548435893464149369804
? [ lfun(L,1) | L <- concat(lfunmf(mf)) ]
%6 = [0.70291..., 0.81018..., 0.46007...]

The concat instruction concatenates the vectors corresponding to the various (here two) orbits, so that we obtain
the vector of all the 𝐿-functions attached to eigenforms.

lfunmfspec(L, precision)
Let 𝐿 be the 𝐿-function attached to a modular eigenform 𝑓 of weight 𝑘, as given by lfunmf. In even weight,
returns [ve,vo,om,op], where ve (resp., vo) is the vector of even (resp., odd) periods of 𝑓 and om and op the
corresponding real numbers 𝜔− and 𝜔+ normalized in a noncanonical way. In odd weight ominus is the same
as op and we return [v,op] where 𝑣 is the vector of all periods.

? D = mfDelta(); mf = mfinit(D); L = lfunmf(mf, D);
? [ve, vo, om, op] = lfunmfspec(L)
%2 = [[1, 25/48, 5/12, 25/48, 1], [1620/691, 1, 9/14, 9/14, 1, 1620/691],\
0.0074154209298961305890064277459002287248,\
0.0050835121083932868604942901374387473226]
? DS = mfsymbol(mf, D); bestappr(om*op / mfpetersson(DS), 10^8)
%3 = 8192/225
? mf = mfinit([4, 9, -4], 0);
? F = mfeigenbasis(mf)[1]; L = lfunmf(mf, F);
? [v, om] = lfunmfspec(L)
%6 = [[1, 10/21, 5/18, 5/24, 5/24, 5/18, 10/21, 1],\
1.1302643192034974852387822584241400608]
? FS = mfsymbol(mf, F); bestappr(om^2 / mfpetersson(FS), 10^8)
%7 = 113246208/325

lfunmul(L1, L2, precision)
Creates the Ldata structure (without initialization) corresponding to the product of the Dirichlet series given by
L1 and L2.

lfunorderzero(L, m, precision)
Computes the order of the possible zero of the 𝐿-function at the center 𝑘/2 of the critical strip; return 0 if 𝐿(𝑘/2)
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does not vanish.

If 𝑚 is given and has a nonnegative value, assumes the order is at most 𝑚. Otherwise, the algorithm chooses a
sensible default:

• if the 𝐿 argument is an Linit, assume that a multiple zero at 𝑠 = 𝑘/2 has order less than or equal to the
maximal allowed derivation order.

• else assume the order is less than 4.

You may explicitly increase this value using optional argument𝑚; this overrides the default value above. (Possibly
forcing a recomputation of the Linit.)

lfunqf(Q, precision)
Returns the Ldata structure attached to the Θ function of the lattice attached to the primitive form proportional
to the definite positive quadratic form 𝑄.

? L = lfunqf(matid(2));
? lfunqf(L,2)
%2 = 6.0268120396919401235462601927282855839
? lfun(x^2+1,2)*4
%3 = 6.0268120396919401235462601927282855839

The following computes the Madelung constant:

? L1=lfunqf(matdiagonal([1,1,1]));
? L2=lfunqf(matdiagonal([4,1,1]));
? L3=lfunqf(matdiagonal([4,4,1]));
? F(s)=6*lfun(L2,s)-12*lfun(L3,s)-lfun(L1,s)*(1-8/4^s);
? F(1/2)
%5 = -1.7475645946331821906362120355443974035

lfunrootres(data, precision)
Given the Ldata attached to an 𝐿-function (or the output of lfunthetainit), compute the root number and the
residues.

The output is a 3-component vector [[[𝑎1, 𝑟1], ..., [𝑎𝑛, 𝑟𝑛], [[𝑏1, 𝑅1], ..., [𝑏𝑚, 𝑅𝑚]] , 𝑤], where 𝑟𝑖 is the polar part
of 𝐿(𝑠) at 𝑎𝑖, 𝑅𝑖 is is the polar part of Λ(𝑠) at 𝑏𝑖 or [0, 0, 𝑟] if there is no pole, and 𝑤 is the root number. In the
present implementation,

• either the polar part must be completely known (and is then arbitrary): the function determines the root
number,

? L = lfunmul(1,1); \\ zeta^2
? [r,R,w] = lfunrootres(L);
? r \\ single pole at 1, double
%3 = [[1, 1.[...]*x^-2 + 1.1544[...]*x^-1 + O(x^0)]]
? w
%4 = 1
? R \\ double pole at 0 and 1
%5 = [[1,[...]], [0,[...]]]~

• or at most a single pole is allowed: the function computes both the root number and the residue (0 if no pole).

lfunshift(L, d, flag, precision)
Creates the Ldata structure (without initialization) corresponding to the shift of 𝐿 by 𝑑, that is to the function 𝐿𝑑

such that 𝐿𝑑(𝑠) = 𝐿(𝑠− 𝑑). If 𝑓𝑙𝑎𝑔 = 1, return the product 𝐿𝑥𝐿𝑑 instead.
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? Z = lfuncreate(1); \\ zeta(s)
? L = lfunshift(Z,1); \\ zeta(s-1)
? normlp(Vec(lfunlambda(L,s)-lfunlambda(L,3-s)))
%3 = 0.E-38 \\ the expansions coincide to 'seriesprecision'
? lfun(L,1)
%4 = -0.50000000000000000000000000000000000000 \\ = zeta(0)
? M = lfunshift(Z,1,1); \\ zeta(s)*zeta(s-1)
? normlp(Vec(lfunlambda(M,s)-lfunlambda(M,2-s)))
%6 = 2.350988701644575016 E-38
? lfun(M,2) \\ simple pole at 2, residue zeta(2)
%7 = 1.6449340668482264364724151666460251892*x^-1+O(x^0)

lfunsympow(E, m)

Returns the Ldata structure attached to the 𝐿 function attached to the𝑚-th symmetric power of the elliptic curve
𝐸 defined over the rationals.

lfuntheta(data, t, m, precision)
Compute the value of the𝑚-th derivative at 𝑡 of the theta function attached to the𝐿-function given by data. data
can be either the standard 𝐿-function data, or the output of lfunthetainit. The result is given with absolute
error less than 2−𝐵 , where 𝐵 = 𝑟𝑒𝑎𝑙𝑏𝑖𝑡𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.

The theta function is defined by the formula Θ(𝑡) =
∑︀

𝑛>=1 𝑎(𝑛)𝐾(𝑛𝑡/
√︀

(𝑁)), where 𝑎(𝑛) are the coefficients
of the Dirichlet series, 𝑁 is the conductor, and 𝐾 is the inverse Mellin transform of the gamma product defined
by the Vga component. Its Mellin transform is equal to Λ(𝑠) − 𝑃 (𝑠), where Λ(𝑠) is the completed 𝐿-function
and the rational function 𝑃 (𝑠) its polar part. In particular, if the 𝐿-function is the 𝐿-function of a modular form
𝑓(𝜏) =

∑︀
𝑛>=0 𝑎(𝑛)𝑞𝑛 with 𝑞 = exp(2𝜋𝑖𝜏), we have Θ(𝑡) = 2(𝑓(𝑖𝑡/

√
𝑁)−𝑎(0)). Note that 𝑎(0) = −𝐿(𝑓, 0)

in this case.

lfunthetacost(L, tdom, m, precision)
This function estimates the cost of running lfunthetainit(L,tdom,m) at current bit precision. Returns the
number of coefficients 𝑎𝑛 that would be computed. This also estimates the cost of a subsequent evaluation
lfuntheta, which must compute that many values of gammamellininv at the current bit precision. If 𝐿 is
already an Linit, then tdom and 𝑚 are ignored and are best left omitted: we get an estimate of the cost of using
that particular Linit.

? \pb 1000
? L = lfuncreate(1); \\ Riemann zeta
? lfunthetacost(L); \\ cost for theta(t), t real >= 1
%1 = 15
? lfunthetacost(L, 1 + I); \\ cost for theta(1+I). Domain error !
*** at top-level: lfunthetacost(1,1+I)
*** ^--------------------
*** lfunthetacost: domain error in lfunthetaneed: arg t > 0.785
? lfunthetacost(L, 1 + I/2) \\ for theta(1+I/2).
%2 = 23
? lfunthetacost(L, 1 + I/2, 10) \\ for theta^((10))(1+I/2).
%3 = 24
? lfunthetacost(L, [2, 1/10]) \\ cost for theta(t), |t| >= 2, |arg(t)| < 1/10
%4 = 8

? L = lfuncreate( ellinit([1,1]) );
? lfunthetacost(L) \\ for t >= 1
%6 = 2471
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lfunthetainit(L, tdom, m, precision)
Initalization function for evaluating the 𝑚-th derivative of theta functions with argument 𝑡 in domain tdom. By
default (tdom omitted), 𝑡 is real, 𝑡 >= 1. Otherwise, tdom may be

• a positive real scalar 𝜌: 𝑡 is real, 𝑡 >= 𝜌.

• a nonreal complex number: compute at this particular 𝑡; this allows to compute 𝜃(𝑧) for any complex 𝑧
satisfying ‖𝑧‖ >= ‖𝑡‖ and ‖ arg 𝑧‖ <= ‖ arg 𝑡‖; we must have ‖2 arg 𝑧/𝑑‖ < 𝜋/2, where 𝑑 is the degree
of the Γ factor.

• a pair [𝜌, 𝛼]: assume that ‖𝑡‖ >= 𝜌 and ‖ arg 𝑡‖ ≤ 𝛼; we must have ‖2𝛼/𝑑‖ < 𝜋/2, where 𝑑 is the degree
of the Γ factor.

? \p500
? L = lfuncreate(1); \\ Riemann zeta
? t = 1+I/2;
? lfuntheta(L, t); \\ direct computation
time = 30 ms.
? T = lfunthetainit(L, 1+I/2);
time = 30 ms.
? lfuntheta(T, t); \\ instantaneous

The 𝑇 structure would allow to quickly compute 𝜃(𝑧) for any 𝑧 in the cone delimited by 𝑡 as explained above. On
the other hand

? lfuntheta(T,I)
*** at top-level: lfuntheta(T,I)
*** ^--------------
*** lfuntheta: domain error in lfunthetaneed: arg t > 0.785398163397448

The initialization is equivalent to

? lfunthetainit(L, [abs(t), arg(t)])

lfuntwist(L, chi, precision)
Creates the Ldata structure (without initialization) corresponding to the twist of L by the primitive character
attached to the Dirichlet character chi. The conductor of the character must be coprime to the conductor of the
L-function 𝐿.

lfunzeros(L, lim, divz, precision)
lim being either a positive upper limit or a nonempty real interval, computes an ordered list of zeros of 𝐿(𝑠) on
the critical line up to the given upper limit or in the given interval. Use a naive algorithm which may miss some
zeros: it assumes that two consecutive zeros at height 𝑇 >= 1 differ at least by 2𝜋/𝜔, where

𝜔 := 𝑑𝑖𝑣𝑧.(𝑑 log(𝑇/2𝜋) + 𝑑+ 2 log(𝑁/(𝜋/2)𝑑)).

To use a finer search mesh, set divz to some integral value larger than the default ( = 8).

? lfunzeros(1, 30) \\ zeros of Rieman zeta up to height 30
%1 = [14.134[...], 21.022[...], 25.010[...]]
? #lfunzeros(1, [100,110]) \\ count zeros with 100 <= Im(s) <= 110
%2 = 4

The algorithm also assumes that all zeros are simple except possibly on the real axis at 𝑠 = 𝑘/2 and that there
are no poles in the search interval. (The possible zero at 𝑠 = 𝑘/2 is repeated according to its multiplicity.)
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If you pass an Linit to the function, the algorithm assumes that a multiple zero at 𝑠 = 𝑘/2 has order less than or
equal to the maximal derivation order allowed by the Linit. You may increase that value in the Linit but this
is costly: only do it for zeros of low height or in lfunorderzero instead.

lift(x, v)
If 𝑣 is omitted, lifts intmods from Z/𝑛Z in Z, 𝑝-adics from Q𝑝 to Q (as truncate), and polmods to polynomials.
Otherwise, lifts only polmods whose modulus has main variable 𝑣. t_FFELT are not lifted, nor are List elements:
you may convert the latter to vectors first, or use apply(lift,L). More generally, components for which such
lifts are meaningless (e.g. character strings) are copied verbatim.

? lift(Mod(5,3))
%1 = 2
? lift(3 + O(3^9))
%2 = 3
? lift(Mod(x,x^2+1))
%3 = x
? lift(Mod(x,x^2+1))
%4 = x

Lifts are performed recursively on an object components, but only by one level: once a t_POLMOD is lifted, the
components of the result are not lifted further.

? lift(x * Mod(1,3) + Mod(2,3))
%4 = x + 2
? lift(x * Mod(y,y^2+1) + Mod(2,3))
%5 = y*x + Mod(2, 3) \\ do you understand this one?
? lift(x * Mod(y,y^2+1) + Mod(2,3), 'x)
%6 = Mod(y, y^2 + 1)*x + Mod(Mod(2, 3), y^2 + 1)
? lift(%, y)
%7 = y*x + Mod(2, 3)

To recursively lift all components not only by one level, but as long as possible, use liftall. To lift only
t_INTMOD s and t_PADIC s components, use liftint. To lift only t_POLMOD s components, use liftpol.
Finally, centerlift allows to lift t_INTMOD s and t_PADIC s using centered residues (lift of smallest absolute
value).

liftall(x)
Recursively lift all components of 𝑥 from Z/𝑛Z to Z, from Q𝑝 to Q (as truncate), and polmods to polynomials.
t_FFELT are not lifted, nor are List elements: you may convert the latter to vectors first, or use apply(liftall,
L). More generally, components for which such lifts are meaningless (e.g. character strings) are copied verbatim.

? liftall(x * (1 + O(3)) + Mod(2,3))
%1 = x + 2
? liftall(x * Mod(y,y^2+1) + Mod(2,3)*Mod(z,z^2))
%2 = y*x + 2*z

liftint(x)
Recursively lift all components of 𝑥 from Z/𝑛Z to Z and from Q𝑝 to Q (as truncate). t_FFELT are not lifted,
nor are List elements: you may convert the latter to vectors first, or use apply(liftint,L). More generally,
components for which such lifts are meaningless (e.g. character strings) are copied verbatim.

? liftint(x * (1 + O(3)) + Mod(2,3))
%1 = x + 2
? liftint(x * Mod(y,y^2+1) + Mod(2,3)*Mod(z,z^2))
%2 = Mod(y, y^2 + 1)*x + Mod(Mod(2*z, z^2), y^2 + 1)
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liftpol(x)
Recursively lift all components of 𝑥 which are polmods to polynomials. t_FFELT are not lifted, nor are List
elements: you may convert the latter to vectors first, or use apply(liftpol,L). More generally, components for
which such lifts are meaningless (e.g. character strings) are copied verbatim.

? liftpol(x * (1 + O(3)) + Mod(2,3))
%1 = (1 + O(3))*x + Mod(2, 3)
? liftpol(x * Mod(y,y^2+1) + Mod(2,3)*Mod(z,z^2))
%2 = y*x + Mod(2, 3)*z

limitnum(expr, alpha, precision)
Lagrange-Zagier numerical extrapolation of expr, corresponding to a sequence 𝑢𝑛, either given by a closure n-
> u(n). I.e., assuming that 𝑢𝑛 tends to a finite limit ℓ, try to determine ℓ.

The routine assume that 𝑢𝑛 has an asymptotic expansion in 𝑛−𝛼 :

𝑢𝑛 = ℓ+
∑︁
𝑖>=1

𝑎𝑖𝑛
−𝑖𝛼

for some 𝑎𝑖. It is purely numerical and heuristic, thus may or may not work on your examples. The expression
will be evaluated for 𝑛 = 1, 2, ..., 𝑁 for an 𝑁 = 𝑂(𝐵) at a bit accuracy bounded by 1.612𝐵.

? limitnum(n -> n*sin(1/n))
%1 = 1.0000000000000000000000000000000000000

? limitnum(n -> (1+1/n)^n) - exp(1)
%2 = 0.E-37

? limitnum(n -> 2^(4*n+1)*(n!)^4 / (2*n)! /(2*n+1)! ) - Pi
%3 = 0.E -37

It is not mandatory to specify 𝛼 when the 𝑢𝑛 have an asymptotic expansion in 𝑛−1. However, if the series in 𝑛−1

is lacunary, specifying 𝛼 allows faster computation:

? \p1000
? limitnum(n->(1+1/n^2)^(n^2)) - exp(1)
time = 1min, 44,681 ms.
%4 = 0.E-1001
? limitnum(n->(1+1/n^2)^(n^2), 2) - exp(1)
time = 27,271 ms.
%5 = 0.E-1001 \\ still perfect, 4 times faster

When 𝑢𝑛 has an asymptotic expansion in 𝑛−𝛼 with 𝛼 not an integer, leaving 𝛼 unspecified will bring an inex-
act limit. Giving a satisfying optional argument improves precision; the program runs faster when the optional
argument gives non lacunary series.

? \p50
? limitnum(n->(1+1/n^(7/2))^(n^(7/2))) - exp(1)
time = 982 ms.
%6 = 4.13[...] E-12
? limitnum(n->(1+1/n^(7/2))^(n^(7/2)), 1/2) - exp(1)
time = 16,745 ms.
%7 = 0.E-57
? limitnum(n->(1+1/n^(7/2))^(n^(7/2)), 7/2) - exp(1)
time = 105 ms.
%8 = 0.E-57
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Alternatively, 𝑢𝑛 may be given by a closure𝑁 : −−− > [𝑢1, ..., 𝑢𝑁 ] which can often be programmed in a more
efficient way, for instance when 𝑢𝑛+1 is a simple function of the preceding terms:

? \p2000
? limitnum(n -> 2^(4*n+1)*(n!)^4 / (2*n)! /(2*n+1)! ) - Pi
time = 1,755 ms.
%9 = 0.E-2003
? vu(N) = \\ exploit hypergeometric property
{ my(v = vector(N)); v[1] = 8./3;\
for (n=2, N, my(q = 4*n^2); v[n] = v[n-1]*q/(q-1));\
return(v);
}
? limitnum(vu) - Pi \\ much faster
time = 106 ms.
%11 = 0.E-2003

All sums and recursions can be handled in the same way. In the above it is essential that 𝑢𝑛 be defined as a
closure because it must be evaluated at a higher precision than the one expected for the limit. Make sure that the
closure does not depend on a global variable which would be computed at a priori fixed accuracy. For instance,
precomputing v1 = 8.0/3 first and using v1 in vu above would be wrong because the resulting vector of values
will use the accuracy of v1 instead of the ambient accuracy at which limitnum will call it.

Alternatively, and more clumsily, 𝑢𝑛 may be given by a vector of values: it must be long and precise enough for
the extrapolation to make sense. Let 𝐵 be the current realbitprecision, the vector length must be at least
1.102𝐵 and the values computed with bit accuracy 1.612𝐵.

? limitnum(vector(10,n,(1+1/n)^n))
*** ^--------------------
*** limitnum: nonexistent component in limitnum: index < 43
\\ at this accuracy, we must have at least 43 values
? limitnum(vector(43,n,(1+1/n)^n)) - exp(1)
%12 = 0.E-37

? v = vector(43);
? s = 0; for(i=1,#v, s += 1/i; v[i]= s - log(i));
? limitnum(v) - Euler
%15 = -1.57[...] E-16

? v = vector(43);
\\ ~ 128 bit * 1.612
? localbitprec(207);\
s = 0; for(i=1,#v, s += 1/i; v[i]= s - log(i));
? limitnum(v) - Euler
%18 = 0.E-38

Because of the above problems, the preferred format is thus a closure, given either a single value or the vector of
values [𝑢1, ..., 𝑢𝑁 ]. The function distinguishes between the two formats by evaluating the closure at 𝑁 ! = 1 and
1 and checking whether it yields vectors of respective length 𝑁 and 1 or not.

Warning. The expression is evaluated for 𝑛 = 1, 2, ..., 𝑁 for an 𝑁 = 𝑂(𝐵) if the current bit accuracy is 𝐵. If it
is not defined for one of these values, translate or rescale accordingly:

? limitnum(n->log(1-1/n)) \\ can't evaluate at n = 1 !
*** at top-level: limitnum(n->log(1-1/n))
*** ^-----------------------

(continues on next page)
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*** in function limitnum: log(1-1/n)
*** ^----------
*** log: domain error in log: argument = 0
? limitnum(n->-log(1-1/(2*n)))
%19 = -6.11[...] E-58

We conclude with a complicated example. Since the function is heuristic, it is advisable to check whether it
produces the same limit for 𝑢𝑛, 𝑢2𝑛, ...𝑢𝑘𝑚 for a suitable small multiplier 𝑘. The following function implements
the recursion for the Motzkin numbers 𝑀𝑛 which count the number of ways to draw non intersecting chords
between 𝑛 points on a circle:

𝑀𝑛 = 𝑀𝑛−1 +
∑︁

𝑖<𝑛−1

𝑀𝑖𝑀𝑛−2−𝑖 = ((𝑛+ 1)𝑀𝑛−1 + (3𝑛− 3)𝑀𝑛−2)/(𝑛+ 2).

It is known that 𝑀𝑛 (3𝑛+1)/(
√

12𝜋𝑛3).

\\ [M_k, M_{k*2}, ..., M_{k*N}] / (3^n / n^(3/2))
vM(N, k = 1) =
{ my(q = k*N, V);
if (q == 1, return ([1/3]));
V = vector(q); V[1] = V[2] = 1;
for(n = 2, q - 1,
V[n+1] = ((2*n + 1)*V[n] + 3*(n - 1)*V[n-1]) / (n + 2));
f = (n -> 3^n / n^(3/2));
return (vector(N, n, V[n*k] / f(n*k)));
}
? limitnum(vM) - 3/sqrt(12*Pi) \\ complete junk
%1 = 35540390.753542730306762369615276452646
? limitnum(N->vM(N,5)) - 3/sqrt(12*Pi) \\ M_{5n}: better
%2 = 4.130710262178469860 E-25
? limitnum(N->vM(N,10)) - 3/sqrt(12*Pi) \\ M_{10n}: perfect
%3 = 0.E-38
? \p2000
? limitnum(N->vM(N,10)) - 3/sqrt(12*Pi) \\ also at high accuracy
time = 409 ms.
%4 = 1.1048895470044788191 E-2004

In difficult cases such as the above a multiplier of 5 to 10 is usually sufficient. The above example is typical: a
good multiplier usually remains sufficient when the requested precision increases!

lindep(v, flag)
finds a small nontrivial integral linear combination between components of 𝑣. If none can be found return an
empty vector.

If 𝑣 is a vector with real/complex entries we use a floating point (variable precision) LLL algorithm. If 𝑓𝑙𝑎𝑔 = 0
the accuracy is chosen internally using a crude heuristic. If 𝑓𝑙𝑎𝑔 > 0 the computation is done with an accuracy
of 𝑓𝑙𝑎𝑔 decimal digits. To get meaningful results in the latter case, the parameter 𝑓𝑙𝑎𝑔 should be smaller than
the number of correct decimal digits in the input.

? lindep([sqrt(2), sqrt(3), sqrt(2)+sqrt(3)])
%1 = [-1, -1, 1]~

If 𝑣 is 𝑝-adic, 𝑓𝑙𝑎𝑔 is ignored and the algorithm LLL-reduces a suitable (dual) lattice.
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? lindep([1, 2 + 3 + 3^2 + 3^3 + 3^4 + O(3^5)])
%2 = [1, -2]~

If 𝑣 is a matrix (or a vector of column vectors, or a vector of row vectors), 𝑓𝑙𝑎𝑔 is ignored and the function returns
a non trivial kernel vector if one exists, else an empty vector.

? lindep([1,2,3;4,5,6;7,8,9])
%3 = [1, -2, 1]~
? lindep([[1,0], [2,0]])
%4 = [2, -1]~
? lindep([[1,0], [0,1]])
%5 = []~

If 𝑣 contains polynomials or power series over some base field, finds a linear relation with coefficients in the field.

? lindep([x*y, x^2 + y, x^2*y + x*y^2, 1])
%4 = [y, y, -1, -y^2]~

For better control, it is preferable to use t_POL rather than t_SER in the input, otherwise one gets a linear com-
bination which is 𝑡-adically small, but not necessarily 0. Indeed, power series are first converted to the minimal
absolute accuracy occurring among the entries of 𝑣 (which can cause some coefficients to be ignored), then trun-
cated to polynomials:

? v = [t^2+O(t^4), 1+O(t^2)]; L=lindep(v)
%1 = [1, 0]~
? v*L
%2 = t^2+O(t^4) \\ small but not 0

listinsert(x, n, _arg3)
Inserts the object 𝑥 at position 𝑛 in 𝐿 (which must be of type t_LIST). This has complexity 𝑂(#𝐿− 𝑛+ 1): all
the remaining elements of list (from position 𝑛 + 1 onwards) are shifted to the right. If 𝑛 is greater than the list
length, appends 𝑥.

? L = List([1,2,3]);
? listput(~L, 4); L \\ listput inserts at end
%4 = List([1, 2, 3, 4])
? listinsert(~L, 5, 1); L \\insert at position 1
%5 = List([5, 1, 2, 3, 4])
? listinsert(~L, 6, 1000); L \\ trying to insert beyond position #L
%6 = List([5, 1, 2, 3, 4, 6]) \\ ... inserts at the end

Note the ~ L: this means that the function is called with a reference to L and changes L in place.

listkill(_arg1)
Obsolete, retained for backward compatibility. Just use L = List() instead of listkill(L). In most cases,
you won’t even need that, e.g. local variables are automatically cleared when a user function returns.

listpop(n, _arg2)
Removes the 𝑛-th element of the list list (which must be of type t_LIST). If 𝑛 is omitted, or greater than the list
current length, removes the last element. If the list is already empty, do nothing. This runs in time𝑂(#𝐿−𝑛+1).

? L = List([1,2,3,4]);
? listpop(~L); L \\ remove last entry
%2 = List([1, 2, 3])

(continues on next page)
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? listpop(~L, 1); L \\ remove first entry
%3 = List([2, 3])

Note the ~ L: this means that the function is called with a reference to L and changes L in place.

listput(x, n, _arg3)
Sets the 𝑛-th element of the list list (which must be of type t_LIST) equal to 𝑥. If 𝑛 is omitted, or greater than
the list length, appends 𝑥. The function returns the inserted element.

? L = List();
? listput(~L, 1)
%2 = 1
? listput(~L, 2)
%3 = 2
? L
%4 = List([1, 2])

Note the ~ L: this means that the function is called with a reference to L and changes L in place.

You may put an element into an occupied cell (not changing the list length), but it is easier to use the standard
list[n] = x construct.

? listput(~L, 3, 1) \\ insert at position 1
%5 = 3
? L
%6 = List([3, 2])
? L[2] = 4 \\ simpler
%7 = List([3, 4])
? L[10] = 1 \\ can't insert beyond the end of the list
*** at top-level: L[10]=1
*** ^------
*** nonexistent component: index > 2
? listput(L, 1, 10) \\ but listput can
%8 = 1
? L
%9 = List([3, 2, 1])

This function runs in time 𝑂(#𝐿) in the worst case (when the list must be reallocated), but in time 𝑂(1) on
average: any number of successive listput s run in time 𝑂(#𝐿), where #𝐿 denotes the list final length.

listsort(flag, _arg2)
Sorts the t_LIST list in place, with respect to the (somewhat arbitrary) universal comparison function cmp. In
particular, the ordering is the same as for sets and setsearch can be used on a sorted list. No value is returned.
If 𝑓𝑙𝑎𝑔 is nonzero, suppresses all repeated coefficients.

? L = List([1,2,4,1,3,-1]); listsort(~L); L
%1 = List([-1, 1, 1, 2, 3, 4])
? setsearch(L, 4)
%2 = 6
? setsearch(L, -2)
%3 = 0
? listsort(~L, 1); L \\ remove duplicates
%4 = List([-1, 1, 2, 3, 4])
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Note the ~ L: this means that the function is called with a reference to L and changes L in place: this is faster than
the vecsort command since the list is sorted in place and we avoid unnecessary copies.

? v = vector(100,i,random); L = List(v);
? for(i=1,10^4, vecsort(v))
time = 162 ms.
? for(i=1,10^4, vecsort(L))
time = 162 ms.
? for(i=1,10^4, listsort(~L))
time = 63 ms.

lngamma(x, precision)
Principal branch of the logarithm of the gamma function of 𝑥. This function is analytic on the complex plane
with nonpositive integers removed, and can have much larger arguments than gamma itself.

For 𝑥 a power series such that 𝑥(0) is not a pole of gamma, compute the Taylor expansion. (PARI only knows
about regular power series and can’t include logarithmic terms.)

? lngamma(1+x+O(x^2))
%1 = -0.57721566490153286060651209008240243104*x + O(x^2)
? lngamma(x+O(x^2))
*** at top-level: lngamma(x+O(x^2))
*** ^-----------------
*** lngamma: domain error in lngamma: valuation != 0
? lngamma(-1+x+O(x^2))
*** lngamma: Warning: normalizing a series with 0 leading term.
*** at top-level: lngamma(-1+x+O(x^2))
*** ^--------------------
*** lngamma: domain error in intformal: residue(series, pole) != 0

localbitprec(p)
Set the real precision to 𝑝 bits in the dynamic scope. All computations are performed as if realbitprecision
was 𝑝: transcendental constants (e.g. Pi) and conversions from exact to floating point inexact data use 𝑝 bits,
as well as iterative routines implicitly using a floating point accuracy as a termination criterion (e.g. solve or
intnum). But realbitprecision itself is unaffected and is “unmasked” when we exit the dynamic (not lexical)
scope. In effect, this is similar to

my(bit = default(realbitprecision));
default(realbitprecision,p);
...
default(realbitprecision, bit);

but is both less cumbersome, cleaner (no need to manipulate a global variable, which in fact never changes and
is only temporarily masked) and more robust: if the above computation is interrupted or an exception occurs,
realbitprecision will not be restored as intended.

Such localbitprec statements can be nested, the innermost one taking precedence as expected. Beware that
localbitprec follows the semantic of local, not my: a subroutine called from localbitprec scope uses the
local accuracy:

? f()=bitprecision(1.0);
? f()
%2 = 128
? localbitprec(1000); f()
%3 = 1024
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Note that the bit precision of data (1.0 in the above example) increases by steps of 64 (32 on a 32-bit machine)
so we get 1024 instead of the expected 1000; localbitprec bounds the relative error exactly as specified in
functions that support that granularity (e.g. lfun), and rounded to the next multiple of 64 (resp. 32) everywhere
else.

Warning. Changing realbitprecision or realprecision in programs is deprecated in favor of
localbitprec and localprec. Think about the realprecision and realbitprecision defaults as inter-
active commands for the gp interpreter, best left out of GP programs. Indeed, the above rules imply that mixing
both constructs yields surprising results:

? \p38
? localprec(19); default(realprecision,1000); Pi
%1 = 3.141592653589793239
? \p
realprecision = 1001 significant digits (1000 digits displayed)

Indeed, realprecision itself is ignored within localprec scope, so Pi is computed to a low accuracy. And
when we leave the localprec scope, realprecision only regains precedence, it is not “restored” to the original
value.

localprec(p)
Set the real precision to 𝑝 in the dynamic scope and return 𝑝. All computations are performed as if
realprecision was 𝑝: transcendental constants (e.g. Pi) and conversions from exact to floating point inexact
data use 𝑝 decimal digits, as well as iterative routines implicitly using a floating point accuracy as a termination
criterion (e.g. solve or intnum). But realprecision itself is unaffected and is “unmasked” when we exit the
dynamic (not lexical) scope. In effect, this is similar to

my(prec = default(realprecision));
default(realprecision,p);
...
default(realprecision, prec);

but is both less cumbersome, cleaner (no need to manipulate a global variable, which in fact never changes and
is only temporarily masked) and more robust: if the above computation is interrupted or an exception occurs,
realprecision will not be restored as intended.

Such localprec statements can be nested, the innermost one taking precedence as expected. Beware that
localprec follows the semantic of local, not my: a subroutine called from localprec scope uses the local
accuracy:

? f()=precision(1.);
? f()
%2 = 38
? localprec(19); f()
%3 = 19

Warning. Changing realprecision itself in programs is now deprecated in favor of localprec. Think about
the realprecision default as an interactive command for the gp interpreter, best left out of GP programs.
Indeed, the above rules imply that mixing both constructs yields surprising results:

? \p38
? localprec(19); default(realprecision,100); Pi
%1 = 3.141592653589793239
? \p
realprecision = 115 significant digits (100 digits displayed)
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Indeed, realprecision itself is ignored within localprec scope, so Pi is computed to a low accuracy. And
when we leave localprec scope, realprecision only regains precedence, it is not “restored” to the original
value.

log(x, precision)
Principal branch of the natural logarithm of 𝑥 ∈ C*, i.e. such that ℑ(log(𝑥)) ∈]−𝜋, 𝜋]. The branch cut lies along
the negative real axis, continuous with quadrant 2, i.e. such that lim𝑏→0+ log(𝑎 + 𝑏𝑖) = log 𝑎 for 𝑎 ∈ R*. The
result is complex (with imaginary part equal to 𝜋) if 𝑥 ∈ R and 𝑥 < 0. In general, the algorithm uses the formula

log(𝑥) (𝜋)/(2𝑎𝑔𝑚(1, 4/𝑠)) −𝑚 log 2,

if 𝑠 = 𝑥2𝑚 is large enough. (The result is exact to 𝐵 bits provided 𝑠 > 2𝐵/2.) At low accuracies, the series
expansion near 1 is used.

𝑝-adic arguments are also accepted for 𝑥, with the convention that log(𝑝) = 0. Hence in particular exp(log(𝑥))/𝑥
is not in general equal to 1 but to a (𝑝− 1)-th root of unity (or 1 if 𝑝 = 2) times a power of 𝑝.

log1p(x, precision)
Return log(1 +𝑥), computed in a way that is also accurate when the real part of 𝑥 is near 0. This is the reciprocal
function of expm1(𝑥) = exp(𝑥) − 1.

? default(realprecision, 10000); x = Pi*1e-100;
? (expm1(log1p(x)) - x) / x
%2 = -7.668242895059371866 E-10019
? (log1p(expm1(x)) - x) / x
%3 = -7.668242895059371866 E-10019

When 𝑥 is small, this function is both faster and more accurate than log(1 + 𝑥):

? \p38
? x = 1e-20;
? localprec(100); c = log1p(x); \\ reference point
? a = log1p(x); abs((a - c)/c)
%6 = 0.E-38
? b = log(1+x); abs((b - c)/c) \\ slightly less accurate
%7 = 1.5930919111324522770 E-38
? for (i=1,10^5,log1p(x))
time = 81 ms.
? for (i=1,10^5,log(1+x))
time = 100 ms. \\ slower, too

logint(x, b, z)
Return the largest integer 𝑒 so that 𝑏𝑒 <= 𝑥, where the parameters 𝑏 > 1 and 𝑥 > 0 are both integers. If the
parameter 𝑧 is present, set it to 𝑏𝑒.

? logint(1000, 2)
%1 = 9
? 2^9
%2 = 512
? logint(1000, 2, &z)
%3 = 9
? z
%4 = 512

The number of digits used to write 𝑏 in base 𝑥 is 1 + logint(x,b):
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? #digits(1000!, 10)
%5 = 2568
? logint(1000!, 10)
%6 = 2567

This function may conveniently replace

floor( log(x) / log(b) )

which may not give the correct answer since PARI does not guarantee exact rounding.

mapdelete(x, _arg2)
Removes 𝑥 from the domain of the map 𝑀 .

? M = Map(["a",1; "b",3; "c",7]);
? mapdelete(M,"b");
? Mat(M)
["a" 1]

["c" 7]

mapget(M, x)
Returns the image of 𝑥 by the map 𝑀 .

? M=Map(["a",23;"b",43]);
? mapget(M,"a")
%2 = 23
? mapget(M,"b")
%3 = 43

Raises an exception when the key 𝑥 is not present in 𝑀 .

? mapget(M,"c")
*** at top-level: mapget(M,"c")
*** ^-------------
*** mapget: nonexistent component in mapget: index not in map

mapisdefined(M, x, z)
Returns true (1) if x has an image by the map 𝑀 , false (0) otherwise. If z is present, set z to the image of 𝑥, if it
exists.

? M1 = Map([1, 10; 2, 20]);
? mapisdefined(M1,3)
%1 = 0
? mapisdefined(M1, 1, &z)
%2 = 1
? z
%3 = 10

? M2 = Map(); N = 19;
? for (a=0, N-1, mapput(M2, a^3%N, a));
? {for (a=0, N-1,
if (mapisdefined(M2, a, &b),

(continues on next page)
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printf("%d is the cube of %d mod %d\n",a,b,N)));}
0 is the cube of 0 mod 19
1 is the cube of 11 mod 19
7 is the cube of 9 mod 19
8 is the cube of 14 mod 19
11 is the cube of 17 mod 19
12 is the cube of 15 mod 19
18 is the cube of 18 mod 19

mapput(x, y, _arg3)
Associates 𝑥 to 𝑦 in the map 𝑀 . The value 𝑦 can be retrieved with mapget.

? M = Map();
? mapput(~M, "foo", 23);
? mapput(~M, 7718, "bill");
? mapget(M, "foo")
%4 = 23
? mapget(M, 7718)
%5 = "bill"
? Vec(M) \\ keys
%6 = [7718, "foo"]
? Mat(M)
%7 =
[ 7718 "bill"]

["foo" 23]

matadjoint(M, flag)
adjoint matrix of 𝑀 , i.e. a matrix 𝑁 of cofactors of 𝑀 , satisfying 𝑀 * 𝑁 = det(𝑀) * Id. 𝑀 must be a (not
necessarily invertible) square matrix of dimension 𝑛. If 𝑓𝑙𝑎𝑔 is 0 or omitted, we try to use Leverrier-Faddeev’s
algorithm, which assumes that 𝑛! invertible. If it fails or 𝑓𝑙𝑎𝑔 = 1, compute 𝑇 = 𝑐ℎ𝑎𝑟𝑝𝑜𝑙𝑦(𝑀) independently
first and return (−1)𝑛−1(𝑇 (𝑥) − 𝑇 (0))/𝑥 evaluated at 𝑀 .

? a = [1,2,3;3,4,5;6,7,8] * Mod(1,4);
? matadjoint(a)
%2 =
[Mod(1, 4) Mod(1, 4) Mod(2, 4)]

[Mod(2, 4) Mod(2, 4) Mod(0, 4)]

[Mod(1, 4) Mod(1, 4) Mod(2, 4)]

Both algorithms use 𝑂(𝑛4) operations in the base ring. Over a field, they are usually slower than computing the
characteristic polynomial or the inverse of 𝑀 directly.

matalgtobasis(nf, x)
This function is deprecated, use apply.

𝑛𝑓 being a number field in nfinit format, and 𝑥 a (row or column) vector or matrix, apply nfalgtobasis to
each entry of 𝑥.

matbasistoalg(nf, x)
This function is deprecated, use apply.
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𝑛𝑓 being a number field in nfinit format, and 𝑥 a (row or column) vector or matrix, apply nfbasistoalg to
each entry of 𝑥.

matcompanion(x)
The left companion matrix to the nonzero polynomial 𝑥.

matconcat(v)
Returns a t_MAT built from the entries of 𝑣, which may be a t_VEC (concatenate horizontally), a t_COL (con-
catenate vertically), or a t_MAT (concatenate vertically each column, and concatenate vertically the resulting
matrices). The entries of 𝑣 are always considered as matrices: they can themselves be t_VEC (seen as a row
matrix), a t_COL seen as a column matrix), a t_MAT, or a scalar (seen as an 1𝑥1 matrix).

? A=[1,2;3,4]; B=[5,6]~; C=[7,8]; D=9;
? matconcat([A, B]) \\ horizontal
%1 =
[1 2 5]

[3 4 6]
? matconcat([A, C]~) \\ vertical
%2 =
[1 2]

[3 4]

[7 8]
? matconcat([A, B; C, D]) \\ block matrix
%3 =
[1 2 5]

[3 4 6]

[7 8 9]

If the dimensions of the entries to concatenate do not match up, the above rules are extended as follows:

• each entry 𝑣𝑖,𝑗 of 𝑣 has a natural length and height: 1𝑥1 for a scalar, 1𝑥𝑛 for a t_VEC of length 𝑛, 𝑛𝑥1 for a
t_COL, 𝑚𝑥𝑛 for an 𝑚𝑥𝑛 t_MAT

• let 𝐻𝑖 be the maximum over 𝑗 of the lengths of the 𝑣𝑖,𝑗 , let 𝐿𝑗 be the maximum over 𝑖 of the heights of the
𝑣𝑖,𝑗 . The dimensions of the (𝑖, 𝑗)-th block in the concatenated matrix are 𝐻𝑖𝑥𝐿𝑗 .

• a scalar 𝑠 = 𝑣𝑖,𝑗 is considered as 𝑠 times an identity matrix of the block dimension min(𝐻𝑖, 𝐿𝑗)

• blocks are extended by 0 columns on the right and 0 rows at the bottom, as needed.

? matconcat([1, [2,3]~, [4,5,6]~]) \\ horizontal
%4 =
[1 2 4]

[0 3 5]

[0 0 6]
? matconcat([1, [2,3], [4,5,6]]~) \\ vertical
%5 =
[1 0 0]

(continues on next page)
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[2 3 0]

[4 5 6]
? matconcat([B, C; A, D]) \\ block matrix
%6 =
[5 0 7 8]

[6 0 0 0]

[1 2 9 0]

[3 4 0 9]
? U=[1,2;3,4]; V=[1,2,3;4,5,6;7,8,9];
? matconcat(matdiagonal([U, V])) \\ block diagonal
%7 =
[1 2 0 0 0]

[3 4 0 0 0]

[0 0 1 2 3]

[0 0 4 5 6]

[0 0 7 8 9]

matdet(x, flag)
Determinant of the square matrix 𝑥.

If 𝑓𝑙𝑎𝑔 = 0, uses an appropriate algorithm depending on the coefficients:

• integer entries: modular method due to Dixon, Pernet and Stein.

• real or 𝑝-adic entries: classical Gaussian elimination using maximal pivot.

• intmod entries: classical Gaussian elimination using first nonzero pivot.

• other cases: Gauss-Bareiss.

If 𝑓𝑙𝑎𝑔 = 1, uses classical Gaussian elimination with appropriate pivoting strategy (maximal pivot for real or
𝑝-adic coefficients). This is usually worse than the default.

matdetint(B)
Let 𝐵 be an 𝑚𝑥𝑛 matrix with integer coefficients. The determinant 𝐷 of the lattice generated by the columns of
𝐵 is the square root of det(𝐵𝑇𝐵) if 𝐵 has maximal rank 𝑚, and 0 otherwise.

This function uses the Gauss-Bareiss algorithm to compute a positive multiple of 𝐷. When 𝐵 is square, the
function actually returns 𝐷 = ‖ det𝐵‖.

This function is useful in conjunction with mathnfmod, which needs to know such a multiple. If the rank is
maximal but the matrix is nonsquare, you can obtain 𝐷 exactly using

matdet( mathnfmod(B, matdetint(B)) )

Note that as soon as one of the dimensions gets large (𝑚 or 𝑛 is larger than 20, say), it will often be much faster
to use mathnf(B, 1) or mathnf(B, 4) directly.
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matdetmod(x, d)
Given a matrix 𝑥 with t_INT entries and 𝑑 an arbitrary positive integer, return the determinant of 𝑥 modulo 𝑑.

? A = [4,2,3; 4,5,6; 7,8,9]

? matdetmod(A,27)
%2 = 9

Note that using the generic function matdet on a matrix with t_INTMOD entries uses Gaussian reduction and will
fail in general when the modulus is not prime.

? matdet(A * Mod(1,27))
*** at top-level: matdet(A*Mod(1,27))
*** ^------------------
*** matdet: impossible inverse in Fl_inv: Mod(3, 27).

matdiagonal(x)
𝑥 being a vector, creates the diagonal matrix whose diagonal entries are those of 𝑥.

? matdiagonal([1,2,3]);
%1 =
[1 0 0]

[0 2 0]

[0 0 3]

Block diagonal matrices are easily created using matconcat:

? U=[1,2;3,4]; V=[1,2,3;4,5,6;7,8,9];
? matconcat(matdiagonal([U, V]))
%1 =
[1 2 0 0 0]

[3 4 0 0 0]

[0 0 1 2 3]

[0 0 4 5 6]

[0 0 7 8 9]

mateigen(x, flag, precision)
Returns the (complex) eigenvectors of 𝑥 as columns of a matrix. If 𝑓𝑙𝑎𝑔 = 1, return [𝐿,𝐻], where 𝐿 contains the
eigenvalues and𝐻 the corresponding eigenvectors; multiple eigenvalues are repeated according to the eigenspace
dimension (which may be less than the eigenvalue multiplicity in the characteristic polynomial).

This function first computes the characteristic polynomial of 𝑥 and approximates its complex roots (𝜆𝑖), then tries
to compute the eigenspaces as kernels of the 𝑥−𝜆𝑖. This algorithm is ill-conditioned and is likely to miss kernel
vectors if some roots of the characteristic polynomial are close, in particular if it has multiple roots.

? A = [13,2; 10,14]; mateigen(A)
%1 =
[-1/2 2/5]

(continues on next page)
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[ 1 1]
? [L,H] = mateigen(A, 1);
? L
%3 = [9, 18]
? H
%4 =
[-1/2 2/5]

[ 1 1]
? A * H == H * matdiagonal(L)
%5 = 1

For symmetric matrices, use qfjacobi instead; for Hermitian matrices, compute

A = real(x);
B = imag(x);
y = matconcat([A, -B; B, A]);

and apply qfjacobi to 𝑦.

matfrobenius(M, flag, v)
Returns the Frobenius form of the square matrix M. If 𝑓𝑙𝑎𝑔 = 1, returns only the elementary divisors as a vector
of polynomials in the variable v. If 𝑓𝑙𝑎𝑔 = 2, returns a two-components vector [F,B] where F is the Frobenius
form and B is the basis change so that 𝑀 = 𝐵−1𝐹𝐵.

mathess(x)
Returns a matrix similar to the square matrix 𝑥, which is in upper Hessenberg form (zero entries below the first
subdiagonal).

mathilbert(n)
𝑥 being a long, creates the Hilbert matrixof order 𝑥, i.e. the matrix whose coefficient (𝑖,:math:j) is 1/(𝑖+ 𝑗− 1).

mathnf(M, flag)
Let 𝑅 be a Euclidean ring, equal to Z or to 𝐾[𝑋] for some field 𝐾. If 𝑀 is a (not necessarily square) matrix
with entries in 𝑅, this routine finds the upper triangular Hermite normal form of 𝑀 . If the rank of 𝑀 is equal
to its number of rows, this is a square matrix. In general, the columns of the result form a basis of the 𝑅-module
spanned by the columns of 𝑀 .

The values of 𝑓𝑙𝑎𝑔 are:

• 0 (default): only return the Hermite normal form 𝐻

• 1 (complete output): return [𝐻,𝑈 ], where 𝐻 is the Hermite normal form of 𝑀 , and 𝑈 is a transformation
matrix such that 𝑀𝑈 = [0‖𝐻]. The matrix 𝑈 belongs to 𝐺𝐿(𝑅). When 𝑀 has a large kernel, the entries
of 𝑈 are in general huge.

For these two values, we use a naive algorithm, which behaves well in small dimension only. Larger values
correspond to different algorithms, are restricted to integer matrices, and all output the unimodular matrix 𝑈 .
From now on all matrices have integral entries.

• 𝑓𝑙𝑎𝑔 = 4, returns [𝐻,𝑈 ] as in “complete output” above, using a variant of LLL reduction along the way.
The matrix 𝑈 is provably small in the 𝐿2 sense, and often close to optimal; but the reduction is in general
slow, although provably polynomial-time.
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If 𝑓𝑙𝑎𝑔 = 5, uses Batut’s algorithm and output [𝐻,𝑈, 𝑃 ], such that𝐻 and 𝑈 are as before and 𝑃 is a permutation
of the rows such that 𝑃 applied to 𝑀𝑈 gives 𝐻 . This is in general faster than 𝑓𝑙𝑎𝑔 = 4 but the matrix 𝑈 is
usually worse; it is heuristically smaller than with the default algorithm.

When the matrix is dense and the dimension is large (bigger than 100, say), 𝑓𝑙𝑎𝑔 = 4 will be fastest. When 𝑀
has maximal rank, then

H = mathnfmod(M, matdetint(M))

will be even faster. You can then recover 𝑈 as 𝑀−1𝐻 .

? M = matrix(3,4,i,j,random([-5,5]))
%1 =
[ 0 2 3 0]

[-5 3 -5 -5]

[ 4 3 -5 4]

? [H,U] = mathnf(M, 1);
? U
%3 =
[-1 0 -1 0]

[ 0 5 3 2]

[ 0 3 1 1]

[ 1 0 0 0]

? H
%5 =
[19 9 7]

[ 0 9 1]

[ 0 0 1]

? M*U
%6 =
[0 19 9 7]

[0 0 9 1]

[0 0 0 1]

For convenience, 𝑀 is allowed to be a t_VEC, which is then automatically converted to a t_MAT, as per the Mat
function. For instance to solve the generalized extended gcd problem, one may use

? v = [116085838, 181081878, 314252913,10346840];
? [H,U] = mathnf(v, 1);
? U
%2 =
[ 103 -603 15 -88]

(continues on next page)
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[-146 13 -1208 352]

[ 58 220 678 -167]

[-362 -144 381 -101]
? v*U
%3 = [0, 0, 0, 1]

This also allows to input a matrix as a t_VEC of t_COL s of the same length (which Mat would concatenate to the
t_MAT having those columns):

? v = [[1,0,4]~, [3,3,4]~, [0,-4,-5]~]; mathnf(v)
%1 =
[47 32 12]

[ 0 1 0]

[ 0 0 1]

mathnfmod(x, d)
If 𝑥 is a (not necessarily square) matrix of maximal rank with integer entries, and 𝑑 is a multiple of the (nonzero)
determinant of the lattice spanned by the columns of 𝑥, finds the upper triangular Hermite normal form of 𝑥.

If the rank of 𝑥 is equal to its number of rows, the result is a square matrix. In general, the columns of the result
form a basis of the lattice spanned by the columns of 𝑥. Even when 𝑑 is known, this is in general slower than
mathnf but uses much less memory.

mathnfmodid(x, d)
Outputs the (upper triangular) Hermite normal form of 𝑥 concatenated with the diagonal matrix with diagonal 𝑑.
Assumes that 𝑥 has integer entries. Variant: if 𝑑 is an integer instead of a vector, concatenate 𝑑 times the identity
matrix.

? m=[0,7;-1,0;-1,-1]
%1 =
[ 0 7]

[-1 0]

[-1 -1]
? mathnfmodid(m, [6,2,2])
%2 =
[2 1 1]

[0 1 0]

[0 0 1]
? mathnfmodid(m, 10)
%3 =
[10 7 3]

[ 0 1 0]

(continues on next page)
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[ 0 0 1]

mathouseholder(Q, v)
applies a sequence 𝑄 of Householder transforms, as returned by matqr(𝑀, 1) to the vector or matrix 𝑣.

? m = [2,1; 3,2]; \\ some random matrix
? [Q,R] = matqr(m);
? Q
%3 =
[-0.554... -0.832...]

[-0.832... 0.554...]

? R
%4 =
[-3.605... -2.218...]

[0 0.277...]

? v = [1, 2]~; \\ some random vector
? Q * v
%6 = [-2.218..., 0.277...]~

? [q,r] = matqr(m, 1);
? exponent(r - R) \\ r is the same as R
%8 = -128
? q \\ but q has a different structure
%9 = [[0.0494..., [5.605..., 3]]]]
? mathouseholder(q, v) \\ applied to v
%10 = [-2.218..., 0.277...]~

The point of the Householder structure is that it efficiently represents the linear operator 𝑣 : − − − > 𝑄𝑣 in a
more stable way than expanding the matrix 𝑄:

? m = mathilbert(20); v = vectorv(20,i,i^2+1);
? [Q,R] = matqr(m);
? [q,r] = matqr(m, 1);
? \p100
? [q2,r2] = matqr(m, 1); \\ recompute at higher accuracy
? exponent(R - r)
%5 = -127
? exponent(R - r2)
%6 = -127
? exponent(mathouseholder(q,v) - mathouseholder(q2,v))
%7 = -119
? exponent(Q*v - mathouseholder(q2,v))
%8 = 9

We see that 𝑅 is OK with or without a flag to matqr but that multiplying by 𝑄 is considerably less precise than
applying the sequence of Householder transforms encoded by 𝑞.

matid(n)
Creates the 𝑛𝑥𝑛 identity matrix.
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matimage(x, flag)
Gives a basis for the image of the matrix 𝑥 as columns of a matrix. A priori the matrix can have entries of any
type. If 𝑓𝑙𝑎𝑔 = 0, use standard Gauss pivot. If 𝑓𝑙𝑎𝑔 = 1, use matsupplement (much slower: keep the default
flag!).

matimagecompl(x)
Gives the vector of the column indices which are not extracted by the function matimage, as a permuta-
tion (t_VECSMALL). Hence the number of components of matimagecompl(x) plus the number of columns of
matimage(x) is equal to the number of columns of the matrix 𝑥.

matimagemod(x, d, U)

Gives a Howell basis (unique representation for submodules of (Z/𝑑Z)𝑛) for the image of the matrix 𝑥 modulo
𝑑 as columns of a matrix 𝐻 . The matrix 𝑥 must have t_INT entries, and 𝑑 can be an arbitrary positive integer. If
𝑈 is present, set it to a matrix such that 𝐴𝑈 = 𝐻 .

? A = [2,1;0,2];
? matimagemod(A,6,&U)
%2 =
[1 0]

[0 2]

? U
%3 =
[5 1]

[3 4]

? (A*U)%6
%4 =
[1 0]

[0 2]

Caveat. In general the number of columns of the Howell form is not the minimal number of generators of the
submodule. Example:

? matimagemod([1;2],4)
%5 =
[2 1]

[0 2]

Caveat 2. In general the matrix 𝑈 is not invertible, even if 𝐴 and 𝐻 have the same size. Example:

? matimagemod([4,1;0,4],8,&U)
%6 =
[2 1]

[0 4]

? U
%7 =
[0 0]

(continues on next page)
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[2 1]

matindexrank(M)

𝑀 being a matrix of rank 𝑟, returns a vector with two t_VECSMALL components 𝑦 and 𝑧 of length 𝑟 giving a list
of rows and columns respectively (starting from 1) such that the extracted matrix obtained from these two vectors
using 𝑣𝑒𝑐𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑀,𝑦, 𝑧) is invertible. The vectors 𝑦 and 𝑧 are sorted in increasing order.

matintersect(x, y)
𝑥 and 𝑦 being two matrices with the same number of rows each of whose columns are independent, finds a basis
of the vector space equal to the intersection of the spaces spanned by the columns of 𝑥 and 𝑦 respectively. The
faster function idealintersect can be used to intersect fractional ideals (projective Z𝐾 modules of rank 1);
the slower but more general function nfhnf can be used to intersect general Z𝐾-modules.

matinverseimage(x, y)
Given a matrix 𝑥 and a column vector or matrix 𝑦, returns a preimage 𝑧 of 𝑦 by 𝑥 if one exists (i.e such that
𝑥𝑧 = 𝑦), an empty vector or matrix otherwise. The complete inverse image is 𝑧 + 𝐾𝑒𝑟𝑥, where a basis of the
kernel of 𝑥 may be obtained by matker.

? M = [1,2;2,4];
? matinverseimage(M, [1,2]~)
%2 = [1, 0]~
? matinverseimage(M, [3,4]~)
%3 = []~ \\ no solution
? matinverseimage(M, [1,3,6;2,6,12])
%4 =
[1 3 6]

[0 0 0]
? matinverseimage(M, [1,2;3,4])
%5 = [;] \\ no solution
? K = matker(M)
%6 =
[-2]

[1]

matinvmod(x, d)
Computes a left inverse of the matrix 𝑥modulo 𝑑. The matrix 𝑥must have t_INT entries, and 𝑑 can be an arbitrary
positive integer.

? A = [3,1,2;1,2,1;3,1,1];
? U = matinvmod(A,6)
%2 =
[1 1 3]

[2 3 5]

[1 0 5]

? (U*A)%6
%3 =

(continues on next page)
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[1 0 0]

[0 1 0]

[0 0 1]
? matinvmod(A,5)
*** at top-level: matinvmod(A,5)
*** ^--------------
*** matinvmod: impossible inverse in gen_inv: 0.

matisdiagonal(x)
Returns true (1) if 𝑥 is a diagonal matrix, false (0) if not.

matker(x, flag)
Gives a basis for the kernel of the matrix 𝑥 as columns of a matrix. The matrix can have entries of any type,
provided they are compatible with the generic arithmetic operations (+, 𝑥 and /).

If 𝑥 is known to have integral entries, set 𝑓𝑙𝑎𝑔 = 1.

matkerint(x, flag)
Gives an LLL-reduced Z-basis for the lattice equal to the kernel of the matrix 𝑥 with rational entries. flag is
deprecated, kept for backward compatibility.

matkermod(x, d, im)

Gives a Howell basis (unique representation for submodules of (Z/𝑑Z)𝑛, cf. matimagemod) for the kernel of
the matrix 𝑥 modulo 𝑑 as columns of a matrix. The matrix 𝑥 must have t_INT entries, and 𝑑 can be an arbitrary
positive integer. If 𝑖𝑚 is present, set it to a basis of the image of 𝑥 (which is computed on the way).

? A = [1,2,3;5,1,4]
%1 =
[1 2 3]

[5 1 4]

? K = matkermod(A,6)
%2 =
[2 1]

[2 1]

[0 3]

? (A*K)%6
%3 =
[0 0]

[0 0]

matmuldiagonal(x, d)
Product of the matrix 𝑥 by the diagonal matrix whose diagonal entries are those of the vector 𝑑. Equivalent to,
but much faster than 𝑥 *𝑚𝑎𝑡𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙(𝑑).

matmultodiagonal(x, y)
Product of the matrices 𝑥 and 𝑦 assuming that the result is a diagonal matrix. Much faster than 𝑥 * 𝑦 in that case.
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The result is undefined if 𝑥 * 𝑦 is not diagonal.

matpascal(n, q)
Creates as a matrix the lower triangular Pascal triangle of order 𝑥+ 1 (i.e. with binomial coefficients up to 𝑥). If
𝑞 is given, compute the 𝑞-Pascal triangle (i.e. using 𝑞-binomial coefficients).

matpermanent(x)
Permanent of the square matrix 𝑥 using Ryser’s formula in Gray code order.

? n = 20; m = matrix(n,n,i,j, i!=j);
? matpermanent(m)
%2 = 895014631192902121
? n! * sum(i=0,n, (-1)^i/i!)
%3 = 895014631192902121

This function runs in time 𝑂(2𝑛𝑛) for a matrix of size 𝑛 and is not implemented for 𝑛 large.

matqr(M, flag, precision)
Returns [𝑄,𝑅], the QR-decomposition of the square invertible matrix 𝑀 with real entries: 𝑄 is orthogonal and
𝑅 upper triangular. If 𝑓𝑙𝑎𝑔 = 1, the orthogonal matrix is returned as a sequence of Householder transforms:
applying such a sequence is stabler and faster than multiplication by the corresponding𝑄matrix. More precisely,
if

[Q,R] = matqr(M);
[q,r] = matqr(M, 1);

then 𝑟 = 𝑅 and mathouseholder(𝑞,𝑀) is (close to) 𝑅; furthermore

mathouseholder(q, matid(#M)) == Q~

the inverse of 𝑄. This function raises an error if the precision is too low or 𝑥 is singular.

matrank(x)
Rank of the matrix 𝑥.

matreduce(m)

Let𝑚 be a factorization matrix, i.e., a 2-column matrix whose columns contains arbitrary “generators” and integer
“exponents” respectively. Returns the canonical form of 𝑚: the first column is sorted with unique elements and
the second one contains the merged “exponents” (exponents of identical entries in the first column of𝑚 are added,
rows attached to 0 exponents are deleted). The generators are sorted with respect to the universal cmp routine; in
particular, this function is the identity on true integer factorization matrices, but not on other factorizations (in
products of polynomials or maximal ideals, say). It is idempotent.

For convenience, this function also allows a vector𝑚, which is handled as a factorization with all exponents equal
to 1, as in factorback.

? A=[x,2;y,4]; B=[x,-2; y,3; 3, 4]; C=matconcat([A,B]~)
%1 =
[x 2]

[y 4]

[x -2]

[y 3]

(continues on next page)
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[3 4]

? matreduce(C)
%2 =
[3 4]

[y 7]

? matreduce([x,x,y,x,z,x,y]) \\ vector argument
%3 =
[x 4]

[y 2]

[z 1]

matrixqz(A, p)
𝐴 being an 𝑚𝑥𝑛 matrix in 𝑀𝑚,𝑛(Q), let 𝐼𝑚Q𝐴 (resp. 𝐼𝑚Z𝐴) the Q-vector space (resp. the Z-module) spanned
by the columns of 𝐴. This function has varying behavior depending on the sign of 𝑝:

If 𝑝 >= 0, 𝐴 is assumed to have maximal rank 𝑛 <= 𝑚. The function returns a matrix 𝐵 ∈ 𝑀𝑚,𝑛(Z), with
𝐼𝑚Q𝐵 = 𝐼𝑚Q𝐴, such that the GCD of all its 𝑛𝑥𝑛 minors is coprime to 𝑝; in particular, if 𝑝 = 0 (default), this
GCD is 1.

If 𝑝 = −1, returns a basis of the lattice Z𝑛 ∩ 𝐼𝑚Z𝐴.

If 𝑝 = −2, returns a basis of the lattice Z𝑛 ∩ 𝐼𝑚Q𝐴.

Caveat. (𝑝 = −1 or −2) For efficiency reason, we do not compute the HNF of the resulting basis.

? minors(x) = vector(#x[,1], i, matdet(x[^i,]));
? A = [3,1/7; 5,3/7; 7,5/7]; minors(A)
%1 = [4/7, 8/7, 4/7] \\ determinants of all 2x2 minors
? B = matrixqz(A)
%2 =
[3 1]

[5 2]

[7 3]
? minors(%)
%3 = [1, 2, 1] \\ B integral with coprime minors
? matrixqz(A,-1)
%4 =
[3 1]

[5 3]

[7 5]

? matrixqz(A,-2)
%5 =
[3 1]

(continues on next page)
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[5 2]

[7 3]

matsize(x)
𝑥 being a vector or matrix, returns a row vector with two components, the first being the number of rows (1 for a
row vector), the second the number of columns (1 for a column vector).

matsnf(X, flag)
If 𝑋 is a (singular or nonsingular) matrix outputs the vector of elementary divisors of 𝑋 , i.e. the diagonal of the
Smith normal form of 𝑋 , normalized so that 𝑑𝑛‖𝑑𝑛−1‖...‖𝑑1. 𝑋 must have integer or polynomial entries; in the
latter case, 𝑋 must be a square matrix.

The binary digits of flag mean:

1 (complete output): if set, outputs [𝑈, 𝑉,𝐷], where 𝑈 and 𝑉 are two unimodular matrices such that 𝑈𝑋𝑉 is the
diagonal matrix𝐷. Otherwise output only the diagonal of𝐷. If𝑋 is not a square matrix, then𝐷 will be a square
diagonal matrix padded with zeros on the left or the top.

4 (cleanup): if set, cleans up the output. This means that elementary divisors equal to 1 will be deleted, i.e. outputs
a shortened vector 𝐷′ instead of 𝐷. If complete output was required, returns [𝑈 ′, 𝑉 ′, 𝐷′] so that 𝑈 ′𝑋𝑉 ′ = 𝐷′

holds. If this flag is set,𝑋 is allowed to be of the form vector of elementary divisors’ or :math:`[U,V,D] as would
normally be output with the cleanup flag unset.

matsolve(M, B)
Let𝑀 be a left-invertible matrix and𝐵 a column vector such that there exists a solution𝑋 to the system of linear
equations 𝑀𝑋 = 𝐵; return the (unique) solution 𝑋 . This has the same effect as, but is faster, than 𝑀−1 * 𝐵.
Uses Dixon 𝑝-adic lifting method if 𝑀 and 𝐵 are integral and Gaussian elimination otherwise. When there is no
solution, the function returns an 𝑋 such that 𝑀𝑋 −𝐵 is nonzero although it has at least #𝑀 zero entries:

? M = [1,2;3,4;5,6];
? B = [4,6,8]~; X = matsolve(M, B)
%2 = [-2, 3]~
? M*X == B
%3 = 1
? B = [1,2,4]~; X = matsolve(M, [1,2,4]~)
%4 = [0, 1/2]~
? M*X - B
%5 = [0, 0, -1]~

Raises an exception if 𝑀 is not left-invertible, even if there is a solution:

? M = [1,1;1,1]; matsolve(M, [1,1]~)
*** at top-level: matsolve(M,[1,1]~)
*** ^------------------
*** matsolve: impossible inverse in gauss: [1, 1; 1, 1].

The function also works when 𝐵 is a matrix and we return the unique matrix solution 𝑋 provided it exists.

matsolvemod(M, D, B, flag)
𝑀 being any integral matrix,𝐷 a column vector of nonnegative integer moduli, and𝐵 an integral column vector,
gives an integer solution to the system of congruences

∑︀
𝑖𝑚𝑖,𝑗𝑥𝑗 = 𝑏𝑖(𝑚𝑜𝑑𝑑𝑖) if one exists, otherwise returns

zero. Shorthand notation: 𝐵 (resp. 𝐷) can be given as a single integer, in which case all the 𝑏𝑖 (resp. 𝑑𝑖) above
are taken to be equal to 𝐵 (resp. 𝐷).
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? M = [1,2;3,4];
? matsolvemod(M, [3,4]~, [1,2]~)
%2 = [10, 0]~
? matsolvemod(M, 3, 1) \\ M X = [1,1]~ over F_3
%3 = [2, 1]~
? matsolvemod(M, [3,0]~, [1,2]~) \\ x + 2y = 1 (mod 3), 3x + 4y = 2 (in Z)
%4 = [6, -4]~

If 𝑓𝑙𝑎𝑔 = 1, all solutions are returned in the form of a two-component row vector [𝑥, 𝑢], where 𝑥 is an integer
solution to the system of congruences and 𝑢 is a matrix whose columns give a basis of the homogeneous system
(so that all solutions can be obtained by adding 𝑥 to any linear combination of columns of 𝑢). If no solution exists,
returns zero.

matsupplement(x)
Assuming that the columns of the matrix 𝑥 are linearly independent (if they are not, an error message is issued),
finds a square invertible matrix whose first columns are the columns of 𝑥, i.e. supplement the columns of 𝑥 to a
basis of the whole space.

? matsupplement([1;2])
%1 =
[1 0]

[2 1]

Raises an error if 𝑥 has 0 columns, since (due to a long standing design bug), the dimension of the ambient space
(the number of rows) is unknown in this case:

? matsupplement(matrix(2,0))
*** at top-level: matsupplement(matrix
*** ^--------------------
*** matsupplement: sorry, suppl [empty matrix] is not yet implemented.

mattranspose(x)
Transpose of 𝑥 (also 𝑥 ). This has an effect only on vectors and matrices.

max(x, y)
Creates the maximum of 𝑥 and 𝑦 when they can be compared.

mfDelta()

Mf structure corresponding to the Ramanujan Delta function ∆.

? mfcoefs(mfDelta(),4)
%1 = [0, 1, -24, 252, -1472]

mfEH(k)
𝑘 being in 1/2 + Z>=0, return the mf structure corresponding to the Cohen-Eisenstein series 𝐻𝑘 of weight 𝑘 on
Γ0(4).

? H = mfEH(13/2); mfcoefs(H,4)
%1 = [691/32760, -1/252, 0, 0, -2017/252]

The coefficients of𝐻 are given by the Cohen-Hurwitz function𝐻(𝑘−1/2, 𝑁) and can be obtained for moderately
large values of 𝑁 (the algorithm uses 𝑂(𝑁) time):
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? mfcoef(H,10^5+1)
time = 55 ms.
%2 = -12514802881532791504208348
? mfcoef(H,10^7+1)
time = 6,044 ms.
%3 = -1251433416009877455212672599325104476

mfEk(k)
K being an even nonnegative integer, return the mf structure corresponding to the standard Eisenstein series 𝐸𝑘.

? mfcoefs(mfEk(8), 4)
%1 = [1, 480, 61920, 1050240, 7926240]

mfTheta(psi)
The unary theta function corresponding to the primitive Dirichlet character 𝜓. Its level is 4𝐹 (𝜓)2 and its weight
is 1 − 𝜓(−1)/2.

? Ser(mfcoefs(mfTheta(),30))
%1 = 1 + 2*x + 2*x^4 + 2*x^9 + 2*x^16 + 2*x^25 + O(x^31)

? f = mfTheta(8); Ser(mfcoefs(f,30))
%2 = 2*x - 2*x^9 - 2*x^25 + O(x^31)
? mfparams(f)
%3 = [256, 1/2, 8, y, t + 1]

? g = mfTheta(-8); Ser(mfcoefs(g,30))
%4 = 2*x + 6*x^9 - 10*x^25 + O(x^31)
? mfparams(g)
%5 = [256, 3/2, 8, y, t + 1]

? h = mfTheta(Mod(2,5)); mfparams(h)
%6 = [100, 3/2, Mod(7, 20), y, t^2 + 1]

mfatkin(mfatk, f )
Given a mfatk output by mfatk = mfatkininit(mf,Q) and a modular form 𝑓 belonging to the pace mf, returns
the modular form 𝑔 = 𝐶𝑥𝑓‖𝑊𝑄, where 𝐶 = 𝑚𝑓𝑎𝑡𝑘[3] is a normalizing constant such that 𝑔 has the same field
of coefficients as 𝑓 ; mfatk[3] gives the constant 𝐶, and mfatk[1] gives the modular form space to which 𝑔
belongs (or is set to 0 if it is mf).

? mf = mfinit([35,2],0); [f] = mfbasis(mf);
? mfcoefs(f, 4)
%2 = [0, 3, -1, 0, 3]
? mfatk = mfatkininit(mf,7);
? g = mfatkin(mfatk, f); mfcoefs(g, 4)
%4 = [0, 1, -1, -2, 7]
? mfatk = mfatkininit(mf,35);
? g = mfatkin(mfatk, f); mfcoefs(g, 4)
%6 = [0, -3, 1, 0, -3]

mfatkineigenvalues(mf, Q, precision)
Given a modular form space mf of integral weight 𝑘 and a primitive divisor 𝑄 of the level 𝑁 of mf, outputs the
Atkin-Lehner eigenvalues of 𝑤𝑄 on the new space, grouped by orbit. If the Nebentypus 𝜒 of mf is a (trivial or)
quadratic character defined modulo 𝑁/𝑄, the result is rounded and the eigenvalues are 𝑖𝑘.
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? mf = mfinit([35,2],0); mffields(mf)
%1 = [y, y^2 - y - 4] \\ two orbits, dimension 1 and 2
? mfatkineigenvalues(mf,5)
%2 = [[1], [-1, -1]]
? mf = mfinit([12,7,Mod(3,4)],0);
? mfatkineigenvalues(mf,3)
%4 = [[I, -I, -I, I, I, -I]] \\ one orbit

To obtain the eigenvalues on a larger space than the new space, e.g., the full space, you can directly call [mfB,
M,C] = mfatkininit and compute the eigenvalues as the roots of the characteristic polynomial of 𝑀/𝐶, by
dividing the roots of charpoly(M) by 𝐶. Note that the characteristic polynomial is computed exactly since 𝑀
has coefficients in Q(𝜒), whereas 𝐶 may be given by a complex number. If the coefficients of the characteristic
polynomial are polmods modulo 𝑇 they must be embedded to C first using subst(lift(), t, exp(2*I*Pi/
n)), when 𝑇 is poliscyclo(n); note that 𝑇 = 𝑚𝑓.𝑚𝑜𝑑.

mfatkininit(mf, Q, precision)
Given a modular form space with parameters 𝑁, 𝑘, 𝜒 and a primitive divisor 𝑄 of the level 𝑁 , initializes data
necessary for working with the Atkin-Lehner operator 𝑊𝑄, for now only the function mfatkin. We write
𝜒 𝜒𝑄𝜒𝑁/𝑄 where the two characters are primitive with (coprime) conductors dividing 𝑄 and 𝑁/𝑄 respectively.
For 𝐹 ∈𝑀𝑘(Γ0(𝑁), 𝜒), the form 𝐹‖𝑊𝑄 still has level 𝑁 and weight 𝑘 but its Nebentypus may no longer be 𝜒:
it becomes 𝜒𝑄𝜒𝑁/𝑄) if 𝑘 is integral and 𝜒𝑄𝜒𝑁/𝑄)(4𝑄/.) if not.

The result is a technical 4-component vector [mfB, MC, C, mf], where

• mfB encodes the modular form space to which 𝐹‖𝑊𝑄 belongs when 𝐹 ∈ 𝑀𝑘(Γ0(𝑁), 𝜒): an mfinit
corresponding to a new Nebentypus or the integer 0 when the character does not change. This does not
depend on 𝐹 .

• MC is the matrix of 𝑊𝑄 on the bases of mf and mfB multiplied by a normalizing constant 𝐶(𝑘, 𝜒,𝑄). This
matrix has polmod coefficients in Q(𝜒).

• C is the complex constant 𝐶(𝑘, 𝜒,𝑄). For 𝑘 integral, let 𝐴(𝑘, 𝜒,𝑄) = 𝑄𝜀/𝑔(𝜒𝑄), where 𝜀 = 0 for 𝑘
even and 1/2 for 𝑘 odd and where 𝑔(𝜒𝑄) is the Gauss sum attached to 𝜒𝑄). (A similar, more complicated,
definition holds in half-integral weight depending on the parity of 𝑘 − 1/2.) Then if 𝑀 denotes the matrix
of𝑊𝑄 on the bases of mf and mfB, 𝐴.𝑀 has coefficients in Q(𝜒). If 𝐴 is rational, we let 𝐶 = 1 and 𝐶 = 𝐴
as a floating point complex number otherwise, and finally 𝑀𝐶 := 𝑀.𝐶.

? mf=mfinit([32,4],0); [mfB,MC,C]=mfatkininit(mf,32); MC
%1 =
[5/16 11/2 55/8]

[ 1/8 0 -5/4]

[1/32 -1/4 11/16]

? C
%2 = 1
? mf=mfinit([32,4,8],0); [mfB,MC,C]=mfatkininit(mf,32); MC
%3 =
[ 1/8 -7/4]

[-1/16 -1/8]
? C
%4 = 0.35355339059327376220042218105242451964
? algdep(C,2) \\ C = 1/sqrt(8)

(continues on next page)
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%5 = 8*x^2 - 1

mfbasis(NK, space)
If 𝑁𝐾 = [𝑁, 𝑘,𝐶𝐻𝐼] as in mfinit, gives a basis of the corresponding subspace of 𝑀𝑘(Γ0(𝑁), 𝜒). 𝑁𝐾 can
also be the output of mfinit, in which case space can be omitted. To obtain the eigenforms, use mfeigenbasis.

If space is a full space 𝑀𝑘, the output is the union of first, a basis of the space of Eisenstein series, and second,
a basis of the cuspidal space.

? see(L) = apply(f->mfcoefs(f,3), L);
? mf = mfinit([35,2],0);
? see( mfbasis(mf) )
%2 = [[0, 3, -1, 0], [0, -1, 9, -8], [0, 0, -8, 10]]
? see( mfeigenbasis(mf) )
%3 = [[0, 1, 0, 1], [Mod(0, z^2 - z - 4), Mod(1, z^2 - z - 4), \
Mod(-z, z^2 - z - 4), Mod(z - 1, z^2 - z - 4)]]
? mf = mfinit([35,2]);
? see( mfbasis(mf) )
%5 = [[1/6, 1, 3, 4], [1/4, 1, 3, 4], [17/12, 1, 3, 4], \
[0, 3, -1, 0], [0, -1, 9, -8], [0, 0, -8, 10]]
? see( mfbasis([48,4],0) )
%6 = [[0, 3, 0, -3], [0, -3, 0, 27], [0, 2, 0, 30]]

mfbd(F, d)
𝐹 being a generalized modular form, return 𝐵(𝑑)(𝐹 ), where 𝐵(𝑑) is the expanding operator 𝜏 : −−− > 𝑑𝜏 .

? D2=mfbd(mfDelta(),2); mfcoefs(D2, 6)
%1 = [0, 0, 1, 0, -24, 0, 252]

mfbracket(F, G, m)

Compute the 𝑚-th Rankin-Cohen bracket of the generalized modular forms 𝐹 and 𝐺.

? E4 = mfEk(4); E6 = mfEk(6);
? D1 = mfbracket(E4,E4,2); mfcoefs(D1,5)/4800
%2 = [0, 1, -24, 252, -1472, 4830]
? D2 = mfbracket(E4,E6,1); mfcoefs(D2,10)/(-3456)
%3 = [0, 1, -24, 252, -1472, 4830]

mfcoef(F, n)
Compute the 𝑛-th Fourier coefficient 𝑎(𝑛) of the generalized modular form 𝐹 . Note that this is the 𝑛 + 1-st
component of the vector mfcoefs(F,n) as well as the second component of mfcoefs(F,1,n).

? mfcoef(mfDelta(),10)
%1 = -115920

mfcoefs(F, n, d)
Compute the vector of Fourier coefficients [𝑎[0], 𝑎[𝑑], ..., 𝑎[𝑛𝑑]] of the generalized modular form 𝐹 ; 𝑑 must be
positive and 𝑑 = 1 by default.

? D = mfDelta();
? mfcoefs(D,10)
%2 = [0, 1, -24, 252, -1472, 4830, -6048, -16744, 84480, -113643, -115920]

(continues on next page)
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? mfcoefs(D,5,2)
%3 = [0, -24, -1472, -6048, 84480, -115920]
? mfcoef(D,10)
%4 = -115920

This function also applies when 𝐹 is a modular form space as output by mfinit; it then returns the matrix whose
columns give the Fourier expansions of the elements of mfbasis(𝐹 ):

? mf = mfinit([1,12]);
? mfcoefs(mf,5)
%2 =
[691/65520 0]

[ 1 1]

[ 2049 -24]

[ 177148 252]

[ 4196353 -1472]

[ 48828126 4830]

mfconductor(mf, F)
mf being output by mfinit for the cuspidal space and 𝐹 a modular form, gives the smallest level at which 𝐹
is defined. In particular, if 𝐹 is cuspidal and we write 𝐹 =

∑︀
𝑗 𝐵(𝑑𝑗)𝑓𝑗 for new forms 𝑓𝑗 of level 𝑁𝑗 (see

mftonew), then its conductor is the least common multiple of the 𝑑𝑗𝑁𝑗 .

? mf=mfinit([96,6],1); vF = mfbasis(mf); mfdim(mf)
%1 = 72
? vector(10,i, mfconductor(mf, vF[i]))
%2 = [3, 6, 12, 24, 48, 96, 4, 8, 12, 16]

mfcosets(N)

Let 𝑁 be a positive integer. Return the list of right cosets of Γ0(𝑁)
𝐺𝑎𝑚𝑚𝑎, i.e., matrices 𝛾𝑗 ∈ Γ such that Γ =

⨆︀
𝑗 Γ0(𝑁)𝛾𝑗 . The 𝛾𝑗 are chosen in the form [𝑎, 𝑏; 𝑐, 𝑑] with 𝑐‖𝑁 .

? mfcosets(4)
%1 = [[0, -1; 1, 0], [1, 0; 1, 1], [0, -1; 1, 2], [0, -1; 1, 3],\
[1, 0; 2, 1], [1, 0; 4, 1]]

We also allow the argument 𝑁 to be a modular form space, in which case it is replaced by the level of the space:

? M = mfinit([4, 12, 1], 0); mfcosets(M)
%2 = [[0, -1; 1, 0], [1, 0; 1, 1], [0, -1; 1, 2], [0, -1; 1, 3],\
[1, 0; 2, 1], [1, 0; 4, 1]]

Warning. In the present implementation, the trivial coset is represented by [1, 0;𝑁, 1] and is the last in the list.

mfcuspisregular(NK, cusp)
In the space defined by NK = [N,k,CHI] or NK = mf, determine if cusp in canonical format (oo or denominator
dividing 𝑁 ) is regular or not.
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? mfcuspisregular([4,3,-4],1/2)
%1 = 0

mfcusps(N)

Let 𝑁 be a positive integer. Return the list of cusps of Γ0(𝑁) in the form 𝑎/𝑏 with 𝑏‖𝑁 .

? mfcusps(24)
%1 = [0, 1/2, 1/3, 1/4, 1/6, 1/8, 1/12, 1/24]

We also allow the argument 𝑁 to be a modular form space, in which case it is replaced by the level of the space:

? M = mfinit([4, 12, 1], 0); mfcusps(M)
%2 = [0, 1/2, 1/4]

mfcuspval(mf, F, cusp, precision)
Valuation of modular form 𝐹 in the space mf at cusp, which can be either 𝑜𝑜 or any rational number. The result
is either a rational number or 𝑜𝑜 if 𝐹 is zero. Let 𝜒 be the Nebentypus of the space mf; if Q(𝐹 )! = Q(𝜒), return
the vector of valuations attached to the [Q(𝐹 ) : Q(𝑐ℎ𝑖)] complex embeddings of 𝐹 .

? T=mfTheta(); mf=mfinit([12,1/2]); mfcusps(12)
%1 = [0, 1/2, 1/3, 1/4, 1/6, 1/12]
? apply(x->mfcuspval(mf,T,x), %1)
%2 = [0, 1/4, 0, 0, 1/4, 0]
? mf=mfinit([12,6,12],1); F=mfbasis(mf)[5];
? apply(x->mfcuspval(mf,F,x),%1)
%4 = [1/12, 1/6, 1/2, 2/3, 1/2, 2]
? mf=mfinit([12,3,-4],1); F=mfbasis(mf)[1];
? apply(x->mfcuspval(mf,F,x),%1)
%6 = [1/12, 1/6, 1/4, 2/3, 1/2, 1]

? mf = mfinit([625,2],0); [F] = mfeigenbasis(mf); mfparams(F)
%7 = [625, 2, 1, y^2 - y - 1, t - 1] \\ [Q(F):Q(chi)] = 2
? mfcuspval(mf, F, 1/25)
%8 = [1, 2] \\ one conjugate has valuation 1, and the other is 2
? mfcuspval(mf, F, 1/5)
%9 = [1/25, 1/25]

mfcuspwidth(N, cusp)
Width of cusp in Γ0(𝑁).

? mfcusps(12)
%1 = [0, 1/2, 1/3, 1/4, 1/6, 1/12]
? [mfcuspwidth(12,c) | c <- mfcusps(12)]
%2 = [12, 3, 4, 3, 1, 1]
? mfcuspwidth(12, oo)
%3 = 1

We also allow the argument 𝑁 to be a modular form space, in which case it is replaced by the level of the space:

? M = mfinit([4, 12, 1], 0); mfcuspwidth(M, 1/2)
%4 = 1

mfderiv(F, m)
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𝑚-th formal derivative of the power series corresponding to the generalized modular form 𝐹 , with respect to the
differential operator 𝑞𝑑/𝑑𝑞 (default 𝑚 = 1).

? D=mfDelta();
? mfcoefs(D, 4)
%2 = [0, 1, -24, 252, -1472]
? mfcoefs(mfderiv(D), 4)
%3 = [0, 1, -48, 756, -5888]

mfderivE2(F, m)

Compute the Serre derivative (𝑞.𝑑/𝑑𝑞)𝐹−𝑘𝐸2𝐹/12 of the generalized modular form 𝐹 , which has weight 𝑘+2;
if 𝐹 is a true modular form, then its Serre derivative is also modular. If 𝑚 > 1, compute the 𝑚-th iterate, of
weight 𝑘 + 2𝑚.

? mfcoefs(mfderivE2(mfEk(4)),5)*(-3)
%1 = [1, -504, -16632, -122976, -532728]
? mfcoefs(mfEk(6),5)
%2 = [1, -504, -16632, -122976, -532728]

mfdescribe(F, G)

Gives a human-readable description of 𝐹 , which is either a modular form space or a generalized modular form.
If the address of𝐺 is given, puts into𝐺 the vector of parameters of the outermost operator defining 𝐹 ; this vector
is empty if 𝐹 is a leaf (an atomic object such as mfDelta(), not defined in terms of other forms) or a modular
form space.

? E1 = mfeisenstein(4,-3,-4); mfdescribe(E1)
%1 = "F_4(-3, -4)"
? E2 = mfeisenstein(3,5,-7); mfdescribe(E2)
%2 = "F_3(5, -7)"
? E3 = mfderivE2(mfmul(E1,E2), 3); mfdescribe(E3,&G)
%3 = "DERE2^3(MUL(F_4(-3, -4), F_3(5, -7)))"
? mfdescribe(G[1][1])
%4 = "MUL(F_4(-3, -4), F_3(5, -7))"
? G[2]
%5 = 3
? for (i = 0, 4, mf = mfinit([37,4],i); print(mfdescribe(mf)));
S_4^new(G_0(37, 1))
S_4(G_0(37, 1))
S_4^old(G_0(37, 1))
E_4(G_0(37, 1))
M_4(G_0(37, 1))

mfdim(NK, space)
If𝑁𝐾 = [𝑁, 𝑘,𝐶𝐻𝐼] as in mfinit, gives the dimension of the corresponding subspace of𝑀𝑘(Γ0(𝑁), 𝜒). 𝑁𝐾
can also be the output of mfinit, in which case space must be omitted.

The subspace is described by the small integer space: 0 for the newspace 𝑆𝑛𝑒𝑤
𝑘 (Γ0(𝑁), 𝜒), 1 for the cuspidal

space 𝑆𝑘, 2 for the oldspace 𝑆𝑜𝑙𝑑
𝑘 , 3 for the space of Eisenstein series 𝐸𝑘 and 4 for the full space 𝑀𝑘.

Wildcards. As in mfinit, CHI may be the wildcard 0 (all Galois orbits of characters); in this case, the output is
a vector of [𝑜𝑟𝑑𝑒𝑟, 𝑐𝑜𝑛𝑟𝑒𝑦, 𝑑𝑖𝑚, 𝑑𝑖𝑚𝑑𝑖ℎ] corresponding to the nontrivial spaces, where

• order is the order of the character,

• conrey its Conrey label from which the character may be recovered via znchar(𝑐𝑜𝑛𝑟𝑒𝑦),
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• dim the dimension of the corresponding space,

• dimdih the dimension of the subspace of dihedral forms corresponding to Hecke characters if 𝑘 = 1 (this is
not implemented for the old space and set to −1 for the time being) and 0 otherwise.

The spaces are sorted by increasing order of the character; the characters are taken up to Galois conjugation and
the Conrey number is the minimal one among Galois conjugates. In weight 1, this is only implemented when the
space is 0 (newspace), 1 (cusp space), 2(old space) or 3(Eisenstein series).

Wildcards for sets of characters. CHI may be a set of characters, and we return the set of [𝑑𝑖𝑚, 𝑑𝑖𝑚𝑑𝑖ℎ].

Wildcard for :math:`M_k(Gamma_1(N)).` Additionally, the wildcard 𝐶𝐻𝐼 = −1 is available in which case
we output the total dimension of the corresponding subspace of𝑀𝑘(Γ1(𝑁)). In weight 1, this is not implemented
when the space is 4 (fullspace).

? mfdim([23,2], 0) \\ new space
%1 = 2
? mfdim([96,6], 0)
%2 = 10
? mfdim([10^9,4], 3) \\ Eisenstein space
%1 = 40000
? mfdim([10^9+7,4], 3)
%2 = 2
? mfdim([68,1,-1],0)
%3 = 3
? mfdim([68,1,0],0)
%4 = [[2, Mod(67, 68), 1, 1], [4, Mod(47, 68), 1, 1]]
? mfdim([124,1,0],0)
%5 = [[6, Mod(67, 124), 2, 0]]

This last example shows that there exists a nondihedral form of weight 1 in level 124.

mfdiv(F, G)

Given two generalized modular forms 𝐹 and 𝐺, compute 𝐹/𝐺 assuming that the quotient will not have poles at
infinity. If this is the case, use mfshift before doing the division.

? D = mfDelta(); \\ Delta
? H = mfpow(mfEk(4), 3);
? J = mfdiv(H, D)
*** at top-level: J=mfdiv(H,mfdeltac
*** ^--------------------
*** mfdiv: domain error in mfdiv: ord(G) > ord(F)
? J = mfdiv(H, mfshift(D,1));
? mfcoefs(J, 4)
%4 = [1, 744, 196884, 21493760, 864299970]

mfeigenbasis(mf )
Vector of the eigenforms for the space mf. The initial basis of forms computed by mfinit before splitting is also
available via mfbasis.

? mf = mfinit([26,2],0);
? see(L) = for(i=1,#L,print(mfcoefs(L[i],6)));
? see( mfeigenbasis(mf) )
[0, 1, -1, 1, 1, -3, -1]
[0, 1, 1, -3, 1, -1, -3]
? see( mfbasis(mf) )

(continues on next page)
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(continued from previous page)

[0, 2, 0, -2, 2, -4, -4]
[0, -2, -4, 10, -2, 0, 8]

The eigenforms are internally expressed as (algebraic) linear combinations of mfbasis(mf) and it is very inef-
ficient to compute many coefficients of those forms individually: you should rather use mfcoefs(mf) to expand
the basis once and for all, then multiply by mftobasis(mf,f) for the forms you’re interested in:

? mf = mfinit([96,6],0); B = mfeigenbasis(mf); #B
%1 = 8;
? vector(#B, i, mfcoefs(B[i],1000)); \\ expanded individually: slow
time = 7,881 ms.
? M = mfcoefs(mf, 1000); \\ initialize once
time = 982 ms.
? vector(#B, i, M * mftobasis(mf,B[i])); \\ then expand: much faster
time = 623 ms.

When the eigenforms are defined over an extension field of Q(𝜒) for a nonrational character, their coefficients are
hard to read and you may want to lift them or to express them in an absolute number field. In the construction
below 𝑇 defines Q(𝑓) over Q, 𝑎 is the image of the generator Mod(𝑡, 𝑡2 + 𝑡+ 1) of Q(𝜒) in Q(𝑓) and 𝑦 − 𝑘𝑎 is
the image of the root 𝑦 of f.mod:

? mf = mfinit([31, 2, Mod(25,31)], 0); [f] = mfeigenbasis(mf);
? f.mod
%2 = Mod(1, t^2 + t + 1)*y^2 + Mod(2*t + 2, t^2 + t + 1)
? v = liftpol(mfcoefs(f,5))
%3 = [0, 1, (-t - 1)*y - 1, t*y + (t + 1), (2*t + 2)*y + 1, t]
? [T,a,k] = rnfequation(mf.mod, f.mod, 1)
%4 = [y^4 + 2*y^2 + 4, Mod(-1/2*y^2 - 1, y^4 + 2*y^2 + 4), 0]
? liftpol(substvec(v, [t,y], [a, y-k*a]))
%5 = [0, 1, 1/2*y^3 - 1, -1/2*y^3 - 1/2*y^2 - y, -y^3 + 1, -1/2*y^2 - 1]

Beware that the meaning of 𝑦 has changed in the last line is different: it now represents of root of 𝑇 , no longer
of f.mod (the notions coincide if 𝑘 = 0 as here but it will not always be the case). This can be avoided with an
extra variable substitution, for instance

? [T,a,k] = rnfequation(mf.mod, subst(f.mod,'y,'x), 1)
%6 = [x^4 + 2*x^2 + 4, Mod(-1/2*x^2 - 1, x^4 + 2*x^2 + 4), 0]
? liftpol(substvec(v, [t,y], [a, x-k*a]))
%7 = [0, 1, 1/2*x^3 - 1, -1/2*x^3 - 1/2*x^2 - x, -x^3 + 1, -1/2*x^2 - 1]

mfeigensearch(NK, AP)
Search for a normalized rational eigen cuspform with quadratic character given restrictions on a few initial coef-
ficients. The meaning of the parameters is as follows:

• NK governs the limits of the search: it is of the form [𝑁, 𝑘]: search for given level 𝑁 , weight 𝑘 and quadratic
character; note that the character (𝐷/.) is uniquely determined by (𝑁, 𝑘). The level 𝑁 can be replaced by a
vector of allowed levels.

• AP is the search criterion, which can be omitted: a list of pairs [..., [𝑝, 𝑎𝑝], ...], where 𝑝 is a prime number and
𝑎𝑝 is either a t_INT (the 𝑝-th Fourier coefficient must match 𝑎𝑝 exactly) or a t_INTMOD Mod(𝑎, 𝑏) (the 𝑝-th
coefficient must be congruent to 𝑎 modulo 𝑏).

The result is a vector of newforms 𝑓 matching the search criteria, sorted by increasing level then increasing ‖𝐷‖.
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? #mfeigensearch([[1..80],2], [[2,2],[3,-1]])
%1 = 1
? #mfeigensearch([[1..80],2], [[2,2],[5,2]])
%2 = 1
? v = mfeigensearch([[1..20],2], [[3,Mod(2,3)],[7,Mod(5,7)]]); #v
%3 = 1
? F=v[1]; [mfparams(F)[1], mfcoefs(F,15)]
%4 = [11, [0, 1, -2, -1, 2, 1, 2, -2, 0, -2, -2, 1, -2, 4, 4, -1]]

mfeisenstein(k, CHI1, CHI2)
Create the Eisenstein series 𝐸𝑘(𝜒1, 𝜒2), where 𝑘 >= 1, 𝜒𝑖 are Dirichlet characters and an omitted character is
considered as trivial. This form belongs to 𝐸𝑘(Γ0(𝑁), 𝜒) with 𝜒 = 𝜒1𝜒2 and𝑁 is the product of the conductors
of 𝜒1 and 𝜒2.

? CHI = Mod(3,4);
? E = mfeisenstein(3, CHI);
? mfcoefs(E, 6)
%2 = [-1/4, 1, 1, -8, 1, 26, -8]
? CHI2 = Mod(4,5);
? mfcoefs(mfeisenstein(3,CHI,CHI2), 6)
%3 = [0, 1, -1, -10, 1, 25, 10]
? mfcoefs(mfeisenstein(4,CHI,CHI), 6)
%4 = [0, 1, 0, -28, 0, 126, 0]
? mfcoefs(mfeisenstein(4), 6)
%5 = [1/240, 1, 9, 28, 73, 126, 252]

Note that mfeisenstein(𝑘) is 0 for 𝑘 odd and −𝐵𝑘/(2𝑘).𝐸𝑘 for 𝑘 even, where

𝐸𝑘(𝑞) = 1 − (2𝑘/𝐵𝑘)
∑︁
𝑛>=1

𝜎𝑘−1(𝑛)𝑞𝑛

is the standard Eisenstein series. In other words it is normalized so that its linear coefficient is 1.

Important note. This function is currently implemented only when Q(𝜒) is the field of definition of𝐸𝑘(𝜒1, 𝜒2).
If it is a strict subfield, an error is raised:

? mfeisenstein(6, Mod(7,9), Mod(4,9));
*** at top-level: mfeisenstein(6,Mod(7,9),Mod(4,9))
*** ^---------------------------------
*** mfeisenstein: sorry, mfeisenstein for these characters is not
*** yet implemented.

The reason for this is that each modular form is attached to a modular form space 𝑀𝑘(Γ0(𝑁), 𝜒). This is a C-
vector space but it allows a basis of forms defined over Q(𝜒) and is only implemented as a Q(𝜒)-vector space:
there is in general no mechanism to take linear combinations of forms in the space with coefficients belonging to
a larger field. (Due to their importance, eigenforms are the single exception to this restriction; for an eigenform
𝐹 , Q(𝐹 ) is built on top of Q(𝜒).) When the property Q(𝜒) = Q(𝐸𝑘(𝜒1, 𝜒2) does not hold, we cannot express𝐸
as a Q(𝜒)-linear combination of the basis forms and many operations will fail. For this reason, the construction
is currently disabled.

mfembed(f, v, precision)
Let 𝑓 be a generalized modular form with parameters [𝑁, 𝑘, 𝜒, 𝑃 ] (see mfparams, we denote Q(𝜒) the subfield
of C generated by the values of 𝜒 and Q(𝑓) the field of definition of 𝑓 . In this context Q(𝜒) has a single canonical
complex embeding given by 𝑠 : 𝑀𝑜𝑑(𝑡, 𝑝𝑜𝑙𝑐𝑦𝑐𝑙𝑜(𝑛, 𝑡)) : − − − > exp(2𝑖𝜋/𝑛) and the number field Q(𝑓) has
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[Q(𝑓) : Q(𝜒)] induced embeddings attached to the complex roots of the polynomial 𝑠(𝑃 ). If Q(𝑓) is stricly
larger than Q(𝜒) we only allow an 𝑓 which is an eigenform, produced by mfeigenbasis.

This function is meant to create embeddings of Q(𝑓) and/or apply them to the object 𝑣, typically a vector of
Fourier coefficients of 𝑓 from mfcoefs.

• If 𝑣 is omitted and 𝑓 is a modular form as above, we return the embedding of Q(𝜒) if Q(𝜒) = Q(𝑓) and a
vector containing [Q(𝑓) : Q(𝜒)] embeddings of Q(𝑓) otherwise.

• If 𝑣 is given, it must be a scalar in Q(𝑓), or a vector/matrix of such, we apply the embeddings coefficientwise
and return either a single result if Q(𝑓) = Q(𝜒) and a vector of [Q(𝑓) : Q(𝜒)] results otherwise.

• Finally 𝑓 can be replaced by a single embedding produced by mfembed(𝑓) (𝑣 was omitted) and we apply
that particular embedding to 𝑣.

? mf = mfinit([35,2,Mod(11,35)], 0);
? [f] = mfbasis(mf);
? f.mod \\ Q (chi) = Q (zeta_3)
%3 = t^2 + t + 1
? v = mfcoefs(f,5); lift(v) \\ coefficients in Q (chi)
%4 = [0, 2, -2*t - 2, 2*t, 2*t, -2*t - 2]
? mfembed(f, v) \\ single embedding
%5 = [0, 2, -1 - 1.7320...*I, -1 + 1.73205...*I, -1 + 1.7320...*I, ...]

? [F] = mfeigenbasis(mf);
? mffields(mf)
%7 = [y^2 + Mod(-2*t, t^2 + t + 1)] \\ [Q (f):Q (chi)] = 2
? V = liftpol( mfcoefs(F,5) );
%8 = [0, 1, y + (-t - 1), (t + 1)*y + t, (-2*t - 2)*y + t, -t - 1]
? vall = mfembed(F, V); #vall
%9 = 2 \\ 2 embeddings, both applied to V
? vall[1] \\ the first
%10 = [0, 1, -1.2071... - 2.0907...*I, 0.2071... - 0.3587...*I, ...]
? vall[2] \\ and the second one
%11 = [0, 1, 0.2071... + 0.3587...*I, -1.2071... + 2.0907...*I, ...]

? vE = mfembed(F); #vE \\ same 2 embeddings
%12 = 2
? mfembed(vE[1], V) \\ apply first embedding to V
%13 = [0, 1, -1.2071... - 2.0907...*I, 0.2071... - 0.3587...*I, ...]

For convenience, we also allow a modular form space from mfinit instead of 𝑓 , corresponding to the single
embedding of Q(𝜒).

? [mfB,MC,C] = mfatkininit(mf,7); MC \\ coefs in Q (chi)
%13 =
[ Mod(2/7*t, t^2 + t + 1) Mod(-1/7*t - 2/7, t^2 + t + 1)]

[Mod(-1/7*t - 2/7, t^2 + t + 1) Mod(2/7*t, t^2 + t + 1)]

? C \\ normalizing constant
%14 = 0.33863... - 0.16787*I
? M = mfembed(mf, MC) / C \\ the true matrix for the action of w_7
[-0.6294... + 0.4186...*I -0.3625... - 0.5450...*I]

[-0.3625... - 0.5450...*I -0.6294... + 0.4186...*I]
(continues on next page)
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? exponent(M*conj(M) - 1) \\ M * conj(M) is close to 1
%16 = -126

mfeval(mf, F, vtau, precision)
Computes the numerical value of the modular form 𝐹 , belonging to mf, at the complex number vtau or the vector
vtau of complex numbers in the completed upper-half plane. The result is given with absolute error less than
2−𝐵 , where 𝐵 = 𝑟𝑒𝑎𝑙𝑏𝑖𝑡𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.

If the field of definition Q(𝐹 ) is larger than Q(𝜒) then 𝐹 may be embedded into C in 𝑑 = [Q(𝐹 ) : Q(𝜒)] ways,
in which case a vector of the 𝑑 results is returned.

? mf = mfinit([11,2],0); F = mfbasis(mf)[1]; mfparams(F)
%1 = [11, 2, 1, y, t-1] \\ Q(F) = Q(chi) = Q
? mfeval(mf,F,I/2)
%2 = 0.039405471130100890402470386372028382117
? mf = mfinit([35,2],0); F = mfeigenbasis(mf)[2]; mfparams(F)
%3 = [35, 2, 1, y^2 - y - 4, t - 1] \\ [Q(F) : Q(chi)] = 2
? mfeval(mf,F,I/2)
%4 = [0.045..., 0.0385...] \\ sigma_1(F) and sigma_2(F) at I/2
? mf = mfinit([12,4],1); F = mfbasis(mf)[1];
? mfeval(mf, F, 0.318+10^(-7)*I)
%6 = 3.379... E-21 + 6.531... E-21*I \\ instantaneous !

In order to maximize the imaginary part of the argument, the function computes (𝑓‖𝑘𝛾)(𝛾−1.𝜏) for a suitable 𝛾
not necessarily in Γ0(𝑁) (in which case 𝑓‖𝛾 is evaluated using mfslashexpansion).

? T = mfTheta(); mf = mfinit(T); mfeval(mf,T,[0,1/2,1,oo])
%1 = [1/2 - 1/2*I, 0, 1/2 - 1/2*I, 1]

mffields(mf )
Given mf as output by mfinit with parameters (𝑁, 𝑘, 𝜒), returns the vector of polynomials defining each Galois
orbit of newforms over Q(𝜒).

? mf = mfinit([35,2],0); mffields(mf)
%1 = [y, y^2 - y - 4]

Here the character is trivial so Q(𝜒) = Q) and there are 3 newforms: one is rational (corresponding to 𝑦), the
other two are conjugate and defined over the quadratic field Q[𝑦]/(𝑦2 − 𝑦 − 4).

? [G,chi] = znchar(Mod(3,35));
? zncharconductor(G,chi)
%2 = 35
? charorder(G,chi)
%3 = 12
? mf = mfinit([35, 2, [G,chi]],0); mffields(mf)
%4 = [y, y]

Here the character is primitive of order 12 and the two newforms are defined over Q(𝜒) = Q(𝜁12).

? mf = mfinit([35, 2, Mod(13,35)],0); mffields(mf)
%3 = [y^2 + Mod(5*t, t^2 + 1)]

This time the character has order 4 and there are two conjugate newforms over Q(𝜒) = 𝑄(𝑖).
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mffromell(E)
𝐸 being an elliptic curve defined over𝑄 given by an integral model in ellinit format, computes a 3-component
vector [mf,F,v], where 𝐹 is the newform corresponding to 𝐸 by modularity, mf is the newspace to which 𝐹
belongs, and v gives the coefficients of 𝐹 on mfbasis(mf).

? E = ellinit("26a1");
? [mf,F,co] = mffromell(E);
? co
%2 = [3/4, 1/4]~
? mfcoefs(F, 5)
%3 = [0, 1, -1, 1, 1, -3]
? ellan(E, 5)
%4 = [1, -1, 1, 1, -3]

mffrometaquo(eta, flag)
Modular form corresponding to the eta quotient matrix eta. If the valuation 𝑣 at infinity is fractional, return 0.
If the eta quotient is not holomorphic but simply meromorphic, return 0 if flag = 0; return the eta quotient
(divided by 𝑞 to the power −𝑣 if 𝑣 < 0, i.e., with valuation 0) if flag is set.

? mffrometaquo(Mat([1,1]),1)
%1 = 0
? mfcoefs(mffrometaquo(Mat([1,24])),6)
%2 = [0, 1, -24, 252, -1472, 4830, -6048]
? mfcoefs(mffrometaquo([1,1;23,1]),10)
%3 = [0, 1, -1, -1, 0, 0, 1, 0, 1, 0, 0]
? F = mffrometaquo([1,2;2,-1]); mfparams(F)
%4 = [16, 1/2, 1, y, t - 1]
? mfcoefs(F,10)
%5 = [1, -2, 0, 0, 2, 0, 0, 0, 0, -2, 0]
? mffrometaquo(Mat([1,-24]))
%6 = 0
? f = mffrometaquo(Mat([1,-24]),1); mfcoefs(f,6)
%7 = [1, 24, 324, 3200, 25650, 176256, 1073720]

For convenience, a t_VEC is also accepted instead of a factorization matrix with a single row:

? f = mffrometaquo([1,24]); \\ also valid

mffromlfun(L, precision)
Let 𝐿 being an 𝐿-function in any of the lfun formats representing a self-dual modular form (for instance an
eigenform). Return [NK,space,v] when mf = mfinit(NK,space) is the modular form space containing the
form and mftobasis(mf, v) will represent it on the space basis. If 𝐿 has rational coefficients, this will be
enough to recognize the modular form in mf :

? L = lfuncreate(x^2+1);
? lfunan(L,10)
%2 = [1, 1, 0, 1, 2, 0, 0, 1, 1, 2]
? [NK,space,v] = mffromlfun(L); NK
%4 = [4, 1, -4]
? mf=mfinit(NK,space); w = mftobasis(mf,v)
%5 = [1.0000000000000000000000000000000000000]~
? [f] = mfbasis(mf); mfcoefs(f,10) \\ includes a_0 !
%6 = [1/4, 1, 1, 0, 1, 2, 0, 0, 1, 1, 2]
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If 𝐿 has inexact complex coefficients, one can for instance compute an eigenbasis for mf and check whether one
of the attached 𝐿-function is reasonably close to 𝐿. In the example, we cheat by producing the 𝐿 function from
an eigenform in a known space, but the function does not use this information:

? mf = mfinit([32,6,Mod(5,32)],0);
? [poldegree(K) | K<-mffields(mf)]
%2 = [19] \\ one orbit, [Q(F) : Q(chi)] = 19
? L = lfunmf(mf)[1][1]; \\ one of the 19 L-functions attached to F
? lfunan(L,3)
%4 = [1, 5.654... - 0.1812...*I, -7.876... - 19.02...*I]
? [NK,space,v] = mffromlfun(L); NK
%5 = [32, 6, Mod(5, 32)]
? vL = concat(lfunmf(mf)); \\ L functions for all cuspidal eigenforms
? an = lfunan(L,10);
? for (i = 1, #vL, if (normlp(lfunan(vL[i],10) - an, oo) < 1e-10, print(i)));
1

mffromqf(Q, P)
𝑄 being an even integral positive definite quadratic form and 𝑃 a homogeneous spherical polynomial for 𝑄,
computes a 3-component vector [𝑚𝑓,𝐹, 𝑣], where 𝐹 is the theta function corresponding to (𝑄,𝑃 ), mf is the
corresponding space of modular forms (from mfinit), and 𝑣 gives the coefficients of 𝐹 on mfbasis(mf).

? [mf,F,v] = mffromqf(2*matid(10)); v
%1 = [64/5, 4/5, 32/5]~
? mfcoefs(F, 5)
%2 = [1, 20, 180, 960, 3380, 8424]
? mfcoef(F, 10000) \\ number of ways of writing 10000 as sum of 10 squares
%3 = 128205250571893636
? mfcoefs(F, 10000); \\ fast !
time = 220ms
? [mf,F,v] = mffromqf([2,0;0,2],x^4-6*x^2*y^2+y^4);
? mfcoefs(F,10)
%6 = [0, 4, -16, 0, 64, -56, 0, 0, -256, 324, 224]
? mfcoef(F,100000) \\ instantaneous
%7 = 41304367104

Odd dimensions are supported, corresponding to forms of half-integral weight:

? [mf,F,v] = mffromqf(2*matid(3));
? mfisequal(F, mfpow(mfTheta(),3))
%2 = 1
? mfcoefs(F, 32) \\ illustrate Legendre's 3-square theorem
%3 = [ 1,
6, 12, 8, 6, 24, 24, 0, 12,
30, 24, 24, 8, 24, 48, 0, 6,
48, 36, 24,24, 48, 24, 0, 24,
30, 72, 32, 0, 72, 48, 0, 12]

mfgaloisprojrep(mf, F, precision)
mf being an mf output by mfinit in weight 1, return a polynomial defining the field fixed by the kernel of
the projective Artin representation attached to F (by Deligne-Serre). Currently only implemented for projective
image 𝐴4 and 𝑆4.
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\\ A4 example
? mf = mfinit([4*31,1,Mod(87,124)],0);
? F = mfeigenbasis(mf)[1];
? mfgaloistype(mf,F)
%3 = -12
? pol = mfgaloisprojrep(mf,F)
%4 = x^12 + 68*x^10 + 4808*x^8 + ... + 4096
? G = galoisinit(pol); galoisidentify(G)
%5 = [12,3] \\A4
? pol4 = polredbest(galoisfixedfield(G,G.gen[3], 1))
%6 = x^4 + 7*x^2 - 2*x + 14
? polgalois(pol4)
%7 = [12, 1, 1, "A4"]
? factor(nfdisc(pol4))
%8 =
[ 2 4]

[31 2]

\\ S4 example
? mf = mfinit([4*37,1,Mod(105,148)],0);
? F = mfeigenbasis(mf)[1];
? mfgaloistype(mf,F)
%11 = -24
? pol = mfgaloisprojrep(mf,F)
%12 = x^24 + 24*x^22 + 256*x^20 + ... + 255488256
? G = galoisinit(pol); galoisidentify(G)
%13 = [24, 12] \\S4
? pol4 = polredbest(galoisfixedfield(G,G.gen[3..4], 1))
%14 = x^4 - x^3 + 5*x^2 - 7*x + 12
? polgalois(pol4)
%15 = [24, -1, 1, "S4"]
? factor(nfdisc(pol4))
%16 =
[ 2 2]

[37 3]

mfgaloistype(NK, F)
NK being either [N,1,CHI] or an mf output by mfinit in weight 1, gives the vector of types of Galois represen-
tations attached to each cuspidal eigenform, unless the modular form F is specified, in which case only for F (note
that it is not tested whether F belongs to the correct modular form space, nor whether it is a cuspidal eigenform).
Types 𝐴4, 𝑆4, 𝐴5 are represented by minus their cardinality −12, −24, or −60, and type 𝐷𝑛 is represented by
its cardinality, the integer 2𝑛:

? mfgaloistype([124,1, Mod(67,124)]) \\ A4
%1 = [-12]
? mfgaloistype([148,1, Mod(105,148)]) \\ S4
%2 = [-24]
? mfgaloistype([633,1, Mod(71,633)]) \\ D10, A5
%3 = [10, -60]
? mfgaloistype([239,1, -239]) \\ D6, D10, D30
%4 = [6, 10, 30]

(continues on next page)
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(continued from previous page)

? mfgaloistype([71,1, -71])
%5 = [14]
? mf = mfinit([239,1, -239],0); F = mfeigenbasis(mf)[2];
? mfgaloistype(mf, F)
%7 = 10

The function may also return 0 as a type when it failed to determine it; in this case the correct type is either −12
or −60, and most likely −12.

mfhecke(mf, F, n)
𝐹 being a modular form in modular form space mf, returns 𝑇 (𝑛)𝐹 , where 𝑇 (𝑛) is the 𝑛-th Hecke operator.

Warning. If 𝐹 is of level 𝑀 < 𝑁 , then 𝑇 (𝑛)𝐹 is in general not the same in 𝑀𝑘(Γ0(𝑀), 𝜒) and in
𝑀𝑘(Γ0(𝑁), 𝜒). We take 𝑇 (𝑛) at the same level as the one used in mf.

? mf = mfinit([26,2],0); F = mfbasis(mf)[1]; mftobasis(mf,F)
%1 = [1, 0]~
? G2 = mfhecke(mf,F,2); mftobasis(mf,G2)
%2 = [0, 1]~
? G5 = mfhecke(mf,F,5); mftobasis(mf,G5)
%3 = [-2, 1]~

Modular forms of half-integral weight are supported, in which case 𝑛 must be a perfect square, else 𝑇𝑛 will act
as 0 (the operator 𝑇𝑝 for 𝑝‖𝑁 is not supported yet):

? F = mfpow(mfTheta(),3); mf = mfinit(F);
? mfisequal(mfhecke(mf,F,9), mflinear([F],[4]))
%2 = 1

(𝐹 is an eigenvector of all 𝑇𝑝2 , with eigenvalue 𝑝+ 1 for odd 𝑝.)

Warning. When 𝑛 is a large composite, resp. the square of a large composite in half-integral weight, it is in
general more efficient to use mfheckemat on the mftobasis coefficients:

? mfcoefs(mfhecke(mf,F,3^10), 10)
time = 917 ms.
%3 = [324, 1944, 3888, 2592, 1944, 7776, 7776, 0, 3888, 9720, 7776]
? M = mfheckemat(mf,3^10) \\ instantaneous
%4 =
[324]
? G = mflinear(mf, M*mftobasis(mf,F));
? mfcoefs(G, 10) \\ instantaneous
%6 = [324, 1944, 3888, 2592, 1944, 7776, 7776, 0, 3888, 9720, 7776]

mfheckemat(mf, vecn)
If vecn is an integer, matrix of the Hecke operator 𝑇 (𝑛) on the basis formed by mfbasis(mf). If it is a vector,
vector of such matrices, usually faster than calling each one individually.

? mf=mfinit([32,4],0); mfheckemat(mf,3)
%1 =
[0 44 0]

[1 0 -10]

(continues on next page)
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[0 -2 0]
? mfheckemat(mf,[5,7])
%2 = [[0, 0, 220; 0, -10, 0; 1, 0, 12], [0, 88, 0; 2, 0, -20; 0, -4, 0]]

mfinit(NK, space)
Create the space of modular forms corresponding to the data contained in NK and space. NK is a vector which
can be either [𝑁, 𝑘] (𝑁 level, 𝑘 weight) corresponding to a subspace of 𝑀𝑘(Γ0(𝑁)), or [𝑁, 𝑘,𝐶𝐻𝐼] (CHI a
character) corresponding to a subspace of 𝑀𝑘(Γ0(𝑁), 𝜒). Alternatively, it can be a modular form 𝐹 or modular
form space, in which case we use mfparams to define the space parameters.

The subspace is described by the small integer space: 0 for the newspace 𝑆𝑛𝑒𝑤
𝑘 (Γ0(𝑁), 𝜒), 1 for the cuspidal

space 𝑆𝑘, 2 for the oldspace 𝑆𝑜𝑙𝑑
𝑘 , 3 for the space of Eisenstein series 𝐸𝑘 and 4 for the full space 𝑀𝑘.

Wildcards. For given level and weight, it is advantageous to compute simultaneously spaces attached to different
Galois orbits of characters, especially in weight 1. The parameter CHI may be set to 0 (wildcard), in which
case we return a vector of all mfinit (s) of non trivial spaces in 𝑆𝑘(Γ1(𝑁)), one for each Galois orbit (see
znchargalois). One may also set CHI to a vector of characters and we return a vector of all mfinits of subspaces
of 𝑀𝑘(𝐺0(𝑁), 𝜒) for 𝜒 in the list, in the same order. In weight 1, only 𝑆𝑛𝑒𝑤

1 , 𝑆1 and 𝐸1 support wildcards.

The output is a technical structure 𝑆, or a vector of structures if CHI was a wildcard, which contains the following
information: [𝑁, 𝑘, 𝜒] is given by mfparams(𝑆), the space dimension is mfdim(𝑆) and a C-basis for the space is
mfbasis(𝑆). The structure is entirely algebraic and does not depend on the current realbitprecision.

? S = mfinit([36,2], 0); \\ new space
? mfdim(S)
%2 = 1
? mfparams
%3 = [36, 2, 1, y] \\ trivial character
? f = mfbasis(S)[1]; mfcoefs(f,10)
%4 = [0, 1, 0, 0, 0, 0, 0, -4, 0, 0, 0]

? vS = mfinit([36,2,0],0); \\ with wildcard
? #vS
%6 = 4 \\ 4 non trivial spaces (mod Galois action)
? apply(mfdim,vS)
%7 = [1, 2, 1, 4]
? mfdim([36,2,0], 0)
%8 = [[1, Mod(1, 36), 1, 0], [2, Mod(35, 36), 2, 0], [3, Mod(13, 36), 1, 0],
[6, Mod(11, 36), 4, 0]]

mfisCM(F)
Tests whether the eigenform 𝐹 is a CM form. The answer is 0 if it is not, and if it is, either the unique negative
discriminant of the CM field, or the pair of two negative discriminants of CM fields, this latter case occurring
only in weight 1 when the projective image is 𝐷2 = 𝐶2𝑥𝐶2, i.e., coded 4 by mfgaloistype.

? F = mffromell(ellinit([0,1]))[2]; mfisCM(F)
%1 = -3
? mf = mfinit([39,1,-39],0); F=mfeigenbasis(mf)[1]; mfisCM(F)
%2 = Vecsmall([-3, -39])
? mfgaloistype(mf)
%3 = [4]

mfisequal(F, G, lim)

Checks whether the modular forms 𝐹 and𝐺 are equal. If lim is nonzero, only check equality of the first 𝑙𝑖𝑚+ 1
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Fourier coefficients and the function then also applies to generalized modular forms.

? D = mfDelta(); F = mfderiv(D);
? G = mfmul(mfEk(2), D);
? mfisequal(F, G)
%2 = 1

mfisetaquo(f, flag)
If the generalized modular form 𝑓 is a holomorphic eta quotient, return the eta quotient matrix, else return 0. If
flag is set, also accept meromorphic eta quotients: check whether 𝑓 = 𝑞−𝑣(𝑔)𝑔(𝑞) for some eta quotient 𝑔; if so,
return the eta quotient matrix attached to 𝑔, else return 0. See mffrometaquo.

? mfisetaquo(mfDelta())
%1 =
[1 24]
? f = mffrometaquo([1,1;23,1]);
? mfisetaquo(f)
%3 =
[ 1 1]

[23 1]
? f = mffrometaquo([1,-24], 1);
? mfisetaquo(f) \\ nonholomorphic
%5 = 0
? mfisetaquo(f,1)
%6 =
[1 -24]

mfkohnenbasis(mf )
mf being a cuspidal space of half-integral weight 𝑘 >= 3/2 with level 𝑁 and character 𝜒, gives a basis 𝐵 of the
Kohnen +-space of mf as a matrix whose columns are the coefficients of 𝐵 on the basis of mf. The conductor of
either 𝜒 or 𝜒.(−4/.) must divide 𝑁/4.

? mf = mfinit([36,5/2],1); K = mfkohnenbasis(mf); K~
%1 =
[-1 0 0 2 0 0]

[ 0 0 0 0 1 0]
? (mfcoefs(mf,20) * K)~
%4 =
[0 -1 0 0 2 0 0 0 0 0 0 0 0 -6 0 0 8 0 0 0 0]

[0 0 0 0 0 1 0 0 -2 0 0 0 0 0 0 0 0 1 0 0 2]

? mf = mfinit([40,3/2,8],1); mfkohnenbasis(mf)
*** at top-level: mfkohnenbasis(mf)
*** ^-----------------
*** mfkohnenbasis: incorrect type in mfkohnenbasis [incorrect CHI] (t_VEC).

In the final example both 𝜒 = (8/.) and 𝜒.(−4/.) have conductor 8, which does not divide N/4 = 10.

mfkohnenbijection(mf )
mf being a cuspidal space of half-integral weight, returns [mf2,M,K,shi], where 𝑀 is a matrix giving a
Hecke-module isomorphism from the cuspidal space mf2 giving 𝑆2𝑘−1(Γ0(𝑁), 𝜒2) to the Kohnen +-space
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𝑆+
𝑘 (Γ0(4𝑁), 𝜒), K represents a basis𝐵 of the Kohnen +-space as a matrix whose columns are the coefficients of
𝐵 on the basis of mf; shi is a vector of pairs (𝑡𝑖, 𝑛𝑖) gives the linear combination of Shimura lifts giving 𝑀−1:
𝑡𝑖 is a squarefree positive integer and 𝑛𝑖 is a small nonzero integer.

? mf=mfinit([60,5/2],1); [mf2,M,K,shi]=mfkohnenbijection(mf); M
%2 =
[-3 0 5/2 7/2]

[ 1 -1/2 -7 -7]

[ 1 1/2 0 -3]

[ 0 0 5/2 5/2]

? shi
%2 = [[1, 1], [2, 1]]

This last command shows that the map giving the bijection is the sum of the Shimura lift with 𝑡 = 1 and the one
with 𝑡 = 2.

Since it gives a bijection of Hecke modules, this matrix can be used to transport modular form data from the easily
computed space of level 𝑁 and weight 2𝑘 − 1 to the more difficult space of level 4𝑁 and weight 𝑘: matrices of
Hecke operators, new space, splitting into eigenspaces and eigenforms. Examples:

? K^(-1)*mfheckemat(mf,121)*K /* matrix of T_11^2 on K. Slowish. */
time = 1,280 ms.
%1 =
[ 48 24 24 24]

[ 0 32 0 -20]

[-48 -72 -40 -72]

[ 0 0 0 52]
? M*mfheckemat(mf2,11)*M^(-1) /* instantaneous via T_11 on S_{2k-1} */
time = 0 ms.
%2 =
[ 48 24 24 24]

[ 0 32 0 -20]

[-48 -72 -40 -72]

[ 0 0 0 52]
? mf20=mfinit(mf2,0); [mftobasis(mf2,b) | b<-mfbasis(mf20)]
%3 = [[0, 0, 1, 0]~, [0, 0, 0, 1]~]
? F1=M*[0,0,1,0]~
%4 = [1/2, 1/2, -3/2, -1/2]~
? F2=M*[0,0,0,1]~
%5 = [3/2, 1/2, -9/2, -1/2]
? K*F1
%6 = [1, 0, 0, 1, 1, 0, 0, 1, -3, 0, 0, -3, 0, 0]~
? K*F2
%7 = [3, 0, 0, 3, 1, 0, 0, 1, -9, 0, 0, -3, 0, 0]~
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This gives a basis of the new space of 𝑆+
5/2(Γ0(60)) expressed on the initial basis of 𝑆5/2(Γ0(60)). If we want

the eigenforms, we write instead:

? BE=mfeigenbasis(mf20);[E1,E2]=apply(x->K*M*mftobasis(mf2,x),BE)
%1 = [[1, 0, 0, 1, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0]~,\
[0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, -3, 0, 0]~
? EI1 = mflinear(mf, E1); EI2=mflinear(mf, E2);

These are the two eigenfunctions in the space mf, the first (resp., second) will have Shimura image a multiple of
𝐵𝐸[1] (resp., 𝐵𝐸[2]). The function mfkohneneigenbasis does this directly.

mfkohneneigenbasis(mf, bij)
mf being a cuspidal space of half-integral weight 𝑘 >= 3/2 and bij being the output of
mfkohnenbijection(mf), outputs a 3-component vector [mf0,BNEW,BEIGEN], where BNEW and BEIGEN are
two matrices whose columns are the coefficients of a basis of the Kohnen new space and of the eigenforms on the
basis of mf respectively, and mf0 is the corresponding new space of integral weight 2𝑘 − 1.

? mf=mfinit([44,5/2],1);bij=mfkohnenbijection(mf);
? [mf0,BN,BE]=mfkohneneigenbasis(mf,bij);
? BN~
%2 =
[2 0 0 -2 2 0 -8]

[2 0 0 4 14 0 -32]

? BE~
%3 = [1 0 0 Mod(y-1, y^2-3) Mod(2*y+1, y^2-3) 0 Mod(-4*y-4, y^2-3)]
? lift(mfcoefs(mf,20)*BE[,1])
%4 = [0, 1, 0, 0, y - 1, 2*y + 1, 0, 0, 0, -4*y - 4, 0, 0,\
-5*y + 3, 0, 0, 0, -6, 0, 0, 0, 7*y + 9]~

mflinear(vF, v)
vF being a vector of generalized modular forms and v a vector of coefficients of same length, compute the linear
combination of the entries of vF with coefficients v. Note. Use this in particular to subtract two forms 𝐹 and 𝐺
(with 𝑣𝐹 = [𝐹,𝐺] and 𝑣 = [1,−1]), or to multiply an form by a scalar 𝜆 (with 𝑣𝐹 = [𝐹 ] and 𝑣 = [𝜆]).

? D = mfDelta(); G = mflinear([D],[-3]);
? mfcoefs(G,4)
%2 = [0, -3, 72, -756, 4416]

For user convenience, we allow

• a modular form space mf as a vF argument, which is understood as mfbasis(mf);

• in this case, we also allow a modular form 𝑓 as 𝑣, which is understood as mftobasis(𝑚𝑓, 𝑓).

? T = mfpow(mfTheta(),7); F = mfShimura(T,-3); \\ Shimura lift for D=-3
? mfcoefs(F,8)
%2 = [-5/9, 280, 9240, 68320, 295960, 875280, 2254560, 4706240, 9471000]
? mf = mfinit(F); G = mflinear(mf,F);
? mfcoefs(G,8)
%4 = [-5/9, 280, 9240, 68320, 295960, 875280, 2254560, 4706240, 9471000]

This last construction allows to replace a general modular form by a simpler linear combination of basis functions,
which is often more efficient:
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? T10=mfpow(mfTheta(),10); mfcoef(T10, 10^4) \\ direct evaluation
time = 399 ms.
%5 = 128205250571893636
? mf=mfinit(T10); F=mflinear(mf,T10); \\ instantaneous
? mfcoef(F, 10^4) \\ after linearization
time = 67 ms.
%7 = 128205250571893636

mfmanin(FS, precision)
Given the modular symbol 𝐹𝑆 associated to an eigenform 𝐹 by mfsymbol(mf,F), computes the even and odd
special polynomials as well as the even and odd periods 𝜔+ and 𝜔− as a vector [[𝑃+, 𝑃−], [𝜔+, 𝜔−, 𝑟]], where
𝑟 = ℑ(𝜔+𝜔−)/ < 𝐹, 𝐹 >. If 𝐹 has several embeddings into C, give the vector of results corresponding to each
embedding.

? D=mfDelta(); mf=mfinit(D); DS=mfsymbol(mf,D);
? [pols,oms]=mfmanin(DS); pols
%2 = [[4*x^9 - 25*x^7 + 42*x^5 - 25*x^3 + 4*x],\
[-36*x^10 + 691*x^8 - 2073*x^6 + 2073*x^4 - 691*x^2 + 36]]
? oms
%3 = [0.018538552324740326472516069364750571812,\
-0.00033105361053212432521308691198949874026*I, 4096/691]
? mf=mfinit([11,2],0); F=mfeigenbasis(mf)[1]; FS=mfsymbol(mf,F);
? [pols,oms]=mfmanin(FS);pols
%5 = [[0, 0, 0, 1, 1, 0, 0, -1, -1, 0, 0, 0],\
[2, 0, 10, 5, -5, -10, -10, -5, 5, 10, 0, -2]]
? oms[3]
%6 = 24/5

mfmul(F, G)

Multiply the two generalized modular forms 𝐹 and 𝐺.

? E4 = mfEk(4); G = mfmul(mfmul(E4,E4),E4);
? mfcoefs(G, 4)
%2 = [1, 720, 179280, 16954560, 396974160]
? mfcoefs(mfpow(E4,3), 4)
%3 = [1, 720, 179280, 16954560, 396974160]

mfnumcusps(N)

Number of cusps of Γ0(𝑁)

? mfnumcusps(24)
%1 = 8
? mfcusps(24)
%1 = [0, 1/2, 1/3, 1/4, 1/6, 1/8, 1/12, 1/24]

mfparams(F)
If 𝐹 is a modular form space, returns [N,k,CHI,space,:math:Phi`]`, level, weight, character 𝜒, and space
code; where Φ is the cyclotomic polynomial defining the field of values of CHI. If 𝐹 is a generalized modular
form, returns [N,k,CHI,P,:math:Phi`]`, where 𝑃 is the (polynomial giving the) field of definition of 𝐹 as a
relative extension of the cyclotomic field Q(𝜒) = Q[𝑡]/(Φ): in that case the level 𝑁 may be a multiple of the
level of 𝐹 and the polynomial 𝑃 may define a larger field than Q(𝐹 ). If you want the true level of 𝐹 from this
result, use mfconductor(mfinit(F),F). The polynomial 𝑃 defines an extension of Q(𝜒) = Q[𝑡]/(Φ(𝑡)); it
has coefficients in that number field (polmods in 𝑡).
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In contrast with mfparams(F)[4] which always gives the polynomial 𝑃 defining the relative extension
Q(𝐹 )/Q(𝜒), the member function :math:`F.mod` returns the polynomial used to define Q(𝐹 ) over Q (either a
cyclotomic polynomial or a polynomial with cyclotomic coefficients).

? E1 = mfeisenstein(4,-3,-4); E2 = mfeisenstein(3,5,-7); E3 = mfmul(E1,E2);
? apply(mfparams, [E1,E2,E3])
%2 = [[12, 4, 12, y, t-1], [35, 3, -35, y, t-1], [420, 7, -420, y, t-1]]

? mf = mfinit([36,2,Mod(13,36)],0); [f] = mfeigenbasis(mf); mfparams(mf)
%3 = [36, 2, Mod(13, 36), 0, t^2 + t + 1]
? mfparams(f)
%4 = [36, 2, Mod(13, 36), y, t^2 + t + 1]
? f.mod
%5 = t^2 + t + 1

? mf = mfinit([36,4,Mod(13,36)],0); [f] = mfeigenbasis(mf);
? lift(mfparams(f))
%7 = [36, 4, 13, y^3 + (2*t-2)*y^2 + (-4*t+6)*y + (10*t-1), t^2+t+1]

mfperiodpol(mf, f, flag, precision)

Period polynomial of the cuspidal part of the form 𝑓 , in other words
∫︀ 𝑖𝑜𝑜

0
(𝑋 − 𝜏)𝑘−2𝑓(𝜏)𝑑𝜏 . If flag is 0,

ordinary period polynomial. If it is 1 or −1, even or odd part of that polynomial. 𝑓 can also be the modular
symbol output by mfsymbol (mf,f).

? D = mfDelta(); mf = mfinit(D,0);
? PP = mfperiodpol(mf, D, -1); PP/=polcoef(PP, 1); bestappr(PP)
%1 = x^9 - 25/4*x^7 + 21/2*x^5 - 25/4*x^3 + x
? PM = mfperiodpol(mf, D, 1); PM/=polcoef(PM, 0); bestappr(PM)
%2 = -x^10 + 691/36*x^8 - 691/12*x^6 + 691/12*x^4 - 691/36*x^2 + 1

mfperiodpolbasis(k, flag)
Basis of period polynomials for weight k. If flag = 1 or −1, basis of odd or even period polynomials.

? mfperiodpolbasis(12,1)
%1 = [x^8 - 3*x^6 + 3*x^4 - x^2, x^10 - 1]
? mfperiodpolbasis(12,-1)
%2 = [4*x^9 - 25*x^7 + 42*x^5 - 25*x^3 + 4*x]

mfpetersson(fs, gs)
Petersson scalar product of the modular forms 𝑓 and 𝑔 belonging to the same modular form space mf, given by
the corresponding “modular symbols” fs and gs output by mfsymbol (also in weight 1 and half-integral weight,
where symbols do not exist). If gs is omitted it is understood to be equal to fs. The scalar product is normalized
by the factor 1/[Γ : Γ0(𝑁)]. Note that 𝑓 and 𝑔 can both be noncuspidal, in which case the program returns an
error if the product is divergent. If the fields of definition Q(𝑓) and Q(𝑔) are equal to Q(𝜒) the result is a scalar.
If [Q(𝑓) : Q(𝜒)] = 𝑑 > 1 and [Q(𝑔) : Q(𝜒)] = 𝑒 > 1 the result is a 𝑑𝑥𝑒 matrix corresponding to all the
embeddings of 𝑓 and 𝑔. In the intermediate cases 𝑑 = 1 or 𝑒 = 1 the result is a row or column vector.

? D=mfDelta(); mf=mfinit(D); DS=mfsymbol(mf,D); mfpetersson(DS)
%1 = 1.0353620568043209223478168122251645932 E-6
? mf=mfinit([11,6],0);B=mfeigenbasis(mf);BS=vector(#B,i,mfsymbol(mf,B[i]));
? mfpetersson(BS[1])
%3 = 1.6190120685220988139111708455305245466 E-5
? mfpetersson(BS[1],BS[2])

(continues on next page)
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%4 = [-3.826479006582967148 E-42 - 2.801547395385577002 E-41*I,\
1.6661127341163336125 E-41 + 1.1734725972345985061 E-41*I,\
0.E-42 - 6.352626992842664490 E-41*I]~
? mfpetersson(BS[2])
%5 =
[ 2.7576133733... E-5 2.0... E-42 6.3... E-43 ]

[ -4.1... E-42 6.77837030070... E-5 3.3...E-42 ]

[ -6.32...E-43 3.6... E-42 2.27268958069... E-5]

? mf=mfinit([23,2],0); F=mfeigenbasis(mf)[1]; FS=mfsymbol(mf,F);
? mfpetersson(FS)
%5 =
[0.0039488965740025031688548076498662860143 -3.56 ... E-40]

[ -3.5... E-40 0.0056442542987647835101583821368582485396]

Noncuspidal example:

? E1=mfeisenstein(5,1,-3);E2=mfeisenstein(5,-3,1);
? mf=mfinit([12,5,-3]); cusps=mfcusps(12);
? apply(x->mfcuspval(mf,E1,x),cusps)
%3 = [0, 0, 1, 0, 1, 1]
? apply(x->mfcuspval(mf,E2,x),cusps)
%4 = [1/3, 1/3, 0, 1/3, 0, 0]
? E1S=mfsymbol(mf,E1);E2S=mfsymbol(mf,E2);
? mfpetersson(E1S,E2S)
%6 = -1.884821671646... E-5 - 1.9... E-43*I

Weight 1 and 1/2-integral weight example:

? mf=mfinit([23,1,-23],1);F=mfbasis(mf)[1];FS=mfsymbol(mf,F);
? mfpetersson(mf,FS)
%2 = 0.035149946790370230814006345508484787443
? mf=mfinit([4,9/2],1);F=mfbasis(mf)[1];FS=mfsymbol(mf,F);
? mfpetersson(FS)
%4 = 0.00015577084407139192774373662467908966030

mfpow(F, n)
Compute 𝐹𝑛, where 𝑛 is an integer and 𝐹 is a generalized modular form:

? G = mfpow(mfEk(4), 3); \\ E4^3
? mfcoefs(G, 4)
%2 = [1, 720, 179280, 16954560, 396974160]

mfsearch(NK, V, space)
NK being of the form [N,k] with 𝑘 possibly half-integral, search for a modular form with rational coefficients,
of weight 𝑘 and level 𝑁 , whose initial coefficients 𝑎(0),. . . are equal to 𝑉 ; space specifies the modular form
spaces in which to search, in mfinit or mfdim notation. The output is a list of matching forms with that given
level and weight. Note that the character is of the form (𝐷/.), where 𝐷 is a (positive or negative) fundamental
discriminant dividing 𝑁 . The forms are sorted by increasing ‖𝐷‖.
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The parameter 𝑁 can be replaced by a vector of allowed levels, in which case the list of forms is sorted by
increasing level, then increasing ‖𝐷‖. If a form is found at level 𝑁 , any multiple of 𝑁 with the same 𝐷 is not
considered. Some useful possibilities are

• [:math:`N_1..:math:N_2]`: all levels between 𝑁1 and 𝑁2, endpoints included;

• :math:`F * [𝑁1..:math:N_2]`: same but levels divisible by 𝐹 ;

• divisors(𝑁0): all levels dividing 𝑁0.

Note that this is different from mfeigensearch, which only searches for rational eigenforms.

? F = mfsearch([[1..40], 2], [0,1,2,3,4], 1); #F
%1 = 3
? [ mfparams(f)[1..3] | f <- F ]
%2 = [[38, 2, 1], [40, 2, 8], [40, 2, 40]]
? mfcoefs(F[1],10)
%3 = [0, 1, 2, 3, 4, -5, -8, 1, -7, -5, 7]

mfshift(F, s)
Divide the generalized modular form 𝐹 by 𝑞𝑠, omitting the remainder if there is one. One can have 𝑠 < 0.

? D=mfDelta(); mfcoefs(mfshift(D,1), 4)
%1 = [1, -24, 252, -1472, 4830]
? mfcoefs(mfshift(D,2), 4)
%2 = [-24, 252, -1472, 4830, -6048]
? mfcoefs(mfshift(D,-1), 4)
%3 = [0, 0, 1, -24, 252]

mfshimura(mf, F, D)

𝐹 being a modular form of half-integral weight 𝑘 >= 3/2 and 𝑡 a positive squarefree integer, returns the Shimura
lift𝐺 of weight 2𝑘−1 corresponding to𝐷. This function returns [𝑚𝑓2, 𝐺, 𝑣] where mf2 is a modular form space
containing 𝐺 and 𝑣 expresses 𝐺 in terms of mfbasis(𝑚𝑓2); so that 𝐺 is mflinear(𝑚𝑓2, 𝑣).

? F = mfpow(mfTheta(), 7); mf = mfinit(F);
? [mf2, G, v] = mfshimura(mf, F, 3); mfcoefs(G,5)
%2 = [-5/9, 280, 9240, 68320, 295960, 875280]
? mfparams(G) \\ the level may be lower than expected
%3 = [1, 6, 1, y, t - 1]
? mfparams(mf2)
%4 = [2, 6, 1, 4, t - 1]
? v
%5 = [280, 0]~
? mfcoefs(mf2, 5)
%6 =
[-1/504 -1/504]

[ 1 0]

[ 33 1]

[ 244 0]

[ 1057 33]

(continues on next page)
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[ 3126 0]
? mf = mfinit([60,5/2],1); F = mflinear(mf,mfkohnenbasis(mf)[,1]);
? mfparams(mfshimura(mf,F)[2])
%8 = [15, 4, 1, y, t - 1]
? mfparams(mfshimura(mf,F,6)[2])
%9 = [15, 4, 1, y, t - 1]

mfslashexpansion(mf, f, g, n, flrat, params, precision)
Let mf be a modular form space in level 𝑁 , 𝑓 a modular form belonging to mf and let 𝑔 be in 𝑀+

2 (𝑄). This
function computes the Fourier expansion of 𝑓‖𝑘𝑔 to 𝑛 terms. We first describe the behaviour when flrat is 0:
the result is a vector 𝑣 of floating point complex numbers such that

𝑓‖𝑘𝑔(𝜏) = 𝑞𝛼
∑︁

𝑚>=0

𝑣[𝑚+ 1]𝑞𝑚/𝑤,

where 𝑞 = 𝑒(𝜏), 𝑤 is the width of the cusp 𝑔(𝑖𝑜𝑜) (namely (𝑁/(𝑐2, 𝑁) if 𝑔 is integral) and 𝛼 is a rational number.
If params is given, it is set to the parameters [𝛼,𝑤,𝑚𝑎𝑡𝑖𝑑(2)].

If flrat is 1, the program tries to rationalize the expression, i.e., to express the coefficients as rational numbers
or polmods. We write 𝑔 = 𝜆.𝑀.𝐴 where 𝜆 ∈ Q*, 𝑀 ∈ 𝑆𝐿2(Z) and 𝐴 = [𝑎, 𝑏; 0, 𝑑] is upper triangular, integral
and primitive with 𝑎 > 0, 𝑑 > 0 and 0 <= 𝑏 < 𝑑. Let 𝛼 and 𝑤 by the parameters attached to the expansion of
𝐹 := 𝑓‖𝑘𝑀 as above, i.e.

𝐹 (𝜏) = 𝑞𝛼
∑︁

𝑚>=0

𝑣[𝑚+ 1]𝑞𝑚/𝑤.

The function returns the expansion 𝑣 of 𝐹 = 𝑓‖𝑘𝑀 and sets the parameters to [𝛼,𝑤,𝐴]. Finally, the desired
expansion is (𝑎/𝑑)𝑘/2𝐹 (𝜏 + 𝑏/𝑑). The latter is identical to the returned expansion when 𝐴 is the identity,
i.e. when 𝑔 ∈ 𝑃𝑆𝐿2(Z). If this is not the case, the expansion differs from 𝑣 by the multiplicative constant
(𝑎/𝑑)𝑘/2𝑒(𝛼𝑏/(𝑑𝑤)) and a twist by a root of unity 𝑞1/𝑤 → 𝑒(𝑏/(𝑑𝑤))𝑞1/𝑤. The complications introduced by
this extra matrix 𝐴 allow to recognize the coefficients in a much smaller cyclotomic field, hence to obtain a sim-
pler description overall. (Note that this rationalization step may result in an error if the program cannot perform
it.)

? mf = mfinit([32,4],0); f = mfbasis(mf)[1];
? mfcoefs(f, 10)
%2 = [0, 3, 0, 0, 0, 2, 0, 0, 0, 47, 0]
? mfatk = mfatkininit(mf,32); mfcoefs(mfatkin(mfatk,f),10) / mfatk[3]
%3 = [0, 1, 0, 16, 0, 22, 0, 32, 0, -27, 0]
? mfatk[3] \\ here normalizing constant C = 1, but need in general
%4 = 1
? mfslashexpansion(mf,f,[0,-1;1,0],10,1,&params) * 32^(4/2)
%5 = [0, 1, 0, 16, 0, 22, 0, 32, 0, -27, 0]
? params
%6 = [0, 32, [1, 0; 0, 1]]

? mf = mfinit([12,8],0); f = mfbasis(mf)[1];
? mfslashexpansion(mf,f,[1,0;2,1],7,0)
%7 = [0, 0, 0, 0.6666666... + 0.E-38*I, 0, -3.999999... + 6.92820...*I, 0,\
-11.99999999... - 20.78460969...*I]
? mfslashexpansion(mf,f,[1,0;2,1],7,1, &params)
%8 = [0, 0, 0, 2/3, 0, Mod(8*t, t^2+t+1), 0, Mod(-24*t-24, t^2+t+1)]
? params
%9 = [0, 3, [1, 0; 0, 1]]
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If [Q(𝑓) : Q(𝜒)] > 1, the coefficients may be polynomials in 𝑦, where 𝑦 is any root of the polynomial giving the
field of definition of 𝑓 (f.mod or mfparams(f)[4]).

? mf=mfinit([23,2],0);f=mfeigenbasis(mf)[1];
? mfcoefs(f,5)
%1 = [Mod(0, y^2 - y - 1), Mod(1, y^2 - y - 1), Mod(-y, y^2 - y - 1),\
Mod(2*y - 1, y^2 - y - 1), Mod(y - 1, y^2 - y - 1), Mod(-2*y, y^2 - y - 1)]
? mfslashexpansion(mf,f,[1,0;0,1],5,1)
%2 = [0, 1, -y, 2*y - 1, y - 1, -2*y]
? mfslashexpansion(mf,f,[0,-1;1,0],5,1)
%3 = [0, -1/23, 1/23*y, -2/23*y + 1/23, -1/23*y + 1/23, 2/23*y]

Caveat. In half-integral weight, we define the “slash” operation as

(𝑓‖𝑘𝑔)(𝜏) := ((𝑐𝜏 + 𝑑)−1/2)2𝑘𝑓(𝑔.𝜏),

with the principal determination of the square root. In particular, the standard cocycle condition is no longer
satisfied and we only have 𝑓‖(𝑔𝑔′) = (𝑓‖𝑔)‖𝑔′.

mfspace(mf, f )
Identify the modular space mf, resp. the modular form 𝑓 in mf if present, as the flag given to mfinit. Returns 0
(newspace), 1 (cuspidal space), 2 (old space), 3 (Eisenstein space) or 4 (full space).

? mf = mfinit([1,12],1); mfspace(mf)
%1 = 1
? mfspace(mf, mfDelta())
%2 = 0 \\ new space

This function returns −1 when the form 𝑓 is modular but does not belong to the space.

? mf = mfinit([1,2]; mfspace(mf, mfEk(2))
%3 = -1

When 𝑓 is not modular and is for instance only quasi-modular, the function returns nonsense:

? M6 = mfinit([1,6]);
? dE4 = mfderiv(mfEk(4)); \\ not modular !
? mfspace(M6,dE4) \\ asserts (wrongly) that E4' belongs to new space
%3 = 0

mfsplit(mf, dimlim, flag)
mf from mfinit with integral weight containing the new space (either the new space itself or the cuspidal space
or the full space), and preferably the newspace itself for efficiency, split the space into Galois orbits of eigenforms
of the newspace, satisfying various restrictions.

The functions returns [𝑣𝐹, 𝑣𝐾], where 𝑣𝐹 gives (Galois orbit of) eigenforms and 𝑣𝐾 is a list of polynomials
defining each Galois orbit. The eigenforms are given in mftobasis format, i.e. as a matrix whose columns give
the forms with respect to mfbasis(mf).

If dimlim is set, only the Galois orbits of dimension <= 𝑑𝑖𝑚𝑙𝑖𝑚 are computed (i.e. the rational eigenforms if
𝑑𝑖𝑚𝑙𝑖𝑚 = 1 and the character is real). This can considerably speed up the function when a Galois orbit is defined
over a large field.

flag speeds up computations when the dimension is large: if 𝑓𝑙𝑎𝑔 = 𝑑 > 0, when the dimension of the
eigenspace is > 𝑑, only the Galois polynomial is computed.
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Note that the function mfeigenbasis returns all eigenforms in an easier to use format (as modular forms which
can be input as is in other functions); mfsplit is only useful when you can restrict to orbits of small dimensions,
e.g. rational eigenforms.

? mf=mfinit([11,2],0); f=mfeigenbasis(mf)[1]; mfcoefs(f,16)
%1 = [0, 1, -2, -1, ...]
? mf=mfinit([23,2],0); f=mfeigenbasis(mf)[1]; mfcoefs(f,16)
%2 = [Mod(0, z^2 - z - 1), Mod(1, z^2 - z - 1), Mod(-z, z^2 - z - 1), ...]
? mf=mfinit([179,2],0); apply(poldegree, mffields(mf))
%3 = [1, 3, 11]
? mf=mfinit([719,2],0);
? [vF,vK] = mfsplit(mf, 5); \\ fast when restricting to small orbits
time = 192 ms.
? #vF \\ a single orbit
%5 = 1
? poldegree(vK[1]) \\ of dimension 5
%6 = 5
? [vF,vK] = mfsplit(mf); \\ general case is slow
time = 2,104 ms.
? apply(poldegree,vK)
%8 = [5, 10, 45] \\ because degree 45 is large...

mfsturm(NK)

Gives the Sturm bound for modular forms on Γ0(𝑁) and weight 𝑘, i.e., an upper bound for the order of the zero
at infinity of a nonzero form. NK is either

• a pair [𝑁, 𝑘], in which case the bound is the floor of (𝑘𝑁/12).
∏︀

𝑝‖𝑁 (1 + 1/𝑝);

• or the output of mfinit in which case the exact upper bound is returned.

? NK = [96,6]; mfsturm(NK)
%1 = 97
? mf=mfinit(NK,1); mfsturm(mf)
%2 = 76
? mfdim(NK,0) \\ new space
%3 = 72

mfsymbol(mf, f, precision)
Initialize data for working with all period polynomials of the modular form 𝑓 : this is essential for efficiency for
functions such as mfsymboleval, mfmanin, and mfpetersson. An mfsymbol contains an mf structure and can
always be used whenever an mf would be needed.

? mf=mfinit([23,2],0);F=mfeigenbasis(mf)[1];
? FS=mfsymbol(mf,F);
? mfsymboleval(FS,[0,oo])
%3 = [8.762565143790690142 E-39 + 0.0877907874...*I,
-5.617375463602574564 E-39 + 0.0716801031...*I]
? mfpetersson(FS)
%4 =
[0.0039488965740025031688548076498662860143 1.2789721111175127425 E-40]

[1.2630501762985554269 E-40 0.0056442542987647835101583821368582485396]

By abuse of language, initialize data for working with mfpetersson in weight 1 and half-integral weight (where
no symbol exist); the mf argument may be an mfsymbol attached to a form on the space, which avoids recomputing
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data independent of the form.

? mf=mfinit([12,9/2],1); F=mfbasis(mf);
? fs=mfsymbol(mf,F[1]);
time = 476 ms
? mfpetersson(fs)
%2 = 1.9722437519492014682047692073275406145 E-5
? f2s = mfsymbol(mf,F[2]);
time = 484 ms.
? mfpetersson(f2s)
%4 = 1.2142222531326333658647877864573002476 E-5
? gs = mfsymbol(fs,F[2]); \\ re-use existing symbol, a little faster
time = 430 ms.
? mfpetersson(gs) == %4 \\ same value
%6 = 1

For simplicity, we also allow mfsymbol(f) instead of mfsymbol(mfinit(f), f):

mfsymboleval(fs, path, ga, precision)
Evaluation of the modular symbol 𝑓𝑠 (corresponding to the modular form 𝑓 ) output by mfsymbol on the given
path path, where path is either a vector [𝑠1, 𝑠2] or an integral matrix [𝑎, 𝑏; 𝑐, 𝑑] representing the path [𝑎/𝑐, 𝑏/𝑑].
In both cases 𝑠1 or 𝑠2 (or 𝑎/𝑐 or 𝑏/𝑑) can also be elements of the upper half-plane. To avoid possibly lengthy
mfsymbol computations, the program also accepts 𝑓𝑠 of the form [mf,F], but in that case 𝑠1 and 𝑠2 are limited
to oo and elements of the upper half-plane. The result is the polynomial equal to

∫︀ 𝑠2
𝑠1

(𝑋 − 𝜏)𝑘−2𝐹 (𝜏)𝑑𝜏 , the
integral being computed along a geodesic joining 𝑠1 and 𝑠2. If ga in𝐺𝐿+

2 (Q) is given, replace 𝐹 by 𝐹‖𝑘𝛾. Note
that if the integral diverges, the result will be a rational function. If the field of definition Q(𝑓) is larger than Q(𝜒)
then 𝑓 can be embedded into C in 𝑑 = [Q(𝑓) : Q(𝜒)] ways, in which case a vector of the 𝑑 results is returned.

? mf=mfinit([35,2],1);f=mfbasis(mf)[1];fs=mfsymbol(mf,f);
? mfsymboleval(fs,[0,oo])
%1 = 0.31404011074188471664161704390256378537*I
? mfsymboleval(fs,[1,3;2,5])
%2 = -0.1429696291... - 0.2619975641...*I
? mfsymboleval(fs,[I,2*I])
%3 = 0.00088969563028739893631700037491116258378*I
? E2=mfEk(2);E22=mflinear([E2,mfbd(E2,2)],[1,-2]);mf=mfinit(E22);
? E2S = mfsymbol(mf,E22);
? mfsymboleval(E2S,[0,1])
%6 = (-1.00000...*x^2 + 1.00000...*x - 0.50000...)/(x^2 - x)

The rational function which is given in case the integral diverges is easy to interpret. For instance:

? E4=mfEk(4);mf=mfinit(E4);ES=mfsymbol(mf,E4);
? mfsymboleval(ES,[I,oo])
%2 = 1/3*x^3 - 0.928067...*I*x^2 - 0.833333...*x + 0.234978...*I
? mfsymboleval(ES,[0,I])
%3 = (-0.234978...*I*x^3 - 0.833333...*x^2 + 0.928067...*I*x + 0.333333...)/x

mfsymboleval(ES,[a,oo]) is the limit as 𝑇 → 𝑜𝑜 of∫︁ 𝑖𝑇

𝑎

(𝑋 − 𝜏)𝑘−2𝐹 (𝜏)𝑑𝜏 + 𝑎(0)(𝑋 − 𝑖𝑇 )𝑘−1/(𝑘 − 1),

where 𝑎(0) is the 0 at infinity. Similarly, mfsymboleval(ES,[0,a]) is the limit as 𝑇 → 𝑜𝑜 of∫︁ 𝑎

𝑖/𝑇

(𝑋 − 𝜏)𝑘−2𝐹 (𝜏)𝑑𝜏 + 𝑏(0)(1 + 𝑖𝑇𝑋)𝑘−1/(𝑘 − 1),
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where 𝑏(0) is the 0 at infinity.

mftaylor(F, n, flreal, precision)
𝐹 being a form in 𝑀𝑘(𝑆𝐿2(Z)), computes the first 𝑛 + 1 canonical Taylor expansion of 𝐹 around 𝜏 = 𝐼 . If
flreal = 0, computes only an algebraic equivalence class. If flreal is set, compute 𝑝𝑛 such that for 𝜏 close
enough to 𝐼 we have

𝑓(𝜏) = (2𝐼/(𝜏 + 𝐼))𝑘
∑︁
𝑛>=0

𝑝𝑛((𝜏 − 𝐼)/(𝜏 + 𝐼))𝑛.

? D=mfDelta();
? mftaylor(D,8)
%2 = [1/1728, 0, -1/20736, 0, 1/165888, 0, 1/497664, 0, -11/3981312]

mftobasis(mf, F, flag)
Coefficients of the form 𝐹 on the basis given by mfbasis(mf). A 𝑞-expansion or vector of coefficients can also
be given instead of 𝐹 , but in this case an error message may occur if the expansion is too short. An error message
is also given if 𝐹 does not belong to the modular form space. If flag is set, instead of error messages the output
is an affine space of solutions if a 𝑞-expansion or vector of coefficients is given, or the empty column otherwise.

? mf = mfinit([26,2],0); mfdim(mf)
%1 = 2
? F = mflinear(mf,[a,b]); mftobasis(mf,F)
%2 = [a, b]~

A 𝑞-expansion or vector of coefficients can also be given instead of 𝐹 .

? Th = 1 + 2*sum(n=1, 8, q^(n^2), O(q^80));
? mf = mfinit([4,5,Mod(3,4)]);
? mftobasis(mf, Th^10)
%3 = [64/5, 4/5, 32/5]~

If 𝐹 does not belong to the corresponding space, the result is incorrect and simply matches the coefficients of
𝐹 up to some bound, and the function may either return an empty column or an error message. If flag is set,
there are no error messages, and the result is an empty column if 𝐹 is a modular form; if 𝐹 is supplied via a
series or vector of coefficients which does not contain enough information to force a unique (potential) solution,
the function returns [𝑣,𝐾] where 𝑣 is a solution and𝐾 is a matrix of maximal rank describing the affine space of
potential solutions 𝑣 +𝐾.𝑥.

? mf = mfinit([4,12],1);
? mftobasis(mf, q-24*q^2+O(q^3), 1)
%2 = [[43/64, -63/8, 800, 21/64]~, [1, 0; 24, 0; 2048, 768; -1, 0]]
? mftobasis(mf, [0,1,-24,252], 1)
%3 = [[1, 0, 1472, 0]~, [0; 0; 768; 0]]
? mftobasis(mf, [0,1,-24,252,-1472], 1)
%4 = [1, 0, 0, 0]~ \\ now uniquely determined
? mftobasis(mf, [0,1,-24,252,-1472,0], 1)
%5 = [1, 0, 0, 0]~ \\ wrong result: no such form exists
? mfcoefs(mflinear(mf,%), 5) \\ double check
%6 = [0, 1, -24, 252, -1472, 4830]
? mftobasis(mf, [0,1,-24,252,-1472,0])
*** at top-level: mftobasis(mf,[0,1,
*** ^--------------------
*** mftobasis: domain error in mftobasis: form does not belong to space

(continues on next page)
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? mftobasis(mf, mfEk(10))
*** at top-level: mftobasis(mf,mfEk(
*** ^--------------------
*** mftobasis: domain error in mftobasis: form does not belong to space
? mftobasis(mf, mfEk(10), 1)
%7 = []~

mftocoset(N, M, Lcosets)
𝑀 being a matrix in 𝑆𝐿2(𝑍) and Lcosets being mfcosets(N), a list of right cosets of Γ0(𝑁), find the coset to
which 𝑀 belongs. The output is a pair [𝛾, 𝑖] such that 𝑀 = 𝛾𝐿𝑐𝑜𝑠𝑒𝑡𝑠[𝑖], 𝛾 ∈ Γ0(𝑁).

? N = 4; L = mfcosets(N);
? mftocoset(N, [1,1;2,3], L)
%2 = [[-1, 1; -4, 3], 5]

mftonew(mf, F)
mf being being a full or cuspidal space with parameters [𝑁, 𝑘, 𝜒] and 𝐹 a cusp form in that space, returns a vector
of 3-component vectors [𝑀,𝑑,𝐺], where 𝑓(𝜒)‖𝑀‖𝑁 , 𝑑‖𝑁/𝑀 , and 𝐺 is a form in 𝑆𝑛𝑒𝑤

𝑘 (Γ0(𝑀), 𝜒) such that
𝐹 is equal to the sum of the 𝐵(𝑑)(𝐺) over all these 3-component vectors.

? mf = mfinit([96,6],1); F = mfbasis(mf)[60]; s = mftonew(mf,F); #s
%1 = 1
? [M,d,G] = s[1]; [M,d]
%2 = [48, 2]
? mfcoefs(F,10)
%3 = [0, 0, -160, 0, 0, 0, 0, 0, 0, 0, -14400]
? mfcoefs(G,10)
%4 = [0, 0, -160, 0, 0, 0, 0, 0, 0, 0, -14400]

mftraceform(NK, space)
If 𝑁𝐾 = [𝑁, 𝑘,𝐶𝐻𝐼, .] as in mfinit with 𝑘 integral, gives the trace form in the corresponding subspace of
𝑆𝑘(Γ0(𝑁), 𝜒). The supported values for space are 0: the newspace (default), 1: the full cuspidal space.

? F = mftraceform([23,2]); mfcoefs(F,16)
%1 = [0, 2, -1, 0, -1, -2, -5, 2, 0, 4, 6, -6, 5, 6, 4, -10, -3]
? F = mftraceform([23,1,-23]); mfcoefs(F,16)
%2 = [0, 1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 0, -1]

mftwist(F, D)

𝐹 being a generalized modular form, returns the twist of 𝐹 by the integer𝐷, i.e., the form𝐺 such that mfcoef(G,
n) = `:math:`(D/n)mfcoef(F,n), where (𝐷/𝑛) is the Kronecker symbol.

? mf = mfinit([11,2],0); F = mfbasis(mf)[1]; mfcoefs(F, 5)
%1 = [0, 1, -2, -1, 2, 1]
? G = mftwist(F,-3); mfcoefs(G, 5)
%2 = [0, 1, 2, 0, 2, -1]
? mf2 = mfinit([99,2],0); mftobasis(mf2, G)
%3 = [1/3, 0, 1/3, 0]~

Note that twisting multiplies the level by 𝐷2. In particular it is not an involution:
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? H = mftwist(G,-3); mfcoefs(H, 5)
%4 = [0, 1, -2, 0, 2, 1]
? mfparams(G)
%5 = [99, 2, 1, y, t - 1]

min(x, y)
Creates the maximum of 𝑥 and 𝑦 when they can be compared.

minpoly(A, v)
minimal polynomial of 𝐴 with respect to the variable 𝑣., i.e. the monic polynomial 𝑃 of minimal degree (in the
variable 𝑣) such that 𝑃 (𝐴) = 0.

modreverse(z)
Let 𝑧 = 𝑀𝑜𝑑(𝐴, 𝑇 ) be a polmod, and 𝑄 be its minimal polynomial, which must satisfy 𝑑𝑒𝑔(𝑄) = 𝑑𝑒𝑔(𝑇 ).
Returns a “reverse polmod” Mod(B, Q), which is a root of 𝑇 .

This is quite useful when one changes the generating element in algebraic extensions:

? u = Mod(x, x^3 - x -1); v = u^5;
? w = modreverse(v)
%2 = Mod(x^2 - 4*x + 1, x^3 - 5*x^2 + 4*x - 1)

which means that 𝑥3 − 5𝑥2 + 4𝑥− 1 is another defining polynomial for the cubic field

Q(𝑢) = Q[𝑥]/(𝑥3 − 𝑥− 1) = Q[𝑥]/(𝑥3 − 5𝑥2 + 4𝑥− 1) = Q(𝑣),

and that 𝑢 → 𝑣2 − 4𝑣 + 1 gives an explicit isomorphism. From this, it is easy to convert elements between the
𝐴(𝑢) ∈ Q(𝑢) and 𝐵(𝑣) ∈ Q(𝑣) representations:

? A = u^2 + 2*u + 3; subst(lift(A), 'x, w)
%3 = Mod(x^2 - 3*x + 3, x^3 - 5*x^2 + 4*x - 1)
? B = v^2 + v + 1; subst(lift(B), 'x, v)
%4 = Mod(26*x^2 + 31*x + 26, x^3 - x - 1)

If the minimal polynomial of 𝑧 has lower degree than expected, the routine fails

? u = Mod(-x^3 + 9*x, x^4 - 10*x^2 + 1)
? modreverse(u)
*** modreverse: domain error in modreverse: deg(minpoly(z)) < 4
*** Break loop: type 'break' to go back to GP prompt
break> Vec( dbg_err() ) \\ ask for more info
["e_DOMAIN", "modreverse", "deg(minpoly(z))", "<", 4,
Mod(-x^3 + 9*x, x^4 - 10*x^2 + 1)]
break> minpoly(u)
x^2 - 8

moebius(x)
Moebius 𝜇-function of ‖𝑥‖; 𝑥 must be a nonzero integer.

msatkinlehner(M, Q, H)

Let 𝑀 be a full modular symbol space of level 𝑁 , as given by msinit, let 𝑄‖𝑁 , (𝑄,𝑁/𝑄) = 1, and let 𝐻 be a
subspace stable under the Atkin-Lehner involution 𝑤𝑄. Return the matrix of 𝑤𝑄 acting on 𝐻 (𝑀 if omitted).
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? M = msinit(36,2); \\ M_2(Gamma_0(36))
? w = msatkinlehner(M,4); w^2 == 1
%2 = 1
? #w \\ involution acts on a 13-dimensional space
%3 = 13
? M = msinit(36,2, -1); \\ M_2(Gamma_0(36))^-
? w = msatkinlehner(M,4); w^2 == 1
%5 = 1
? #w
%6 = 4

mscosets(gen, inH)

gen being a system of generators for a group 𝐺 and 𝐻 being a subgroup of finite index in 𝐺, return a list of
right cosets of 𝐻 and the right action of 𝐺 on 𝐻 . The subgroup 𝐻 is given by a criterion inH (closure) deciding
whether an element of 𝐺 belongs to 𝐻 . The group 𝐺 is restricted to types handled by generic multiplication (*)
and inversion (g^(-1)), such as matrix groups or permutation groups.

Let 𝑔𝑒𝑛𝑠 = [𝑔1, ..., 𝑔𝑟]. The function returns [𝐶,𝑀 ] where 𝐶 lists the ℎ = [𝐺 : 𝐻] representatives [𝛾1, ..., 𝛾ℎ]
for the right cosets 𝐻𝛾1, ...,𝐻𝛾ℎ; 𝛾1 is always the neutral element in 𝐺. For all 𝑖 <= ℎ, 𝑗 <= 𝑟, if 𝑀 [𝑖][𝑗] = 𝑘
then 𝐻𝛾𝑖𝑔𝑗 = 𝐻𝛾𝑘.

? PSL2 = [[0,1;-1,0], [1,1;0,1]]; \\ S and T
\\ G = PSL2, H = Gamma0(2)
? [C, M] = mscosets(PSL2, g->g[2,1] % 2 == 0);
? C \\ three cosets
%3 = [[1, 0; 0, 1], [0, 1; -1, 0], [0, 1; -1, -1]]
? M
%4 = [Vecsmall([2, 1]), Vecsmall([1, 3]), Vecsmall([3, 2])]

Looking at 𝑀 [1] we see that 𝑆 belongs to the second coset and 𝑇 to the first (trivial) coset.

mscuspidal(M, flag)
𝑀 being a full modular symbol space, as given by msinit, return its cuspidal part 𝑆. If 𝑓𝑙𝑎𝑔 = 1, return [𝑆,𝐸]
its decomposition into cuspidal and Eisenstein parts.

A subspace is given by a structure allowing quick projection and restriction of linear operators; its first component
is a matrix with integer coefficients whose columns form a Q-basis of the subspace.

? M = msinit(2,8, 1); \\ M_8(Gamma_0(2))^+
? [S,E] = mscuspidal(M, 1);
? E[1] \\ 2-dimensional
%3 =
[0 -10]

[0 -15]

[0 -3]

[1 0]

? S[1] \\ 1-dimensional
%4 =
[ 3]

(continues on next page)
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[30]

[ 6]

[-8]

msdim(M)

𝑀 being a full modular symbol space or subspace, for instance as given by msinit or mscuspidal, return its
dimension as a Q-vector space.

? M = msinit(11,4); msdim(M)
%1 = 6
? M = msinit(11,4,1); msdim(M)
%2 = 4 \\ dimension of the '+' part
? [S,E] = mscuspidal(M,1);
? [msdim(S), msdim(E)]
%4 = [2, 2]

Note that mfdim([N,k]) is going to be much faster if you only need the dimension of the space and not really to
work with it. This function is only useful to quickly check the dimension of an existing space.

mseisenstein(M)

𝑀 being a full modular symbol space, as given by msinit, return its Eisenstein subspace. A subspace is given
by a structure allowing quick projection and restriction of linear operators; its first component is a matrix with
integer coefficients whose columns form a Q-basis of the subspace. This is the same basis as given by the second
component of mscuspidal(𝑀, 1).

? M = msinit(2,8, 1); \\ M_8(Gamma_0(2))^+
? E = mseisenstein(M);
? E[1] \\ 2-dimensional
%3 =
[0 -10]

[0 -15]

[0 -3]

[1 0]

? E == mscuspidal(M,1)[2]
%4 = 1

mseval(M, s, p)
Let ∆0 := 𝐷𝑖𝑣0(P1(Q)). Let𝑀 be a full modular symbol space, as given by msinit, let 𝑠 be a modular symbol
from 𝑀 , i.e. an element of Hom𝐺(∆0, 𝑉 ), and let 𝑝 = [𝑎, 𝑏] ∈ ∆0 be a path between two elements in P1(Q),
return 𝑠(𝑝) ∈ 𝑉 . The path extremities 𝑎 and 𝑏may be given as t_INT, t_FRAC or 𝑜𝑜 = (1 : 0); it is also possible
to describe the path by a 2𝑥2 integral matrix whose columns give the two cusps. The symbol 𝑠 is either

• a t_COL coding a modular symbol in terms of the fixed basis of Hom𝐺(∆0, 𝑉 ) chosen in 𝑀 ; if 𝑀 was
initialized with a nonzero sign (+ or −), then either the basis for the full symbol space or the -part can be
used (the dimension being used to distinguish the two).

• a t_MAT whose columns encode modular symbols as above. This is much faster than evaluating individual
symbols on the same path 𝑝 independently.
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• a t_VEC (𝑣𝑖) of elements of 𝑉 , where the 𝑣𝑖 = 𝑠(𝑔𝑖) give the image of the generators 𝑔𝑖 of ∆0, see
mspathgens. We assume that 𝑠 is a proper symbol, i.e. that the 𝑣𝑖 satisfy the mspathgens relations.

If 𝑝 is omitted, convert a single symbol 𝑠 to the second form: a vector of the 𝑠(𝑔𝑖). A t_MAT is converted to a
vector of such.

? M = msinit(2,8,1); \\ M_8(Gamma_0(2))^+
? g = mspathgens(M)[1]
%2 = [[+oo, 0], [0, 1]]
? N = msnew(M)[1]; #N \\ Q-basis of new subspace, dimension 1
%3 = 1
? s = N[,1] \\ t_COL representation
%4 = [-3, 6, -8]~
? S = mseval(M, s) \\ t_VEC representation
%5 = [64*x^6-272*x^4+136*x^2-8, 384*x^5+960*x^4+192*x^3-672*x^2-432*x-72]
? mseval(M,s, g[1])
%6 = 64*x^6 - 272*x^4 + 136*x^2 - 8
? mseval(M,S, g[1])
%7 = 64*x^6 - 272*x^4 + 136*x^2 - 8

Note that the symbol should have values in 𝑉 = Q[𝑥, 𝑦]𝑘−2, we return the de-homogenized values corresponding
to 𝑦 = 1 instead.

msfarey(F, inH, CM)

𝐹 being a Farey symbol attached to a group 𝐺 contained in 𝑃𝑆𝐿2(Z) and 𝐻 a subgroup of 𝐺, return a Farey
symbol attached to 𝐻 . The subgroup 𝐻 is given by a criterion inH (closure) deciding whether an element of 𝐺
belongs to 𝐻 . The symbol 𝐹 can be created using

• mspolygon: 𝐺 = Γ0(𝑁), which runs in time 𝑂(𝑁);

• or msfarey itself, which runs in time 𝑂([𝐺 : 𝐻]2).

If present, the argument CM is set to mscosets(F[3]), giving the right cosets of 𝐻 and the action of 𝐺 by right
multiplication. Since msfarey’s algorithm is quadratic in the index [𝐺 : 𝐻], it is advisable to construct subgroups
by a chain of inclusions if possible.

\\ Gamma_0(N)
G0(N) = mspolygon(N);

\\ Gamma_1(N): direct construction, slow
G1(N) = msfarey(mspolygon(1), g -> my(a = g[1,1]%N, c = g[2,1]%N);\
c == 0 && (a == 1 || a == N-1));
\\ Gamma_1(N) via Gamma_0(N): much faster
G1(N) = msfarey(G0(N), g -> my(a=g[1,1]%N); a==1 || a==N-1);

\\ Gamma(N)
G(N) = msfarey(G1(N), g -> g[1,2]%N==0);

G_00(N) = msfarey(G0(N), x -> x[1,2]%N==0);
G1_0(N1,N2) = msfarey(G0(1), x -> x[2,1]%N1==0 && x[1,2]%N2==0);

\\ Gamma_0(91) has 4 elliptic points of order 3, Gamma_1(91) has none
D0 = mspolygon(G0(91), 2)[4];
D1 = mspolygon(G1(91), 2)[4];
write("F.tex","\\documentclass{article}\\usepackage{tikz}\\begin{document}",\
D0,"\n",D1,"\\end{document}");
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msfromcusp(M, c)
Returns the modular symbol attached to the cusp 𝑐, where 𝑀 is a modular symbol space of level 𝑁 , attached to
𝐺 = Γ0(𝑁). The cusp 𝑐 in P1(Q)/𝐺 is given either as oo (= (1 : 0)) or as a rational number 𝑎/𝑏 (= (𝑎 : 𝑏)).
The attached symbol maps the path [𝑏] − [𝑎] ∈ 𝐷𝑖𝑣0(P1(Q)) to 𝐸𝑐(𝑏) − 𝐸𝑐(𝑎), where 𝐸𝑐(𝑟) is 0 when 𝑟! = 𝑐
and 𝑋𝑘−2‖𝛾𝑟 otherwise, where 𝛾𝑟.𝑟 = (1 : 0). These symbols span the Eisenstein subspace of 𝑀 .

? M = msinit(2,8); \\ M_8(Gamma_0(2))
? E = mseisenstein(M);
? E[1] \\ two-dimensional
%3 =
[0 -10]

[0 -15]

[0 -3]

[1 0]

? s = msfromcusp(M,oo)
%4 = [0, 0, 0, 1]~
? mseval(M, s)
%5 = [1, 0]
? s = msfromcusp(M,1)
%6 = [-5/16, -15/32, -3/32, 0]~
? mseval(M,s)
%7 = [-x^6, -6*x^5 - 15*x^4 - 20*x^3 - 15*x^2 - 6*x - 1]

In case𝑀 was initialized with a nonzero sign, the symbol is given in terms of the fixed basis of the whole symbol
space, not the + or − part (to which it need not belong).

? M = msinit(2,8, 1); \\ M_8(Gamma_0(2))^+
? E = mseisenstein(M);
? E[1] \\ still two-dimensional, in a smaller space
%3 =
[ 0 -10]

[ 0 3]

[-1 0]

? s = msfromcusp(M,oo) \\ in terms of the basis for M_8(Gamma_0(2)) !
%4 = [0, 0, 0, 1]~
? mseval(M, s) \\ same symbol as before
%5 = [1, 0]

msfromell(E, sign)
Let 𝐸/Q be an elliptic curve of conductor 𝑁 . For 𝜀 = 1, we define the (cuspidal, new) modular symbol 𝑥𝜀
in 𝐻1

𝑐 (𝑋0(𝑁),Q)𝜀 attached to 𝐸. For all primes 𝑝 not dividing 𝑁 we have 𝑇𝑝(𝑥𝜀) = 𝑎𝑝𝑥
𝜀, where 𝑎𝑝 =

𝑝+ 1 − #𝐸(F𝑝).

Let Ω+ = 𝐸.𝑜𝑚𝑒𝑔𝑎[1] be the real period of 𝐸 (integration of the Néron differential 𝑑𝑥/(2𝑦 + 𝑎1𝑥+ 𝑎3) on the
connected component of 𝐸(R), i.e. the generator of 𝐻1(𝐸,Z)+) normalized by Ω+ > 0. Let 𝑖Ω− the integral
on a generator of 𝐻1(𝐸,Z)− with Ω− ∈ R>0. If 𝑐𝑜𝑜 is the number of connected components of 𝐸(R), Ω− is
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equal to (−2/𝑐𝑜𝑜)𝑥𝑖𝑚𝑎𝑔(𝐸.𝑜𝑚𝑒𝑔𝑎[2]). The complex modular symbol is defined by

𝐹 : 𝛿 → 2𝑖𝜋

∫︁
𝛿

𝑓(𝑧)𝑑𝑧

The modular symbols 𝑥𝜀 are normalized so that 𝐹 = 𝑥+Ω+ + 𝑥−𝑖Ω−. In particular, we have

𝑥+([0] − [𝑜𝑜]) = 𝐿(𝐸, 1)/Ω+,

which defines 𝑥 unless 𝐿(𝐸, 1) = 0. Furthermore, for all fundamental discriminants 𝐷 such that 𝜀.𝐷 > 0, we
also have ∑︁

0<=𝑎<‖𝐷‖

(𝐷‖𝑎)𝑥𝜀([𝑎/‖𝐷‖] − [𝑜𝑜]) = 𝐿(𝐸, (𝐷‖.), 1)/Ω𝜀,

where (𝐷‖.) is the Kronecker symbol. The period Ω− is also 2/𝑐𝑜𝑜𝑥 the real period of the twist 𝐸(−4) =
𝑒𝑙𝑙𝑡𝑤𝑖𝑠𝑡(𝐸,−4).

This function returns the pair [𝑀,𝑥], where 𝑀 is msinit(𝑁, 2) and 𝑥 is 𝑥𝑠𝑖𝑔𝑛 as above when 𝑠𝑖𝑔𝑛 = 1, and
𝑥 = [𝑥+, 𝑥−, 𝐿𝐸 ] when sign is 0, where 𝐿𝐸 is a matrix giving the canonical Z-lattice attached to 𝐸 in the sense
of mslattice applied to Q𝑥+ + Q𝑥−. Explicitly, it is generated by (𝑥+, 𝑥−) when 𝐸(R) has two connected
components and by (𝑥+ − 𝑥−, 2𝑥−) otherwise.

The modular symbols 𝑥 are given as a t_COL (in terms of the fixed basis of Hom𝐺(∆0,Q) chosen in 𝑀 ).

? E=ellinit([0,-1,1,-10,-20]); \\ X_0(11)
? [M,xp]= msfromell(E,1);
? xp
%3 = [1/5, -1/2, -1/2]~
? [M,x]= msfromell(E);
? x \\ x^+, x^- and L_E
%5 = [[1/5, -1/2, -1/2]~, [0, 1/2, -1/2]~, [1/5, 0; -1, 1; 0, -1]]
? p = 23; (mshecke(M,p) - ellap(E,p))*x[1]
%6 = [0, 0, 0]~ \\ true at all primes, including p = 11; same for x[2]
? (mshecke(M,p) - ellap(E,p))*x[3] == 0
%7 = 1

Instead of a single curve 𝐸, one may use instead a vector of isogenous curves. The function then returns 𝑀 and
the vector of attached modular symbols.

msfromhecke(M, v, H)

Given a msinit𝑀 and a vector 𝑣 of pairs [𝑝, 𝑃 ] (where 𝑝 is prime and 𝑃 is a polynomial with integer coefficients),
return a basis of all modular symbols such that 𝑃 (𝑇𝑝)(𝑠) = 0. If𝐻 is present, it must be a Hecke-stable subspace
and we restrict to 𝑠 ∈ 𝐻 . When 𝑇𝑝 has a rational eigenvalue and 𝑃 (𝑥) = 𝑥 − 𝑎𝑝 has degree 1, we also accept
the integer 𝑎𝑝 instead of 𝑃 .

? E = ellinit([0,-1,1,-10,-20]) \\11a1
? ellap(E,2)
%2 = -2
? ellap(E,3)
%3 = -1
? M = msinit(11,2);
? S = msfromhecke(M, [[2,-2],[3,-1]])
%5 =
[ 1 1]

(continues on next page)
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[-5 0]

[ 0 -5]
? mshecke(M, 2, S)
%6 =
[-2 0]

[ 0 -2]

? M = msinit(23,4);
? S = msfromhecke(M, [[5, x^4-14*x^3-244*x^2+4832*x-19904]]);
? factor( charpoly(mshecke(M,5,S)) )
%9 =
[x^4 - 14*x^3 - 244*x^2 + 4832*x - 19904 2]

msgetlevel(M)

𝑀 being a full modular symbol space, as given by msinit, return its level 𝑁 .

msgetsign(M)

𝑀 being a full modular symbol space, as given by msinit, return its sign: 1 or 0 (unset).

? M = msinit(11,4, 1);
? msgetsign(M)
%2 = 1
? M = msinit(11,4);
? msgetsign(M)
%4 = 0

msgetweight(M)

𝑀 being a full modular symbol space, as given by msinit, return its weight 𝑘.

? M = msinit(11,4);
? msgetweight(M)
%2 = 4

mshecke(M, p, H)

𝑀 being a full modular symbol space, as given by msinit, 𝑝 being a prime number, and𝐻 being a Hecke-stable
subspace (𝑀 if omitted) return the matrix of 𝑇𝑝 acting on 𝐻 (𝑈𝑝 if 𝑝 divides 𝑁 ). Result is undefined if 𝐻 is not
stable by 𝑇𝑝 (resp. 𝑈𝑝).

? M = msinit(11,2); \\ M_2(Gamma_0(11))
? T2 = mshecke(M,2)
%2 =
[3 0 0]

[1 -2 0]

[1 0 -2]
? M = msinit(11,2, 1); \\ M_2(Gamma_0(11))^+
? T2 = mshecke(M,2)
%4 =
[ 3 0]

(continues on next page)
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[-1 -2]

? N = msnew(M)[1] \\ Q-basis of new cuspidal subspace
%5 =
[-2]

[-5]

? p = 1009; mshecke(M, p, N) \\ action of T_1009 on N
%6 =
[-10]
? ellap(ellinit("11a1"), p)
%7 = -10

msinit(G, V, sign)
Given 𝐺 a finite index subgroup of 𝑆𝐿(2,Z) and a finite dimensional representation 𝑉 of 𝐺𝐿(2,Q), cre-
ates a space of modular symbols, the 𝐺-module Hom𝐺(𝐷𝑖𝑣0(P1(Q)), 𝑉 ). This is canonically isomorphic to
𝐻1

𝑐 (𝑋(𝐺), 𝑉 ), and allows to compute modular forms for 𝐺. If sign is present and nonzero, it must be 1
and we consider the subspace defined by 𝐾𝑒𝑟(𝜎 − 𝑠𝑖𝑔𝑛), where 𝜎 is induced by [-1,0;0,1]. Currently
the only supported groups are the Γ0(𝑁), coded by the integer 𝑁 > 0. The only supported representation is
𝑉𝑘 = Q[𝑋,𝑌 ]𝑘−2, coded by the integer 𝑘 >= 2.

? M = msinit(11,2); msdim(M) \\ Gamma0(11), weight 2
%1 = 3
? mshecke(M,2) \\ T_2 acting on M
%2 =
[3 1 1]

[0 -2 0]

[0 0 -2]
? msstar(M) \\ * involution
%3 =
[1 0 0]

[0 0 1]

[0 1 0]

? Mp = msinit(11,2, 1); msdim(Mp) \\ + part
%4 = 2
? mshecke(Mp,2) \\ T_2 action on M^+
%5 =
[3 2]

[0 -2]
? msstar(Mp)
%6 =
[1 0]

[0 1]
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msissymbol(M, s)
𝑀 being a full modular symbol space, as given by msinit, check whether 𝑠 is a modular symbol attached to 𝑀 .
If 𝐴 is a matrix, check whether its columns represent modular symbols and return a 0 − 1 vector.

? M = msinit(7,8, 1); \\ M_8(Gamma_0(7))^+
? A = msnew(M)[1];
? s = A[,1];
? msissymbol(M, s)
%4 = 1
? msissymbol(M, A)
%5 = [1, 1, 1]
? S = mseval(M,s);
? msissymbol(M, S)
%7 = 1
? [g,R] = mspathgens(M); g
%8 = [[+oo, 0], [0, 1/2], [1/2, 1]]
? #R \\ 3 relations among the generators g_i
%9 = 3
? T = S; T[3]++; \\ randomly perturb S(g_3)
? msissymbol(M, T)
%11 = 0 \\ no longer satisfies the relations

mslattice(M, H)

Let ∆0 := 𝐷𝑖𝑣0(P1(Q)) and 𝑉𝑘 = Q[𝑥, 𝑦]𝑘−2. Let 𝑀 be a full modular symbol space, as given by msinit and
let𝐻 be a subspace, e.g. as given by mscuspidal. This function returns a canonical Z structure on𝐻 defined as
follows. Consider the map 𝑐 : 𝑀 = HomΓ0(𝑁)(∆0, 𝑉𝑘) → 𝐻1(Γ0(𝑁), 𝑉𝑘) given by 𝜑 : − − − > 𝑐𝑙𝑎𝑠𝑠(𝛾 →
𝜑(0, 𝛾−10)). Let 𝐿𝑘 = Z[𝑥, 𝑦]𝑘−2 be the natural Z-structure of 𝑉𝑘. The result of mslattice is a Z-basis of the
inverse image by 𝑐 of 𝐻1(Γ0(𝑁), 𝐿𝑘) in the space of modular symbols generated by 𝐻 .

For user convenience, 𝐻 can be defined by a matrix representing the Q-basis of 𝐻 (in terms of the canonical
Q-basis of 𝑀 fixed by msinit and used to represent modular symbols).

If omitted, 𝐻 is the cuspidal part of 𝑀 as given by mscuspidal. The Eisenstein part
HomΓ0(𝑁)(𝐷𝑖𝑣(P1(Q)), 𝑉𝑘) is in the kernel of 𝑐, so the result has no meaning for the Eisenstein part
H.

? M=msinit(11,2);
? [S,E] = mscuspidal(M,1); S[1] \\ a primitive Q-basis of S
%2 =
[ 1 1]
[-5 0]
[ 0 -5]
? mslattice(M,S)
%3 =
[-1/5 -1/5]
[ 1 0]
[ 0 1]
? mslattice(M,E)
%4 =
[1]
[0]
[0]
? M=msinit(5,4);
? S=mscuspidal(M); S[1]

(continues on next page)
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%6 =
[ 7 20]
[ 3 3]
[-10 -23]
[-30 -30]
? mslattice(M,S)
%7 =
[-1/10 -11/130]
[ 0 -1/130]
[ 1/10 6/65]
[ 0 1/13]

msnew(M)

𝑀 being a full modular symbol space, as given by msinit, return the new part of its cuspidal subspace. A
subspace is given by a structure allowing quick projection and restriction of linear operators; its first component
is a matrix with integer coefficients whose columns form a Q-basis of the subspace.

? M = msinit(11,8, 1); \\ M_8(Gamma_0(11))^+
? N = msnew(M);
? #N[1] \\ 6-dimensional
%3 = 6

msomseval(Mp, PHI, path)
Return the vectors of moments of the 𝑝-adic distribution attached to the path path by the overconvergent modular
symbol PHI.

? M = msinit(3,6,1);
? Mp= mspadicinit(M,5,10);
? phi = [5,-3,-1]~;
? msissymbol(M,phi)
%4 = 1
? PHI = mstooms(Mp,phi);
? ME = msomseval(Mp,PHI,[oo, 0]);

mspadicL(mu, s, r)
Returns the value (or 𝑟-th derivative) on a character 𝜒𝑠 of Z*

𝑝 of the 𝑝-adic 𝐿-function attached to mu.

Let Φ be the 𝑝-adic distribution-valued overconvergent symbol attached to a modular symbol 𝜑 for Γ0(𝑁) (eigen-
vector for 𝑇𝑁 (𝑝) for the eigenvalue 𝑎𝑝). Then 𝐿𝑝(Φ, 𝜒𝑠) = 𝐿𝑝(𝜇, 𝑠) is the 𝑝-adic 𝐿 function defined by

𝐿𝑝(Φ, 𝜒𝑠) =

∫︁
Z*
𝑝

𝜒𝑠(𝑧)𝑑𝜇(𝑧)

where 𝜇 is the distribution on Z*
𝑝 defined by the restriction of Φ([𝑜𝑜] − [0]) to Z*

𝑝. The 𝑟-th derivative is taken in
direction < 𝜒 >:

𝐿(𝑟)
𝑝 (Φ, 𝜒𝑠) =

∫︁
Z*
𝑝

𝜒𝑠(𝑧)(log 𝑧)𝑟𝑑𝜇(𝑧).

In the argument list,

• mu is as returned by mspadicmoments (distributions attached to Φ by restriction to discs 𝑎+ 𝑝𝜈Z𝑝, (𝑎, 𝑝) =
1).
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• 𝑠 = [𝑠1, 𝑠2] with 𝑠1 ∈ Z ⊂ Z𝑝 and 𝑠2𝑚𝑜𝑑𝑝−1 or 𝑠2𝑚𝑜𝑑2 for 𝑝 = 2, encoding the 𝑝-adic character 𝜒𝑠 :=<
𝜒 >𝑠1 𝜏𝑠2 ; here 𝜒 is the cyclotomic character from 𝐺𝑎𝑙(Q𝑝(𝜇𝑝𝑜𝑜)/Q𝑝) to Z*

𝑝, and 𝜏 is the Teichmüller
character (for 𝑝 > 2 and the character of order 2 on (Z/4Z)* if 𝑝 = 2); for convenience, the character [𝑠, 𝑠]
can also be represented by the integer 𝑠.

When 𝑎𝑝 is a 𝑝-adic unit,𝐿𝑝 takes its values inQ𝑝. When 𝑎𝑝 is not a unit, it takes its values in the two-dimensional
Q𝑝-vector space 𝐷𝑐𝑟𝑖𝑠(𝑀(𝜑)) where 𝑀(𝜑) is the “motive” attached to 𝜑, and we return the two 𝑝-adic compo-
nents with respect to some fixed Q𝑝-basis.

? M = msinit(3,6,1); phi=[5, -3, -1]~;
? msissymbol(M,phi)
%2 = 1
? Mp = mspadicinit(M, 5, 4);
? mu = mspadicmoments(Mp, phi); \\ no twist
\\ End of initializations

? mspadicL(mu,0) \\ L_p(chi^0)
%5 = 5 + 2*5^2 + 2*5^3 + 2*5^4 + ...
? mspadicL(mu,1) \\ L_p(chi), zero for parity reasons
%6 = [O(5^13)]~
? mspadicL(mu,2) \\ L_p(chi^2)
%7 = 3 + 4*5 + 4*5^2 + 3*5^5 + ...
? mspadicL(mu,[0,2]) \\ L_p(tau^2)
%8 = 3 + 5 + 2*5^2 + 2*5^3 + ...
? mspadicL(mu, [1,0]) \\ L_p(<chi>)
%9 = 3*5 + 2*5^2 + 5^3 + 2*5^7 + 5^8 + 5^10 + 2*5^11 + O(5^13)
? mspadicL(mu,0,1) \\ L_p'(chi^0)
%10 = 2*5 + 4*5^2 + 3*5^3 + ...
? mspadicL(mu, 2, 1) \\ L_p'(chi^2)
%11 = 4*5 + 3*5^2 + 5^3 + 5^4 + ...

Now several quadratic twists: mstooms is indicated.

? PHI = mstooms(Mp,phi);
? mu = mspadicmoments(Mp, PHI, 12); \\ twist by 12
? mspadicL(mu)
%14 = 5 + 5^2 + 5^3 + 2*5^4 + ...
? mu = mspadicmoments(Mp, PHI, 8); \\ twist by 8
? mspadicL(mu)
%16 = 2 + 3*5 + 3*5^2 + 2*5^4 + ...
? mu = mspadicmoments(Mp, PHI, -3); \\ twist by -3 < 0
? mspadicL(mu)
%18 = O(5^13) \\ always 0, phi is in the + part and D < 0

One can locate interesting symbols of level 𝑁 and weight 𝑘 with msnew and mssplit. Note that instead of a
symbol, one can input a 1-dimensional Hecke-subspace from mssplit: the function will automatically use the
underlying basis vector.

? M=msinit(5,4,1); \\ M_4(Gamma_0(5))^+
? L = mssplit(M, msnew(M)); \\ list of irreducible Hecke-subspaces
? phi = L[1]; \\ one Galois orbit of newforms
? #phi[1] \\... this one is rational
%4 = 1
? Mp = mspadicinit(M, 3, 4);

(continues on next page)
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? mu = mspadicmoments(Mp, phi);
? mspadicL(mu)
%7 = 1 + 3 + 3^3 + 3^4 + 2*3^5 + 3^6 + O(3^9)

? M = msinit(11,8, 1); \\ M_8(Gamma_0(11))^+
? Mp = mspadicinit(M, 3, 4);
? L = mssplit(M, msnew(M));
? phi = L[1]; #phi[1] \\ ... this one is two-dimensional
%11 = 2
? mu = mspadicmoments(Mp, phi);
*** at top-level: mu=mspadicmoments(Mp,ph
*** ^--------------------
*** mspadicmoments: incorrect type in mstooms [dim_Q (eigenspace) > 1]

mspadicinit(M, p, n, flag)
𝑀 being a full modular symbol space, as given by msinit, and 𝑝 a prime, initialize technical data needed to
compute with overconvergent modular symbols, modulo 𝑝𝑛. If 𝑓𝑙𝑎𝑔 is unset, allow all symbols; else initialize
only for a restricted range of symbols depending on 𝑓𝑙𝑎𝑔: if 𝑓𝑙𝑎𝑔 = 0 restrict to ordinary symbols, else restrict
to symbols 𝜑 such that 𝑇𝑝(𝜑) = 𝑎𝑝𝜑, with 𝑣𝑝(𝑎𝑝) >= 𝑓𝑙𝑎𝑔, which is faster as 𝑓𝑙𝑎𝑔 increases. (The fastest
initialization is obtained for 𝑓𝑙𝑎𝑔 = 0 where we only allow ordinary symbols.) For supersingular eigensymbols,
such that 𝑝‖𝑎𝑝, we must further assume that 𝑝 does not divide the level.

? E = ellinit("11a1");
? [M,phi] = msfromell(E,1);
? ellap(E,3)
%3 = -1
? Mp = mspadicinit(M, 3, 10, 0); \\ commit to ordinary symbols
? PHI = mstooms(Mp,phi);

If we restrict the range of allowed symbols with flag (for faster initialization), exceptions will occur if 𝑣𝑝(𝑎𝑝)
violates this bound:

? E = ellinit("15a1");
? [M,phi] = msfromell(E,1);
? ellap(E,7)
%3 = 0
? Mp = mspadicinit(M,7,5,0); \\ restrict to ordinary symbols
? PHI = mstooms(Mp,phi)
*** at top-level: PHI=mstooms(Mp,phi)
*** ^---------------
*** mstooms: incorrect type in mstooms [v_p(ap) > mspadicinit flag] (t_VEC).
? Mp = mspadicinit(M,7,5); \\ no restriction
? PHI = mstooms(Mp,phi);

This function uses 𝑂(𝑁2(𝑛+ 𝑘)2𝑝) memory, where 𝑁 is the level of 𝑀 .

mspadicmoments(Mp, PHI, D)

Given Mp from mspadicinit, an overconvergent eigensymbol PHI from mstooms and a fundamental dis-
criminant 𝐷 coprime to 𝑝, let 𝑃𝐻𝐼𝐷 denote the twisted symbol. This function computes the distribution
𝜇 = 𝑃𝐻𝐼𝐷([0] − 𝑜𝑜])‖Z*

𝑝 restricted to Z*
𝑝. More precisely, it returns the moments of the 𝑝 − 1 distributions

𝑃𝐻𝐼𝐷([0] − [𝑜𝑜])|(𝑎 + 𝑝Z𝑝), 0 < 𝑎 < 𝑝. We also allow PHI to be given as a classical symbol, which is then
lifted to an overconvergent symbol by mstooms; but this is wasteful if more than one twist is later needed.
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The returned data 𝜇 (𝑝-adic distributions attached to PHI) can then be used in mspadicL or mspadicseries.
This precomputation allows to quickly compute derivatives of different orders or values at different characters.

? M = msinit(3,6, 1);
? phi = [5,-3,-1]~;
? msissymbol(M, phi)
%3 = 1
? p = 5; mshecke(M,p) * phi \\ eigenvector of T_5, a_5 = 6
%4 = [30, -18, -6]~
? Mp = mspadicinit(M, p, 10, 0); \\ restrict to ordinary symbols, mod p^10
? PHI = mstooms(Mp, phi);
? mu = mspadicmoments(Mp, PHI);
? mspadicL(mu)
%8 = 5 + 2*5^2 + 2*5^3 + ...
? mu = mspadicmoments(Mp, PHI, 12); \\ twist by 12
? mspadicL(mu)
%10 = 5 + 5^2 + 5^3 + 2*5^4 + ...

mspadicseries(mu, i)
Let Φ be the 𝑝-adic distribution-valued overconvergent symbol attached to a modular symbol 𝜑 for Γ0(𝑁) (eigen-
vector for 𝑇𝑁 (𝑝) for the eigenvalue 𝑎𝑝). If 𝜇 is the distribution on Z*

𝑝 defined by the restriction of Φ([𝑜𝑜] − [0])
to Z*

𝑝, let

𝐿
𝑝 (𝜇, 𝜏 𝑖)(𝑥) =

∫︁
Z*
𝑝

𝜏 𝑖(𝑡)(1 + 𝑥)log𝑝(𝑡)/ log𝑝(𝑢)𝑑𝜇(𝑡)

Here, 𝜏 is the Teichmüller character and 𝑢 is a specific multiplicative generator of 1 + 2𝑝Z𝑝. (Namely 1 + 𝑝 if
𝑝 > 2 or 5 if 𝑝 = 2.) To explain the formula, let 𝐺𝑜𝑜 := 𝐺𝑎𝑙(Q(𝜇𝑝𝑜𝑜)/Q), let 𝜒 : 𝐺𝑜𝑜→ Z*

𝑝 be the cyclotomic
character (isomorphism) and 𝛾 the element of 𝐺𝑜𝑜 such that 𝜒(𝛾) = 𝑢; then 𝜒(𝛾)log𝑝(𝑡)/ log𝑝(𝑢) =< 𝑡 >.

The 𝑝-padic precision of individual terms is maximal given the precision of the overconvergent symbol 𝜇.

? [M,phi] = msfromell(ellinit("17a1"),1);
? Mp = mspadicinit(M, 5,7);
? mu = mspadicmoments(Mp, phi,1); \\ overconvergent symbol
? mspadicseries(mu)
%4 = (4 + 3*5 + 4*5^2 + 2*5^3 + 2*5^4 + 5^5 + 4*5^6 + 3*5^7 + O(5^9)) \
+ (3 + 3*5 + 5^2 + 5^3 + 2*5^4 + 5^6 + O(5^7))*x \
+ (2 + 3*5 + 5^2 + 4*5^3 + 2*5^4 + O(5^5))*x^2 \
+ (3 + 4*5 + 4*5^2 + O(5^3))*x^3 \
+ (3 + O(5))*x^4 + O(x^5)

An example with nonzero Teichmüller:

? [M,phi] = msfromell(ellinit("11a1"),1);
? Mp = mspadicinit(M, 3,10);
? mu = mspadicmoments(Mp, phi,1);
? mspadicseries(mu, 2)
%4 = (2 + 3 + 3^2 + 2*3^3 + 2*3^5 + 3^6 + 3^7 + 3^10 + 3^11 + O(3^12)) \
+ (1 + 3 + 2*3^2 + 3^3 + 3^5 + 2*3^6 + 2*3^8 + O(3^9))*x \
+ (1 + 2*3 + 3^4 + 2*3^5 + O(3^6))*x^2 \
+ (3 + O(3^2))*x^3 + O(x^4)

Supersingular example (not checked)
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? E = ellinit("17a1"); ellap(E,3)
%1 = 0
? [M,phi] = msfromell(E,1);
? Mp = mspadicinit(M, 3,7);
? mu = mspadicmoments(Mp, phi,1);
? mspadicseries(mu)
%5 = [(2*3^-1 + 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6 + O(3^7)) \
+ (2 + 3^3 + O(3^5))*x \
+ (1 + 2*3 + O(3^2))*x^2 + O(x^3),\
(3^-1 + 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6 + O(3^7)) \
+ (1 + 2*3 + 2*3^2 + 3^3 + 2*3^4 + O(3^5))*x \
+ (3^-2 + 3^-1 + O(3^2))*x^2 + O(3^-2)*x^3 + O(x^4)]

Example with a twist:

? E = ellinit("11a1");
? [M,phi] = msfromell(E,1);
? Mp = mspadicinit(M, 3,10);
? mu = mspadicmoments(Mp, phi,5); \\ twist by 5
? L = mspadicseries(mu)
%5 = (2*3^2 + 2*3^4 + 3^5 + 3^6 + 2*3^7 + 2*3^10 + O(3^12)) \
+ (2*3^2 + 2*3^6 + 3^7 + 3^8 + O(3^9))*x \
+ (3^3 + O(3^6))*x^2 + O(3^2)*x^3 + O(x^4)
? mspadicL(mu)
%6 = [2*3^2 + 2*3^4 + 3^5 + 3^6 + 2*3^7 + 2*3^10 + O(3^12)]~
? ellpadicL(E,3,10,,5)
%7 = 2 + 2*3^2 + 3^3 + 2*3^4 + 2*3^5 + 3^6 + 2*3^7 + O(3^10)
? mspadicseries(mu,1) \\ must be 0
%8 = O(3^12) + O(3^9)*x + O(3^6)*x^2 + O(3^2)*x^3 + O(x^4)

mspathgens(M)

Let ∆0 := 𝐷𝑖𝑣0(P1(Q)). Let 𝑀 being a full modular symbol space, as given by msinit, return a set of Z[𝐺]-
generators for ∆0. The output is [𝑔,𝑅], where 𝑔 is a minimal system of generators and 𝑅 the vector of Z[𝐺]-
relations between the given generators. A relation is coded by a vector of pairs [𝑎𝑖, 𝑖] with 𝑎𝑖 ∈ Z[𝐺] and 𝑖 the
index of a generator, so that

∑︀
𝑖 𝑎𝑖𝑔[𝑖] = 0.

An element [𝑣] − [𝑢] in ∆0 is coded by the “path” [𝑢, 𝑣], where oo denotes the point at infinity (1 : 0) on the
projective line. An element of Z[𝐺] is either an integer 𝑛 (= 𝑛[𝑖𝑑2]) or a “factorization matrix”: the first column
contains distinct elements 𝑔𝑖 of 𝐺 and the second integers 𝑛𝑖 and the matrix codes

∑︀
𝑛𝑖[𝑔𝑖]:

? M = msinit(11,8); \\ M_8(Gamma_0(11))
? [g,R] = mspathgens(M);
? g
%3 = [[+oo, 0], [0, 1/3], [1/3, 1/2]] \\ 3 paths
? #R \\ a single relation
%4 = 1
? r = R[1]; #r \\ ...involving all 3 generators
%5 = 3
? r[1]
%6 = [[1, 1; [1, 1; 0, 1], -1], 1]
? r[2]
%7 = [[1, 1; [7, -2; 11, -3], -1], 2]
? r[3]
%8 = [[1, 1; [8, -3; 11, -4], -1], 3]
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The given relation is of the form
∑︀

𝑖(1 − 𝛾𝑖)𝑔𝑖 = 0, with 𝛾𝑖 ∈ Γ0(11). There will always be a single relation
involving all generators (corresponding to a round trip along all cusps), then relations involving a single generator
(corresponding to 2 and 3-torsion elements in the group:

? M = msinit(2,8); \\ M_8(Gamma_0(2))
? [g,R] = mspathgens(M);
? g
%3 = [[+oo, 0], [0, 1]]

Note that the output depends only on the group 𝐺, not on the representation 𝑉 .

mspathlog(M, p)
Let ∆0 := 𝐷𝑖𝑣0(P1(Q)). Let 𝑀 being a full modular symbol space, as given by msinit, encoding fixed Z[𝐺]-
generators (𝑔𝑖) of ∆0 (see mspathgens). A path 𝑝 = [𝑎, 𝑏] between two elements in P1(Q) corresponds to
[𝑏] − [𝑎] ∈ ∆0. The path extremities 𝑎 and 𝑏 may be given as t_INT, t_FRAC or 𝑜𝑜 = (1 : 0). Finally, we also
allow to input a path as a 2𝑥2 integer matrix, whose first and second column give 𝑎 and 𝑏 respectively, with the
convention [𝑥, 𝑦] = (𝑥 : 𝑦) in P1(Q).

Returns (𝑝𝑖) in Z[𝐺] such that 𝑝 =
∑︀

𝑖 𝑝𝑖𝑔𝑖.

? M = msinit(2,8); \\ M_8(Gamma_0(2))
? [g,R] = mspathgens(M);
? g
%3 = [[+oo, 0], [0, 1]]
? p = mspathlog(M, [1/2,2/3]);
? p[1]
%5 =
[[1, 0; 2, 1] 1]

? p[2]
%6 =
[[1, 0; 0, 1] 1]

[[3, -1; 4, -1] 1]
? mspathlog(M, [1,2;2,3]) == p \\ give path via a 2x2 matrix
%7 = 1

Note that the output depends only on the group 𝐺, not on the representation 𝑉 .

mspetersson(M, F, G)

𝑀 being a full modular symbol space for Γ = Γ0(𝑁), as given by msinit, calculate the intersection product
𝐹,𝐺 of modular symbols 𝐹 and 𝐺 on 𝑀 = HomΓ(∆0, 𝑉𝑘) extended to an hermitian bilinear form on 𝑀 ⊗ C
whose radical is the Eisenstein subspace of 𝑀 .

Suppose that 𝑓1 and 𝑓2 are two parabolic forms. Let 𝐹1 and 𝐹2 be the attached modular symbols

𝐹𝑖(𝛿) =

∫︁
𝛿

𝑓𝑖(𝑧).(𝑧𝑋 + 𝑌 )𝑘−2𝑑𝑧

and let 𝐹R
1 , 𝐹R

2 be the attached real modular symbols

𝐹R
𝑖 (𝛿) =

∫︁
𝛿

ℜ(𝑓𝑖(𝑧).(𝑧𝑋 + 𝑌 )𝑘−2𝑑𝑧)

Then we have
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= -2 (2i)𝑘−2.ℑ(< 𝑓1, 𝑓2 >𝑃𝑒𝑡𝑒𝑟𝑠𝑠𝑜𝑛)

and

𝐹1, 𝐹2 = (2𝑖)𝑘−2 < 𝑓1, 𝑓2 >𝑃𝑒𝑡𝑒𝑟𝑠𝑠𝑜𝑛

In weight 2, the intersection product 𝐹,𝐺 has integer values on the Z-structure on𝑀 given by mslattice and defines
a Riemann form on 𝐻1

𝑝𝑎𝑟(Γ,R).

For user convenience, we allow 𝐹 and 𝐺 to be matrices and return the attached Gram matrix. If 𝐹 is omitted: treat it
as the full modular space attached to 𝑀 ; if 𝐺 is omitted, take it equal to 𝐹 .

? M = msinit(37,2);
? C = mscuspidal(M)[1];
? mspetersson(M, C)
%3 =
[ 0 -17 -8 -17]
[17 0 -8 -25]
[ 8 8 0 -17]
[17 25 17 0]
? mspetersson(M, mslattice(M,C))
%4 =
[0 -1 0 -1]
[1 0 0 -1]
[0 0 0 -1]
[1 1 1 0]
? E = ellinit("33a1");
? [M,xpm] = msfromell(E); [xp,xm,L] = xpm;
? mspetersson(M, mslattice(M,L))
%7 =
[0 -3]
[3 0]
? ellmoddegree(E)
%8 = [3, -126]

The coefficient 3 in the matrix is the degree of the modular parametrization.

mspolygon(M, flag)
𝑀 describes a subgroup 𝐺 of finite index in the modular group 𝑃𝑆𝐿2(Z), as given by msinit or a positive
integer 𝑁 (encoding the group 𝐺 = Γ0(𝑁)), or by msfarey (arbitrary subgroup). Return an hyperbolic polygon
(Farey symbol) attached to 𝐺. More precisely:

• Its vertices are an ordered list in P1(Q) and contain a representatives of all cusps.

• Its edges are hyperbolic arcs joining two consecutive vertices; each edge 𝑒 is labelled by an integer 𝜇(𝑒) ∈
𝑜𝑜, 2, 3.

• Given a path (𝑎, 𝑏) between two elements of P1(Q), let (𝑎, 𝑏) = (𝑏, 𝑎) be the opposite path. There is an
involution 𝑒 → 𝑒* on the edges. We have 𝜇(𝑒) = 𝑜𝑜 if and only if 𝑒! = 𝑒*; when 𝜇(𝑒)! = 3, 𝑒 is 𝐺-
equivalent to 𝑒*, i.e. there exists 𝛾𝑒 ∈ 𝐺 such that 𝑒 = 𝛾𝑒𝑒*; if 𝜇(𝑒) = 3 there exists 𝛾𝑒 ∈ 𝐺 of order 3
such that the hyperbolic triangle (𝑒, 𝛾𝑒𝑒, 𝛾

2
𝑒𝑒) is invariant by 𝛾𝑒. In all cases, to each edge we have attached

𝛾𝑒 ∈ 𝐺 of order 𝜇(𝑒).

The polygon is given by a triple [𝐸,𝐴, 𝑔]

• The list 𝐸 of its consecutive edges as matrices in 𝑀2(Z).

• The permutation 𝐴 attached to the involution: if 𝑒 = 𝐸[𝑖] is the 𝑖-th edge, then A[i] is the index of 𝑒* in 𝐸.
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• The list 𝑔 of pairing matrices 𝛾𝑒. Remark that 𝛾𝑒* = 𝛾−1
𝑒 if 𝜇(𝑒)! = 3, i.e., 𝑔[𝑖]−1 = 𝑔[𝐴[𝑖]] whenever

𝑖! = 𝐴[𝑖] (𝜇(𝑔[𝑖]) = 1) or 𝜇(𝑔[𝑖]) = 2 (𝑔[𝑖]2 = 1). Modulo these trivial relations, the pairing matrices form
a system of independant generators of 𝐺. Note that 𝛾𝑒 is elliptic if and only if 𝑒* = 𝑒.

The above data yields a fundamental domain for 𝐺 acting on Poincaré’s half-plane: take the convex hull of the
polygon defined by

• The edges in 𝐸 such that 𝑒! = 𝑒* or 𝑒* = 𝑒, where the pairing matrix 𝛾𝑒 has order 2;

• The edges (𝑟, 𝑡) and (𝑡, 𝑠) where the edge 𝑒 = (𝑟, 𝑠) ∈ 𝐸 is such that 𝑒 = 𝑒* and 𝛾𝑒 has order 3 and the
triangle (𝑟, 𝑡, 𝑠) is the image of (0, exp(2𝑖𝜋/3), 𝑜𝑜) by some element of 𝑃𝑆𝐿2(Q) formed around the edge.

Binary digits of flag mean:

1: return a normalized hyperbolic polygon if set, else a polygon with unimodular edges (matrices of determinant
1). A polygon is normalized in the sense of compact orientable surfaces if the distance 𝑑(𝑎, 𝑎*) between an edge
𝑎 and its image by the involution 𝑎* is less than 2, with equality if and only if 𝑎 is linked with another edge 𝑏 (𝑎,
𝑏, 𝑎* et 𝑏* appear consecutively in 𝐸 up to cyclic permutation). In particular, the vertices of all edges such that
that 𝑑(𝑎, 𝑎*)! = 1 (distance is 0 or 2) are all equivalent to 0 modulo 𝐺. The external vertices of 𝑎𝑎* such that
𝑑(𝑎, 𝑎*) = 1 are also equivalent to 0; the internal vertices 𝑎 ∩ 𝑎* (a single point), together with 0, form a system
of representatives of the cusps of 𝐺
𝑚𝑎𝑡ℎ𝑏𝑏𝑃 1(Q). This is useful to compute the homology group 𝐻1(𝐺,Z) as it gives a symplectic basis for the
intersection pairing. In this case, the number of parabolic matrices (trace 2) in the system of generators 𝐺 is
2(𝑡−1), where 𝑡 is the number of non equivalent cusps for𝐺. This is currently only implemented for𝐺 = Γ0(𝑁).

2: add graphical representations (in LaTeX form) for the hyperbolic polygon in Poincaré’s half-space and the
involution 𝑎→ 𝑎* of the Farey symbol. The corresponding character strings can be included in a LaTeX document
provided the preamble contains \usepackage{ tikz}.

? [V,A,g] = mspolygon(3);
? V
%2 = [[-1, 1; -1, 0], [1, 0; 0, 1], [0, 1; -1, 1]]
? A
%3 = Vecsmall([2, 1, 3])
? g
%4 = [[-1, -1; 0, -1], [1, -1; 0, 1], [1, -1; 3, -2]]
? [V,A,g, D1,D2] = mspolygon(11,2); \\ D1 and D2 contains pictures
? {write("F.tex",
"\\documentclass{article}\\usepackage{tikz}\\begin{document}"
D1, "\n", D2,
"\\end{document}");}

? [V1,A1] = mspolygon(6,1); \\ normalized
? V1
%8 = [[-1, 1; -1, 0], [1, 0; 0, 1], [0, 1; -1, 3],
[1, -2; 3, -5], [-2, 1; -5, 2], [1, -1; 2, -1]]
? A1
%9 = Vecsmall([2, 1, 4, 3, 6, 5])

? [V0,A0] = mspolygon(6); \\ not normalized V[3]^* = V[6], d(V[3],V[6]) = 3
? A0
%11 = Vecsmall([2, 1, 6, 5, 4, 3])

? [V,A] = mspolygon(14, 1);
? A
%13 = Vecsmall([2, 1, 4, 3, 6, 5, 9, 10, 7, 8])
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One can see from this last example that the (normalized) polygon has the form

(𝑎1, 𝑎
*
1, 𝑎2, 𝑎

*
2, 𝑎3, 𝑎

*
3, 𝑎4, 𝑎5, 𝑎

*
4, 𝑎

*
5),

that𝑋0(14) is of genus 1 (in general the genus is the number of blocks of the form 𝑎𝑏𝑎*𝑏*), has no elliptic points
(𝐴 has no fixed point) and 4 cusps (number of blocks of the form 𝑎𝑎* plus 1). The vertices of edges 𝑎4 and 𝑎5
all project to 0 in 𝑋0(14): the paths 𝑎4 and 𝑎5 project as loops in 𝑋0(14) and give a symplectic basis of the
homology 𝐻1(𝑋0(14),Z).

? [V,A] = mspolygon(15);
? apply(matdet, V) \\ all unimodular
%2 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
? [V,A] = mspolygon(15,1);
? apply(matdet, V) \\ normalized polygon but no longer unimodular edges
%4 = [1, 1, 1, 1, 2, 2, 47, 11, 47, 11]

msqexpansion(M, projH, serprec)
𝑀 being a full modular symbol space, as given by msinit, and projH being a projector on a Hecke-simple
subspace (as given by mssplit), return the Fourier coefficients 𝑎𝑛, 𝑛 <= 𝐵 of the corresponding normalized
newform. If 𝐵 is omitted, use seriesprecision.

This function uses a naive 𝑂(𝐵2𝑑3) algorithm, where 𝑑 = 𝑂(𝑘𝑁) is the dimension of 𝑀𝑘(Γ0(𝑁)).

? M = msinit(11,2, 1); \\ M_2(Gamma_0(11))^+
? L = mssplit(M, msnew(M));
? msqexpansion(M,L[1], 20)
%3 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2, 1, -2, 4, 4, -1, -4, -2, 4, 0, 2]
? ellan(ellinit("11a1"), 20)
%4 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2, 1, -2, 4, 4, -1, -4, -2, 4, 0, 2]

The shortcut msqexpansion(M, s, B) is available for a symbol 𝑠, provided it is a Hecke eigenvector:

? E = ellinit("11a1");
? [M,S] = msfromell(E); [sp,sm] = S;
? msqexpansion(M,sp,10) \\ in the + eigenspace
%3 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2]
? msqexpansion(M,sm,10) \\ in the - eigenspace
%4 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2]
? ellan(E, 10)
%5 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2]

mssplit(M, H, dimlim)

Let 𝑀 denote a full modular symbol space, as given by msinit(𝑁, 𝑘, 1) or 𝑚𝑠𝑖𝑛𝑖𝑡(𝑁, 𝑘,−1) and let 𝐻 be a
Hecke-stable subspace of msnew(𝑀) (the full new subspace if𝐻 is omitted). This function splits 𝐻 into Hecke-
simple subspaces. If dimlim is present and positive, restrict to subspaces of dimension<= 𝑑𝑖𝑚𝑙𝑖𝑚. A subspace
is given by a structure allowing quick projection and restriction of linear operators; its first component is a matrix
with integer coefficients whose columns form a Q-basis of the subspace.

? M = msinit(11,8, 1); \\ M_8(Gamma_0(11))^+
? L = mssplit(M); \\ split msnew(M)
? #L
%3 = 2
? f = msqexpansion(M,L[1],5); f[1].mod
%4 = x^2 + 8*x - 44

(continues on next page)

1.1. Guide to real precision in the PARI interface 263



CyPari2 Documentation, Release 2.1.3

(continued from previous page)

? lift(f)
%5 = [1, x, -6*x - 27, -8*x - 84, 20*x - 155]
? g = msqexpansion(M,L[2],5); g[1].mod
%6 = x^4 - 558*x^2 + 140*x + 51744

To a Hecke-simple subspace corresponds an orbit of (normalized) newforms, defined over a number field. In the
above example, we printed the polynomials defining the said fields, as well as the first 5 Fourier coefficients (at
the infinite cusp) of one such form.

msstar(M, H)

𝑀 being a full modular symbol space, as given by msinit, return the matrix of the * involution, induced by
complex conjugation, acting on the (stable) subspace 𝐻 (𝑀 if omitted).

? M = msinit(11,2); \\ M_2(Gamma_0(11))
? w = msstar(M);
? w^2 == 1
%3 = 1

mstooms(Mp, phi)
Given Mp from mspadicinit, lift the (classical) eigen symbol phi to a 𝑝-adic distribution-valued overconvergent
symbol in the sense of Pollack and Stevens. More precisely, let 𝜑 belong to the space 𝑊 of modular symbols
of level 𝑁 , 𝑣𝑝(𝑁) <= 1, and weight 𝑘 which is an eigenvector for the Hecke operator 𝑇𝑁 (𝑝) for a nonzero
eigenvalue 𝑎𝑝 and let 𝑁0 = 𝑙𝑐𝑚(𝑁, 𝑝).

Under the action of 𝑇𝑁0
(𝑝), 𝜑 generates a subspace 𝑊𝜑 of dimension 1 (if 𝑝‖𝑁 ) or 2 (if 𝑝 does not divide 𝑁 ) in

the space of modular symbols of level 𝑁0.

Let 𝑉𝑝 = [𝑝, 0; 0, 1] and 𝐶𝑝 = [𝑎𝑝, 𝑝
𝑘−1;−1, 0]. When 𝑝 does not divide 𝑁 and 𝑎𝑝 is divisible by 𝑝, mstooms

returns the lift Φ of (𝜑, 𝜑‖𝑘𝑉𝑝) such that

𝑇𝑁0
(𝑝)Φ = 𝐶𝑝Φ

When 𝑝 does not divide 𝑁 and 𝑎𝑝 is not divisible by 𝑝, mstooms returns the lift Φ of 𝜑−𝛼−1𝜑‖𝑘𝑉𝑝 which is an
eigenvector of 𝑇𝑁0

(𝑝) for the unit eigenvalue where 𝛼2 − 𝑎𝑝𝛼+ 𝑝𝑘−1 = 0.

The resulting overconvergent eigensymbol can then be used in mspadicmoments, then mspadicL or
mspadicseries.

? M = msinit(3,6, 1); p = 5;
? Tp = mshecke(M, p); factor(charpoly(Tp))
%2 =
[x - 3126 2]

[ x - 6 1]
? phi = matker(Tp - 6)[,1] \\ generator of p-Eigenspace, a_p = 6
%3 = [5, -3, -1]~
? Mp = mspadicinit(M, p, 10, 0); \\ restrict to ordinary symbols, mod p^10
? PHI = mstooms(Mp, phi);
? mu = mspadicmoments(Mp, PHI);
? mspadicL(mu)
%7 = 5 + 2*5^2 + 2*5^3 + ...

A non ordinary symbol.
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? M = msinit(4,6,1); p = 3;
? Tp = mshecke(M, p); factor(charpoly(Tp))
%2 =
[x - 244 3]

[ x + 12 1]
? phi = matker(Tp + 12)[,1] \\ a_p = -12 is divisible by p = 3
%3 = [-1/32, -1/4, -1/32, 1]~
? msissymbol(M,phi)
%4 = 1
? Mp = mspadicinit(M,3,5,0);
? PHI = mstooms(Mp,phi);
*** at top-level: PHI=mstooms(Mp,phi)
*** ^---------------
*** mstooms: incorrect type in mstooms [v_p(ap) > mspadicinit flag] (t_VEC).
? Mp = mspadicinit(M,3,5,1);
? PHI = mstooms(Mp,phi);

newtonpoly(x, p)
Gives the vector of the slopes of the Newton polygon of the polynomial 𝑥 with respect to the prime number 𝑝.
The 𝑛 components of the vector are in decreasing order, where 𝑛 is equal to the degree of 𝑥. Vertical slopes occur
iff the constant coefficient of 𝑥 is zero and are denoted by +oo.

nextprime(x)
Finds the smallest pseudoprime (see ispseudoprime) greater than or equal to 𝑥. 𝑥 can be of any real type. Note
that if 𝑥 is a pseudoprime, this function returns 𝑥 and not the smallest pseudoprime strictly larger than 𝑥. To
rigorously prove that the result is prime, use isprime.

nfalgtobasis(nf, x)
Given an algebraic number 𝑥 in the number field 𝑛𝑓 , transforms it to a column vector on the integral basis
:emphasis:`nf.zk`.

? nf = nfinit(y^2 + 4);
? nf.zk
%2 = [1, 1/2*y]
? nfalgtobasis(nf, [1,1]~)
%3 = [1, 1]~
? nfalgtobasis(nf, y)
%4 = [0, 2]~
? nfalgtobasis(nf, Mod(y, y^2+4))
%5 = [0, 2]~

This is the inverse function of nfbasistoalg.

nfbasis(T, dK)

Let 𝑇 (𝑋) be an irreducible polynomial with integral coefficients. This function returns an integral basis of the
number field defined by 𝑇 , that is a Z-basis of its maximal order. If present, dK is set to the discriminant of
the returned order. The basis elements are given as elements in 𝐾 = Q[𝑋]/(𝑇 ), in Hermite normal form with
respect to the Q-basis (1, 𝑋, ...,𝑋deg 𝑇−1) of 𝐾, lifted to Q[𝑋]. In particular its first element is always 1 and its
𝑖-th element is a polynomial of degree 𝑖− 1 whose leading coefficient is the inverse of an integer: the product of
those integers is the index of Z[𝑋]/(𝑇 ) in the maximal order Z𝐾 :

? nfbasis(x^2 + 4) \\ Z[X]/(T) has index 2 in Z_K
%1 = [1, x/2]

(continues on next page)
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(continued from previous page)

? nfbasis(x^2 + 4, &D)
%2 = [1, x/2]
? D
%3 = -4

This function uses a modified version of the round 4 algorithm, due to David Ford, Sebastian Pauli and Xavier
Roblot.

Local basis, orders maximal at certain primes.
Obtaining the maximal order is hard: it requires factoring the discriminant 𝐷 of 𝑇 . Obtaining an order which
is maximal at a finite explicit set of primes is easy, but it may then be a strict suborder of the maximal order.
To specify that we are interested in a given set of places only, we can replace the argument 𝑇 by an argument
[𝑇, 𝑙𝑖𝑠𝑡𝑃 ], where listP encodes the primes we are interested in: it must be a factorization matrix, a vector of
integers or a single integer.

• Vector: we assume that it contains distinct prime numbers.

• Matrix: we assume that it is a two-column matrix of a (partial) factorization of 𝐷; namely the first column
contains distinct primes and the second one the valuation of 𝐷 at each of these primes.

• Integer𝐵: this is replaced by the vector of primes up to𝐵. Note that the function will use at least𝑂(𝐵) time:
a small value, about 105, should be enough for most applications. Values larger than 232 are not supported.

In all these cases, the primes may or may not divide the discriminant𝐷 of 𝑇 . The function then returns a Z-basis
of an order whose index is not divisible by any of these prime numbers. The result may actually be a global integral
basis, in particular if all the prime divisors of the field discriminant are included, but this is not guaranteed! Note
that nfinit has built-in support for such a check:

? K = nfinit([T, listP]);
? nfcertify(K) \\ we computed an actual maximal order
%2 = [];

The first line initializes a number field structure incorporating nfbasis([T, listP] in place of a proven integral
basis. The second line certifies that the resulting structure is correct. This allows to create an nf structure attached
to the number field𝐾 = Q[𝑋]/(𝑇 ), when the discriminant of 𝑇 cannot be factored completely, whereas the prime
divisors of disc𝐾 are known. If present, the argument dK is set to the discriminant of the returned order, and is
equal to the field discriminant if and only if the order is maximal.

Of course, if listP contains a single prime number 𝑝, the function returns a local integral basis for Z𝑝[𝑋]/(𝑇 ):

? nfbasis(x^2+x-1001)
%1 = [1, 1/3*x - 1/3]
? nfbasis( [x^2+x-1001, [2]] )
%2 = [1, x]

The following function computes the index 𝑖𝑇 of Z[𝑋]/(𝑇 ) in the order generated by the Z-basis 𝐵:

nfbasisindex(T, B) = vecprod([denominator(pollead(Q)) | Q <- B]);

In particular, 𝐵 is a basis of the maximal order if and only if 𝑝𝑜𝑙𝑑𝑖𝑠𝑐(𝑇 )/𝑖2𝑇 is equal to the field discriminant.
More generally, this formula gives the square of index of the order given by𝐵 in Z𝐾 . For instance, assume that 𝑃
is a vector of prime numbers containing (at least) all prime divisors of the field discriminant, then the following
construct allows to provably compute the field discriminant and to check whether the returned basis is actually a
basis of the maximal order
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? B = nfbasis([T, P], &D);
? dK = sign(D) * vecprod([p^valuation(D,p) | p<-P]);
? dK * nfbasisindex(T, B)^2 == poldisc(T)

The variable dK contains the field discriminant and the last command returns 1 if and only if𝐵 is a Z-basis of the
maximal order. Of course, the nfinit / nfcertify approach is simpler, but it is also more costly.

The Buchmann-Lenstra algorithm.
We now complicate the picture: it is in fact allowed to include composite numbers instead of primes in listP
(Vector or Matrix case), provided they are pairwise coprime. The result may still be a correct integral basis if
the field discriminant factors completely over the actual primes in the list; again, this is not guaranteed. Adding
a composite 𝐶 such that 𝐶2 divides 𝐷 may help because when we consider 𝐶 as a prime and run the algorithm,
two good things can happen: either we succeed in proving that no prime dividing 𝐶 can divide the index (without
actually needing to find those primes), or the computation exhibits a nontrivial zero divisor, thereby factoring 𝐶
and we go on with the refined factorization. (Note that including a 𝐶 such that 𝐶2 does not divide 𝐷 is useless.)
If neither happen, then the computed basis need not generate the maximal order. Here is an example:

? B = 10^5;
? listP = factor(poldisc(T), B); \\ primes <= B dividing D + cofactor
? basis = nfbasis([T, listP], &D)

If the computed discriminant𝐷 factors completely over the primes less than𝐵 (together with the primes contained
in the addprimes table), then everything is certified: 𝐷 is the field discriminant and basis generates the maximal
order. This can be tested as follows:

F = factor(D, B); P = F[,1]; E = F[,2];
for (i = 1, #P,
if (P[i] > B && !isprime(P[i]), warning("nf may be incorrect")));

This is a sufficient but not a necessary condition, hence the warning, instead of an error.

The function nfcertify speeds up and automates the above process:

? B = 10^5;
? nf = nfinit([T, B]);
? nfcertify(nf)
%3 = [] \\ nf is unconditionally correct
? [basis, disc] = [nf.zk, nf.disc];

nfbasistoalg(nf, x)
Given an algebraic number 𝑥 in the number field nf, transforms it into t_POLMOD form.

? nf = nfinit(y^2 + 4);
? nf.zk
%2 = [1, 1/2*y]
? nfbasistoalg(nf, [1,1]~)
%3 = Mod(1/2*y + 1, y^2 + 4)
? nfbasistoalg(nf, y)
%4 = Mod(y, y^2 + 4)
? nfbasistoalg(nf, Mod(y, y^2+4))
%5 = Mod(y, y^2 + 4)

This is the inverse function of nfalgtobasis.

1.1. Guide to real precision in the PARI interface 267



CyPari2 Documentation, Release 2.1.3

nfcertify(nf )
𝑛𝑓 being as output by nfinit, checks whether the integer basis is known unconditionally. This is in partic-
ular useful when the argument to nfinit was of the form [𝑇, 𝑙𝑖𝑠𝑡𝑃 ], specifying a finite list of primes when
𝑝-maximality had to be proven, or a list of coprime integers to which Buchmann-Lenstra algorithm was to be
applied.

The function returns a vector of coprime composite integers. If this vector is empty, then nf.zk and nf.disc
are correct. Otherwise, the result is dubious. In order to obtain a certified result, one must completely factor each
of the given integers, then addprime each of their prime factors, then check whether nfdisc(nf.pol) is equal
to nf.disc.

nfcompositum(nf, P, Q, flag)
Let nf be a number field structure attached to the field 𝐾 and let 𝑃 and 𝑄 be squarefree polynomials in 𝐾[𝑋]
in the same variable. Outputs the simple factors of the étale 𝐾-algebra 𝐴 = 𝐾[𝑋,𝑌 ]/(𝑃 (𝑋), 𝑄(𝑌 )). The
factors are given by a list of polynomials 𝑅 in 𝐾[𝑋], attached to the number field 𝐾[𝑋]/(𝑅), and sorted by
increasing degree (with respect to lexicographic ordering for factors of equal degrees). Returns an error if one of
the polynomials is not squarefree.

Note that it is more efficient to reduce to the case where 𝑃 and𝑄 are irreducible first. The routine will not perform
this for you, since it may be expensive, and the inputs are irreducible in most applications anyway. In this case,
there will be a single factor 𝑅 if and only if the number fields defined by 𝑃 and 𝑄 are linearly disjoint (their
intersection is 𝐾).

The binary digits of 𝑓𝑙𝑎𝑔 mean

1: outputs a vector of 4-component vectors [𝑅, 𝑎, 𝑏, 𝑘], where𝑅 ranges through the list of all possible compositums
as above, and 𝑎 (resp. 𝑏) expresses the root of 𝑃 (resp. 𝑄) as an element of 𝐾[𝑋]/(𝑅). Finally, 𝑘 is a small
integer such that 𝑏+ 𝑘𝑎 = 𝑋 modulo 𝑅.

2: assume that 𝑃 and 𝑄 define number fields that are linearly disjoint: both polynomials are irreducible and the
corresponding number fields have no common subfield besides 𝐾. This allows to save a costly factorization over
𝐾. In this case return the single simple factor instead of a vector with one element.

A compositum is often defined by a complicated polynomial, which it is advisable to reduce before further work.
Here is an example involving the field 𝐾(𝜁5, 5

1/10), 𝐾 = Q(
√

5):

? K = nfinit(y^2-5);
? L = nfcompositum(K, x^5 - y, polcyclo(5), 1); \\ list of [R,a,b,k]
? [R, a] = L[1]; \\ pick the single factor, extract R,a (ignore b,k)
? lift(R) \\ defines the compositum
%4 = x^10 + (-5/2*y + 5/2)*x^9 + (-5*y + 20)*x^8 + (-20*y + 30)*x^7 + \
(-45/2*y + 145/2)*x^6 + (-71/2*y + 121/2)*x^5 + (-20*y + 60)*x^4 + \
(-25*y + 5)*x^3 + 45*x^2 + (-5*y + 15)*x + (-2*y + 6)
? a^5 - y \\ a fifth root of y
%5 = 0
? [T, X] = rnfpolredbest(K, R, 1);
? lift(T) \\ simpler defining polynomial for K[x]/(R)
%7 = x^10 + (-11/2*y + 25/2)
? liftall(X) \\ root of R in K[x]/(T(x))
%8 = (3/4*y + 7/4)*x^7 + (-1/2*y - 1)*x^5 + 1/2*x^2 + (1/4*y - 1/4)
? a = subst(a.pol, 'x, X); \\ a in the new coordinates
? liftall(a)
%10 = (-3/4*y - 7/4)*x^7 - 1/2*x^2
? a^5 - y
%11 = 0
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The main variables of 𝑃 and 𝑄 must be the same and have higher priority than that of nf (see varhigher
and varlower).

nfdetint(nf, x)
Given a pseudo-matrix 𝑥, computes a nonzero ideal contained in (i.e. multiple of) the determinant of 𝑥. This is
particularly useful in conjunction with nfhnfmod.

nfdisc(T)
field discriminant of the number field defined by the integral, preferably monic, irreducible polynomial 𝑇 (𝑋).
Returns the discriminant of the number field Q[𝑋]/(𝑇 ), using the Round 4 algorithm.

Local discriminants, valuations at certain primes.
As in nfbasis, the argument 𝑇 can be replaced by [𝑇, 𝑙𝑖𝑠𝑡𝑃 ], where listP is as in nfbasis: a vector of pairwise
coprime integers (usually distinct primes), a factorization matrix, or a single integer. In that case, the function
returns the discriminant of an order whose basis is given by nfbasis(T,listP), which need not be the maximal
order, and whose valuation at a prime entry in listP is the same as the valuation of the field discriminant.

In particular, if listP is [𝑝] for a prime 𝑝, we can return the 𝑝-adic discriminant of the maximal order of
Z𝑝[𝑋]/(𝑇 ), as a power of 𝑝, as follows:

? padicdisc(T,p) = p^valuation(nfdisc([T,[p]]), p);
? nfdisc(x^2 + 6)
%2 = -24
? padicdisc(x^2 + 6, 2)
%3 = 8
? padicdisc(x^2 + 6, 3)
%4 = 3

The following function computes the discriminant of the maximal order under the assumption that 𝑃 is a vector
of prime numbers containing (at least) all prime divisors of the field discriminant:

globaldisc(T, P) =
{ my (D = nfdisc([T, P]));
sign(D) * vecprod([p^valuation(D,p) | p <-P]);
}
? globaldisc(x^2 + 6, [2, 3, 5])
%1 = -24

nfdiscfactors(T)
Given a polynomial 𝑇 with integer coefficients, return [𝐷, 𝑓𝑎𝐷] where 𝐷 is nfdisc(𝑇 ) and faD is the factor-
ization of ‖𝐷‖. All the variants [T,listP] are allowed (see ??nfdisc), in which case faD is the factorization
of the discriminant underlying order (which need not be maximal at the primes not specified by listP) and the
factorization may contain large composites.

? T = x^3 - 6021021*x^2 + 12072210077769*x - 8092423140177664432;
? [D,faD] = nfdiscfactors(T); print(faD); D
[3, 3; 500009, 2]
%2 = -6750243002187]

? T = x^3 + 9*x^2 + 27*x - 125014250689643346789780229390526092263790263725;
? [D,faD] = nfdiscfactors(T); print(faD); D
[3, 3; 1000003, 2]
%4 = -27000162000243

(continues on next page)
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? [D,faD] = nfdiscfactors([T, 10^3]); print(faD)
[3, 3; 125007125141751093502187, 2]

In the final example, we only get a partial factorization, which is only guaranteed correct at primes <= 103.

The function also accept number field structures, for instance as output by nfinit, and returns the field discrim-
inant and its factorization:

? T = x^3 + 9*x^2 + 27*x - 125014250689643346789780229390526092263790263725;
? nf = nfinit(T); [D,faD] = nfdiscfactors(T); print(faD); D
%2 = -27000162000243
? nf.disc
%3 = -27000162000243

nfeltadd(nf, x, y)
Given two elements 𝑥 and 𝑦 in nf, computes their sum 𝑥+ 𝑦 in the number field 𝑛𝑓 .

? nf = nfinit(1+x^2);
? nfeltadd(nf, 1, x) \\ 1 + I
%2 = [1, 1]~

nfeltdiv(nf, x, y)
Given two elements 𝑥 and 𝑦 in nf, computes their quotient 𝑥/𝑦 in the number field 𝑛𝑓 .

nfeltdiveuc(nf, x, y)
Given two elements 𝑥 and 𝑦 in nf, computes an algebraic integer 𝑞 in the number field 𝑛𝑓 such that the components
of 𝑥− 𝑞𝑦 are reasonably small. In fact, this is functionally identical to round(nfdiv(:emphasis:`nf,x,y))`.

nfeltdivmodpr(nf, x, y, pr)
This function is obsolete, use nfmodpr.

Given two elements 𝑥 and 𝑦 in nf and pr a prime ideal in modpr format (see nfmodprinit), computes their
quotient 𝑥/𝑦 modulo the prime ideal pr.

nfeltdivrem(nf, x, y)
Given two elements 𝑥 and 𝑦 in nf, gives a two-element row vector [𝑞, 𝑟] such that 𝑥 = 𝑞𝑦 + 𝑟, 𝑞 is an algebraic
integer in 𝑛𝑓 , and the components of 𝑟 are reasonably small.

nfeltembed(nf, x, pl, precision)
Given an element 𝑥 in the number field nf, return the (real or) complex embeddings of 𝑥 specified by optional
argument pl, at the current realprecision:

• pl omitted: return the vector of embeddings at all 𝑟1 + 𝑟2 places;

• pl an integer between 1 and 𝑟1 + 𝑟2: return the 𝑖-th embedding of 𝑥, attached to the 𝑖-th root of nf.pol, i.e.
nf.roots:math:`[i]`;

• pl a vector or t_VECSMALL: return the vector of embeddings; the 𝑖-th entry gives the embedding at the place
attached to the 𝑝𝑙[𝑖]-th real root of nf.pol.

? nf = nfinit('y^3 - 2);
? nf.sign
%2 = [1, 1]
? nfeltembed(nf, 'y)
%3 = [1.25992[...], -0.62996[...] + 1.09112[...]*I]]
? nfeltembed(nf, 'y, 1)

(continues on next page)
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%4 = 1.25992[...]
? nfeltembed(nf, 'y, 3) \\ there are only 2 arch. places
*** at top-level: nfeltembed(nf,'y,3)
*** ^-----------------
*** nfeltembed: domain error in nfeltembed: index > 2

nfeltmod(nf, x, y)
Given two elements 𝑥 and 𝑦 in nf, computes an element 𝑟 of 𝑛𝑓 of the form 𝑟 = 𝑥 − 𝑞𝑦 with 𝑞 and algebraic
integer, and such that 𝑟 is small. This is functionally identical to

𝑥− 𝑛𝑓𝑚𝑢𝑙(𝑛𝑓, 𝑟𝑜𝑢𝑛𝑑(𝑛𝑓𝑑𝑖𝑣(𝑛𝑓, 𝑥, 𝑦)), 𝑦).

nfeltmul(nf, x, y)
Given two elements 𝑥 and 𝑦 in nf, computes their product 𝑥 * 𝑦 in the number field 𝑛𝑓 .

nfeltmulmodpr(nf, x, y, pr)
This function is obsolete, use nfmodpr.

Given two elements 𝑥 and 𝑦 in nf and pr a prime ideal in modpr format (see nfmodprinit), computes their
product 𝑥 * 𝑦 modulo the prime ideal pr.

nfeltnorm(nf, x)
Returns the absolute norm of 𝑥.

nfeltpow(nf, x, k)
Given an element 𝑥 in nf, and a positive or negative integer 𝑘, computes 𝑥𝑘 in the number field 𝑛𝑓 .

nfeltpowmodpr(nf, x, k, pr)
This function is obsolete, use nfmodpr.

Given an element 𝑥 in nf, an integer 𝑘 and a prime ideal pr in modpr format (see nfmodprinit), computes 𝑥𝑘
modulo the prime ideal pr.

nfeltreduce(nf, a, id)
Given an ideal id in Hermite normal form and an element 𝑎 of the number field 𝑛𝑓 , finds an element 𝑟 in 𝑛𝑓 such
that 𝑎− 𝑟 belongs to the ideal and 𝑟 is small.

nfeltreducemodpr(nf, x, pr)
This function is obsolete, use nfmodpr.

Given an element 𝑥 of the number field 𝑛𝑓 and a prime ideal pr in modpr format compute a canonical represen-
tative for the class of 𝑥 modulo pr.

nfeltsign(nf, x, pl)
Given an element 𝑥 in the number field nf, returns the signs of the real embeddings of 𝑥 specified by optional
argument pl:

• pl omitted: return the vector of signs at all 𝑟1 real places;

• pl an integer between 1 and 𝑟1: return the sign of the 𝑖-th embedding of 𝑥, attached to the 𝑖-th real root of
nf.pol, i.e. nf.roots:math:`[i]`;

• pl a vector or t_VECSMALL: return the vector of signs; the 𝑖-th entry gives the sign at the real place attached
to the 𝑝𝑙[𝑖]-th real root of nf.pol.
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? nf = nfinit(polsubcyclo(11,5,'y)); \\ Q(cos(2 pi/11))
? nf.sign
%2 = [5, 0]
? x = Mod('y, nf.pol);
? nfeltsign(nf, x)
%4 = [-1, -1, -1, 1, 1]
? nfeltsign(nf, x, 1)
%5 = -1
? nfeltsign(nf, x, [1..4])
%6 = [-1, -1, -1, 1]
? nfeltsign(nf, x, 6) \\ there are only 5 real embeddings
*** at top-level: nfeltsign(nf,x,6)
*** ^-----------------
*** nfeltsign: domain error in nfeltsign: index > 5

nfelttrace(nf, x)
Returns the absolute trace of 𝑥.

nfeltval(nf, x, pr, y)
Given an element 𝑥 in nf and a prime ideal pr in the format output by idealprimedec, computes the valuation
𝑣 at pr of the element 𝑥. The valuation of 0 is +oo.

? nf = nfinit(x^2 + 1);
? P = idealprimedec(nf, 2)[1];
? nfeltval(nf, x+1, P)
%3 = 1

This particular valuation can also be obtained using idealval(:emphasis:`nf,x,:emphasis:pr)`, since 𝑥 is then
converted to a principal ideal.

If the 𝑦 argument is present, sets 𝑦 = 𝑥𝜏𝑣 , where 𝜏 is a fixed “anti-uniformizer” for pr: its valuation at pr is −1;
its valuation is 0 at other prime ideals dividing :emphasis:`pr.p` and nonnegative at all other primes. In other
words 𝑦 is the part of 𝑥 coprime to pr. If 𝑥 is an algebraic integer, so is 𝑦.

? nfeltval(nf, x+1, P, &y); y
%4 = [0, 1]~

For instance if 𝑥 =
∏︀

𝑖 𝑥
𝑒𝑖
𝑖 is known to be coprime to pr, where the 𝑥𝑖 are algebraic integers and 𝑒𝑖 ∈ Z then, if

𝑣𝑖 = 𝑛𝑓𝑒𝑙𝑡𝑣𝑎𝑙(𝑛𝑓, 𝑥𝑖, 𝑝𝑟, 𝑦𝑖), we still have 𝑥 =
∏︀

𝑖 𝑦
𝑒𝑖
𝑖 , where the 𝑦𝑖 are still algebraic integers but now all of

them are coprime to pr. They can then be mapped to the residue field of pr more efficiently than if the product
had been expanded beforehand: we can reduce mod pr after each ring operation.

nffactor(nf, T)
Factorization of the univariate polynomial (or rational function) 𝑇 over the number field 𝑛𝑓 given by nfinit;
𝑇 has coefficients in 𝑛𝑓 (i.e. either scalar, polmod, polynomial or column vector). The factors are sorted by
increasing degree.

The main variable of 𝑛𝑓 must be of lower priority than that of 𝑇 , see priority (in the PARI manual). However
if the polynomial defining the number field occurs explicitly in the coefficients of 𝑇 as modulus of a t_POLMOD
or as a t_POL coefficient, its main variable must be the same as the main variable of 𝑇 . For example,

? nf = nfinit(y^2 + 1);
? nffactor(nf, x^2 + y); \\ OK
? nffactor(nf, x^2 + Mod(y, y^2+1)); \\ OK
? nffactor(nf, x^2 + Mod(z, z^2+1)); \\ WRONG
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It is possible to input a defining polynomial for nf instead, but this is in general less efficient since parts of an nf
structure will then be computed internally. This is useful in two situations: when you do not need the nf elsewhere,
or when you cannot initialize an nf due to integer factorization difficulties when attempting to compute the field
discriminant and maximal order. In all cases, the function runs in polynomial time using Belabas’s variant of van
Hoeij’s algorithm, which copes with hundreds of modular factors.

Caveat. nfinit([T, listP]) allows to compute in polynomial time a conditional nf structure, which sets nf.
zk to an order which is not guaranteed to be maximal at all primes. Always either use nfcertify first (which
may not run in polynomial time) or make sure to input nf.pol instead of the conditional nf : nffactor is able
to recover in polynomial time in this case, instead of potentially missing a factor.

nffactorback(nf, f, e)
Gives back the nf element corresponding to a factorization. The integer 1 corresponds to the empty factorization.

If 𝑒 is present, 𝑒 and 𝑓 must be vectors of the same length (𝑒 being integral), and the corresponding factorization
is the product of the 𝑓 [𝑖]𝑒[𝑖].

If not, and 𝑓 is vector, it is understood as in the preceding case with 𝑒 a vector of 1s: we return the product of the
𝑓 [𝑖]. Finally, 𝑓 can be a regular factorization matrix.

? nf = nfinit(y^2+1);
? nffactorback(nf, [3, y+1, [1,2]~], [1, 2, 3])
%2 = [12, -66]~
? 3 * (I+1)^2 * (1+2*I)^3
%3 = 12 - 66*I

nffactormod(nf, Q, pr)
This routine is obsolete, use nfmodpr and factormod.

Factors the univariate polynomial 𝑄 modulo the prime ideal pr in the number field 𝑛𝑓 . The coefficients of
𝑄 belong to the number field (scalar, polmod, polynomial, even column vector) and the main variable of 𝑛𝑓
must be of lower priority than that of 𝑄 (see priority (in the PARI manual)). The prime ideal pr is either
in idealprimedec or (preferred) modprinit format. The coefficients of the polynomial factors are lifted to
elements of nf :

? K = nfinit(y^2+1);
? P = idealprimedec(K, 3)[1];
? nffactormod(K, x^2 + y*x + 18*y+1, P)
%3 =
[x + (2*y + 1) 1]

[x + (2*y + 2) 1]
? P = nfmodprinit(K, P); \\ convert to nfmodprinit format
? nffactormod(K, x^2 + y*x + 18*y+1)
%5 =
[x + (2*y + 1) 1]

[x + (2*y + 2) 1]

Same result, of course, here about 10% faster due to the precomputation.

nfgaloisapply(nf, aut, x)
Let 𝑛𝑓 be a number field as output by nfinit, and let aut be a Galois automorphism of 𝑛𝑓 expressed by its
image on the field generator (such automorphisms can be found using nfgaloisconj). The function computes
the action of the automorphism aut on the object 𝑥 in the number field; 𝑥 can be a number field element, or an ideal
(possibly extended). Because of possible confusion with elements and ideals, other vector or matrix arguments
are forbidden.
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? nf = nfinit(x^2+1);
? L = nfgaloisconj(nf)
%2 = [-x, x]~
? aut = L[1]; /* the nontrivial automorphism */
? nfgaloisapply(nf, aut, x)
%4 = Mod(-x, x^2 + 1)
? P = idealprimedec(nf,5); /* prime ideals above 5 */
? nfgaloisapply(nf, aut, P[2]) == P[1]
%6 = 0 \\ !!!!
? idealval(nf, nfgaloisapply(nf, aut, P[2]), P[1])
%7 = 1

The surprising failure of the equality test (%7) is due to the fact that although the corresponding prime ideals are
equal, their representations are not. (A prime ideal is specified by a uniformizer, and there is no guarantee that
applying automorphisms yields the same elements as a direct idealprimedec call.)

The automorphism can also be given as a column vector, representing the image of Mod(x, nf.pol) as an
algebraic number. This last representation is more efficient and should be preferred if a given automorphism
must be used in many such calls.

? nf = nfinit(x^3 - 37*x^2 + 74*x - 37);
? aut = nfgaloisconj(nf)[2]; \\ an automorphism in basistoalg form
%2 = -31/11*x^2 + 1109/11*x - 925/11
? AUT = nfalgtobasis(nf, aut); \\ same in algtobasis form
%3 = [16, -6, 5]~
? v = [1, 2, 3]~; nfgaloisapply(nf, aut, v) == nfgaloisapply(nf, AUT, v)
%4 = 1 \\ same result...
? for (i=1,10^5, nfgaloisapply(nf, aut, v))
time = 463 ms.
? for (i=1,10^5, nfgaloisapply(nf, AUT, v))
time = 343 ms. \\ but the latter is faster

nfgaloisconj(nf, flag, d, precision)
𝑛𝑓 being a number field as output by nfinit, computes the conjugates of a root 𝑟 of the nonconstant polynomial
𝑥 = 𝑛𝑓 [1] expressed as polynomials in 𝑟. This also makes sense when the number field is not Galois since some
conjugates may lie in the field. 𝑛𝑓 can simply be a polynomial.

If no flags or 𝑓𝑙𝑎𝑔 = 0, use a combination of flag 4 and 1 and the result is always complete. There is no point
whatsoever in using the other flags.

If 𝑓𝑙𝑎𝑔 = 1, use nfroots: a little slow, but guaranteed to work in polynomial time.

If 𝑓𝑙𝑎𝑔 = 4, use galoisinit: very fast, but only applies to (most) Galois fields. If the field is Galois with weakly
super-solvable Galois group (see galoisinit), return the complete list of automorphisms, else only the identity
element. If present, 𝑑 is assumed to be a multiple of the least common denominator of the conjugates expressed
as polynomial in a root of pol.

This routine can only compute Q-automorphisms, but it may be used to get 𝐾-automorphism for any base field
𝐾 as follows:

rnfgaloisconj(nfK, R) = \\ K-automorphisms of L = K[X] / (R)
{
my(polabs, N,al,S, ala,k, vR);
R *= Mod(1, nfK.pol); \\ convert coeffs to polmod elts of K
vR = variable(R);

(continues on next page)
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al = Mod(variable(nfK.pol),nfK.pol);
[polabs,ala,k] = rnfequation(nfK, R, 1);
Rt = if(k==0,R,subst(R,vR,vR-al*k));
N = nfgaloisconj(polabs) % Rt; \\ Q-automorphisms of L
S = select(s->subst(Rt, vR, Mod(s,Rt)) == 0, N);
if (k==0, S, apply(s->subst(s,vR,vR+k*al)-k*al,S));
}
K = nfinit(y^2 + 7);
rnfgaloisconj(K, x^4 - y*x^3 - 3*x^2 + y*x + 1) \\ K-automorphisms of L

nfgrunwaldwang(nf, Lpr, Ld, pl, v)
Given nf a number field in nf or bnf format, a t_VEC Lpr of primes of nf and a t_VEC Ld of positive integers
of the same length, a t_VECSMALL pl of length 𝑟1 the number of real places of nf, computes a polynomial with
coefficients in nf defining a cyclic extension of nf of minimal degree satisfying certain local conditions:

• at the prime 𝐿𝑝𝑟[𝑖], the extension has local degree a multiple of 𝐿𝑑[𝑖];

• at the 𝑖-th real place of nf, it is complex if 𝑝𝑙[𝑖] = −1 (no condition if 𝑝𝑙[𝑖] = 0).

The extension has degree the LCM of the local degrees. Currently, the degree is restricted to be a prime power
for the search, and to be prime for the construction because of the rnfkummer restrictions.

When nf is Q, prime integers are accepted instead of prid structures. However, their primality is not checked
and the behavior is undefined if you provide a composite number.

Warning. If the number field nf does not contain the 𝑛-th roots of unity where 𝑛 is the degree of the extension
to be computed, the function triggers the computation of the bnf of 𝑛𝑓(𝜁𝑛), which may be costly.

? nf = nfinit(y^2-5);
? pr = idealprimedec(nf,13)[1];
? pol = nfgrunwaldwang(nf, [pr], [2], [0,-1], 'x)
%3 = x^2 + Mod(3/2*y + 13/2, y^2 - 5)

nfhilbert(nf, a, b, pr)
If pr is omitted, compute the global quadratic Hilbert symbol (𝑎, 𝑏) in 𝑛𝑓 , that is 1 if 𝑥2 − 𝑎𝑦2 − 𝑏𝑧2 has a non
trivial solution (𝑥, 𝑦, 𝑧) in 𝑛𝑓 , and −1 otherwise. Otherwise compute the local symbol modulo the prime ideal
pr, as output by idealprimedec.

nfhnf(nf, x, flag)
Given a pseudo-matrix (𝐴, 𝐼), finds a pseudo-basis (𝐵, 𝐽) in Hermite normal form of the module it generates. If
𝑓𝑙𝑎𝑔 is nonzero, also return the transformation matrix 𝑈 such that 𝐴𝑈 = [0‖𝐵].

nfhnfmod(nf, x, detx)
Given a pseudo-matrix (𝐴, 𝐼) and an ideal detx which is contained in (read integral multiple of) the determinant
of (𝐴, 𝐼), finds a pseudo-basis in Hermite normal form of the module generated by (𝐴, 𝐼). This avoids coefficient
explosion. detx can be computed using the function nfdetint.

nfinit(pol, flag, precision)
pol being a nonconstant irreducible polynomial in Q[𝑋], preferably monic and integral, initializes a number field
structure (nf) attached to the field𝐾 defined by pol. As such, it’s a technical object passed as the first argument to
most nfxxx functions, but it contains some information which may be directly useful. Access to this information
via member functions is preferred since the specific data organization given below may change in the future.
Currently, nf is a row vector with 9 components:

𝑛𝑓 [1] contains the polynomial pol (:emphasis:`nf.pol`).
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𝑛𝑓 [2] contains [𝑟1, 𝑟2] (:emphasis:`nf.sign`, :emphasis:`nf.r1`, :emphasis:`nf.r2`), the number of real
and complex places of 𝐾.

𝑛𝑓 [3] contains the discriminant 𝑑(𝐾) (:emphasis:`nf.disc`) of 𝐾.

𝑛𝑓 [4] contains the index of 𝑛𝑓 [1] (:emphasis:`nf.index`), i.e. [Z𝐾 : Z[𝜃]], where 𝜃 is any root of 𝑛𝑓 [1].

𝑛𝑓 [5] is a vector containing 7 matrices 𝑀 , 𝐺, roundG, 𝑇 , MD, TI, MDI and a vector vP defined as follows:

*𝑀 is the (𝑟1 + 𝑟2)𝑥𝑛matrix whose columns represent the numerical values of the conjugates of the elements
of the integral basis.

* 𝐺 is an 𝑛𝑥𝑛 matrix such that 𝑇2 =𝑡 𝐺𝐺, where 𝑇2 is the quadratic form 𝑇2(𝑥) =
∑︀

‖𝜎(𝑥)‖2, 𝜎 running
over the embeddings of 𝐾 into C.

* roundG is a rescaled copy of 𝐺, rounded to nearest integers.

* 𝑇 is the 𝑛𝑥𝑛matrix whose coefficients are 𝑇𝑟(𝜔𝑖𝜔𝑗) where the 𝜔𝑖 are the elements of the integral basis. Note
also that det(𝑇 ) is equal to the discriminant of the field 𝐾. Also, when understood as an ideal, the matrix 𝑇−1

generates the codifferent ideal.

* The columns of 𝑀𝐷 (:emphasis:`nf.diff`) express a Z-basis of the different of 𝐾 on the integral basis.

* TI is equal to the primitive part of 𝑇−1, which has integral coefficients.

* MDI is a two-element representation (for faster ideal product) of 𝑑(𝐾) times the codifferent ideal
(:emphasis:`nf.disc:math:*nf.codiff`, which is an integral ideal). This is used in idealinv.

* vP is the list of prime divisors of the field discriminant, i.e, the ramified primes (:emphasis:`nf.p`);
nfdiscfactors(nf) is the preferred way to access that information.

𝑛𝑓 [6] is the vector containing the 𝑟1 + 𝑟2 roots (:emphasis:`nf.roots`) of 𝑛𝑓 [1] corresponding to the 𝑟1 + 𝑟2
embeddings of the number field into C (the first 𝑟1 components are real, the next 𝑟2 have positive imaginary part).

𝑛𝑓 [7] is a Z-basis for 𝑑Z𝐾 , where 𝑑 = [Z𝐾 : Z(𝜃)], expressed on the powers of 𝜃. The multiplication by 𝑑
ensures that all polynomials have integral coefficients and 𝑛𝑓 [7]/𝑑 (:emphasis:`nf.zk`) is an integral basis for
Z𝐾 . Its first element is guaranteed to be 1. This basis is LLL-reduced with respect to 𝑇2 (strictly speaking, it is
a permutation of such a basis, due to the condition that the first element be 1).

𝑛𝑓 [8] is the 𝑛𝑥𝑛 integral matrix expressing the power basis in terms of the integral basis, and finally

𝑛𝑓 [9] is the 𝑛𝑥𝑛2 matrix giving the multiplication table of the integral basis.

If a non monic or non integral polynomial is input, nfinit will transform it, and return a structure attached to
the new (monic integral) polynomial together with the attached change of variables, see 𝑓𝑙𝑎𝑔 = 3. It is allowed,
though not very useful given the existence of nfnewprec, to input a nf or a bnf instead of a polynomial. It is
also allowed to input a rnf, in which case an nf structure attached to the absolute defining polynomial polabs is
returned (flag is then ignored).

? nf = nfinit(x^3 - 12); \\ initialize number field Q[X] / (X^3 - 12)
? nf.pol \\ defining polynomial
%2 = x^3 - 12
? nf.disc \\ field discriminant
%3 = -972
? nf.index \\ index of power basis order in maximal order
%4 = 2
? nf.zk \\ integer basis, lifted to Q[X]
%5 = [1, x, 1/2*x^2]
? nf.sign \\ signature
%6 = [1, 1]
? factor(abs(nf.disc )) \\ determines ramified primes

(continues on next page)
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%7 =
[2 2]

[3 5]
? idealfactor(nf, 2)
%8 =
[[2, [0, 0, -1]~, 3, 1, [0, 1, 0]~] 3] \\ p_2^3

Huge discriminants, helping nfdisc.
In case pol has a huge discriminant which is difficult to factor, it is hard to compute from scratch the maximal
order. The following special input formats are also accepted:

• [𝑝𝑜𝑙, 𝐵] where pol is a monic integral polynomial and 𝐵 is the lift of an integer basis, as would be computed
by nfbasis: a vector of polynomials with first element 1 (implicitly modulo pol). This is useful if the
maximal order is known in advance.

• [𝑝𝑜𝑙, 𝐵, 𝑃 ] where pol and 𝐵 are as above (a monic integral polynomial and the lift of an integer basis), and
𝑃 is the list of ramified primes in the extension.

• [𝑝𝑜𝑙, 𝑙𝑖𝑠𝑡𝑃 ] where pol is a rational polynomial and listP specifies a list of primes as in nfbasis. Instead
of the maximal order, nfinit then computes an order which is maximal at these particular primes as well
as the primes contained in the private prime table, see addprimes. The result has a good chance of being
correct when the discriminant nf.disc factors completely over this set of primes but this is not guaranteed.
The function nfcertify automates this:

? pol = polcompositum(x^5 - 101, polcyclo(7))[1];
? nf = nfinit( [pol, 10^3] );
? nfcertify(nf)
%3 = []

A priori, nf.zk defines an order which is only known to be maximal at all primes <= 103 (no prime <= 103

divides nf.index). The certification step proves the correctness of the computation. Had it failed, that particular
nf structure could not have been trusted and may have caused routines using it to fail randomly. One particular
function that remains trustworthy in all cases is idealprimedec when applied to a prime included in the above
list of primes or, more generally, a prime not dividing any entry in nfcertify output.

If 𝑓𝑙𝑎𝑔 = 2: pol is changed into another polynomial 𝑃 defining the same number field, which is as simple as can
easily be found using the polredbest algorithm, and all the subsequent computations are done using this new
polynomial. In particular, the first component of the result is the modified polynomial.

If 𝑓𝑙𝑎𝑔 = 3, apply polredbest as in case 2, but outputs [𝑛𝑓,𝑀𝑜𝑑(𝑎, 𝑃 )], where 𝑛𝑓 is as before and
𝑀𝑜𝑑(𝑎, 𝑃 ) = 𝑀𝑜𝑑(𝑥, 𝑝𝑜𝑙) gives the change of variables. This is implicit when pol is not monic or not integral:
first a linear change of variables is performed, to get a monic integral polynomial, then polredbest.

nfisideal(nf, x)
Returns 1 if 𝑥 is an ideal in the number field 𝑛𝑓 , 0 otherwise.

nfisincl(f, g, flag)
Let 𝑓 and 𝑔 define number fields, where 𝑓 and 𝑔 are irreducible polynomials inQ[𝑋] and nf structures as output by
nfinit. Tests whether the number field 𝑓 is conjugate to a subfield of the field 𝑔. If they are not, the output is the
integer 0. If they are, the output is a vector of polynomials (𝑓𝑙𝑎𝑔 = 0, default) or a single polynomial 𝑓𝑙𝑎𝑔 = 1,
each polynomial 𝑎 representing an embedding i.e. being such that 𝑔‖𝑓𝑜𝑎. If either 𝑓 or 𝑔 is not irreducible, the
result is undefined.
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? T = x^6 + 3*x^4 - 6*x^3 + 3*x^2 + 18*x + 10;
? U = x^3 + 3*x^2 + 3*x - 2

? v = nfisincl(U, T);
%2 = [24/179*x^5-27/179*x^4+80/179*x^3-234/179*x^2+380/179*x+94/179]

? subst(U, x, Mod(v[1],T))
%3 = Mod(0, x^6 + 3*x^4 - 6*x^3 + 3*x^2 + 18*x + 10)
? #nfisincl(x^2+1, T) \\ two embeddings
%4 = 2

\\ same result with nf structures
? nfisincl(U, L = nfinit(T)) == v
%5 = 1
? nfisincl(K = nfinit(U), T) == v
%6 = 1
? nfisincl(K, L) == v
%7 = 1

\\ comparative bench: an nf is a little faster, esp. for the subfield
? B = 10^3;
? for (i=1, B, nfisincl(U,T))
time = 712 ms.

? for (i=1, B, nfisincl(K,T))
time = 485 ms.

? for (i=1, B, nfisincl(U,L))
time = 704 ms.

? for (i=1, B, nfisincl(K,L))
time = 465 ms.

Using an nf structure for the potential subfield is faster if the structure is already available. On the other hand,
the gain in nfisincl is usually not sufficient to make it worthwhile to initialize only for that purpose.

? for (i=1, B, nfinit(U))
time = 308 ms.

nfisisom(f, g)
As nfisincl, but tests for isomorphism. More efficient if 𝑓 or 𝑔 is a number field structure.

? f = x^6 + 30*x^5 + 495*x^4 + 1870*x^3 + 16317*x^2 - 22560*x + 59648;
? g = x^6 + 42*x^5 + 999*x^4 + 8966*x^3 + 36117*x^2 + 21768*x + 159332;
? h = x^6 + 30*x^5 + 351*x^4 + 2240*x^3 + 10311*x^2 + 35466*x + 58321;

? #nfisisom(f,g) \\ two isomorphisms
%3 = 2
? nfisisom(f,h) \\ not isomorphic
%4 = 0
\\ comparative bench
? K = nfinit(f); L = nfinit(g); B = 10^3;
? for (i=1, B, nfisisom(f,g))

(continues on next page)
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time = 6,124 ms.
? for (i=1, B, nfisisom(K,g))
time = 3,356 ms.
? for (i=1, B, nfisisom(f,L))
time = 3,204 ms.
? for (i=1, B, nfisisom(K,L))
time = 3,173 ms.

The function is usually very fast when the fields are nonisomorphic, whenever the fields can be distinguished via
a simple invariant such as degree, signature or discriminant. It may be slower when the fields share all invariants,
but still faster than computing actual isomorphisms:

\\ usually very fast when the answer is 'no':
? for (i=1, B, nfisisom(f,h))
time = 32 ms.

\\ but not always
? u = x^6 + 12*x^5 + 6*x^4 - 377*x^3 - 714*x^2 + 5304*x + 15379
? v = x^6 + 12*x^5 + 60*x^4 + 166*x^3 + 708*x^2 + 6600*x + 23353
? nfisisom(u,v)
%13 = 0
? polsturm(u) == polsturm(v)
%14 = 1
? nfdisc(u) == nfdisc(v)
%15 = 1
? for(i=1,B, nfisisom(u,v))
time = 1,821 ms.
? K = nfinit(u); L = nfinit(v);
? for(i=1,B, nfisisom(K,v))
time = 232 ms.

nfislocalpower(nf, pr, a, n)
Let nf be a nf structure attached to a number field 𝐾, let 𝑎 ∈ 𝐾 and let pr be a prid structure attached to a
maximal ideal 𝑣. Return 1 if 𝑎 is an 𝑛-th power in the completed local field 𝐾𝑣 , and 0 otherwise.

? K = nfinit(y^2+1);
? P = idealprimedec(K,2)[1]; \\ the ramified prime above 2
? nfislocalpower(K,P,-1, 2) \\ -1 is a square
%3 = 1
? nfislocalpower(K,P,-1, 4) \\ ... but not a 4-th power
%4 = 0
? nfislocalpower(K,P,2, 2) \\ 2 is not a square
%5 = 0

? Q = idealprimedec(K,5)[1]; \\ a prime above 5
? nfislocalpower(K,Q, [0, 32]~, 30) \\ 32*I is locally a 30-th power
%7 = 1

nfkermodpr(nf, x, pr)
This function is obsolete, use nfmodpr.

Kernel of the matrix 𝑎 in Z𝐾/𝑝𝑟, where pr is in modpr format (see nfmodprinit).
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nfmodpr(nf, x, pr)
Map 𝑥 to a t_FFELT in the residue field modulo pr. The argument pr is either a maximal ideal in idealprimedec
format or, preferably, a modpr structure from nfmodprinit. The function nfmodprlift allows to lift back to
Z𝐾 .

Note that the function applies to number field elements and not to vector / matrices / polynomials of such. Use
apply to convert recursive structures.

? K = nfinit(y^3-250);
? P = idealprimedec(K, 5)[2];
? modP = nfmodprinit(K, P, 't);
? K.zk
%4 = [1, 1/5*y, 1/25*y^2]
? apply(t->nfmodpr(K,t,modP), K.zk)
%5 = [1, t, 2*t + 1]
? %[1].mod
%6 = t^2 + 3*t + 4
? K.index
%7 = 125

For clarity, we represent elements in the residue field F5[𝑡]/(𝑇 ) as polynomials in the variable 𝑡. Whenever
the underlying rational prime does not divide K.index, it is actually the case that 𝑡 is the reduction of 𝑦 in
Q[𝑦]/(𝐾.𝑝𝑜𝑙) modulo an irreducible factor of K.pol over F𝑝. In the above example, 5 divides the index and 𝑡 is
actually the reduction of 𝑦/5.

nfmodprinit(nf, pr, v)
Transforms the prime ideal pr into modpr format necessary for all operations modulo pr in the number field nf.
The functions nfmodpr and nfmodprlift allow to project to and lift from the residue field. The variable 𝑣 is
used to display finite field elements (see ffgen).

? K = nfinit(y^3-250);
? P = idealprimedec(K, 5)[2];
? modP = nfmodprinit(K, P, 't);
? K.zk
%4 = [1, 1/5*y, 1/25*y^2]
? apply(t->nfmodpr(K,t,modP), K.zk)
%5 = [1, t, 2*t + 1]
? %[1].mod
%6 = t^2 + 3*t + 4
? K.index
%7 = 125

For clarity, we represent elements in the residue field F5[𝑡]/(𝑇 ) as polynomials in the variable 𝑡. Whenever
the underlying rational prime does not divide K.index, it is actually the case that 𝑡 is the reduction of 𝑦 in
Q[𝑦]/(𝐾.𝑝𝑜𝑙) modulo an irreducible factor of K.pol over F𝑝. In the above example, 5 divides the index and 𝑡 is
actually the reduction of 𝑦/5.

nfmodprlift(nf, x, pr)
Lift the t_FFELT 𝑥 (from nfmodpr) in the residue field modulo pr to the ring of integers. Vectors and matrices
are also supported. For polynomials, use apply and the present function.

The argument pr is either a maximal ideal in idealprimedec format or, preferably, a modpr structure from
nfmodprinit. There are no compatibility checks to try and decide whether 𝑥 is attached the same residue field
as defined by pr: the result is undefined if not.

The function nfmodpr allows to reduce to the residue field.
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? K = nfinit(y^3-250);
? P = idealprimedec(K, 5)[2];
? modP = nfmodprinit(K,P);
? K.zk
%4 = [1, 1/5*y, 1/25*y^2]
? apply(t->nfmodpr(K,t,modP), K.zk)
%5 = [1, y, 2*y + 1]
? nfmodprlift(K, %, modP)
%6 = [1, 1/5*y, 2/5*y + 1]
? nfeltval(K, %[3] - K.zk[3], P)
%7 = 1

nfnewprec(nf, precision)
Transforms the number field 𝑛𝑓 into the corresponding data using current (usually larger) precision. This function
works as expected if nf is in fact a bnf or a bnr (update structure to current precision). If the original bnf structure
was not computed by bnfinit(,1), then this may be quite slow and even fail: many generators of principal ideals
have to be computed and the algorithm may fail because the accuracy is not sufficient to bootstrap the required
generators and fundamental units.

nfpolsturm(nf, T, pl)
Given a polynomial 𝑇 with coefficients in the number field nf, returns the number of real roots of the 𝑠(𝑇 ) where
𝑠 runs through the real embeddings of the field specified by optional argument pl:

• pl omitted: all 𝑟1 real places;

• pl an integer between 1 and 𝑟1: the embedding attached to the 𝑖-th real root of nf.pol, i.e. nf.
roots:math:`[i]`;

• pl a vector or t_VECSMALL: the embeddings attached to the 𝑝𝑙[𝑖]-th real roots of nf.pol.

? nf = nfinit('y^2 - 2);
? nf.sign
%2 = [2, 0]
? nf.roots
%3 = [-1.414..., 1.414...]
? T = x^2 + 'y;
? nfpolsturm(nf, T, 1) \\ subst(T,y,sqrt(2)) has two real roots
%5 = 2
? nfpolsturm(nf, T, 2) \\ subst(T,y,-sqrt(2)) has no real root
%6 = 0
? nfpolsturm(nf, T) \\ all embeddings together
%7 = [2, 0]
? nfpolsturm(nf, T, [2,1]) \\ second then first embedding
%8 = [0, 2]
? nfpolsturm(nf, x^3) \\ number of distinct roots !
%9 = [1, 1]
? nfpolsturm(nf, x, 6) \\ there are only 2 real embeddings !
*** at top-level: nfpolsturm(nf,x,6)
*** ^-----------------
*** nfpolsturm: domain error in nfpolsturm: index > 2

nfroots(nf, x)
Roots of the polynomial 𝑥 in the number field 𝑛𝑓 given by nfinit without multiplicity (in Q if 𝑛𝑓 is omitted).
𝑥 has coefficients in the number field (scalar, polmod, polynomial, column vector). The main variable of 𝑛𝑓
must be of lower priority than that of 𝑥 (see priority (in the PARI manual)). However if the coefficients of the
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number field occur explicitly (as polmods) as coefficients of 𝑥, the variable of these polmods must be the same
as the main variable of 𝑡 (see nffactor).

It is possible to input a defining polynomial for nf instead, but this is in general less efficient since parts of an nf
structure will then be computed internally. This is useful in two situations: when you do not need the nf elsewhere,
or when you cannot initialize an nf due to integer factorization difficulties when attempting to compute the field
discriminant and maximal order.

Caveat. nfinit([T, listP]) allows to compute in polynomial time a conditional nf structure, which sets nf.
zk to an order which is not guaranteed to be maximal at all primes. Always either use nfcertify first (which
may not run in polynomial time) or make sure to input nf.pol instead of the conditional nf : nfroots is able to
recover in polynomial time in this case, instead of potentially missing a factor.

nfrootsof1(nf )
Returns a two-component vector [𝑤, 𝑧] where 𝑤 is the number of roots of unity in the number field nf, and 𝑧 is a
primitive 𝑤-th root of unity. It is possible to input a defining polynomial for nf instead.

? K = nfinit(polcyclo(11));
? nfrootsof1(K)
%2 = [22, [0, 0, 0, 0, 0, -1, 0, 0, 0, 0]~]
? z = nfbasistoalg(K, %[2]) \\ in algebraic form
%3 = Mod(-x^5, x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)
? [lift(z^11), lift(z^2)] \\ proves that the order of z is 22
%4 = [-1, -x^9 - x^8 - x^7 - x^6 - x^5 - x^4 - x^3 - x^2 - x - 1]

This function guesses the number 𝑤 as the gcd of the #𝑘(𝑣)* for unramified 𝑣 above odd primes, then computes
the roots in nf of the 𝑤-th cyclotomic polynomial. The algorithm is polynomial time with respect to the field
degree and the bitsize of the multiplication table in nf (both of them polynomially bounded in terms of the size
of the discriminant). Fields of degree up to 100 or so should require less than one minute.

nfsnf(nf, x, flag)
Given a torsion Z𝐾-module 𝑥 attached to the square integral invertible pseudo-matrix (𝐴, 𝐼, 𝐽), returns an ideal
list𝐷 = [𝑑1, ..., 𝑑𝑛] which is the Smith normal form of 𝑥. In other words, 𝑥 is isomorphic toZ𝐾/𝑑1⊕...⊕Z𝐾/𝑑𝑛
and 𝑑𝑖 divides 𝑑𝑖−1 for 𝑖 >= 2. If 𝑓𝑙𝑎𝑔 is nonzero return [𝐷,𝑈, 𝑉 ], where 𝑈𝐴𝑉 is the identity.

See ZKmodules (in the PARI manual) for the definition of integral pseudo-matrix; briefly, it is input as a 3-
component row vector [𝐴, 𝐼, 𝐽 ] where 𝐼 = [𝑏1, ..., 𝑏𝑛] and 𝐽 = [𝑎1, ..., 𝑎𝑛] are two ideal lists, and 𝐴 is a square
𝑛𝑥𝑛 matrix with columns (𝐴1, ..., 𝐴𝑛), seen as elements in 𝐾𝑛 (with canonical basis (𝑒1, ..., 𝑒𝑛)). This data
defines the Z𝐾 module 𝑥 given by

(𝑏1𝑒1 ⊕ ...⊕ 𝑏𝑛𝑒𝑛)/(𝑎1𝐴1 ⊕ ...⊕ 𝑎𝑛𝐴𝑛),

The integrality condition is 𝑎𝑖,𝑗 ∈ 𝑏𝑖𝑎
−1
𝑗 for all 𝑖, 𝑗. If it is not satisfied, then the 𝑑𝑖 will not be integral. Note that

every finitely generated torsion module is isomorphic to a module of this form and even with 𝑏𝑖 = 𝑍𝐾 for all 𝑖.

nfsolvemodpr(nf, a, b, P)
This function is obsolete, use nfmodpr.

Let 𝑃 be a prime ideal in modpr format (see nfmodprinit), let 𝑎 be a matrix, invertible over the residue field,
and let 𝑏 be a column vector or matrix. This function returns a solution of 𝑎.𝑥 = 𝑏; the coefficients of 𝑥 are lifted
to nf elements.

? K = nfinit(y^2+1);
? P = idealprimedec(K, 3)[1];
? P = nfmodprinit(K, P);
? a = [y+1, y; y, 0]; b = [1, y]~
? nfsolvemodpr(K, a,b, P)
%5 = [1, 2]~
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nfsplitting(P, d)
Defining polynomial over Q for the splitting field of 𝑃 ∈ Q[𝑥], that is the smallest field over which 𝑃 is totally
split. If irreducible, the polynomial 𝑃 can also be given by a nf structure, which is more efficient. If 𝑑 is given, it
must be a multiple of the splitting field degree. Note that if 𝑃 is reducible the splitting field degree can be smaller
than the degree of 𝑃 .

? K = nfinit(x^3-2);
? nfsplitting(K)
%2 = x^6 + 108
? nfsplitting(x^8-2)
%3 = x^16 + 272*x^8 + 64
? S = nfsplitting(x^6-8) // reducible
%4 = x^4+2*x^2+4
? lift(nfroots(subst(S,x,a),x^6-8))
%5 = [-a,a,-1/2*a^3-a,-1/2*a^3,1/2*a^3,1/2*a^3+a]

Specifying the degree of the splitting field can make the computation faster.

? nfsplitting(x^17-123);
time = 3,607 ms.
? poldegree(%)
%2 = 272
? nfsplitting(x^17-123,272);
time = 150 ms.
? nfsplitting(x^17-123,273);
*** nfsplitting: Warning: ignoring incorrect degree bound 273
time = 3,611 ms.

The complexity of the algorithm is polynomial in the degree 𝑑 of the splitting field and the bitsize of 𝑇 ; if 𝑑 is
large the result will likely be unusable, e.g. nfinit will not be an option:

? nfsplitting(x^6-x-1)
[... degree 720 polynomial deleted ...]
time = 11,020 ms.

nfsubfields(pol, d, fl)
Finds all subfields of degree 𝑑 of the number field defined by the (monic, integral) polynomial pol (all subfields
if 𝑑 is null or omitted). The result is a vector of subfields, each being given by [𝑔, ℎ] (default) or simply 𝑔 (flag =
1), where 𝑔 is an absolute equation and ℎ expresses one of the roots of 𝑔 in terms of the root 𝑥 of the polynomial
defining 𝑛𝑓 . This routine uses

• Allombert’s galoissubfields when nf is Galois (with weakly supersolvable Galois group).

• Klüners’s or van Hoeij-Klüners-Novocin algorithm in the general case. The latter runs in polynomial time
and is generally superior unless there exists a small unramified prime 𝑝 such that pol has few irreducible
factors modulo 𝑝.

An input of the form [nf, fa] is also allowed, where fa is the factorisation of nf.pol over nf, expressed as a famat
of polynomials with coefficients in the variable of nf, in which case the van Hoeij-Klüners-Novocin algorithm is
used.

? pol = x^4 - x^3 - x^2 + x + 1;
? nfsubfields(pol)
%2 = [[x, 0], [x^2 - x + 1, x^3 - x^2 + 1], [x^4 - x^3 - x^2 + x + 1, x]]
? nfsubfields(pol,,1)

(continues on next page)
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(continued from previous page)

%2 = [x, x^2 - x + 1, x^4 - x^3 - x^2 + x + 1]
? y=varhigher("y"); fa = nffactor(pol,subst(pol,x,y));
? #nfsubfields([pol,fa])
%5 = 3

nfsubfieldscm(nf, fl)
Compute the maximal CM subfield of nf. Return 0 if nf does not have a CM subfield, otherwise return [𝑔, ℎ]
(default) or 𝑔 (flag = 1) where 𝑔 is an absolute equation and ℎ expresses a root of 𝑔 in terms of the generator of nf.
Moreover, the CM involution is given by 𝑋𝑚𝑜𝑑𝑔(𝑋) : − − − > −𝑋𝑚𝑜𝑑𝑔(𝑋), i.e. 𝑋𝑚𝑜𝑑𝑔(𝑋) is a totally
imaginary element.

An input of the form [nf, fa] is also allowed, where fa is the factorisation of nf.pol over nf, and nf is also
allowed to be a monic defining polynomial for the number field.

? nf = nfinit(x^8 + 20*x^6 + 10*x^4 - 4*x^2 + 9);
? nfsubfieldscm(nf)
%2 = [x^4 + 4480*x^2 + 3612672, 3*x^5 + 58*x^3 + 5*x]
? pol = y^16-8*y^14+29*y^12-60*y^10+74*y^8-48*y^6+8*y^4+4*y^2+1;
? fa = nffactor(pol, subst(pol,y,x));
? nfsubfieldscm([pol,fa])
%5 = [y^8 + ... , ...]

nfsubfieldsmax(nf, fl)
Compute the list of maximal subfields of nf. The result is a vector as in nfsubfields.

An input of the form [nf, fa] is also allowed, where fa is the factorisation of nf.pol over nf, and nf is also
allowed to be a monic defining polynomial for the number field.

norm(x)
Algebraic norm of 𝑥, i.e. the product of 𝑥with its conjugate (no square roots are taken), or conjugates for polmods.
For vectors and matrices, the norm is taken componentwise and hence is not the 𝐿2-norm (see norml2). Note
that the norm of an element of R is its square, so as to be compatible with the complex norm.

norml2(x)
Square of the 𝐿2-norm of 𝑥. More precisely, if 𝑥 is a scalar, 𝑛𝑜𝑟𝑚𝑙2(𝑥) is defined to be the square of the
complex modulus of 𝑥 (real t_QUAD s are not supported). If 𝑥 is a polynomial, a (row or column) vector or a
matrix, norml2(:math:`x)` is defined recursively as

∑︀
𝑖 𝑛𝑜𝑟𝑚𝑙2(𝑥𝑖), where (𝑥𝑖) run through the components

of 𝑥. In particular, this yields the usual
∑︀

‖𝑥𝑖‖2 (resp.
∑︀

‖𝑥𝑖,𝑗‖2) if 𝑥 is a polynomial or vector (resp. matrix)
with complex components.

? norml2( [ 1, 2, 3 ] ) \\ vector
%1 = 14
? norml2( [ 1, 2; 3, 4] ) \\ matrix
%2 = 30
? norml2( 2*I + x )
%3 = 5
? norml2( [ [1,2], [3,4], 5, 6 ] ) \\ recursively defined
%4 = 91

normlp(x, p, precision)
𝐿𝑝-norm of 𝑥; sup norm if 𝑝 is omitted or +oo. More precisely, if 𝑥 is a scalar, normlp(𝑥, 𝑝) is defined to be
abs(𝑥). If 𝑥 is a polynomial, a (row or column) vector or a matrix:

• if 𝑝 is omitted or +oo, then normlp(:math:`x)` is defined recursively as max𝑖 𝑛𝑜𝑟𝑚𝑙𝑝(𝑥𝑖)), where (𝑥𝑖)
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run through the components of 𝑥. In particular, this yields the usual sup norm if 𝑥 is a polynomial or vector
with complex components.

• otherwise, normlp(:math:`x, 𝑝)` is defined recursively as (
∑︀

𝑖 𝑛𝑜𝑟𝑚𝑙𝑝
𝑝(𝑥𝑖, 𝑝))

1/𝑝. In particular, this
yields the usual (

∑︀
‖𝑥𝑖‖𝑝)1/𝑝 if 𝑥 is a polynomial or vector with complex components.

? v = [1,-2,3]; normlp(v) \\ vector
%1 = 3
? normlp(v, +oo) \\ same, more explicit
%2 = 3
? M = [1,-2;-3,4]; normlp(M) \\ matrix
%3 = 4
? T = (1+I) + I*x^2; normlp(T)
%4 = 1.4142135623730950488016887242096980786
? normlp([[1,2], [3,4], 5, 6]) \\ recursively defined
%5 = 6

? normlp(v, 1)
%6 = 6
? normlp(M, 1)
%7 = 10
? normlp(T, 1)
%8 = 2.4142135623730950488016887242096980786

numbpart(n)
Gives the number of unrestricted partitions of 𝑛, usually called 𝑝(𝑛) in the literature; in other words the number
of nonnegative integer solutions to 𝑎 + 2𝑏 + 3𝑐 + ... = 𝑛. 𝑛 must be of type integer and 𝑛 < 1015 (with trivial
values 𝑝(𝑛) = 0 for 𝑛 < 0 and 𝑝(0) = 1). The algorithm uses the Hardy-Ramanujan-Rademacher formula. To
explicitly enumerate them, see partitions.

numdiv(x)
Number of divisors of ‖𝑥‖. 𝑥 must be of type integer.

numerator(f, D)

Numerator of 𝑓 . This is defined as f * denominator(f,D), see denominator for details. The optional argu-
ment 𝐷 allows to control over which ring we compute the denominator:

• 1: we only consider the underlying Q-structure and the denominator is a (positive) rational integer

• a simple variable, say 'x: all entries as rational functions in𝐾(𝑥) and the denominator is a polynomial in 𝑥.

? f = x + 1/y + 1/2;
? numerator(f) \\ a t_POL in x
%2 = x + ((y + 2)/(2*y))
? numerator(f, 1) \\ Q-denominator is 2
%3 = x + ((y + 2)/y)
? numerator(f, y) \\ as a rational function in y
%5 = 2*y*x + (y + 2)

numtoperm(n, k)
Generates the 𝑘-th permutation (as a row vector of length 𝑛) of the numbers 1 to 𝑛. The number 𝑘 is taken modulo
𝑛!, i.e. inverse function of permtonum. The numbering used is the standard lexicographic ordering, starting at 0.

omega(x)
Number of distinct prime divisors of ‖𝑥‖. 𝑥 must be of type integer.
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? factor(392)
%1 =
[2 3]

[7 2]

? omega(392)
%2 = 2; \\ without multiplicity
? bigomega(392)
%3 = 5; \\ = 3+2, with multiplicity

oo()

Returns an object meaning +𝑜𝑜, for use in functions such as intnum. It can be negated (-oo represents −𝑜𝑜),
and compared to real numbers (t_INT, t_FRAC, t_REAL), with the expected meaning: +𝑜𝑜 is greater than any
real number and −𝑜𝑜 is smaller.

padicappr(pol, a)
Vector of 𝑝-adic roots of the polynomial pol congruent to the 𝑝-adic number 𝑎modulo 𝑝, and with the same 𝑝-adic
precision as 𝑎. The number 𝑎 can be an ordinary 𝑝-adic number (type t_PADIC, i.e. an element of Z𝑝) or can
be an integral element of a finite unramified extension Q𝑝[𝑋]/(𝑇 ) of Q𝑝, given as a t_POLMOD Mod(𝐴, 𝑇 ) at
least one of whose coefficients is a t_PADIC and 𝑇 irreducible modulo 𝑝. In this case, the result is the vector of
roots belonging to the same extension of Q𝑝 as 𝑎. The polynomial pol should have exact coefficients; if not, its
coefficients are first rounded to Q or Q[𝑋]/(𝑇 ) and this is the polynomial whose roots we consider.

padicfields(p, N, flag)
Returns a vector of polynomials generating all the extensions of degree 𝑁 of the field Q𝑝 of 𝑝-adic rational
numbers; 𝑁 is allowed to be a 2-component vector [𝑛, 𝑑], in which case we return the extensions of degree 𝑛 and
discriminant 𝑝𝑑.

The list is minimal in the sense that two different polynomials generate nonisomorphic extensions; in particular,
the number of polynomials is the number of classes of nonisomorphic extensions. If 𝑃 is a polynomial in this list,
𝛼 is any root of 𝑃 and 𝐾 = Q𝑝(𝛼), then 𝛼 is the sum of a uniformizer and a (lift of a) generator of the residue
field of 𝐾; in particular, the powers of 𝛼 generate the ring of 𝑝-adic integers of 𝐾.

If 𝑓𝑙𝑎𝑔 = 1, replace each polynomial 𝑃 by a vector [𝑃, 𝑒, 𝑓, 𝑑, 𝑐] where 𝑒 is the ramification index, 𝑓 the residual
degree, 𝑑 the valuation of the discriminant, and 𝑐 the number of conjugate fields. If 𝑓𝑙𝑎𝑔 = 2, only return the
number of extensions in a fixed algebraic closure (Krasner’s formula), which is much faster.

padicprec(x, p)
Returns the absolute 𝑝-adic precision of the object 𝑥; this is the minimum precision of the components of 𝑥. The
result is +oo if 𝑥 is an exact object (as a 𝑝-adic):

? padicprec((1 + O(2^5)) * x + (2 + O(2^4)), 2)
%1 = 4
? padicprec(x + 2, 2)
%2 = +oo
? padicprec(2 + x + O(x^2), 2)
%3 = +oo

The function raises an exception if it encounters an object incompatible with 𝑝-adic computations:

? padicprec(O(3), 2)
*** at top-level: padicprec(O(3),2)
*** ^-----------------
*** padicprec: inconsistent moduli in padicprec: 3 != 2

(continues on next page)
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(continued from previous page)

? padicprec(1.0, 2)
*** at top-level: padicprec(1.0,2)
*** ^----------------
*** padicprec: incorrect type in padicprec (t_REAL).

parapply(f, x)
Parallel evaluation of f on the elements of x. The function fmust not access global variables or variables declared
with local(), and must be free of side effects.

parapply(factor,[2^256 + 1, 2^193 - 1])

factors 2256 + 1 and 2193 − 1 in parallel.

{
my(E = ellinit([1,3]), V = vector(12,i,randomprime(2^200)));
parapply(p->ellcard(E,p), V)
}

computes the order of 𝐸(F𝑝) for 12 random primes of 200 bits.

pareval(x)
Parallel evaluation of the elements of x, where x is a vector of closures. The closures must be of arity 0, must not
access global variables or variables declared with local and must be free of side effects.

Here is an artificial example explaining the MOV attack on the elliptic discrete log problem (by reducing it to a
standard discrete log over a finite field):

{
my(q = 2^30 + 3, m = 40 * q; p = 1 + m^2); \\ p, q are primes
my(E = ellinit([0,0,0,1,0] * Mod(1,p)));
my([P, Q] = ellgenerators(E));
\\ E(F_p) ~ Z/m P + Z/m Q and the order of the
\\ Weil pairing <P,Q> in (Z/p)^* is m
my(F = [m,factor(m)], e = random(m), R, wR, wQ);
R = ellpow(E, Q, e);
wR = ellweilpairing(E,P,R,m);
wQ = ellweilpairing(E,P,Q,m); \\ wR = wQ^e
pareval([()->znlog(wR,wQ,F), ()->elllog(E,R,Q), ()->e])
}

Note the use of my to pass “arguments” to the functions we need to evaluate while satisfying the listed require-
ments: closures of arity 0 and no global variables (another possibility would be to use export). As a result, the
final three statements satisfy all the listed requirements and are run in parallel. (Which is silly for this computation
but illustrates the use of pareval.) The function parfor is more powerful but harder to use.

parselect(f, A, flag)
Selects elements of 𝐴 according to the selection function 𝑓 , done in parallel. If flag is 1, return the indices of
those elements (indirect selection) The function f must not access global variables or variables declared with
local(), and must be free of side effects.

partitions(k, a, n)
Returns the vector of partitions of the integer 𝑘 as a sum of positive integers (parts); for 𝑘 < 0, it returns the
empty set [], and for 𝑘 = 0 the trivial partition (no parts). A partition is given by a t_VECSMALL, where parts
are sorted in nondecreasing order:
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? partitions(3)
%1 = [Vecsmall([3]), Vecsmall([1, 2]), Vecsmall([1, 1, 1])]

correspond to 3, 1 + 2 and 1 + 1 + 1. The number of (unrestricted) partitions of 𝑘 is given by numbpart:

? #partitions(50)
%1 = 204226
? numbpart(50)
%2 = 204226

Optional parameters 𝑛 and 𝑎 are as follows:

• 𝑛 = 𝑛𝑚𝑎𝑥 (resp. 𝑛 = [𝑛𝑚𝑖𝑛, 𝑛𝑚𝑎𝑥]) restricts partitions to length less than 𝑛𝑚𝑎𝑥 (resp. length between
𝑛𝑚𝑖𝑛 and 𝑛𝑚𝑎𝑥), where the length is the number of nonzero entries.

• 𝑎 = 𝑎𝑚𝑎𝑥 (resp. 𝑎 = [𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥]) restricts the parts to integers less than 𝑎𝑚𝑎𝑥 (resp. between 𝑎𝑚𝑖𝑛
and 𝑎𝑚𝑎𝑥).

? partitions(4, 2) \\ parts bounded by 2
%1 = [Vecsmall([2, 2]), Vecsmall([1, 1, 2]), Vecsmall([1, 1, 1, 1])]
? partitions(4,, 2) \\ at most 2 parts
%2 = [Vecsmall([4]), Vecsmall([1, 3]), Vecsmall([2, 2])]
? partitions(4,[0,3], 2) \\ at most 2 parts
%3 = [Vecsmall([4]), Vecsmall([1, 3]), Vecsmall([2, 2])]

By default, parts are positive and we remove zero entries unless 𝑎𝑚𝑖𝑛 <= 0, in which case 𝑛𝑚𝑖𝑛 is ignored and
we fix #𝑋 = 𝑛𝑚𝑎𝑥:

? partitions(4, [0,3]) \\ parts between 0 and 3
%1 = [Vecsmall([0, 0, 1, 3]), Vecsmall([0, 0, 2, 2]),\
Vecsmall([0, 1, 1, 2]), Vecsmall([1, 1, 1, 1])]
? partitions(1, [0,3], [2,4]) \\ no partition with 2 to 4 nonzero parts
%2 = []

permcycles(x)
Given a permutation 𝑥 on 𝑛 elements, return the orbits of 1, ..., 𝑛 under the action of 𝑥 as cycles.

? permcycles(Vecsmall([1,2,3]))
%1 = [Vecsmall([1]),Vecsmall([2]),Vecsmall([3])]
? permcycles(Vecsmall([2,3,1]))
%2 = [Vecsmall([1,2,3])]
? permcycles(Vecsmall([2,1,3]))
%3 = [Vecsmall([1,2]),Vecsmall([3])]

permorder(x)
Given a permutation 𝑥 on 𝑛 elements, return its order.

? p = Vecsmall([3,1,4,2,5]);
? p^2
%2 = Vecsmall([4,3,2,1,5])
? p^4
%3 = Vecsmall([1,2,3,4,5])
? permorder(p)
%4 = 4
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permsign(x)
Given a permutation 𝑥 on 𝑛 elements, return its signature.

? p = Vecsmall([3,1,4,2,5]);
? permsign(p)
%2 = -1
? permsign(p^2)
%3 = 1

permtonum(x)
Given a permutation 𝑥 on 𝑛 elements, gives the number 𝑘 such that 𝑥 = 𝑛𝑢𝑚𝑡𝑜𝑝𝑒𝑟𝑚(𝑛, 𝑘), i.e. inverse function
of numtoperm. The numbering used is the standard lexicographic ordering, starting at 0.

plotbox(w, x2, y2, filled)
Let (𝑥1, 𝑦1) be the current position of the virtual cursor. Draw in the rectwindow 𝑤 the outline of the rectangle
which is such that the points (𝑥1, 𝑦1) and (𝑥2, 𝑦2) are opposite corners. Only the part of the rectangle which is
in 𝑤 is drawn. The virtual cursor does not move. If 𝑓𝑖𝑙𝑙𝑒𝑑 = 1, fill the box.

plotclip(w)
clips’ the content of rectwindow :math:`w, i.e remove all parts of the drawing that would not be visible on the
screen. Together with plotcopy this function enables you to draw on a scratchpad before committing the part
you’re interested in to the final picture.

plotcolor(w, c)
Set default color to 𝑐 in rectwindow 𝑤. Return [R,G,B] value attached to color. Possible values for 𝑐 are

• a t_VEC or t_VECSMALL [𝑅,𝐺,𝐵] giving the color RGB value (all 3 values are between 0 and 255), e.g.
[250,235,215] or equivalently [0xfa, 0xeb, 0xd7] for antiquewhite;

• a t_STR giving a valid colour name (see the rgb.txt file in X11 distributions), e.g. "antiquewhite" or
an RGV value given by a # followed by 6 hexadecimal digits, e.g. "#faebd7" for antiquewhite;

• a t_INT, an index in the graphcolormap default, factory setting are

1 = black, 2 = blue, 3 = violetred, 4 = red, 5 = green, 6 = grey, 7 = gainsborough.

but this can be extended if needed.

? plotinit(0,100,100);
? plotcolor(0, "turquoise")
%2 = [64, 224, 208]
? plotbox(0, 50,50,1);
? plotmove(0, 50,50);
? plotcolor(0, 2) \\ blue
%4 = [0, 0, 255]
? plotbox(0, 50,50,1);
? plotdraw(0);

plotcopy(sourcew, destw, dx, dy, flag)
Copy the contents of rectwindow sourcew to rectwindow destw with offset (dx,dy). If flag’s bit 1 is set, dx and dy
express fractions of the size of the current output device, otherwise dx and dy are in pixels. dx and dy are relative
positions of northwest corners if other bits of flag vanish, otherwise of: 2: southwest, 4: southeast, 6: northeast
corners

plotcursor(w)
Give as a 2-component vector the current (scaled) position of the virtual cursor corresponding to the rectwindow
𝑤.

1.1. Guide to real precision in the PARI interface 289



CyPari2 Documentation, Release 2.1.3

plotdraw(w, flag)
Physically draw the rectwindow 𝑤. More generally, 𝑤 can be of the form [𝑤1, 𝑥1, 𝑦1, 𝑤2, 𝑥2, 𝑦2, ...] (number of
components must be divisible by 3; the windows 𝑤1, 𝑤2, etc. are physically placed with their upper left corner at
physical position (𝑥1, 𝑦1), (𝑥2, 𝑦2),. . . respectively, and are then drawn together. Overlapping regions will thus be
drawn twice, and the windows are considered transparent. Then display the whole drawing in a window on your
screen. If 𝑓𝑙𝑎𝑔! = 0, 𝑥1, 𝑦1 etc. express fractions of the size of the current output device

plotexport(fmt, list, flag)
Draw list of rectwindows as in plotdraw(list,flag), returning the resulting picture as a character string
which can then be written to a file. The format fmt is either "ps" (PostScript output) or "svg" (Scalable Vector
Graphics).

? plotinit(0, 100, 100);
? plotbox(0, 50, 50);
? plotcolor(0, 2);
? plotbox(0, 30, 30);
? plotdraw(0); \\ watch result on screen
? s = plotexport("svg", 0);
? write("graph.svg", s); \\ dump result to file

plothraw(X, Y, flag)
Given 𝑋 and 𝑌 two vectors of equal length, plots (in high precision) the points whose (𝑥, 𝑦)-coordinates are
given in 𝑋 and 𝑌 . Automatic positioning and scaling is done, but with the same scaling factor on 𝑥 and 𝑦. If
𝑓𝑙𝑎𝑔 is 1, join points, other nonzero flags toggle display options and should be combinations of bits 2𝑘, 𝑘 >= 3
as in ploth.

plothrawexport(fmt, X, Y, flag)
Given 𝑋 and 𝑌 two vectors of equal length, plots (in high precision) the points whose (𝑥, 𝑦)-coordinates are
given in 𝑋 and 𝑌 , returning the resulting picture as a character string which can then be written to a file. The
format fmt is either "ps" (PostScript output) or "svg" (Scalable Vector Graphics).

Automatic positioning and scaling is done, but with the same scaling factor on 𝑥 and 𝑦. If 𝑓𝑙𝑎𝑔 is 1, join points,
other nonzero flags toggle display options and should be combinations of bits 2𝑘, 𝑘 >= 3 as in ploth.

plothsizes(flag)
Return data corresponding to the output window in the form of a 8-component vector: window width and height,
sizes for ticks in horizontal and vertical directions (this is intended for the gnuplot interface and is currently not
significant), width and height of characters, width and height of display, if applicable. If display has no sense,
e.g. for svg plots or postscript plots, then width and height of display are set to 0.

If 𝑓𝑙𝑎𝑔 = 0, sizes of ticks and characters are in pixels, otherwise are fractions of the screen size

plotinit(w, x, y, flag)
Initialize the rectwindow 𝑤, destroying any rect objects you may have already drawn in 𝑤. The virtual cursor is
set to (0, 0). The rectwindow size is set to width 𝑥 and height 𝑦; omitting either 𝑥 or 𝑦 means we use the full size
of the device in that direction. If 𝑓𝑙𝑎𝑔 = 0, 𝑥 and 𝑦 represent pixel units. Otherwise, 𝑥 and 𝑦 are understood
as fractions of the size of the current output device (hence must be between 0 and 1) and internally converted to
pixels.

The plotting device imposes an upper bound for 𝑥 and 𝑦, for instance the number of pixels for screen out-
put. These bounds are available through the plothsizes function. The following sequence initializes in a
portable way (i.e independent of the output device) a window of maximal size, accessed through coordinates in
the [0, 1000]𝑥[0, 1000] range:
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s = plothsizes();
plotinit(0, s[1]-1, s[2]-1);
plotscale(0, 0,1000, 0,1000);

plotkill(w)
Erase rectwindow 𝑤 and free the corresponding memory. Note that if you want to use the rectwindow 𝑤 again,
you have to use plotinit first to specify the new size. So it’s better in this case to use plotinit directly as this
throws away any previous work in the given rectwindow.

plotlines(w, X, Y, flag)
Draw on the rectwindow 𝑤 the polygon such that the (x,y)-coordinates of the vertices are in the vectors of equal
length 𝑋 and 𝑌 . For simplicity, the whole polygon is drawn, not only the part of the polygon which is inside the
rectwindow. If 𝑓𝑙𝑎𝑔 is nonzero, close the polygon. In any case, the virtual cursor does not move.

𝑋 and 𝑌 are allowed to be scalars (in this case, both have to). There, a single segment will be drawn, between
the virtual cursor current position and the point (𝑋,𝑌 ). And only the part thereof which actually lies within
the boundary of 𝑤. Then move the virtual cursor to (𝑋,𝑌 ), even if it is outside the window. If you want to
draw a line from (𝑥1, 𝑦1) to (𝑥2, 𝑦2) where (𝑥1, 𝑦1) is not necessarily the position of the virtual cursor, use
plotmove(w,x1,y1) before using this function.

plotlinetype(w, type)
This function is obsolete and currently a no-op.

Change the type of lines subsequently plotted in rectwindow𝑤. type −2 corresponds to frames, −1 to axes, larger
values may correspond to something else. 𝑤 = −1 changes highlevel plotting.

plotmove(w, x, y)
Move the virtual cursor of the rectwindow 𝑤 to position (𝑥, 𝑦).

plotpoints(w, X, Y)
Draw on the rectwindow 𝑤 the points whose (𝑥, 𝑦)-coordinates are in the vectors of equal length 𝑋 and 𝑌 and
which are inside𝑤. The virtual cursor does not move. This is basically the same function as plothraw, but either
with no scaling factor or with a scale chosen using the function plotscale.

As was the case with the plotlines function, 𝑋 and 𝑌 are allowed to be (simultaneously) scalar. In this case,
draw the single point (𝑋,𝑌 ) on the rectwindow 𝑤 (if it is actually inside 𝑤), and in any case move the virtual
cursor to position (𝑥, 𝑦).

If you draw few points in the rectwindow, they will be hard to see; in this case, you can use filled boxes instead.
Compare:

? plotinit(0, 100,100); plotpoints(0, 50,50);
? plotdraw(0)
? plotinit(1, 100,100); plotmove(1,48,48); plotrbox(1, 4,4, 1);
? plotdraw(1)

plotpointsize(w, size)
This function is obsolete. It is currently a no-op.

Changes the “size” of following points in rectwindow 𝑤. If 𝑤 = −1, change it in all rectwindows.

plotpointtype(w, type)
This function is obsolete and currently a no-op.

change the type of points subsequently plotted in rectwindow 𝑤. 𝑡𝑦𝑝𝑒 = −1 corresponds to a dot, larger values
may correspond to something else. 𝑤 = −1 changes highlevel plotting.
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plotrbox(w, dx, dy, filled)
Draw in the rectwindow𝑤 the outline of the rectangle which is such that the points (𝑥1, 𝑦1) and (𝑥1+𝑑𝑥, 𝑦1+𝑑𝑦)
are opposite corners, where (𝑥1, 𝑦1) is the current position of the cursor. Only the part of the rectangle which is
in 𝑤 is drawn. The virtual cursor does not move. If 𝑓𝑖𝑙𝑙𝑒𝑑 = 1, fill the box.

plotrecthraw(w, data, flags)
Plot graph(s) for data in rectwindow 𝑤; 𝑓𝑙𝑎𝑔 has the same meaning here as in ploth, though recursive plot is no
longer significant.

The argument data is a vector of vectors, each corresponding to a list a coordinates. If parametric plot is set,
there must be an even number of vectors, each successive pair corresponding to a curve. Otherwise, the first one
contains the 𝑥 coordinates, and the other ones contain the 𝑦-coordinates of curves to plot.

plotrline(w, dx, dy)
Draw in the rectwindow𝑤 the part of the segment (𝑥1, 𝑦1)−(𝑥1+𝑑𝑥, 𝑦1+𝑑𝑦) which is inside𝑤, where (𝑥1, 𝑦1)
is the current position of the virtual cursor, and move the virtual cursor to (𝑥1 +𝑑𝑥, 𝑦1 +𝑑𝑦) (even if it is outside
the window).

plotrmove(w, dx, dy)
Move the virtual cursor of the rectwindow 𝑤 to position (𝑥1 +𝑑𝑥, 𝑦1 +𝑑𝑦), where (𝑥1, 𝑦1) is the initial position
of the cursor (i.e. to position (𝑑𝑥, 𝑑𝑦) relative to the initial cursor).

plotrpoint(w, dx, dy)
Draw the point (𝑥1 + 𝑑𝑥, 𝑦1 + 𝑑𝑦) on the rectwindow 𝑤 (if it is inside 𝑤), where (𝑥1, 𝑦1) is the current position
of the cursor, and in any case move the virtual cursor to position (𝑥1 + 𝑑𝑥, 𝑦1 + 𝑑𝑦).

If you draw few points in the rectwindow, they will be hard to see; in this case, you can use filled boxes instead.
Compare:

? plotinit(0, 100,100); plotrpoint(0, 50,50); plotrpoint(0, 10,10);
? plotdraw(0)

? thickpoint(w,x,y)= plotmove(w,x-2,y-2); plotrbox(w,4,4,1);
? plotinit(1, 100,100); thickpoint(1, 50,50); thickpoint(1, 60,60);
? plotdraw(1)

plotscale(w, x1, x2, y1, y2)
Scale the local coordinates of the rectwindow 𝑤 so that 𝑥 goes from 𝑥1 to 𝑥2 and 𝑦 goes from 𝑦1 to 𝑦2 (𝑥2 < 𝑥1
and 𝑦2 < 𝑦1 being allowed). Initially, after the initialization of the rectwindow 𝑤 using the function plotinit,
the default scaling is the graphic pixel count, and in particular the 𝑦 axis is oriented downwards since the origin
is at the upper left. The function plotscale allows to change all these defaults and should be used whenever
functions are graphed.

plotstring(w, x, flags)
Draw on the rectwindow𝑤 the String 𝑥 (see strings (in the PARI manual)), at the current position of the cursor.

flag is used for justification: bits 1 and 2 regulate horizontal alignment: left if 0, right if 2, center if 1. Bits 4 and
8 regulate vertical alignment: bottom if 0, top if 8, v-center if 4. Can insert additional small gap between point
and string: horizontal if bit 16 is set, vertical if bit 32 is set (see the tutorial for an example).

polchebyshev(n, flag, a)
Returns the 𝑛 − 𝑡ℎ Chebyshev polynomial of the first kind 𝑇𝑛 (𝑓𝑙𝑎𝑔 = 1) or the second kind 𝑈𝑛 (𝑓𝑙𝑎𝑔 = 2),
evaluated at 𝑎 ('x by default). Both series of polynomials satisfy the 3-term relation

𝑃𝑛+1 = 2𝑥𝑃𝑛 − 𝑃𝑛−1,
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and are determined by the initial conditions 𝑈0 = 𝑇0 = 1, 𝑇1 = 𝑥, 𝑈1 = 2𝑥. In fact 𝑇 ′
𝑛 = 𝑛𝑈𝑛−1 and, for all

complex numbers 𝑧, we have 𝑇𝑛(cos 𝑧) = cos(𝑛𝑧) and 𝑈𝑛−1(cos 𝑧) = sin(𝑛𝑧)/ sin 𝑧. If 𝑛 >= 0, then these
polynomials have degree 𝑛. For 𝑛 < 0, 𝑇𝑛 is equal to 𝑇−𝑛 and 𝑈𝑛 is equal to −𝑈−2−𝑛. In particular, 𝑈−1 = 0.

polclass(D, inv, x)
Return a polynomial in Z[𝑥] generating the Hilbert class field for the imaginary quadratic discriminant 𝐷. If 𝑖𝑛𝑣
is 0 (the default), use the modular 𝑗-function and return the classical Hilbert polynomial, otherwise use a class
invariant. The following invariants correspond to the different values of 𝑖𝑛𝑣, where 𝑓 denotes Weber’s function
weber, and 𝑤𝑝,𝑞 the double eta quotient given by 𝑤𝑝,𝑞 = (𝜂(𝑥/𝑝)𝜂(𝑥/𝑞))/(𝜂(𝑥)𝜂(𝑥/𝑝𝑞))

The invariants𝑤𝑝,𝑞 are not allowed unless they satisfy the following technical conditions ensuring they do generate
the Hilbert class field and not a strict subfield:

• if 𝑝! = 𝑞, we need them both noninert, prime to the conductor of Z[
√
𝐷]. Let 𝑃,𝑄 be prime ideals above

𝑝 and 𝑞; if both are unramified, we further require that 𝑃 1𝑄1 be all distinct in the class group of Z[
√
𝐷]; if

both are ramified, we require that 𝑃𝑄! = 1 in the class group.

• if 𝑝 = 𝑞, we want it split and prime to the conductor and the prime ideal above it must have order ! = 1, 2, 4
in the class group.

Invariants are allowed under the additional conditions on 𝐷 listed below.

• 0 : 𝑗

• 1 : 𝑓 , 𝐷 = 1𝑚𝑜𝑑8 and 𝐷 = 1, 2𝑚𝑜𝑑3;

• 2 : 𝑓2, 𝐷 = 1𝑚𝑜𝑑8 and 𝐷 = 1, 2𝑚𝑜𝑑3;

• 3 : 𝑓3, 𝐷 = 1𝑚𝑜𝑑8;

• 4 : 𝑓4, 𝐷 = 1𝑚𝑜𝑑8 and 𝐷 = 1, 2𝑚𝑜𝑑3;

• 5 : 𝛾2 = 𝑗1/3, 𝐷 = 1, 2𝑚𝑜𝑑3;

• 6 : 𝑤2,3, 𝐷 = 1𝑚𝑜𝑑8 and 𝐷 = 1, 2𝑚𝑜𝑑3;

• 8 : 𝑓8, 𝐷 = 1𝑚𝑜𝑑8 and 𝐷 = 1, 2𝑚𝑜𝑑3;

• 9 : 𝑤3,3, 𝐷 = 1𝑚𝑜𝑑2 and 𝐷 = 1, 2𝑚𝑜𝑑3;

• 10: 𝑤2,5, 𝐷! = 60𝑚𝑜𝑑80 and 𝐷 = 1, 2𝑚𝑜𝑑3;

• 14: 𝑤2,7, 𝐷 = 1𝑚𝑜𝑑8;

• 15: 𝑤3,5, 𝐷 = 1, 2𝑚𝑜𝑑3;

• 21: 𝑤3,7, 𝐷 = 1𝑚𝑜𝑑2 and 21 does not divide 𝐷

• 23: 𝑤2
2,3, 𝐷 = 1, 2𝑚𝑜𝑑3;

• 24: 𝑤2
2,5, 𝐷 = 1, 2𝑚𝑜𝑑3;

• 26: 𝑤2,13, 𝐷! = 156𝑚𝑜𝑑208;

• 27: 𝑤2
2,7, 𝐷! = 28𝑚𝑜𝑑112;

• 28: 𝑤2
3,3, 𝐷 = 1, 2𝑚𝑜𝑑3;

• 35: 𝑤5,7, 𝐷 = 1, 2𝑚𝑜𝑑3;

• 39: 𝑤3,13, 𝐷 = 1𝑚𝑜𝑑2 and 𝐷 = 1, 2𝑚𝑜𝑑3;

The algorithm for computing the polynomial does not use the floating point approach, which would evaluate a
precise modular function in a precise complex argument. Instead, it relies on a faster Chinese remainder based
approach modulo small primes, in which the class invariant is only defined algebraically by the modular poly-
nomial relating the modular function to 𝑗. So in fact, any of the several roots of the modular polynomial may
actually be the class invariant, and more precise assertions cannot be made.
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For instance, while polclass(D) returns the minimal polynomial of 𝑗(𝜏) with 𝜏 (any) quadratic integer for the
discriminant 𝐷, the polynomial returned by polclass(D, 5) can be the minimal polynomial of any of 𝛾2(𝜏),
𝜁3𝛾2(𝜏) or 𝜁23𝛾2(𝜏), the three roots of the modular polynomial 𝑗 = 𝛾32 , in which 𝑗 has been specialised to 𝑗(𝜏).

The modular polynomial is given by 𝑗 = ((𝑓24 − 16)3)/(𝑓24) for Weber’s function 𝑓 .

For the double eta quotients of level 𝑁 = 𝑝𝑞, all functions are covered such that the modular curve 𝑋+
0 (𝑁),

the function field of which is generated by the functions invariant under Γ0(𝑁) and the Fricke-Atkin-Lehner
involution, is of genus 0 with function field generated by (a power of) the double eta quotient 𝑤. This ensures
that the full Hilbert class field (and not a proper subfield) is generated by class invariants from these double eta
quotients. Then the modular polynomial is of degree 2 in 𝑗, and of degree 𝜓(𝑁) = (𝑝+ 1)(𝑞 + 1) in 𝑤.

? polclass(-163)
%1 = x + 262537412640768000
? polclass(-51, , 'z)
%2 = z^2 + 5541101568*z + 6262062317568
? polclass(-151,1)
x^7 - x^6 + x^5 + 3*x^3 - x^2 + 3*x + 1

polcoef(x, n, v)
Coefficient of degree 𝑛 of the polynomial 𝑥, with respect to the main variable if 𝑣 is omitted, with respect to 𝑣
otherwise. If 𝑛 is greater than the degree, the result is zero.

Naturally applies to scalars (polynomial of degree 0), as well as to rational functions whose denominator is a
monomial. It also applies to power series: if 𝑛 is less than the valuation, the result is zero. If it is greater than the
largest significant degree, then an error message is issued.

polcoeff(x, n, v)
Deprecated alias for polcoef.

polcompositum(P, Q, flag)
𝑃 and 𝑄 being squarefree polynomials in Z[𝑋] in the same variable, outputs the simple factors of the étale Q-
algebra 𝐴 = Q(𝑋,𝑌 )/(𝑃 (𝑋), 𝑄(𝑌 )). The factors are given by a list of polynomials 𝑅 in Z[𝑋], attached to the
number field Q(𝑋)/(𝑅), and sorted by increasing degree (with respect to lexicographic ordering for factors of
equal degrees). Returns an error if one of the polynomials is not squarefree.

Note that it is more efficient to reduce to the case where 𝑃 and𝑄 are irreducible first. The routine will not perform
this for you, since it may be expensive, and the inputs are irreducible in most applications anyway. In this case,
there will be a single factor 𝑅 if and only if the number fields defined by 𝑃 and 𝑄 are linearly disjoint (their
intersection is Q).

Assuming 𝑃 is irreducible (of smaller degree than 𝑄 for efficiency), it is in general much faster to proceed as
follows

nf = nfinit(P); L = nffactor(nf, Q)[,1];
vector(#L, i, rnfequation(nf, L[i]))

to obtain the same result. If you are only interested in the degrees of the simple factors, the rnfequation
instruction can be replaced by a trivial poldegree(P) * poldegree(L[i]).

The binary digits of 𝑓𝑙𝑎𝑔 mean

1: outputs a vector of 4-component vectors [𝑅, 𝑎, 𝑏, 𝑘], where𝑅 ranges through the list of all possible compositums
as above, and 𝑎 (resp. 𝑏) expresses the root of 𝑃 (resp. 𝑄) as an element of Q(𝑋)/(𝑅). Finally, 𝑘 is a small
integer such that 𝑏+ 𝑘𝑎 = 𝑋 modulo 𝑅.

2: assume that 𝑃 and 𝑄 define number fields which are linearly disjoint: both polynomials are irreducible and
the corresponding number fields have no common subfield besides Q. This allows to save a costly factorization
over Q. In this case return the single simple factor instead of a vector with one element.
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A compositum is often defined by a complicated polynomial, which it is advisable to reduce before further work.
Here is an example involving the field Q(𝜁5, 5

1/5):

? L = polcompositum(x^5 - 5, polcyclo(5), 1); \\ list of [R,a,b,k]
? [R, a] = L[1]; \\ pick the single factor, extract R,a (ignore b,k)
? R \\ defines the compositum
%3 = x^20 + 5*x^19 + 15*x^18 + 35*x^17 + 70*x^16 + 141*x^15 + 260*x^14\
+ 355*x^13 + 95*x^12 - 1460*x^11 - 3279*x^10 - 3660*x^9 - 2005*x^8 \
+ 705*x^7 + 9210*x^6 + 13506*x^5 + 7145*x^4 - 2740*x^3 + 1040*x^2 \
- 320*x + 256
? a^5 - 5 \\ a fifth root of 5
%4 = 0
? [T, X] = polredbest(R, 1);
? T \\ simpler defining polynomial for Q[x]/(R)
%6 = x^20 + 25*x^10 + 5
? X \\ root of R in Q[y]/(T(y))
%7 = Mod(-1/11*x^15 - 1/11*x^14 + 1/22*x^10 - 47/22*x^5 - 29/11*x^4 + 7/22,\
x^20 + 25*x^10 + 5)
? a = subst(a.pol, 'x, X) \\ a in the new coordinates
%8 = Mod(1/11*x^14 + 29/11*x^4, x^20 + 25*x^10 + 5)
? a^5 - 5
%9 = 0

In the above example, 𝑥5 − 5 and the 5-th cyclotomic polynomial are irreducible over Q; they have coprime
degrees so define linearly disjoint extensions and we could have started by

? [R,a] = polcompositum(x^5 - 5, polcyclo(5), 3); \\ [R,a,b,k]

polcyclo(n, a)
𝑛-th cyclotomic polynomial, evaluated at 𝑎 ('x by default). The integer 𝑛 must be positive.

Algorithm used: reduce to the case where 𝑛 is squarefree; to compute the cyclotomic polynomial, use Φ𝑛𝑝(𝑥) =
Φ𝑛(𝑥𝑝)/Φ(𝑥); to compute it evaluated, use Φ𝑛(𝑥) =

∏︀
𝑑‖𝑛(𝑥𝑑 − 1)𝜇(𝑛/𝑑). In the evaluated case, the algorithm

assumes that 𝑎𝑑 − 1 is either 0 or invertible, for all 𝑑‖𝑛. If this is not the case (the base ring has zero divisors),
use subst(polcyclo(n),x,a).

polcyclofactors(f )
Returns a vector of polynomials, whose product is the product of distinct cyclotomic polynomials dividing 𝑓 .

? f = x^10+5*x^8-x^7+8*x^6-4*x^5+8*x^4-3*x^3+7*x^2+3;
? v = polcyclofactors(f)
%2 = [x^2 + 1, x^2 + x + 1, x^4 - x^3 + x^2 - x + 1]
? apply(poliscycloprod, v)
%3 = [1, 1, 1]
? apply(poliscyclo, v)
%4 = [4, 3, 10]

In general, the polynomials are products of cyclotomic polynomials and not themselves irreducible:

? g = x^8+2*x^7+6*x^6+9*x^5+12*x^4+11*x^3+10*x^2+6*x+3;
? polcyclofactors(g)
%2 = [x^6 + 2*x^5 + 3*x^4 + 3*x^3 + 3*x^2 + 2*x + 1]
? factor(%[1])
%3 =

(continues on next page)
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(continued from previous page)

[ x^2 + x + 1 1]

[x^4 + x^3 + x^2 + x + 1 1]

poldegree(x, v)
Degree of the polynomial 𝑥 in the main variable if 𝑣 is omitted, in the variable 𝑣 otherwise.

The degree of 0 is -oo. The degree of a nonzero scalar is 0. Finally, when 𝑥 is a nonzero polynomial or rational
function, returns the ordinary degree of 𝑥. Raise an error otherwise.

poldisc(pol, v)
Discriminant of the polynomial pol in the main variable if 𝑣 is omitted, in 𝑣 otherwise. Uses a modular algorithm
over Z or Q, and the subresultant algorithm otherwise.

? T = x^4 + 2*x+1;
? poldisc(T)
%2 = -176
? poldisc(T^2)
%3 = 0

For convenience, the function also applies to types t_QUAD and t_QFI/t_QFR:

? z = 3*quadgen(8) + 4;
? poldisc(z)
%2 = 8
? q = Qfb(1,2,3);
? poldisc(q)
%4 = -8

poldiscfactors(T, flag)
Given a polynomial 𝑇 with integer coefficients, return [𝐷, 𝑓𝑎𝐷] where 𝐷 is the discriminant of 𝑇 and faD is a
cheap partial factorization of ‖𝐷‖: entries in its first column are coprime and not perfect powers but need not be
primes. The factors are obtained by a combination of trial division, testing for perfect powers, factorizations in
coprimes, and computing Euclidean remainder sequences for (𝑇, 𝑇 ′) modulo composite factors 𝑑 of 𝐷 (which is
likely to produce 0-divisors in Z/𝑑Z). If flag is 1, finish the factorization using factorint.

? T = x^3 - 6021021*x^2 + 12072210077769*x - 8092423140177664432;
? [D,faD] = poldiscfactors(T); print(faD); D
[3, 3; 7, 2; 373, 2; 500009, 2; 24639061, 2]
%2 = -27937108625866859018515540967767467

? T = x^3 + 9*x^2 + 27*x - 125014250689643346789780229390526092263790263725;
? [D,faD] = poldiscfactors(T); print(faD)
[2, 6; 3, 3; 125007125141751093502187, 4]
? [D,faD] = poldiscfactors(T, 1); print(faD)
[2, 6; 3, 3; 500009, 12; 1000003, 4]

poldiscreduced(f )
Reduced discriminant vector of the (integral, monic) polynomial 𝑓 . This is the vector of elementary divisors of
Z[𝛼]/𝑓 ′(𝛼)Z[𝛼], where 𝛼 is a root of the polynomial 𝑓 . The components of the result are all positive, and their
product is equal to the absolute value of the discriminant of 𝑓 .

polgalois(T, precision)
Galois group of the nonconstant polynomial 𝑇 ∈ Q[𝑋]. In the present version 2.13.3, 𝑇 must be irreducible and
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the degree 𝑑 of 𝑇 must be less than or equal to 7. If the galdata package has been installed, degrees 8, 9, 10 and
11 are also implemented. By definition, if 𝐾 = Q[𝑥]/(𝑇 ), this computes the action of the Galois group of the
Galois closure of 𝐾 on the 𝑑 distinct roots of 𝑇 , up to conjugacy (corresponding to different root orderings).

The output is a 4-component vector [𝑛, 𝑠, 𝑘, 𝑛𝑎𝑚𝑒] with the following meaning: 𝑛 is the cardinality of the group,
𝑠 is its signature (𝑠 = 1 if the group is a subgroup of the alternating group 𝐴𝑑, 𝑠 = −1 otherwise) and name
is a character string containing name of the transitive group according to the GAP 4 transitive groups library by
Alexander Hulpke.

𝑘 is more arbitrary and the choice made up to version 2.2.3 of PARI is rather unfortunate: for 𝑑 > 7, 𝑘 is the
numbering of the group among all transitive subgroups of 𝑆𝑑, as given in “The transitive groups of degree up to
eleven”, G. Butler and J. McKay, Communications in Algebra, vol. 11, 1983, pp. 863–911 (group 𝑘 is denoted
𝑇𝑘 there). And for 𝑑 <= 7, it was ad hoc, so as to ensure that a given triple would denote a unique group.
Specifically, for polynomials of degree 𝑑 <= 7, the groups are coded as follows, using standard notations

In degree 1: 𝑆1 = [1, 1, 1].

In degree 2: 𝑆2 = [2,−1, 1].

In degree 3: 𝐴3 = 𝐶3 = [3, 1, 1], 𝑆3 = [6,−1, 1].

In degree 4: 𝐶4 = [4,−1, 1], 𝑉4 = [4, 1, 1], 𝐷4 = [8,−1, 1], 𝐴4 = [12, 1, 1], 𝑆4 = [24,−1, 1].

In degree 5: 𝐶5 = [5, 1, 1], 𝐷5 = [10, 1, 1], 𝑀20 = [20,−1, 1], 𝐴5 = [60, 1, 1], 𝑆5 = [120,−1, 1].

In degree 6: 𝐶6 = [6,−1, 1], 𝑆3 = [6,−1, 2], 𝐷6 = [12,−1, 1], 𝐴4 = [12, 1, 1], 𝐺18 = [18,−1, 1], 𝑆−
4 =

[24,−1, 1], 𝐴4𝑥𝐶2 = [24,−1, 2], 𝑆+
4 = [24, 1, 1], 𝐺−

36 = [36,−1, 1], 𝐺+
36 = [36, 1, 1], 𝑆4𝑥𝐶2 = [48,−1, 1],

𝐴5 = 𝑃𝑆𝐿2(5) = [60, 1, 1], 𝐺72 = [72,−1, 1], 𝑆5 = 𝑃𝐺𝐿2(5) = [120,−1, 1], 𝐴6 = [360, 1, 1], 𝑆6 =
[720,−1, 1].

In degree 7: 𝐶7 = [7, 1, 1], 𝐷7 = [14,−1, 1], 𝑀21 = [21, 1, 1], 𝑀42 = [42,−1, 1], 𝑃𝑆𝐿2(7) = 𝑃𝑆𝐿3(2) =
[168, 1, 1], 𝐴7 = [2520, 1, 1], 𝑆7 = [5040,−1, 1].

This is deprecated and obsolete, but for reasons of backward compatibility, we cannot change this behavior yet.
So you can use the default new_galois_format to switch to a consistent naming scheme, namely 𝑘 is always
the standard numbering of the group among all transitive subgroups of 𝑆𝑛. If this default is in effect, the above
groups will be coded as:

In degree 1: 𝑆1 = [1, 1, 1].

In degree 2: 𝑆2 = [2,−1, 1].

In degree 3: 𝐴3 = 𝐶3 = [3, 1, 1], 𝑆3 = [6,−1, 2].

In degree 4: 𝐶4 = [4,−1, 1], 𝑉4 = [4, 1, 2], 𝐷4 = [8,−1, 3], 𝐴4 = [12, 1, 4], 𝑆4 = [24,−1, 5].

In degree 5: 𝐶5 = [5, 1, 1], 𝐷5 = [10, 1, 2], 𝑀20 = [20,−1, 3], 𝐴5 = [60, 1, 4], 𝑆5 = [120,−1, 5].

In degree 6: 𝐶6 = [6,−1, 1], 𝑆3 = [6,−1, 2], 𝐷6 = [12,−1, 3], 𝐴4 = [12, 1, 4], 𝐺18 = [18,−1, 5], 𝐴4𝑥𝐶2 =
[24,−1, 6], 𝑆+

4 = [24, 1, 7], 𝑆−
4 = [24,−1, 8], 𝐺−

36 = [36,−1, 9], 𝐺+
36 = [36, 1, 10], 𝑆4𝑥𝐶2 = [48,−1, 11],

𝐴5 = 𝑃𝑆𝐿2(5) = [60, 1, 12], 𝐺72 = [72,−1, 13], 𝑆5 = 𝑃𝐺𝐿2(5) = [120,−1, 14], 𝐴6 = [360, 1, 15],
𝑆6 = [720,−1, 16].

In degree 7: 𝐶7 = [7, 1, 1], 𝐷7 = [14,−1, 2], 𝑀21 = [21, 1, 3], 𝑀42 = [42,−1, 4], 𝑃𝑆𝐿2(7) = 𝑃𝑆𝐿3(2) =
[168, 1, 5], 𝐴7 = [2520, 1, 6], 𝑆7 = [5040,−1, 7].

Warning. The method used is that of resolvent polynomials and is sensitive to the current precision. The preci-
sion is updated internally but, in very rare cases, a wrong result may be returned if the initial precision was not
sufficient.

polgraeffe(f )
Returns the Graeffe transform 𝑔 of 𝑓 , such that 𝑔(𝑥2) = 𝑓(𝑥)𝑓(−𝑥).
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polhensellift(A, B, p, e)
Given a prime 𝑝, an integral polynomial𝐴whose leading coefficient is a 𝑝-unit, a vector𝐵 of integral polynomials
that are monic and pairwise relatively prime modulo 𝑝, and whose product is congruent to 𝐴/𝑙𝑐(𝐴) modulo 𝑝,
lift the elements of 𝐵 to polynomials whose product is congruent to 𝐴 modulo 𝑝𝑒.

More generally, if 𝑇 is an integral polynomial irreducible mod 𝑝, and𝐵 is a factorization of𝐴 over the finite field
F𝑝[𝑡]/(𝑇 ), you can lift it to Z𝑝[𝑡]/(𝑇, 𝑝𝑒) by replacing the 𝑝 argument with [𝑝, 𝑇 ]:

? { T = t^3 - 2; p = 7; A = x^2 + t + 1;
B = [x + (3*t^2 + t + 1), x + (4*t^2 + 6*t + 6)];
r = polhensellift(A, B, [p, T], 6) }
%1 = [x + (20191*t^2 + 50604*t + 75783), x + (97458*t^2 + 67045*t + 41866)]
? liftall( r[1] * r[2] * Mod(Mod(1,p^6),T) )
%2 = x^2 + (t + 1)

polhermite(n, a, flag)
𝑛− 𝑡ℎ Hermite polynomial 𝐻𝑛 evaluated at 𝑎 ('x by default), i.e.

𝐻𝑛(𝑥) = (−1)𝑛𝑒𝑥
2

(𝑑𝑛)/(𝑑𝑥𝑛)𝑒−𝑥2

.

If flag is nonzero and 𝑛 > 0, return [𝐻𝑛−1(𝑎), 𝐻𝑛(𝑎)].

? polhermite(5)
%1 = 32*x^5 - 160*x^3 + 120*x
? polhermite(5, -2) \\ H_5(-2)
%2 = 16
? polhermite(5,,1)
%3 = [16*x^4 - 48*x^2 + 12, 32*x^5 - 160*x^3 + 120*x]
? polhermite(5,-2,1)
%4 = [76, 16]

polinterpolate(X, Y, t, e)
Given the data vectors 𝑋 and 𝑌 of the same length 𝑛 (𝑋 containing the 𝑥-coordinates, and 𝑌 the corresponding
𝑦-coordinates), this function finds the interpolating polynomial 𝑃 of minimal degree passing through these points
and evaluates it at 𝑡. If 𝑌 is omitted, the polynomial 𝑃 interpolates the (𝑖,𝑋[𝑖]).

? v = [1, 2, 4, 8, 11, 13];
? P = polinterpolate(v) \\ formal interpolation
%1 = 7/120*x^5 - 25/24*x^4 + 163/24*x^3 - 467/24*x^2 + 513/20*x - 11
? [ subst(P,'x,a) | a <- [1..6] ]
%2 = [1, 2, 4, 8, 11, 13]
? polinterpolate(v,, 10) \\ evaluate at 10
%3 = 508
? subst(P, x, 10)
%4 = 508

? P = polinterpolate([1,2,4], [9,8,7])
%5 = 1/6*x^2 - 3/2*x + 31/3
? [subst(P, 'x, a) | a <- [1,2,4]]
%6 = [9, 8, 7]
? P = polinterpolate([1,2,4], [9,8,7], 0)
%7 = 31/3

If the goal is to extrapolate a function at a unique point, it is more efficient to use the 𝑡 argument rather than
interpolate formally then evaluate:
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? x0 = 1.5;
? v = vector(20, i,random([-10,10]));
? for(i=1,10^3, subst(polinterpolate(v),'x, x0))
time = 352 ms.
? for(i=1,10^3, polinterpolate(v,,x0))
time = 111 ms.

? v = vector(40, i,random([-10,10]));
? for(i=1,10^3, subst(polinterpolate(v), 'x, x0))
time = 3,035 ms.
? for(i=1,10^3, polinterpolate(v,, x0))
time = 436 ms.

The threshold depends on the base field. Over small prime finite fields, interpolating formally first is more efficient

? bench(p, N, T = 10^3) =
{ my (v = vector(N, i, random(Mod(0,p))));
my (x0 = Mod(3, p), t1, t2);
gettime();
for(i=1, T, subst(polinterpolate(v), 'x, x0));
t1 = gettime();
for(i=1, T, polinterpolate(v,, x0));
t2 = gettime(); [t1, t2];
}
? p = 101;
? bench(p, 4, 10^4) \\ both methods are equivalent
%3 = [39, 40]
? bench(p, 40) \\ with 40 points formal is much faster
%4 = [45, 355]

As the cardinality increases, formal interpolation requires more points to become interesting:

? p = nextprime(2^128);
? bench(p, 4) \\ formal is slower
%3 = [16, 9]
? bench(p, 10) \\ formal has become faster
%4 = [61, 70]
? bench(p, 100) \\ formal is much faster
%5 = [1682, 9081]

? p = nextprime(10^500);
? bench(p, 4) \\ formal is slower
%7 = [72, 354]
? bench(p, 20) \\ formal is still slower
%8 = [1287, 962]
? bench(p, 40) \\ formal has become faster
%9 = [3717, 4227]
? bench(p, 100) \\ faster but relatively less impressive
%10 = [16237, 32335]

If 𝑡 is a complex numeric value and 𝑒 is present, 𝑒 will contain an error estimate on the returned value. More
precisely, let 𝑃 be the interpolation polynomial on the given 𝑛 points; there exist a subset of 𝑛− 1 points and 𝑄
the attached interpolation interpolation polynomial such that 𝑒 = 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡(𝑃 (𝑡)−𝑄(𝑡)) (Neville’s algorithm).
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? f(x) = 1 / (1 + 25*x^2);
? x0 = 975/1000;
? test(X) =
{ my (P, e);
P = polinterpolate(X, [f(x) | x <- X], x0, &e);
[ exponent(P - f(x0)), e ];
}
\\ equidistant nodes vs. Chebyshev nodes
? test( [-10..10] / 10 )
%4 = [6, 5]
? test( polrootsreal(polchebyshev(21)) )
%5 = [-15, -10]

? test( [-100..100] / 100 )
%7 = [93, 97] \\ P(x0) is way different from f(x0)
? test( polrootsreal(polchebyshev(201)) )
%8 = [-60, -55]

This is an example of Runge’s phenomenon: increasing the number of equidistant nodes makes extrapolation
much worse. Note that the error estimate is not a guaranteed upper bound (cf %4), but is reasonably tight in
practice.

poliscyclo(f )
Returns 0 if 𝑓 is not a cyclotomic polynomial, and 𝑛 > 0 if 𝑓 = Φ𝑛, the 𝑛-th cyclotomic polynomial.

? poliscyclo(x^4-x^2+1)
%1 = 12
? polcyclo(12)
%2 = x^4 - x^2 + 1
? poliscyclo(x^4-x^2-1)
%3 = 0

poliscycloprod(f )
Returns 1 if 𝑓 is a product of cyclotomic polynomial, and 0 otherwise.

? f = x^6+x^5-x^3+x+1;
? poliscycloprod(f)
%2 = 1
? factor(f)
%3 =
[ x^2 + x + 1 1]

[x^4 - x^2 + 1 1]
? [ poliscyclo(T) | T <- %[,1] ]
%4 = [3, 12]
? polcyclo(3) * polcyclo(12)
%5 = x^6 + x^5 - x^3 + x + 1

polisirreducible(pol)
pol being a polynomial (univariate in the present version 2.13.3), returns 1 if pol is nonconstant and irreducible,
0 otherwise. Irreducibility is checked over the smallest base field over which pol seems to be defined.

pollaguerre(n, a, b, flag)
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𝑛− 𝑡ℎ Laguerre polynomial 𝐿(𝑎)
𝑛 of degree 𝑛 and parameter 𝑎 evaluated at 𝑏 ('x by default), i.e.

𝐿(𝑎)
𝑛 (𝑥) = (𝑥−𝑎𝑒𝑥)/(𝑛!)(𝑑𝑛)/(𝑑𝑥𝑛)(𝑒−𝑥𝑥𝑛+𝑎).

If flag is 1, return [𝐿
(𝑎)
𝑛−1(𝑏), 𝐿

(𝑎)
𝑛 (𝑏)].

pollead(x, v)
Leading coefficient of the polynomial or power series 𝑥. This is computed with respect to the main variable of 𝑥
if 𝑣 is omitted, with respect to the variable 𝑣 otherwise.

pollegendre(n, a, flag)
𝑛− 𝑡ℎ Legendre polynomial 𝑃𝑛 evaluated at 𝑎 ('x by default), where

𝑃𝑛(𝑥) = (1)/(2𝑛𝑛!)(𝑑𝑛)/(𝑑𝑥𝑛)(𝑥2 − 1)𝑛.

If flag is 1, return [𝑃𝑛−1(𝑎), 𝑃𝑛(𝑎)].

polmodular(L, inv, x, y, derivs)
Return the modular polynomial of prime level 𝐿 in variables 𝑥 and 𝑦 for the modular function specified by inv.
If inv is 0 (the default), use the modular 𝑗 function, if inv is 1 use the Weber-𝑓 function, and if inv is 5 use
𝛾2 = 3

√
𝑗. See polclass for the full list of invariants. If 𝑥 is given as Mod(j, p) or an element 𝑗 of a finite

field (as a t_FFELT), then return the modular polynomial of level 𝐿 evaluated at 𝑗. If 𝑗 is from a finite field and
derivs is nonzero, then return a triple where the last two elements are the first and second derivatives of the
modular polynomial evaluated at 𝑗.

? polmodular(3)
%1 = x^4 + (-y^3 + 2232*y^2 - 1069956*y + 36864000)*x^3 + ...
? polmodular(7, 1, , 'J)
%2 = x^8 - J^7*x^7 + 7*J^4*x^4 - 8*J*x + J^8
? polmodular(7, 5, 7*ffgen(19)^0, 'j)
%3 = j^8 + 4*j^7 + 4*j^6 + 8*j^5 + j^4 + 12*j^2 + 18*j + 18
? polmodular(7, 5, Mod(7,19), 'j)
%4 = Mod(1, 19)*j^8 + Mod(4, 19)*j^7 + Mod(4, 19)*j^6 + ...

? u = ffgen(5)^0; T = polmodular(3,0,,'j)*u;
? polmodular(3, 0, u,'j,1)
%6 = [j^4 + 3*j^2 + 4*j + 1, 3*j^2 + 2*j + 4, 3*j^3 + 4*j^2 + 4*j + 2]
? subst(T,x,u)
%7 = j^4 + 3*j^2 + 4*j + 1
? subst(T',x,u)
%8 = 3*j^2 + 2*j + 4
? subst(T'',x,u)
%9 = 3*j^3 + 4*j^2 + 4*j + 2

polrecip(pol)
Reciprocal polynomial of pol with respect to its main variable, i.e. the coefficients of the result are in reverse
order; pol must be a polynomial.

? polrecip(x^2 + 2*x + 3)
%1 = 3*x^2 + 2*x + 1
? polrecip(2*x + y)
%2 = y*x + 2

polred(T, flag, _arg3)
This function is deprecated, use polredbest instead. Finds polynomials with reasonably small coefficients
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defining subfields of the number field defined by 𝑇 . One of the polynomials always defines Q (hence has degree
1), and another always defines the same number field as 𝑇 if 𝑇 is irreducible.

All 𝑇 accepted by nfinit are also allowed here; in particular, the format [T, listP] is recommended, e.g.
with 𝑙𝑖𝑠𝑡𝑃 = 105 or a vector containing all ramified primes. Otherwise, the maximal order of Q[𝑥]/(𝑇 ) must be
computed.

The following binary digits of 𝑓𝑙𝑎𝑔 are significant:

1: Possibly use a suborder of the maximal order. The primes dividing the index of the order chosen are larger
than primelimit or divide integers stored in the addprimes table. This flag is deprecated, the [T, listP]
format is more flexible.

2: gives also elements. The result is a two-column matrix, the first column giving primitive elements defining
these subfields, the second giving the corresponding minimal polynomials.

? M = polred(x^4 + 8, 2)
%1 =
[ 1 x - 1]

[ 1/2*x^2 + 1 x^2 - 2*x + 3]

[-1/2*x^2 + 1 x^2 - 2*x + 3]

[ 1/2*x^2 x^2 + 2]

[ 1/4*x^3 x^4 + 2]
? minpoly(Mod(M[2,1], x^4+8))
%2 = x^2 + 2

polredabs(T, flag)
Returns a canonical defining polynomial 𝑃 for the number field Q[𝑋]/(𝑇 ) defined by 𝑇 , such that the sum of the
squares of the modulus of the roots (i.e. the 𝑇2-norm) is minimal. Different 𝑇 defining isomorphic number fields
will yield the same 𝑃 . All 𝑇 accepted by nfinit are also allowed here, e.g. nonmonic polynomials, or pairs
[T, listP] specifying that a nonmaximal order may be used. For convenience, any number field structure (nf,
bnf,. . . ) can also be used instead of 𝑇 .

? polredabs(x^2 + 16)
%1 = x^2 + 1
? K = bnfinit(x^2 + 16); polredabs(K)
%2 = x^2 + 1

Warning 1. Using a t_POL 𝑇 requires computing and fully factoring the discriminant 𝑑𝐾 of the maximal order
which may be very hard. You can use the format [T, listP], where listP encodes a list of known coprime
divisors of disc(𝑇 ) (see ??nfbasis), to help the routine, thereby replacing this part of the algorithm by a poly-
nomial time computation But this may only compute a suborder of the maximal order, when the divisors are not
squarefree or do not include all primes dividing 𝑑𝐾 . The routine attempts to certify the result independently of
this order computation as per nfcertify: we try to prove that the computed order is maximal. If the certification
fails, the routine then fully factors the integers returned by nfcertify. You can also use polredbest to avoid
this factorization step; in this case, the result is small but no longer canonical.

Warning 2. Apart from the factorization of the discriminant of 𝑇 , this routine runs in polynomial time for a fixed
degree. But the complexity is exponential in the degree: this routine may be exceedingly slow when the number
field has many subfields, hence a lot of elements of small 𝑇2-norm. If you do not need a canonical polynomial,
the function polredbest is in general much faster (it runs in polynomial time), and tends to return polynomials
with smaller discriminants.
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The binary digits of 𝑓𝑙𝑎𝑔 mean

1: outputs a two-component row vector [𝑃, 𝑎], where 𝑃 is the default output and Mod(a, P) is a root of the
original 𝑇 .

4: gives all polynomials of minimal 𝑇2 norm; of the two polynomials 𝑃 (𝑥) and 𝑃 (−𝑥), only one is given.

16: (OBSOLETE) Possibly use a suborder of the maximal order, without attempting to certify the result as in
Warning 1. This makes polredabs behave like polredbest. Just use the latter.

? T = x^16 - 136*x^14 + 6476*x^12 - 141912*x^10 + 1513334*x^8 \
- 7453176*x^6 + 13950764*x^4 - 5596840*x^2 + 46225
? T1 = polredabs(T); T2 = polredbest(T);
? [ norml2(polroots(T1)), norml2(polroots(T2)) ]
%3 = [88.0000000, 120.000000]
? [ sizedigit(poldisc(T1)), sizedigit(poldisc(T2)) ]
%4 = [75, 67]

The precise definition of the output of polredabs is as follows.

• Consider the finite list of characteristic polynomials of primitive elements of 𝐾 that are in Z𝐾 and minimal
for the 𝑇2 norm; now remove from the list the polynomials whose discriminant do not have minimal absolute
value. Note that this condition is restricted to the original list of polynomials with minimal 𝑇2 norm and does
not imply that the defining polynomial for the field with smallest discriminant belongs to the list !

• To a polynomial 𝑃 (𝑥) = 𝑥𝑛 + ...+𝑎𝑛 ∈ R[𝑥] we attach the sequence 𝑆(𝑃 ) given by ‖𝑎1‖, 𝑎1, ..., ‖𝑎𝑛‖, 𝑎𝑛.
Order the polynomials 𝑃 by the lexicographic order on the coefficient vectors 𝑆(𝑃 ). Then the output of
polredabs is the smallest polynomial in the above list for that order. In other words, the monic polynomial
which is lexicographically smallest with respect to the absolute values of coefficients, favouring negative
coefficients to break ties, i.e. choosing 𝑥3 − 2 rather than 𝑥3 + 2.

polredbest(T, flag)
Finds a polynomial with reasonably small coefficients defining the same number field as 𝑇 . All 𝑇 accepted by
nfinit are also allowed here (e.g. nonmonic polynomials, nf, bnf, [T,Z_K_basis]). Contrary to polredabs,
this routine runs in polynomial time, but it offers no guarantee as to the minimality of its result.

This routine computes an LLL-reduced basis for an order in Q[𝑋]/(𝑇 ), then examines small linear combinations
of the basis vectors, computing their characteristic polynomials. It returns the separable polynomial 𝑃 of smallest
discriminant, the one with lexicographically smallest abs(Vec(P)) in case of ties. This is a good candidate
for subsequent number field computations since it guarantees that the denominators of algebraic integers, when
expressed in the power basis, are reasonably small. With no claim of minimality, though.

It can happen that iterating this functions yields better and better polynomials, until it stabilizes:

? \p5
? P = X^12+8*X^8-50*X^6+16*X^4-3069*X^2+625;
? poldisc(P)*1.
%2 = 1.2622 E55
? P = polredbest(P);
? poldisc(P)*1.
%4 = 2.9012 E51
? P = polredbest(P);
? poldisc(P)*1.
%6 = 8.8704 E44

In this example, the initial polynomial 𝑃 is the one returned by polredabs, and the last one is stable.

If 𝑓𝑙𝑎𝑔 = 1: outputs a two-component row vector [𝑃, 𝑎], where 𝑃 is the default output and Mod(a, P) is a root
of the original 𝑇 .
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? [P,a] = polredbest(x^4 + 8, 1)
%1 = [x^4 + 2, Mod(x^3, x^4 + 2)]
? charpoly(a)
%2 = x^4 + 8

In particular, the map Q[𝑥]/(𝑇 ) → Q[𝑥]/(𝑃 ), 𝑥 : − − − > 𝑀𝑜𝑑(𝑎, 𝑃 ) defines an isomorphism of number
fields, which can be computed as

subst(lift(Q), 'x, a)

if 𝑄 is a t_POLMOD modulo 𝑇 ; b = modreverse(a) returns a t_POLMOD giving the inverse of the above map
(which should be useless since Q[𝑥]/(𝑃 ) is a priori a better representation for the number field and its elements).

polredord(x)
This function is obsolete, use polredbest.

polresultant(x, y, v, flag)
Resultant of the two polynomials 𝑥 and 𝑦 with exact entries, with respect to the main variables of 𝑥 and 𝑦 if 𝑣 is
omitted, with respect to the variable 𝑣 otherwise. The algorithm assumes the base ring is a domain. If you also
need the 𝑢 and 𝑣 such that 𝑥 * 𝑢+ 𝑦 * 𝑣 = 𝑅𝑒𝑠(𝑥, 𝑦), use the polresultantext function.

If 𝑓𝑙𝑎𝑔 = 0 (default), uses the algorithm best suited to the inputs, either the subresultant algorithm (Lazard/Ducos
variant, generic case), a modular algorithm (inputs in Q[𝑋]) or Sylvester’s matrix (inexact inputs).

If 𝑓𝑙𝑎𝑔 = 1, uses the determinant of Sylvester’s matrix instead; this should always be slower than the default.

If 𝑥 or 𝑦 are multivariate with a huge polynomial content, it is advisable to remove it before calling this function.
Compare:

? a = polcyclo(7) * ((t+1)/(t+2))^100;
? b = polcyclo(11)* ((t+2)/(t+3))^100);
? polresultant(a,b);
time = 3,833 ms.
? ca = content(a); cb = content(b); \
polresultant(a/ca,b/cb)*ca^poldegree(b)*cb*poldegree(a); \\ instantaneous

The function only removes rational denominators and does not compute automatically the content because it is
generically small and potentially very expensive (e.g. in multivariate contexts). The choice is yours, depending
on your application.

polresultantext(A, B, v)
Finds polynomials 𝑈 and 𝑉 such that 𝐴 * 𝑈 +𝐵 * 𝑉 = 𝑅, where 𝑅 is the resultant of 𝑈 and 𝑉 with respect to
the main variables of 𝐴 and 𝐵 if 𝑣 is omitted, and with respect to 𝑣 otherwise. Returns the row vector [𝑈, 𝑉,𝑅].
The algorithm used (subresultant) assumes that the base ring is a domain.

? A = x*y; B = (x+y)^2;
? [U,V,R] = polresultantext(A, B)
%2 = [-y*x - 2*y^2, y^2, y^4]
? A*U + B*V
%3 = y^4
? [U,V,R] = polresultantext(A, B, y)
%4 = [-2*x^2 - y*x, x^2, x^4]
? A*U+B*V
%5 = x^4
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polroots(T, precision)
Complex roots of the polynomial 𝑇 , given as a column vector where each root is repeated according to its multi-
plicity and given as floating point complex numbers at the current realprecision:

? polroots(x^2)
%1 = [0.E-38 + 0.E-38*I, 0.E-38 + 0.E-38*I]~

? polroots(x^3+1)
%2 = [-1.00... + 0.E-38*I, 0.50... - 0.866...*I, 0.50... + 0.866...*I]~

The algorithm used is a modification of Schönhage’s root-finding algorithm, due to and originally implemented
by Gourdon. It runs in polynomial time in 𝑑𝑒𝑔(𝑇 ) and the precision. If furthermore 𝑇 has rational coefficients,
roots are guaranteed to the required relative accuracy. If the input polynomial 𝑇 is exact, then the ordering of the
roots does not depend on the precision: they are ordered by increasing ‖ℑ𝑧‖, then by increasing ℜ𝑧; in case of
tie (conjugates), the root with negative imaginary part comes first.

polrootsbound(T, tau)
Return a sharp upper bound 𝐵 for the modulus of the largest complex root of the polynomial 𝑇 with complex
coefficients with relative error 𝜏 . More precisely, we have ‖𝑧‖ <= 𝐵 for all roots and there exist one root such
that ‖𝑧0‖ >= 𝐵 exp(−2𝜏). Much faster than either polroots or polrootsreal.

? T=poltchebi(500);
? vecmax(abs(polroots(T)))
time = 5,706 ms.
%2 = 0.99999506520185816611184481744870013191
? vecmax(abs(polrootsreal(T)))
time = 1,972 ms.
%3 = 0.99999506520185816611184481744870013191
? polrootsbound(T)
time = 217 ms.
%4 = 1.0098792554165905155
? polrootsbound(T, log(2)/2) \\ allow a factor 2, much faster
time = 51 ms.
%5 = 1.4065759938190154354
? polrootsbound(T, 1e-4)
time = 504 ms.
%6 = 1.0000920717983847741
? polrootsbound(T, 1e-6)
time = 810 ms.
%7 = 0.9999960628901692905
? polrootsbound(T, 1e-10)
time = 1,351 ms.
%8 = 0.9999950652993869760

polrootsff(x, p, a)
Obsolete, kept for backward compatibility: use factormod.

polrootsmod(f, D)

Vector of roots of the polynomial 𝑓 over the finite field defined by the domain 𝐷 as follows:

• 𝐷 = 𝑝 a prime: factor over F𝑝;

• 𝐷 = [𝑇, 𝑝] for a prime 𝑝 and 𝑇 (𝑦) an irreducible polynomial over F𝑝: factor over F𝑝[𝑦]/(𝑇 ) (as usual the
main variable of 𝑇 must have lower priority than the main variable of 𝑓 );

• 𝐷 a t_FFELT: factor over the attached field;
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• 𝐷 omitted: factor over the field of definition of 𝑓 , which must be a finite field.

Multiple roots are not repeated.

? polrootsmod(x^2-1,2)
%1 = [Mod(1, 2)]~
? polrootsmod(x^2+1,3)
%2 = []~
? polrootsmod(x^2+1, [y^2+1,3])
%3 = [Mod(Mod(1, 3)*y, Mod(1, 3)*y^2 + Mod(1, 3)),
Mod(Mod(2, 3)*y, Mod(1, 3)*y^2 + Mod(1, 3))]~
? polrootsmod(x^2 + Mod(1,3))
%4 = []~
? liftall( polrootsmod(x^2 + Mod(Mod(1,3),y^2+1)) )
%5 = [y, 2*y]~
? t = ffgen(y^2+Mod(1,3)); polrootsmod(x^2 + t^0)
%6 = [y, 2*y]~

polrootspadic(f, p, r)
Vector of 𝑝-adic roots of the polynomial pol, given to 𝑝-adic precision 𝑟; the integer 𝑝 is assumed to be a prime.
Multiple roots are not repeated. Note that this is not the same as the roots in Z/𝑝𝑟Z, rather it gives approximations
in Z/𝑝𝑟Z of the true roots living in Q𝑝:

? polrootspadic(x^3 - x^2 + 64, 2, 4)
%1 = [2^3 + O(2^4), 2^3 + O(2^4), 1 + O(2^4)]~
? polrootspadic(x^3 - x^2 + 64, 2, 5)
%2 = [2^3 + O(2^5), 2^3 + 2^4 + O(2^5), 1 + O(2^5)]~

As the second commands show, the first two roots are distinct in Q𝑝, even though they are equal modulo 24.

More generally, if 𝑇 is an integral polynomial irreducible mod 𝑝 and 𝑓 has coefficients in Q[𝑡]/(𝑇 ), the argument
𝑝 may be replaced by the vector [𝑇, 𝑝]; we then return the roots of 𝑓 in the unramified extension Q𝑝[𝑡]/(𝑇 ).

? polrootspadic(x^3 - x^2 + 64*y, [y^2+y+1,2], 5)
%3 = [Mod((2^3 + O(2^5))*y + (2^3 + O(2^5)), y^2 + y + 1),
Mod((2^3 + 2^4 + O(2^5))*y + (2^3 + 2^4 + O(2^5)), y^2 + y + 1),
Mod(1 + O(2^5), y^2 + y + 1)]~

If pol has inexact t_PADIC coefficients, this need not well-defined; in this case, the polynomial is first made
integral by dividing out the 𝑝-adic content, then lifted to Z using truncate coefficientwise. Hence the roots
given are approximations of the roots of an exact polynomial which is 𝑝-adically close to the input. To avoid
pitfalls, we advise to only factor polynomials with exact rational coefficients.

polrootsreal(T, ab, precision)
Real roots of the polynomial 𝑇 with real coefficients, multiple roots being included according to their multiplicity.
If the polynomial does not have rational coefficients, it is first rescaled and rounded. The roots are given to a
relative accuracy of realprecision. If argument ab is present, it must be a vector [𝑎, 𝑏] with two components
(of type t_INT, t_FRAC or t_INFINITY) and we restrict to roots belonging to that closed interval.

? \p9
? polrootsreal(x^2-2)
%1 = [-1.41421356, 1.41421356]~
? polrootsreal(x^2-2, [1,+oo])
%2 = [1.41421356]~
? polrootsreal(x^2-2, [2,3])

(continues on next page)
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(continued from previous page)

%3 = []~
? polrootsreal((x-1)*(x-2), [2,3])
%4 = [2.00000000]~

The algorithm used is a modification of Uspensky’s method (relying on Descartes’s rule of sign), following
Rouillier and Zimmerman’s article “Efficient isolation of a polynomial real roots” (http://hal.inria.fr/
inria-00072518/). Barring bugs, it is guaranteed to converge and to give the roots to the required accuracy.

Remark. If the polynomial 𝑇 is of the form𝑄(𝑥ℎ) for some ℎ >= 2 and ab is omitted, the routine will apply the
algorithm to 𝑄 (restricting to nonnegative roots when ℎ is even), then take ℎ-th roots. On the other hand, if you
want to specify ab, you should apply the routine to 𝑄 yourself and a suitable interval [𝑎′, 𝑏′] using approximate
ℎ-th roots adapted to your problem: the function will not perform this change of variables if ab is present.

polsturm(T, ab, _arg3)
Number of distinct real roots of the real polynomial T. If the argument ab is present, it must be a vector [𝑎, 𝑏]
with two real components (of type t_INT, t_REAL, t_FRAC or t_INFINITY) and we count roots belonging to
that closed interval.

If possible, you should stick to exact inputs, that is avoid t_REAL s in 𝑇 and the bounds 𝑎, 𝑏: the result is then guar-
anteed and we use a fast algorithm (Uspensky’s method, relying on Descartes’s rule of sign, see polrootsreal).
Otherwise, the polynomial is rescaled and rounded first and the result may be wrong due to that initial error. If
only 𝑎 or 𝑏 is inexact, on the other hand, the interval is first thickened using rational endpoints and the result
remains guaranteed unless there exist a root very close to a nonrational endpoint (which may be missed or unduly
included).

? T = (x-1)*(x-2)*(x-3);
? polsturm(T)
%2 = 3
? polsturm(T, [-oo,2])
%3 = 2
? polsturm(T, [1/2,+oo])
%4 = 3
? polsturm(T, [1, Pi]) \\ Pi inexact: not recommended !
%5 = 3
? polsturm(T*1., [0, 4]) \\ T*1. inexact: not recommended !
%6 = 3
? polsturm(T^2, [0, 4]) \\ not squarefree: roots are not repeated!
%7 = 3

polsubcyclo(n, d, v)
Gives polynomials (in variable 𝑣) defining the sub-Abelian extensions of degree 𝑑 of the cyclotomic field Q(𝜁𝑛),
where 𝑑‖𝜑(𝑛).

If there is exactly one such extension the output is a polynomial, else it is a vector of polynomials, possibly empty.
To get a vector in all cases, use concat([], polsubcyclo(n,d)).

The function galoissubcyclo allows to specify exactly which sub-Abelian extension should be computed.

polsylvestermatrix(x, y)
Forms the Sylvester matrix corresponding to the two polynomials 𝑥 and 𝑦, where the coefficients of the polynomi-
als are put in the columns of the matrix (which is the natural direction for solving equations afterwards). The use
of this matrix can be essential when dealing with polynomials with inexact entries, since polynomial Euclidean
division doesn’t make much sense in this case.

polsym(x, n)
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Creates the column vector of the symmetric powers of the roots of the polynomial 𝑥 up to power 𝑛, using Newton’s
formula.

poltchebi(n, v)
Deprecated alias for polchebyshev

polteichmuller(T, p, r)
Given 𝑇 ∈ F𝑝[𝑋] return the polynomial 𝑃 ∈ Z𝑝[𝑋] whose roots (resp. leading coefficient) are the Teichmuller
lifts of the roots (resp. leading coefficient) of 𝑇 , to 𝑝-adic precision 𝑟. If 𝑇 is monic, 𝑃 is the reduction modulo
𝑝𝑟 of the unique monic polynomial congruent to 𝑇 modulo 𝑝 such that 𝑃 (𝑋𝑝) = 0(𝑚𝑜𝑑𝑃 (𝑋), 𝑝𝑟).

? T = ffinit(3, 3, 't)
%1 = Mod(1,3)*t^3 + Mod(1,3)*t^2 + Mod(1,3)*t + Mod(2,3)
? P = polteichmuller(T,3,5)
%2 = t^3 + 166*t^2 + 52*t + 242
? subst(P, t, t^3) % (P*Mod(1,3^5))
%3 = Mod(0, 243)
? [algdep(a+O(3^5),2) | a <- Vec(P)]
%4 = [x - 1, 5*x^2 + 1, x^2 + 4*x + 4, x + 1]

When 𝑇 is monic and irreducible mod 𝑝, this provides a model Q𝑝[𝑋]/(𝑃 ) of the unramified extension
Q𝑝[𝑋]/(𝑇 ) where the Frobenius has the simple form 𝑋𝑚𝑜𝑑𝑃 : −−− > 𝑋𝑝𝑚𝑜𝑑𝑃 .

poltschirnhaus(x)
Applies a random Tschirnhausen transformation to the polynomial 𝑥, which is assumed to be nonconstant and
separable, so as to obtain a new equation for the étale algebra defined by 𝑥. This is for instance useful when
computing resolvents, hence is used by the polgalois function.

polylog(m, x, flag, precision)
One of the different polylogarithms, depending on flag:

If 𝑓𝑙𝑎𝑔 = 0 or is omitted: 𝑚 − 𝑡ℎ polylogarithm of 𝑥, i.e. analytic continuation of the power series 𝐿𝑖𝑚(𝑥) =∑︀
𝑛>=1 𝑥

𝑛/𝑛𝑚 (𝑥 < 1). Uses the functional equation linking the values at 𝑥 and 1/𝑥 to restrict to the case
‖𝑥‖ <= 1, then the power series when ‖𝑥‖2 <= 1/2, and the power series expansion in log(𝑥) otherwise.

Using 𝑓𝑙𝑎𝑔, computes a modified 𝑚− 𝑡ℎ polylogarithm of 𝑥. We use Zagier’s notations; let ℜ𝑚 denote ℜ or ℑ
depending on whether 𝑚 is odd or even:

If 𝑓𝑙𝑎𝑔 = 1: compute 𝐷𝑚(𝑥), defined for ‖𝑥‖ <= 1 by

ℜ𝑚(

𝑚−1∑︁
𝑘=0

((− log ‖𝑥‖)𝑘)/(𝑘!)𝐿𝑖𝑚−𝑘(𝑥) + ((− log ‖𝑥‖)𝑚−1)/(𝑚!) log ‖1 − 𝑥‖).

If 𝑓𝑙𝑎𝑔 = 2: compute 𝐷𝑚(𝑥), defined for ‖𝑥‖ <= 1 by

ℜ𝑚(

𝑚−1∑︁
𝑘=0

((− log ‖𝑥‖)𝑘)/(𝑘!)𝐿𝑖𝑚−𝑘(𝑥) − (1)/(2)((− log ‖𝑥‖)𝑚)/(𝑚!)).

If 𝑓𝑙𝑎𝑔 = 3: compute 𝑃𝑚(𝑥), defined for ‖𝑥‖ <= 1 by

ℜ𝑚(

𝑚−1∑︁
𝑘=0

(2𝑘𝐵𝑘)/(𝑘!)(log ‖𝑥‖)𝑘𝐿𝑖𝑚−𝑘(𝑥) − (2𝑚−1𝐵𝑚)/(𝑚!)(log ‖𝑥‖)𝑚).

These three functions satisfy the functional equation 𝑓𝑚(1/𝑥) = (−1)𝑚−1𝑓𝑚(𝑥).
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polylogmult(s, z, t, precision)
For 𝑠 a vector of positive integers and 𝑧 a vector of complex numbers of the same length, returns the multiple
polylogarithm value (MPV)

𝜁(𝑠1, ..., 𝑠𝑟; 𝑧1, ..., 𝑧𝑟) =
∑︁

𝑛1>...>𝑛𝑟>0

∏︁
1<=𝑖<=𝑟

𝑧𝑛𝑖
𝑖 /𝑛𝑠𝑖

𝑖 .

If 𝑧 is omitted, assume 𝑧 = [1, ..., 1], i.e., Multiple Zeta Value. More generally, return Yamamoto’s interpolation
between ordinary multiple polylogarithms (𝑡 = 0) and star polylogarithms (𝑡 = 1, using the condition 𝑛1 >=
... >= 𝑛𝑟 > 0), evaluated at 𝑡.

We must have ‖𝑧1...𝑧𝑖‖ <= 1 for all 𝑖, and if 𝑠1 = 1 we must have 𝑧1! = 1.

? 8*polylogmult([2,1],[-1,1]) - zeta(3)
%1 = 0.E-38

Warning. The algorithm used converges when the 𝑧𝑖 are 1. It may not converge as some 𝑧𝑖! = 1 becomes too
close to 1, even at roots of 1 of moderate order:

? polylogmult([2,1], (99+20*I)/101 * [1,1])
*** polylogmult: sorry, polylogmult in this range is not yet implemented.
? polylogmult([2,1], exp(I*Pi/20)* [1,1])
*** polylogmult: sorry, polylogmult in this range is not yet implemented.

More precisely, if 𝑦𝑖 := 1/(𝑧1...𝑧𝑖) and

𝑣 := min
𝑖<𝑗;𝑦𝑖!=1

‖(1 − 𝑦𝑖)𝑦𝑗‖ > 1/4

then the algorithm computes the value up to a 2−𝑏 absolute error in𝑂(𝑘2𝑁) operations on floating point numbers
of 𝑂(𝑁) bits, where 𝑘 =

∑︀
𝑖 𝑠𝑖 is the weight and 𝑁 = 𝑏/ log2(4𝑣).

polzagier(n, m)

Creates Zagier’s polynomial 𝑃 (𝑚)
𝑛 used in the functions sumalt and sumpos (with 𝑓𝑙𝑎𝑔 = 1), see “Convergence

acceleration of alternating series”, Cohen et al., Experiment. Math., vol. 9, 2000, pp. 3–12.

If 𝑚 < 0 or 𝑚 >= 𝑛, 𝑃 (𝑚)
𝑛 = 0. We have 𝑃𝑛 := 𝑃

(0)
𝑛 is 𝑇𝑛(2𝑥− 1), where 𝑇𝑛 is the Legendre polynomial of

the second kind. For 𝑛 > 𝑚 > 0, 𝑃 (𝑚)
𝑛 is the 𝑚-th difference with step 2 of the sequence 𝑛𝑚+1𝑃𝑛; in this case,

it satisfies

2𝑃 (𝑚)
𝑛 (𝑠𝑖𝑛2𝑡) = (𝑑𝑚+1)/(𝑑𝑡𝑚+1)(sin(2𝑡)𝑚 sin(2(𝑛−𝑚)𝑡)).

powers(x, n, x0)
For nonnegative𝑛, return the vector with𝑛+1 components [1, 𝑥, ..., 𝑥𝑛] if x0 is omitted, and [𝑥0, 𝑥0*𝑥, ..., 𝑥0*𝑥𝑛]
otherwise.

? powers(Mod(3,17), 4)
%1 = [Mod(1, 17), Mod(3, 17), Mod(9, 17), Mod(10, 17), Mod(13, 17)]
? powers(Mat([1,2;3,4]), 3)
%2 = [[1, 0; 0, 1], [1, 2; 3, 4], [7, 10; 15, 22], [37, 54; 81, 118]]
? powers(3, 5, 2)
%3 = [2, 6, 18, 54, 162, 486]

When 𝑛 < 0, the function returns the empty vector [].
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precision(x, n)
The function behaves differently according to whether 𝑛 is present or not. If 𝑛 is missing, the function returns the
floating point precision in decimal digits of the PARI object 𝑥. If 𝑥 has no floating point component, the function
returns +oo.

? precision(exp(1e-100))
%1 = 154 \\ 154 significant decimal digits
? precision(2 + x)
%2 = +oo \\ exact object
? precision(0.5 + O(x))
%3 = 38 \\ floating point accuracy, NOT series precision
? precision( [ exp(1e-100), 0.5 ] )
%4 = 38 \\ minimal accuracy among components

Using getlocalprec() allows to retrieve the working precision (as modified by possible localprec state-
ments).

If 𝑛 is present, the function creates a new object equal to 𝑥 with a new floating point precision 𝑛: 𝑛 is the number
of desired significant decimal digits. If 𝑛 is smaller than the precision of a t_REAL component of 𝑥, it is truncated,
otherwise it is extended with zeros. For non-floating-point types, no change.

precprime(x)
Finds the largest pseudoprime (see ispseudoprime) less than or equal to 𝑥. 𝑥 can be of any real type. Returns
0 if 𝑥 <= 1. Note that if 𝑥 is a prime, this function returns 𝑥 and not the largest prime strictly smaller than 𝑥. To
rigorously prove that the result is prime, use isprime.

prime(n)
The 𝑛− 𝑡ℎ prime number

? prime(10^9)
%1 = 22801763489

Uses checkpointing and a naive 𝑂(𝑛) algorithm. Will need about 30 minutes for 𝑛 up to 1011; make sure to start
gp with primelimit at least √𝑝𝑛, e.g. the value

√︀
𝑛 log(𝑛 log 𝑛) is guaranteed to be sufficient.

primecert(N, flag)
If N is a prime, return a PARI Primality Certificate for the prime 𝑁 , as described below. Otherwise, return 0. A
Primality Certificate 𝑐 can be checked using primecertisvalid(𝑐).

If 𝑓𝑙𝑎𝑔 = 0 (default), return an ECPP certificate (Atkin-Morain)

A PARI ECPP Primality Certificate for the prime 𝑁 is either a prime integer 𝑁 < 264 or a vector C of length ℓ
whose 𝑖 is a vector [𝑁𝑖, 𝑡𝑖, 𝑠𝑖, 𝑎𝑖, 𝑃𝑖] of length 5 where 𝑁1 = 𝑁 . It is said to be valid if for each 𝑖 = 1, ..., ℓ, all
of the following conditions are satisfied

• 𝑁𝑖 is a positive integer

• 𝑡𝑖 is an integer such that 𝑡2𝑖 < 4𝑁𝑖

• 𝑠𝑖 is a positive integer which divides 𝑚𝑖 where 𝑚𝑖 = 𝑁𝑖 + 1 − 𝑡𝑖

• If we set 𝑞𝑖 = (𝑚𝑖)/(𝑠𝑖), then

* 𝑞𝑖 > (𝑁
1/4
𝑖 + 1)2

* 𝑞𝑖 = 𝑁𝑖+1 if 1 <= 𝑖 < 𝑙

* 𝑞ℓ <= 264 is prime

• 𝑎𝑖 is an integer
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* P[i] is a vector of length 2 representing the affine point 𝑃𝑖 = (𝑥𝑖, 𝑦𝑖) on the elliptic curve 𝐸 : 𝑦2 =
𝑥3 + 𝑎𝑖𝑥+ 𝑏𝑖 modulo 𝑁𝑖 where 𝑏𝑖 = 𝑦2𝑖 − 𝑥3𝑖 − 𝑎𝑖𝑥𝑖 satisfying the following:

* 𝑚𝑖𝑃𝑖 = 𝑜𝑜

* 𝑠𝑖𝑃𝑖! = 𝑜𝑜

Using the following theorem, the data in the vector C allows to recursively certify the primality of 𝑁 (and all the
𝑞𝑖) under the single assumption that 𝑞ℓ be prime.

Theorem. If 𝑁 is an integer and there exist positive integers 𝑚, 𝑞 and a point 𝑃 on the elliptic curve 𝐸 :
𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 defined modulo 𝑁 such that 𝑞 > (𝑁1/4 + 1)2, 𝑞 is a prime divisor of 𝑚, 𝑚𝑃 = 𝑜𝑜 and
(𝑚)/(𝑞)𝑃 ! = 𝑜𝑜, then 𝑁 is prime.

? primecert(10^35 + 69)
%1 = [[100000000000000000000000000000000069, 5468679110354
52074, 2963504668391148, 0, [60737979324046450274283740674
208692, 24368673584839493121227731392450025]], [3374383076
4501150277, -11610830419, 734208843, 0, [26740412374402652
72 4, 6367191119818901665]], [45959444779, 299597, 2331, 0
, [18022351516, 9326882 51]]]
? primecert(nextprime(2^64))
%2 = [[18446744073709551629, -8423788454, 160388, 1, [1059
8342506117936052, 2225259013356795550]]]
? primecert(6)
%3 = 0
? primecert(41)
%4 = 41

If 𝑓𝑙𝑎𝑔 = 1 (very slow), return an 𝑁 − 1 certificate (Pocklington Lehmer)

A PARI 𝑁 − 1 Primality Certificate for the prime 𝑁 is either a prime integer 𝑁 < 264 or a pair [𝑁,𝐶], where
𝐶 is a vector with ℓ elements which are either a single integer 𝑝𝑖 < 264 or a triple [𝑝𝑖, 𝑎𝑖, 𝐶𝑖] with 𝑝𝑖 > 264

satisfying the following properties:

• 𝑝𝑖 is a prime divisor of 𝑁 − 1;

• 𝑎𝑖 is an integer such that 𝑎𝑁−1
𝑖 = 1(𝑚𝑜𝑑𝑁) and 𝑎(𝑁−1)/𝑝𝑖

𝑖 − 1 is coprime with 𝑁 ;

• 𝐶𝑖 is an 𝑁 − 1 Primality Certificate for 𝑝𝑖

• The product 𝐹 of the 𝑝𝑣𝑝𝑖 (𝑁−1)

𝑖 is strictly larger than 𝑁1/3. Provided that all 𝑝𝑖 are indeed primes, this
implies that any divisor of 𝑁 is congruent to 1 modulo 𝐹 .

• The Billhart, Lehmer, Selfridge criterion is satisfied: when we write 𝑁 = 1 + 𝑐1𝐹 + 𝑐2𝐹
2 in base 𝐹 the

polynomial 1+ 𝑐1𝑋+ 𝑐2𝑋
2 is irreducible over Z, i.e. 𝑐21−4𝑐2 is not a square. This implies that𝑁 is prime.

This algorithm requires factoring partially 𝑝− 1 for various prime integers 𝑝 with an unfactored parted <= 𝑝2/3

and this may be exceedingly slow compared to the default.

The algorithm fails if one of the pseudo-prime factors is not prime, which is exceedingly unlikely and well worth
a bug report. Note that if you monitor the algorithm at a high enough debug level, you may see warnings about
untested integers being declared primes. This is normal: we ask for partial factorizations (sufficient to prove
primality if the unfactored part is not too large), and factor warns us that the cofactor hasn’t been tested. It may
or may not be tested later, and may or may not be prime. This does not affect the validity of the whole Primality
Certificate.

primecertexport(cert, format)
Returns a string suitable for print/write to display a primality certificate from primecert, the format of which
depends on the value of format:
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• 0 (default): Human-readable format. See ??primecert for the meaning of the successive
𝑁, 𝑡, 𝑠, 𝑎,𝑚, 𝑞, 𝐸, 𝑃 . The integer 𝐷 is the negative fundamental discriminant coredisc(𝑡2 − 4𝑁).

• 1: Primo format 4.

• 2: MAGMA format.

Currently, only ECPP Primality Certificates are supported.

? cert = primecert(10^35+69);
? s = primecertexport(cert); \\ Human-readable
? print(s)
[1]
N = 100000000000000000000000000000000069
t = 546867911035452074
s = 2963504668391148
a = 0
D = -3
m = 99999999999999999453132088964547996
q = 33743830764501150277
E = [0, 1]
P = [21567861682493263464353543707814204,
49167839501923147849639425291163552]
[2]
N = 33743830764501150277
t = -11610830419
s = 734208843
a = 0
D = -3
m = 33743830776111980697
q = 45959444779
E = [0, 25895956964997806805]
P = [29257172487394218479, 3678591960085668324]

\\ Primo format
? s = primecertexport(cert,1); write("cert.out", s);

\\ Magma format, write to file
? s = primecertexport(cert,2); write("cert.m", s);

? cert = primecert(10^35+69, 1); \\ N-1 certificate
? primecertexport(cert)
*** at top-level: primecertexport(cert)
*** ^---------------------
*** primecertexport: sorry, N-1 certificate is not yet implemented.

primecertisvalid(cert)
Verifies if cert is a valid PARI ECPP Primality certificate, as described in ??primecert.

? cert = primecert(10^35 + 69)
%1 = [[100000000000000000000000000000000069, 5468679110354
52074, 2963504668391148, 0, [60737979324046450274283740674
208692, 24368673584839493121227731392450025]], [3374383076
4501150277, -11610830419, 734208843, 0, [26740412374402652
72 4, 6367191119818901665]], [45959444779, 299597, 2331, 0

(continues on next page)
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(continued from previous page)

, [18022351516, 9326882 51]]]
? primecertisvalid(cert)
%2 = 1

? cert[1][1]++; \\ random perturbation
? primecertisvalid(cert)
%4 = 0 \\ no longer valid
? primecertisvalid(primecert(6))
%5 = 0

primepi(x)
The prime counting function. Returns the number of primes 𝑝, 𝑝 <= 𝑥.

? primepi(10)
%1 = 4;
? primes(5)
%2 = [2, 3, 5, 7, 11]
? primepi(10^11)
%3 = 4118054813

Uses checkpointing and a naive 𝑂(𝑥) algorithm; make sure to start gp with primelimit at least
√
𝑥.

primes(n)
Creates a row vector whose components are the first 𝑛 prime numbers. (Returns the empty vector for 𝑛 <= 0.)
A t_VEC 𝑛 = [𝑎, 𝑏] is also allowed, in which case the primes in [𝑎, 𝑏] are returned

? primes(10) \\ the first 10 primes
%1 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
? primes([0,29]) \\ the primes up to 29
%2 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
? primes([15,30])
%3 = [17, 19, 23, 29]

prodeulerrat(F, s, a, precision)∏︀
𝑝>=𝑎 𝐹 (𝑝𝑠), where the product is taken over prime numbers and 𝐹 is a rational function.

? prodeulerrat(1+1/q^3,1)
%1 = 1.1815649490102569125693997341604542605
? zeta(3)/zeta(6)
%2 = 1.1815649490102569125693997341604542606

prodnumrat(F, a, precision)∏︀
𝑛>=𝑎 𝐹 (𝑛), where 𝐹 − 1 is a rational function of degree less than or equal to −2.

? prodnumrat(1+1/x^2,1)
%1 = 3.6760779103749777206956974920282606665

psdraw(list, flag)
This function is obsolete, use plotexport and write the result to file.

psi(x, precision)
The 𝜓-function of 𝑥, i.e. the logarithmic derivative Γ′(𝑥)/Γ(𝑥).
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psplothraw(listx, listy, flag)
This function is obsolete, use plothrawexport and write the result to file.

qfauto(G, fl)
𝐺 being a square and symmetric matrix with integer entries representing a positive definite quadratic form, outputs
the automorphism group of the associate lattice. Since this requires computing the minimal vectors, the compu-
tations can become very lengthy as the dimension grows. 𝐺 can also be given by an qfisominit structure. See
qfisominit for the meaning of fl.

The output is a two-components vector [𝑜, 𝑔] where 𝑜 is the group order and 𝑔 is the list of generators (as a vector).
For each generator 𝐻 , the equality 𝐺 = 𝑡𝐻𝐺𝐻 holds.

The interface of this function is experimental and will likely change in the future.

This function implements an algorithm of Plesken and Souvignier, following Souvignier’s implementation.

qfautoexport(qfa, flag)
qfa being an automorphism group as output by qfauto, export the underlying matrix group as a string suitable
for (no flags or 𝑓𝑙𝑎𝑔 = 0) GAP or (𝑓𝑙𝑎𝑔 = 1) Magma. The following example computes the size of the matrix
group using GAP:

? G = qfauto([2,1;1,2])
%1 = [12, [[-1, 0; 0, -1], [0, -1; 1, 1], [1, 1; 0, -1]]]
? s = qfautoexport(G)
%2 = "Group([[-1, 0], [0, -1]], [[0, -1], [1, 1]], [[1, 1], [0, -1]])"
? extern("echo \"Order("s");\" | gap -q")
%3 = 12

qfbclassno(D, flag)
Ordinary class number of the quadratic order of discriminant 𝐷, for “small” values of 𝐷.

• if 𝐷 > 0 or 𝑓𝑙𝑎𝑔 = 1, use a 𝑂(‖𝐷‖1/2) algorithm (compute 𝐿(1, 𝜒𝐷) with the approximate functional
equation). This is slower than quadclassunit as soon as ‖𝐷‖ 102 or so and is not meant to be used for
large 𝐷.

• if𝐷 < 0 and 𝑓𝑙𝑎𝑔 = 0 (or omitted), use a 𝑂(‖𝐷‖1/4) algorithm (Shanks’s baby-step/giant-step method). It
should be faster than quadclassunit for small values of 𝐷, say ‖𝐷‖ < 1018.

Important warning. In the latter case, this function only implements part of Shanks’s method (which allows to
speed it up considerably). It gives unconditionnally correct results for ‖𝐷‖ < 2.1010, but may give incorrect
results for larger values if the class group has many cyclic factors. We thus recommend to double-check results
using the function quadclassunit, which is about 2 to 3 times slower in the range ‖𝐷‖ ∈ [1010, 1018], assuming
GRH. We currently have no counter-examples but they should exist: we would appreciate a bug report if you find
one.

Warning. Contrary to what its name implies, this routine does not compute the number of classes of binary
primitive forms of discriminant 𝐷, which is equal to the narrow class number. The two notions are the same
when 𝐷 < 0 or the fundamental unit 𝜀 has negative norm; when 𝐷 > 0 and 𝑁𝜀 > 0, the number of classes
of forms is twice the ordinary class number. This is a problem which we cannot fix for backward compatibility
reasons. Use the following routine if you are only interested in the number of classes of forms:

QFBclassno(D) =
qfbclassno(D) * if (D < 0 || norm(quadunit(D)) < 0, 1, 2)

Here are a few examples:
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? qfbclassno(400000028) \\ D > 0: slow
time = 3,140 ms.
%1 = 1
? quadclassunit(400000028).no
time = 20 ms. \\{ much faster, assume GRH}
%2 = 1
? qfbclassno(-400000028) \\ D < 0: fast enough
time = 0 ms.
%3 = 7253
? quadclassunit(-400000028).no
time = 0 ms.
%4 = 7253

See also qfbhclassno.

qfbcompraw(x, y)
composition of the binary quadratic forms 𝑥 and 𝑦, without reduction of the result. This is useful e.g. to compute
a generating element of an ideal. The result is undefined if 𝑥 and 𝑦 do not have the same discriminant.

qfbhclassno(x)
Hurwitz class number of 𝑥, when 𝑥 is nonnegative and congruent to 0 or 3 modulo 4, and 0 for other values. For
𝑥 > 5.105, we assume the GRH, and use quadclassunit with default parameters.

? qfbhclassno(1) \\ not 0 or 3 mod 4
%1 = 0
? qfbhclassno(3)
%2 = 1/3
? qfbhclassno(4)
%3 = 1/2
? qfbhclassno(23)
%4 = 3

qfbil(x, y, q)
This function is obsolete, use qfeval.

qfbnucomp(x, y, L)
composition of the primitive positive definite binary quadratic forms 𝑥 and 𝑦 (type t_QFI) using the NUCOMP
and NUDUPL algorithms of Shanks, à la Atkin. 𝐿 is any positive constant, but for optimal speed, one should
take 𝐿 = ‖𝐷/4‖1/4, i.e. sqrtnint(abs(D) >> 2,4), where 𝐷 is the common discriminant of 𝑥 and 𝑦. When
𝑥 and 𝑦 do not have the same discriminant, the result is undefined.

The current implementation is slower than the generic routine for small𝐷, and becomes faster when𝐷 has about
45 bits.

qfbnupow(x, n, L)
𝑛-th power of the primitive positive definite binary quadratic form 𝑥 using Shanks’s NUCOMP and NUDUPL
algorithms; if set, 𝐿 should be equal to sqrtnint(abs(D) >> 2,4), where 𝐷 < 0 is the discriminant of 𝑥.

The current implementation is slower than the generic routine for small discriminant 𝐷, and becomes faster for
𝐷 245.

qfbpowraw(x, n)
𝑛-th power of the binary quadratic form 𝑥, computed without doing any reduction (i.e. using qfbcompraw). Here
𝑛 must be nonnegative and 𝑛 < 231.
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qfbprimeform(x, p, precision)
Prime binary quadratic form of discriminant 𝑥whose first coefficient is 𝑝, where ‖𝑝‖ is a prime number. By abuse
of notation, 𝑝 = 1 is also valid and returns the unit form. Returns an error if 𝑥 is not a quadratic residue mod 𝑝,
or if 𝑥 < 0 and 𝑝 < 0. (Negative definite t_QFI are not implemented.) In the case where 𝑥 > 0, the “distance”
component of the form is set equal to zero according to the current precision.

qfbred(x, flag, d, isd, sd)
Reduces the binary quadratic form 𝑥 (updating Shanks’s distance function if 𝑥 is indefinite). The binary digits of
𝑓𝑙𝑎𝑔 are toggles meaning

1: perform a single reduction step

2: don’t update Shanks’s distance

The arguments 𝑑, isd, sd, if present, supply the values of the discriminant, 𝑓𝑙𝑜𝑜𝑟
√
𝑑, and

√
𝑑 respectively (no

checking is done of these facts). If 𝑑 < 0 these values are useless, and all references to Shanks’s distance are
irrelevant.

qfbredsl2(x, data)
Reduction of the (real or imaginary) binary quadratic form 𝑥, return [𝑦, 𝑔] where 𝑦 is reduced and 𝑔 in 𝑆𝐿(2,Z)
is such that 𝑔.𝑥 = 𝑦; data, if present, must be equal to [𝐷, 𝑠𝑞𝑟𝑡𝑖𝑛𝑡(𝐷)], where 𝐷 > 0 is the discriminant of 𝑥.
In case 𝑥 is a t_QFR, the distance component is unaffected.

qfbsolve(Q, n, flag)
Solve the equation 𝑄(𝑥, 𝑦) = 𝑛 in coprime integers 𝑥 and 𝑦 (primitive solutions), where 𝑄 is a binary quadratic
form and 𝑛 an integer, up to the action of the special orthogonal group 𝐺 = 𝑆𝑂(𝑄,Z), which is isomorphic to
the group of units of positive norm of the quadratic order of discriminant 𝐷 = disc𝑄. If 𝐷 > 0, 𝐺 is infinite. If
𝐷 < −4, 𝐺 is of order 2, if 𝐷 = −3, 𝐺 is of order 6 and if 𝐷 = −4, 𝐺 is of order 4.

Binary digits of 𝑓𝑙𝑎𝑔 mean: 1: return all solutions if set, else a single solution; return [] if a single solution is
wanted (bit unset) but none exist. 2: also include imprimitive solutions.

When 𝑓𝑙𝑎𝑔 = 2 (return a single solution, possibly imprimitive), the algorithm returns a solution with minimal
content; in particular, a primitive solution exists if and only if one is returned.

The integer 𝑛 can be given by its factorization matrix :emphasis:`fa = factor(n)` or by the pair [𝑛, 𝑓𝑎].

? qfbsolve(Qfb(1,0,2), 603) \\ a single primitive solution
%1 = [5, 17]

? qfbsolve(Qfb(1,0,2), 603, 1) \\ all primitive solutions
%2 = [[5, 17], [-19, -11], [19, -11], [5, -17]]

? qfbsolve(Qfb(1,0,2), 603, 2) \\ a single, possibly imprimitive solution
%3 = [5, 17] \\ actually primitive

? qfbsolve(Qfb(1,0,2), 603, 3) \\ all solutions
%4 = [[5, 17], [-19, -11], [19, -11], [5, -17], [-21, 9], [-21, -9]]

? N = 2^128+1; F = factor(N);
? qfbsolve(Qfb(1,0,1),[N,F],1)
%3 = [[-16382350221535464479,8479443857936402504],
[18446744073709551616,-1],[-18446744073709551616,-1],
[16382350221535464479,8479443857936402504]]

For fixed 𝑄, assuming the factorisation of 𝑛 is given, the algorithm runs in probabilistic polynomial time in
log 𝑝, where 𝑝 is the largest prime divisor of 𝑛, through the computation of square roots of 𝐷 modulo 4𝑝). The
dependency on 𝑄 is more complicated: polynomial time in log |𝐷‖ if 𝑄 is imaginary, but exponential time if 𝑄
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is real (through the computation of a full cycle of reduced forms). In the latter case, note that bnfisprincipal
provides a solution in heuristic subexponential time assuming the GRH.

qfeval(q, x, y)
Evaluate the quadratic form 𝑞 (given by a symmetric matrix) at the vector 𝑥; if 𝑦 is present, evaluate the polar
form at (𝑥, 𝑦); if 𝑞 omitted, use the standard Euclidean scalar product, corresponding to the identity matrix.

Roughly equivalent to x~ * q * y, but a little faster and more convenient (does not distinguish between column
and row vectors):

? x = [1,2,3]~; y = [-1,3,1]~; q = [1,2,3;2,2,-1;3,-1,9];
? qfeval(q,x,y)
%2 = 23
? for(i=1,10^6, qfeval(q,x,y))
time = 661ms
? for(i=1,10^6, x~*q*y)
time = 697ms

The speedup is noticeable for the quadratic form, compared to x~ * q * x, since we save almost half the oper-
ations:

? for(i=1,10^6, qfeval(q,x))
time = 487ms

The special case 𝑞 = 𝐼𝑑 is handled faster if we omit 𝑞 altogether:

? qfeval(,x,y)
%6 = 8
? q = matid(#x);
? for(i=1,10^6, qfeval(q,x,y))
time = 529 ms.
? for(i=1,10^6, qfeval(,x,y))
time = 228 ms.
? for(i=1,10^6, x~*y)
time = 274 ms.

We also allow t_MAT s of compatible dimensions for 𝑥, and return x~ * q * x in this case as well:

? M = [1,2,3;4,5,6;7,8,9]; qfeval(,M) \\ Gram matrix
%5 =
[66 78 90]

[78 93 108]

[90 108 126]

? q = [1,2,3;2,2,-1;3,-1,9];
? for(i=1,10^6, qfeval(q,M))
time = 2,008 ms.
? for(i=1,10^6, M~*q*M)
time = 2,368 ms.

? for(i=1,10^6, qfeval(,M))
time = 1,053 ms.

(continues on next page)
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? for(i=1,10^6, M~*M)
time = 1,171 ms.

If 𝑞 is a t_QFI or t_QFR, it is implicitly converted to the attached symmetric t_MAT. This is done more efficiently
than by direct conversion, since we avoid introducing a denominator 2 and rational arithmetic:

? q = Qfb(2,3,4); x = [2,3];
? qfeval(q, x)
%2 = 62
? Q = Mat(q)
%3 =
[ 2 3/2]

[3/2 4]
? qfeval(Q, x)
%4 = 62
? for (i=1, 10^6, qfeval(q,x))
time = 758 ms.
? for (i=1, 10^6, qfeval(Q,x))
time = 1,110 ms.

Finally, when 𝑥 is a t_MAT with integral coefficients, we allow a t_QFI or t_QFR for 𝑞 and return the binary
quadratic form 𝑞𝑜𝑀 . Again, the conversion to t_MAT is less efficient in this case:

? q = Qfb(2,3,4); Q = Mat(q); x = [1,2;3,4];
? qfeval(q, x)
%2 = Qfb(47, 134, 96)
? qfeval(Q,x)
%3 =
[47 67]

[67 96]
? for (i=1, 10^6, qfeval(q,x))
time = 701 ms.
? for (i=1, 10^6, qfeval(Q,x))
time = 1,639 ms.

qfgaussred(q)
decomposition into squares of the quadratic form represented by the symmetric matrix 𝑞. The result is a matrix
whose diagonal entries are the coefficients of the squares, and the off-diagonal entries on each line represent the
bilinear forms. More precisely, if (𝑎𝑖𝑗) denotes the output, one has

𝑞(𝑥) =
∑︁
𝑖

𝑎𝑖𝑖(𝑥𝑖 +
∑︁
𝑗!=𝑖

𝑎𝑖𝑗𝑥𝑗)
2

? qfgaussred([0,1;1,0])
%1 =
[1/2 1]

[-1 -1/2]

This means that 2𝑥𝑦 = (1/2)(𝑥 + 𝑦)2 − (1/2)(𝑥 − 𝑦)2. Singular matrices are supported, in which case some
diagonal coefficients will vanish:
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? qfgaussred([1,1;1,1])
%1 =
[1 1]

[1 0]

This means that 𝑥2 + 2𝑥𝑦 + 𝑦2 = (𝑥+ 𝑦)2.

qfisom(G, H, fl, grp)
𝐺, 𝐻 being square and symmetric matrices with integer entries representing positive definite quadratic forms,
return an invertible matrix 𝑆 such that 𝐺 = 𝑡𝑆𝐻𝑆. This defines a isomorphism between the corresponding
lattices. Since this requires computing the minimal vectors, the computations can become very lengthy as the
dimension grows. See qfisominit for the meaning of fl. If grp is given it must be the automorphism group of
𝐻 . It will be used to speed up the computation.

𝐺 can also be given by an qfisominit structure which is preferable if several forms 𝐻 need to be compared to
𝐺.

This function implements an algorithm of Plesken and Souvignier, following Souvignier’s implementation.

qfisominit(G, fl, m)

𝐺 being a square and symmetric matrix with integer entries representing a positive definite quadratic form, return
an isom structure allowing to compute isomorphisms between 𝐺 and other quadratic forms faster.

The interface of this function is experimental and will likely change in future release.

If present, the optional parameter fl must be a t_VEC with two components. It allows to specify the invariants
used, which can make the computation faster or slower. The components are

• fl[1] Depth of scalar product combination to use.

• fl[2] Maximum level of Bacher polynomials to use.

If present, 𝑚 must be the set of vectors of norm up to the maximal of the diagonal entry of 𝐺, either as a matrix
or as given by qfminim. Otherwise this function computes the minimal vectors so it become very lengthy as the
dimension of 𝐺 grows.

qfjacobi(A, precision)
Apply Jacobi’s eigenvalue algorithm to the real symmetric matrix 𝐴. This returns [𝐿, 𝑉 ], where

• 𝐿 is the vector of (real) eigenvalues of 𝐴, sorted in increasing order,

• 𝑉 is the corresponding orthogonal matrix of eigenvectors of 𝐴.

? \p19
? A = [1,2;2,1]; mateigen(A)
%1 =
[-1 1]

[ 1 1]
? [L, H] = qfjacobi(A);
? L
%3 = [-1.000000000000000000, 3.000000000000000000]~
? H
%4 =
[ 0.7071067811865475245 0.7071067811865475244]

[-0.7071067811865475244 0.7071067811865475245]
(continues on next page)
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? norml2( (A-L[1])*H[,1] ) \\ approximate eigenvector
%5 = 9.403954806578300064 E-38
? norml2(H*H~ - 1)
%6 = 2.350988701644575016 E-38 \\ close to orthogonal

qflll(x, flag)
LLL algorithm applied to the columns of the matrix 𝑥. The columns of 𝑥 may be linearly dependent. The result
is by default a unimodular transformation matrix 𝑇 such that 𝑥.𝑇 is an LLL-reduced basis of the lattice generated
by the column vectors of 𝑥. Note that if 𝑥 is not of maximal rank 𝑇 will not be square. The LLL parameters
are (0.51, 0.99), meaning that the Gram-Schmidt coefficients for the final basis satisfy ‖𝜇𝑖,𝑗‖ ≤ 0.51, and the
Lovász’s constant is 0.99.

If 𝑓𝑙𝑎𝑔 = 0 (default), assume that 𝑥 has either exact (integral or rational) or real floating point entries. The matrix
is rescaled, converted to integers and the behavior is then as in 𝑓𝑙𝑎𝑔 = 1.

If 𝑓𝑙𝑎𝑔 = 1, assume that 𝑥 is integral. Computations involving Gram-Schmidt vectors are approximate, with
precision varying as needed (Lehmer’s trick, as generalized by Schnorr). Adapted from Nguyen and Stehlé’s
algorithm and Stehlé’s code (fplll-1.3).

If 𝑓𝑙𝑎𝑔 = 2, 𝑥 should be an integer matrix whose columns are linearly independent. Returns a partially reduced
basis for 𝑥, using an unpublished algorithm by Peter Montgomery: a basis is said to be partially reduced if
‖𝑣𝑖𝑣𝑗‖ >= ‖𝑣𝑖‖ for any two distinct basis vectors 𝑣𝑖, 𝑣𝑗 . This is faster than 𝑓𝑙𝑎𝑔 = 1, esp. when one row is huge
compared to the other rows (knapsack-style), and should quickly produce relatively short vectors. The resulting
basis is not LLL-reduced in general. If LLL reduction is eventually desired, avoid this partial reduction: applying
LLL to the partially reduced matrix is significantly slower than starting from a knapsack-type lattice.

If 𝑓𝑙𝑎𝑔 = 3, as 𝑓𝑙𝑎𝑔 = 1, but the reduction is performed in place: the routine returns 𝑥.𝑇 . This is usually faster
for knapsack-type lattices.

If 𝑓𝑙𝑎𝑔 = 4, as 𝑓𝑙𝑎𝑔 = 1, returning a vector [𝐾,𝑇 ] of matrices: the columns of𝐾 represent a basis of the integer
kernel of 𝑥 (not LLL-reduced in general) and 𝑇 is the transformation matrix such that 𝑥.𝑇 is an LLL-reduced
Z-basis of the image of the matrix 𝑥.

If 𝑓𝑙𝑎𝑔 = 5, case as case 4, but 𝑥 may have polynomial coefficients.

If 𝑓𝑙𝑎𝑔 = 8, same as case 0, but 𝑥 may have polynomial coefficients.

? \p500
realprecision = 500 significant digits
? a = 2*cos(2*Pi/97);
? C = 10^450;
? v = powers(a,48); b = round(matconcat([matid(48),C*v]~));
? p = b * qflll(b)[,1]; \\ tiny linear combination of powers of 'a'
time = 4,470 ms.
? exponent(v * p / C)
%5 = -1418
? p3 = qflll(b,3)[,1]; \\ compute in place, faster
time = 3,790 ms.
? p3 == p \\ same result
%7 = 1
? p2 = b * qflll(b,2)[,1]; \\ partial reduction: faster, not as good
time = 343 ms.
? exponent(v * p2 / C)
%9 = -1190
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qflllgram(G, flag)
Same as qflll, except that the matrix 𝐺 = 𝑥 * 𝑥 is the Gram matrix of some lattice vectors 𝑥, and not the
coordinates of the vectors themselves. In particular,𝐺must now be a square symmetric real matrix, corresponding
to a positive quadratic form (not necessarily definite: 𝑥 needs not have maximal rank). The result is a unimodular
transformation matrix 𝑇 such that 𝑥.𝑇 is an LLL-reduced basis of the lattice generated by the column vectors of
𝑥. See qflll for further details about the LLL implementation.

If 𝑓𝑙𝑎𝑔 = 0 (default), assume that 𝐺 has either exact (integral or rational) or real floating point entries. The
matrix is rescaled, converted to integers and the behavior is then as in 𝑓𝑙𝑎𝑔 = 1.

If 𝑓𝑙𝑎𝑔 = 1, assume that 𝐺 is integral. Computations involving Gram-Schmidt vectors are approximate, with
precision varying as needed (Lehmer’s trick, as generalized by Schnorr). Adapted from Nguyen and Stehlé’s
algorithm and Stehlé’s code (fplll-1.3).

𝑓𝑙𝑎𝑔 = 4: 𝐺 has integer entries, gives the kernel and reduced image of 𝑥.

𝑓𝑙𝑎𝑔 = 5: same as 4, but 𝐺 may have polynomial coefficients.

qfminim(x, B, m, flag, precision)
𝑥 being a square and symmetric matrix of dimension 𝑑 representing a positive definite quadratic form, this function
deals with the vectors of 𝑥 whose norm is less than or equal to 𝐵, enumerated using the Fincke-Pohst algorithm,
storing at most 𝑚 pairs of vectors: only one vector is given for each pair 𝑣. There is no limit if 𝑚 is omitted:
beware that this may be a huge vector! The vectors are returned in no particular order.

The function searches for the minimal nonzero vectors if 𝐵 is omitted. The behavior is undefined if 𝑥 is not
positive definite (a “precision too low” error is most likely, although more precise error messages are possible).
The precise behavior depends on 𝑓𝑙𝑎𝑔.

• If 𝑓𝑙𝑎𝑔 = 0 (default), return [𝑁,𝑀, 𝑉 ], where 𝑁 is the number of vectors enumerated (an even number,
possibly larger than 2𝑚), 𝑀 <= 𝐵 is the maximum norm found, and 𝑉 is a matrix whose columns are
found vectors.

• If 𝑓𝑙𝑎𝑔 = 1, ignore 𝑚 and return [𝑀,𝑣], where 𝑣 is a nonzero vector of length 𝑀 <= 𝐵. If no nonzero
vector has length <= 𝐵, return []. If no explicit 𝐵 is provided, return a vector of smallish norm, namely the
vector of smallest length (usually the first one but not always) in an LLL-reduced basis for 𝑥.

In these two cases, 𝑥 must have integral small entries: more precisely, we definitely must have 𝑑.‖𝑥‖𝑜𝑜2 < 253

but even that may not be enough. The implementation uses low precision floating point computations for maximal
speed and gives incorrect results when 𝑥 has large entries. That condition is checked in the code and the routine
raises an error if large rounding errors occur. A more robust, but much slower, implementation is chosen if the
following flag is used:

• If 𝑓𝑙𝑎𝑔 = 2, 𝑥 can have non integral real entries, but this is also useful when 𝑥 has large integral entries.
Return [𝑁,𝑀, 𝑉 ] as in case 𝑓𝑙𝑎𝑔 = 0, where 𝑀 is returned as a floating point number. If 𝑥 is inexact
and 𝐵 is omitted, the “minimal” vectors in 𝑉 only have approximately the same norm (up to the internal
working accuracy). This version is very robust but still offers no hard and fast guarantee about the result: it
involves floating point operations performed at a high floating point precision depending on your input, but
done without rigorous tracking of roundoff errors (as would be provided by interval arithmetic for instance).
No example is known where the input is exact but the function returns a wrong result.

? x = matid(2);
? qfminim(x) \\ 4 minimal vectors of norm 1: ±[0,1], ±[1,0]
%2 = [4, 1, [0, 1; 1, 0]]
? { x = \\ The Leech lattice
[4, 2, 0, 0, 0,-2, 0, 0, 0, 0, 0, 0, 1,-1, 0, 0, 0, 1, 0,-1, 0, 0, 0,-2;
2, 4,-2,-2, 0,-2, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0, 0,-1, 0, 1,-1,-1;
0,-2, 4, 0,-2, 0, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 1, 0, 0, 1,-1,-1, 0, 0;
0,-2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1,-1, 0, 0, 0, 1,-1, 0, 1,-1, 1, 0;
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0, 0,-2, 0, 4, 0, 0, 0, 1,-1, 0, 0, 1, 0, 0, 0,-2, 0, 0,-1, 1, 1, 0, 0;
-2, -2,0, 0, 0, 4,-2, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,-1, 1, 1;
0, 0, 0, 0, 0,-2, 4,-2, 0, 0, 0, 0, 0, 1, 0, 0, 0,-1, 0, 0, 0, 1,-1, 0;
0, 0, 0, 0, 0, 0,-2, 4, 0, 0, 0, 0,-1, 0, 0, 0, 0, 0,-1,-1,-1, 0, 1, 0;
0, 0, 0, 0, 1,-1, 0, 0, 4, 0,-2, 0, 1, 1, 0,-1, 0, 1, 0, 0, 0, 0, 0, 0;
0, 0, 0, 0,-1, 0, 0, 0, 0, 4, 0, 0, 1, 1,-1, 1, 0, 0, 0, 1, 0, 0, 1, 0;
0, 0, 0, 0, 0, 0, 0, 0,-2, 0, 4,-2, 0,-1, 0, 0, 0,-1, 0,-1, 0, 0, 0, 0;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 4,-1, 1, 0, 0,-1, 1, 0, 1, 1, 1,-1, 0;
1, 0,-1, 1, 1, 0, 0,-1, 1, 1, 0,-1, 4, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1,-1;
-1,-1, 1,-1, 0, 0, 1, 0, 1, 1,-1, 1, 0, 4, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 1, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0;
0, 0, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 1, 1, 0, 4, 0, 0, 0, 0, 1, 1, 0, 0;
0, 0, 1, 0,-2, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0, 4, 1, 1, 1, 0, 0, 1, 1;
1, 0, 0, 1, 0, 0,-1, 0, 1, 0,-1, 1, 1, 0, 0, 0, 1, 4, 0, 1, 1, 0, 1, 0;
0, 0, 0,-1, 0, 1, 0,-1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 4, 0, 1, 1, 0, 1;
-1, -1,1, 0,-1, 1, 0,-1, 0, 1,-1, 1, 0, 1, 0, 0, 1, 1, 0, 4, 0, 0, 1, 1;
0, 0,-1, 1, 1, 0, 0,-1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 4, 1, 0, 1;
0, 1,-1,-1, 1,-1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 4, 0, 1;
0,-1, 0, 1, 0, 1,-1, 1, 0, 1, 0,-1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 4, 1;
-2,-1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 4]; }
? qfminim(x,,0) \\ 0: don't store minimal vectors
time = 121 ms.
%4 = [196560, 4, [;]] \\ 196560 minimal vectors of norm 4
? qfminim(x) \\ store all minimal vectors !
time = 821 ms.
? qfminim(x,,0,2); \\ safe algorithm. Slower and unnecessary here.
time = 5,540 ms.
%6 = [196560, 4.000061035156250000, [;]]
? qfminim(x,,,2); \\ safe algorithm; store all minimal vectors
time = 6,602 ms.

In this example, storing 0 vectors limits memory use; storing all of them requires a parisize about 50MB. All
minimal vectors are nevertheless enumerated in both cases of course, which means the speedup is likely to be
marginal.

qfnorm(x, q)
This function is obsolete, use qfeval.

qforbits(G, V)
Return the orbits of 𝑉 under the action of the group of linear transformation generated by the set𝐺. It is assumed
that 𝐺 contains minus identity, and only one vector in 𝑣,−𝑣 should be given. If 𝐺 does not stabilize 𝑉 , the
function return 0.

In the example below, we compute representatives and lengths of the orbits of the vectors of norm <= 3 under
the automorphisms of the lattice Z6.

? Q=matid(6); G=qfauto(Q); V=qfminim(Q,3);
? apply(x->[x[1],#x],qforbits(G,V))
%2 = [[[0,0,0,0,0,1]~,6],[[0,0,0,0,1,-1]~,30],[[0,0,0,1,-1,-1]~,80]]

qfparam(G, sol, flag)
Coefficients of binary quadratic forms that parametrize the solutions of the ternary quadratic form 𝐺, using the
particular solution sol. flag is optional and can be 1, 2, or 3, in which case the flag-th form is reduced. The default
is flag = 0 (no reduction).

322 Chapter 1. Interface to the PARI library



CyPari2 Documentation, Release 2.1.3

? G = [1,0,0;0,1,0;0,0,-34];
? M = qfparam(G, qfsolve(G))
%2 =
[ 3 -10 -3]

[-5 -6 5]

[ 1 0 1]

Indeed, the solutions can be parametrized as

(3𝑥2 − 10𝑥𝑦 − 3𝑦2)2 + (−5𝑥2 − 6𝑥𝑦 + 5𝑦2)2 − 34(𝑥2 + 𝑦2)2 = 0.

? v = y^2 * M*[1,x/y,(x/y)^2]~
%3 = [3*x^2 - 10*y*x - 3*y^2, -5*x^2 - 6*y*x + 5*y^2, -x^2 - y^2]~
? v~*G*v
%4 = 0

qfperfection(G)

𝐺 being a square and symmetric matrix with integer entries representing a positive definite quadratic form, outputs
the perfection rank of the form. That is, gives the rank of the family of the 𝑠 symmetric matrices 𝑣𝑣𝑡, where 𝑣
runs through the minimal vectors.

The algorithm computes the minimal vectors and its runtime is exponential in the dimension of 𝑥.

qfrep(q, B, flag)
𝑞 being a square and symmetric matrix with integer entries representing a positive definite quadratic form, count
the vectors representing successive integers.

• If 𝑓𝑙𝑎𝑔 = 0, count all vectors. Outputs the vector whose 𝑖-th entry, 1 <= 𝑖 <= 𝐵 is half the number of
vectors 𝑣 such that 𝑞(𝑣) = 𝑖.

• If 𝑓𝑙𝑎𝑔 = 1, count vectors of even norm. Outputs the vector whose 𝑖-th entry, 1 <= 𝑖 <= 𝐵 is half the
number of vectors such that 𝑞(𝑣) = 2𝑖.

? q = [2, 1; 1, 3];
? qfrep(q, 5)
%2 = Vecsmall([0, 1, 2, 0, 0]) \\ 1 vector of norm 2, 2 of norm 3, etc.
? qfrep(q, 5, 1)
%3 = Vecsmall([1, 0, 0, 1, 0]) \\ 1 vector of norm 2, 0 of norm 4, etc.

This routine uses a naive algorithm based on qfminim, and will fail if any entry becomes larger than 231 (or 263).

qfsign(x)
Returns [𝑝,𝑚] the signature of the quadratic form represented by the symmetric matrix 𝑥. Namely, 𝑝 (resp.𝑚) is
the number of positive (resp. negative) eigenvalues of 𝑥. The result is computed using Gaussian reduction.

qfsolve(G)

Given a square symmetric matrix 𝐺 of dimension 𝑛 >= 1, solve over Q the quadratic equation 𝑋𝑡𝐺𝑋 = 0.
The matrix𝐺must have rational coefficients. The solution might be a single nonzero vector (vectorv) or a matrix
(whose columns generate a totally isotropic subspace).

If no solution exists, returns an integer, that can be a prime 𝑝 such that there is no local solution at 𝑝, or −1 if
there is no real solution, or −2 if 𝑛 = 2 and −det𝐺 is positive but not a square (which implies there is a real
solution, but no local solution at some 𝑝 dividing det𝐺).

1.1. Guide to real precision in the PARI interface 323



CyPari2 Documentation, Release 2.1.3

? G = [1,0,0;0,1,0;0,0,-34];
? qfsolve(G)
%1 = [-3, -5, 1]~
? qfsolve([1,0; 0,2])
%2 = -1 \\ no real solution
? qfsolve([1,0,0;0,3,0; 0,0,-2])
%3 = 3 \\ no solution in Q_3
? qfsolve([1,0; 0,-2])
%4 = -2 \\ no solution, n = 2

quadclassunit(D, flag, tech, precision)
Buchmann-McCurley’s sub-exponential algorithm for computing the class group of a quadratic order of discrim-
inant 𝐷.

This function should be used instead of qfbclassno or quadregulator when𝐷 < −1025,𝐷 > 1010, or when
the structure is wanted. It is a special case of bnfinit, which is slower, but more robust.

The result is a vector 𝑣 whose components should be accessed using member functions:

• :math:`v.no`: the class number

• :math:`v.cyc`: a vector giving the structure of the class group as a product of cyclic groups;

• :math:`v.gen`: a vector giving generators of those cyclic groups (as binary quadratic forms).

• :math:`v.reg`: the regulator, computed to an accuracy which is the maximum of an internal accuracy de-
termined by the program and the current default (note that once the regulator is known to a small accuracy
it is trivial to compute it to very high accuracy, see the tutorial).

The 𝑓𝑙𝑎𝑔 is obsolete and should be left alone. In older versions, it supposedly computed the narrow class group
when 𝐷 > 0, but this did not work at all; use the general function bnfnarrow.

Optional parameter tech is a row vector of the form [𝑐1, 𝑐2], where 𝑐1 <= 𝑐2 are nonnegative real numbers which
control the execution time and the stack size, see GRHbnf (in the PARI manual). The parameter is used as a
threshold to balance the relation finding phase against the final linear algebra. Increasing the default 𝑐1 means
that relations are easier to find, but more relations are needed and the linear algebra will be harder. The default
value for 𝑐1 is 0 and means that it is taken equal to 𝑐2. The parameter 𝑐2 is mostly obsolete and should not be
changed, but we still document it for completeness: we compute a tentative class group by generators and relations
using a factorbase of prime ideals <= 𝑐1(log ‖𝐷‖)2, then prove that ideals of norm <= 𝑐2(log ‖𝐷‖)2 do not
generate a larger group. By default an optimal 𝑐2 is chosen, so that the result is provably correct under the GRH
— a famous result of Bach states that 𝑐2 = 6 is fine, but it is possible to improve on this algorithmically. You
may provide a smaller 𝑐2, it will be ignored (we use the provably correct one); you may provide a larger 𝑐2 than
the default value, which results in longer computing times for equally correct outputs (under GRH).

quaddisc(x)
Discriminant of the étale algebra Q(

√
𝑥), where 𝑥 ∈ Q*. This is the same as coredisc(𝑑) where 𝑑 is the integer

squarefree part of 𝑥, so 𝑥 = 𝑑𝑓2 with 𝑓 ∈ Q* and 𝑑 ∈ Z. This returns 0 for 𝑥 = 0, 1 for 𝑥 square and the
discriminant of the quadratic field Q(

√
𝑥) otherwise.

? quaddisc(7)
%1 = 28
? quaddisc(-7)
%2 = -7

quadgen(D, v)

Creates the quadratic number 𝜔 = (𝑎+
√
𝐷)/2 where 𝑎 = 0 if𝐷 = 0𝑚𝑜𝑑4, 𝑎 = 1 if𝐷 = 1𝑚𝑜𝑑4, so that (1, 𝜔)
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is an integral basis for the quadratic order of discriminant 𝐷. 𝐷 must be an integer congruent to 0 or 1 modulo
4, which is not a square. If v is given, the variable name is used to display 𝑔 else ‘w’ is used.

? w = quadgen(5, 'w); w^2 - w - 1
%1 = 0
? w = quadgen(0, 'w)
*** at top-level: w=quadgen(0)
*** ^----------
*** quadgen: domain error in quadpoly: issquare(disc) = 1

quadhilbert(D, precision)
Relative equation defining the Hilbert class field of the quadratic field of discriminant 𝐷.

If 𝐷 < 0, uses complex multiplication (Schertz’s variant).

If𝐷 > 0 Stark units are used and (in rare cases) a vector of extensions may be returned whose compositum is the
requested class field. See bnrstark for details.

quadpoly(D, v)
Creates the “canonical” quadratic polynomial (in the variable 𝑣) corresponding to the discriminant 𝐷, i.e. the
minimal polynomial of 𝑞𝑢𝑎𝑑𝑔𝑒𝑛(𝐷). 𝐷 must be an integer congruent to 0 or 1 modulo 4, which is not a square.

? quadpoly(5,'y)
%1 = y^2 - y - 1
? quadpoly(0,'y)
*** at top-level: quadpoly(0,'y)
*** ^--------------
*** quadpoly: domain error in quadpoly: issquare(disc) = 1

quadray(D, f, precision)
Relative equation for the ray class field of conductor 𝑓 for the quadratic field of discriminant 𝐷 using analytic
methods. A bnf for 𝑥2 −𝐷 is also accepted in place of 𝐷.

For 𝐷 < 0, uses the 𝜎 function and Schertz’s method.

For 𝐷 > 0, uses Stark’s conjecture, and a vector of relative equations may be returned. See bnrstark for more
details.

quadregulator(x, precision)
Regulator of the quadratic field of positive discriminant 𝑥. Returns an error if 𝑥 is not a discriminant (fundamental
or not) or if 𝑥 is a square. See also quadclassunit if 𝑥 is large.

quadunit(D, v)

Fundamental unit 𝑢 of the real quadratic field Q(
√
𝐷) where 𝐷 is the positive discriminant of the field. If 𝐷 is

not a fundamental discriminant, this probably gives the fundamental unit of the corresponding order. 𝐷 must be
an integer congruent to 0 or 1 modulo 4, which is not a square; the result is a quadratic number (see quadgen (in
the PARI manual)). If v is given, the variable name is used to display 𝑢 else ‘w’ is used. The algorithm computes
the continued fraction of (1+

√
𝐷)/2 or

√
𝐷/2 (see GTM 138, algorithm 5.7.2). Although the continued fraction

length is only 𝑂(
√
𝐷), the function still runs in time 𝑂(𝐷), in part because the output size is not polynomially

bounded in terms of log𝐷. See bnfinit and bnfunits for a better alternative for large 𝐷, running in time
subexponential in log𝐷 and returning the fundamental units in compact form (as a short list of 𝑆-units of size
𝑂(log𝐷)3 raised to possibly large exponents).

ramanujantau(n)
Compute the value of Ramanujan’s tau function at an individual 𝑛, assuming the truth of the GRH (to com-
pute quickly class numbers of imaginary quadratic fields using quadclassunit). Algorithm in 𝑂(𝑛1/2) using
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𝑂(log 𝑛) space. If all values up to 𝑁 are required, then∑︁
𝜏(𝑛)𝑞𝑛 = 𝑞

∏︁
𝑛>=1

(1 − 𝑞𝑛)24

will produce them in time 𝑂(𝑁), against 𝑂(𝑁3/2) for individual calls to ramanujantau; of course the space
complexity then becomes 𝑂(𝑁).

? tauvec(N) = Vec(q*eta(q + O(q^N))^24);
? N = 10^4; v = tauvec(N);
time = 26 ms.
? ramanujantau(N)
%3 = -482606811957501440000
? w = vector(N, n, ramanujantau(n)); \\ much slower !
time = 13,190 ms.
? v == w
%4 = 1

random(N)

Returns a random element in various natural sets depending on the argument 𝑁 .

• t_INT: returns an integer uniformly distributed between 0 and 𝑁 − 1. Omitting the argument is equivalent
to random(2^31).

• t_REAL: returns a real number in [0, 1[ with the same accuracy as 𝑁 (whose mantissa has the same number
of significant words).

• t_INTMOD: returns a random intmod for the same modulus.

• t_FFELT: returns a random element in the same finite field.

• t_VEC of length 2, 𝑁 = [𝑎, 𝑏]: returns an integer uniformly distributed between 𝑎 and 𝑏.

• t_VEC generated by ellinit over a finite field 𝑘 (coefficients are t_INTMOD s modulo a prime or t_FFELT s):
returns a “random” 𝑘-rational affine point on the curve. More precisely if the curve has a single point (at
infinity!) we return it; otherwise we return an affine point by drawing an abscissa uniformly at random until
ellordinate succeeds. Note that this is definitely not a uniform distribution over 𝐸(𝑘), but it should be
good enough for applications.

• t_POL return a random polynomial of degree at most the degree of𝑁 . The coefficients are drawn by applying
random to the leading coefficient of 𝑁 .

? random(10)
%1 = 9
? random(Mod(0,7))
%2 = Mod(1, 7)
? a = ffgen(ffinit(3,7), 'a); random(a)
%3 = a^6 + 2*a^5 + a^4 + a^3 + a^2 + 2*a
? E = ellinit([3,7]*Mod(1,109)); random(E)
%4 = [Mod(103, 109), Mod(10, 109)]
? E = ellinit([1,7]*a^0); random(E)
%5 = [a^6 + a^5 + 2*a^4 + 2*a^2, 2*a^6 + 2*a^4 + 2*a^3 + a^2 + 2*a]
? random(Mod(1,7)*x^4)
%6 = Mod(5, 7)*x^4 + Mod(6, 7)*x^3 + Mod(2, 7)*x^2 + Mod(2, 7)*x + Mod(5, 7)

These variants all depend on a single internal generator, and are independent from your operating system’s random
number generators. A random seed may be obtained via getrand, and reset using setrand: from a given seed,
and given sequence of random s, the exact same values will be generated. The same seed is used at each startup,

326 Chapter 1. Interface to the PARI library



CyPari2 Documentation, Release 2.1.3

reseed the generator yourself if this is a problem. Note that internal functions also call the random number
generator; adding such a function call in the middle of your code will change the numbers produced.

Technical note. Up to version 2.4 included, the internal generator produced pseudo-random numbers by means
of linear congruences, which were not well distributed in arithmetic progressions. We now use Brent’s XORGEN
algorithm, based on Feedback Shift Registers, see http://wwwmaths.anu.edu.au/~brent/random.html.
The generator has period 24096 − 1, passes the Crush battery of statistical tests of L’Ecuyer and Simard, but is
not suitable for cryptographic purposes: one can reconstruct the state vector from a small sample of consecutive
values, thus predicting the entire sequence.

randomprime(N, q)
Returns a strong pseudo prime (see ispseudoprime) in [2, 𝑁 − 1]. A t_VEC 𝑁 = [𝑎, 𝑏] is also allowed, with
𝑎 <= 𝑏 in which case a pseudo prime 𝑎 <= 𝑝 <= 𝑏 is returned; if no prime exists in the interval, the function
will run into an infinite loop. If the upper bound is less than 264 the pseudo prime returned is a proven prime.

? randomprime(100)
%1 = 71
? randomprime([3,100])
%2 = 61
? randomprime([1,1])
*** at top-level: randomprime([1,1])
*** ^------------------
*** randomprime: domain error in randomprime:
*** floor(b) - max(ceil(a),2) < 0
? randomprime([24,28]) \\ infinite loop

If the optional parameter 𝑞 is an integer, return a prime congruent to 1𝑚𝑜𝑑𝑞; if 𝑞 is an intmod, return a prime in
the given congruence class. If the class contains no prime in the given interval, the function will raise an exception
if the class is not invertible, else run into an infinite loop

? randomprime(100, 4) \\ 1 mod 4
%1 = 71
? randomprime(100, 4)
%2 = 13
? randomprime([10,100], Mod(2,5))
%3 = 47
? randomprime(100, Mod(0,2)) \\ silly but works
%4 = 2
? randomprime([3,100], Mod(0,2)) \\ not invertible
*** at top-level: randomprime([3,100],Mod(0,2))
*** ^-----------------------------
*** randomprime: elements not coprime in randomprime:
0
2
? randomprime(100, 97) \\ infinite loop

read(filename)
Reads in the file filename (subject to string expansion). If filename is omitted, re-reads the last file that was fed
into gp. The return value is the result of the last expression evaluated.

If a GP binary file is read using this command (see writebin (in the PARI manual)), the file is loaded and
the last object in the file is returned.

In case the file you read in contains an allocatemem statement (to be generally avoided), you should leave read
instructions by themselves, and not part of larger instruction sequences.
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Variants. readvec allows to read a whole file at once; fileopen followed by either fileread (evaluated lines)
or filereadstr (lines as nonevaluated strings) allows to read a file one line at a time.

readstr(filename)
Reads in the file filename and return a vector of GP strings, each component containing one line from the file. If
filename is omitted, re-reads the last file that was fed into gp.

readvec(filename)
Reads in the file filename (subject to string expansion). If filename is omitted, re-reads the last file that was fed into
gp. The return value is a vector whose components are the evaluation of all sequences of instructions contained
in the file. For instance, if file contains

1
2
3

then we will get:

? \r a
%1 = 1
%2 = 2
%3 = 3
? read(a)
%4 = 3
? readvec(a)
%5 = [1, 2, 3]

In general a sequence is just a single line, but as usual braces and \ may be used to enter multiline sequences.

real(x)
Real part of 𝑥. When 𝑥 is a quadratic number, this is the coefficient of 1 in the “canonical” integral basis (1, 𝜔).

? real(3 + I)
%1 = 3
? x = 3 + quadgen(-23);
? real(x) \\ as a quadratic number
%3 = 3
? real(x * 1.) \\ as a complex number
%4 = 3.5000000000000000000000000000000000000

removeprimes(x)
Removes the primes listed in 𝑥 from the prime number table. In particular removeprimes(addprimes())
empties the extra prime table. 𝑥 can also be a single integer. List the current extra primes if 𝑥 is omitted.

rnfalgtobasis(rnf, x)
Expresses 𝑥 on the relative integral basis. Here, 𝑟𝑛𝑓 is a relative number field extension 𝐿/𝐾 as output by
rnfinit, and 𝑥 an element of 𝐿 in absolute form, i.e. expressed as a polynomial or polmod with polmod coeffi-
cients, not on the relative integral basis.

rnfbasis(bnf, M)

Let𝐾 the field represented by bnf, as output by bnfinit. 𝑀 is a projective Z𝐾-module of rank 𝑛 (𝑀 ⊗𝐾 is an
𝑛-dimensional 𝐾-vector space), given by a pseudo-basis of size 𝑛. The routine returns either a true Z𝐾-basis of
𝑀 (of size 𝑛) if it exists, or an 𝑛+ 1-element generating set of 𝑀 if not.

It is allowed to use a monic irreducible polynomial 𝑃 in 𝐾[𝑋] instead of 𝑀 , in which case, 𝑀 is defined as the
ring of integers of 𝐾[𝑋]/(𝑃 ), viewed as a Z𝐾-module.
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Huge discriminants, helping rnfdisc. The format [𝑇,𝐵] is also accepted instead of 𝑇 and computes an order
which is maximal at all maximal ideals specified by 𝐵, see ??rnfinit: the valuation of 𝐷 is then correct at all
such maximal ideals but may be incorrect at other primes.

rnfbasistoalg(rnf, x)
Computes the representation of 𝑥 as a polmod with polmods coefficients. Here, 𝑟𝑛𝑓 is a relative number field
extension 𝐿/𝐾 as output by rnfinit, and 𝑥 an element of 𝐿 expressed on the relative integral basis.

rnfcharpoly(nf, T, a, var)
Characteristic polynomial of 𝑎 over 𝑛𝑓 , where 𝑎 belongs to the algebra defined by 𝑇 over 𝑛𝑓 , i.e. 𝑛𝑓 [𝑋]/(𝑇 ).
Returns a polynomial in variable 𝑣 (𝑥 by default).

? nf = nfinit(y^2+1);
? rnfcharpoly(nf, x^2+y*x+1, x+y)
%2 = x^2 + Mod(-y, y^2 + 1)*x + 1

rnfconductor(bnf, T, flag)
Given a bnf structure attached to a number field 𝐾, as produced by bnfinit, and 𝑇 an irreducible polynomial
in 𝐾[𝑥] defining an Abelian extension 𝐿 = 𝐾[𝑥]/(𝑇 ), computes the class field theory conductor of this Abelian
extension. If 𝑇 does not define an Abelian extension over 𝐾, the result is undefined; it may be the integer 0 (in
which case the extension is definitely not Abelian) or a wrong result.

The result is a 3-component vector [𝑓, 𝑏𝑛𝑟,𝐻], where 𝑓 is the conductor of the extension given as a 2-component
row vector [𝑓0, 𝑓𝑜𝑜], bnr is the attached bnr structure and 𝐻 is a matrix in HNF defining the subgroup of the ray
class group on the ray class group generators bnr.gen; in particular, it is a left divisor of the diagonal matrix
attached to bnr.cyc and ‖ det𝐻‖ = 𝑁 = deg 𝑇 .

If flag is set, return [𝑓, 𝑏𝑛𝑟𝑚𝑜𝑑,𝐻], where bnrmod is now attached to 𝐶𝑙𝑓/𝐶𝑙𝑁𝑓 , and 𝐻 is as before since it
contains the 𝑁 -th powers. This is useful when 𝑓 contains a maximal ideal with huge residue field, since the
corresponding tough discrete logarithms are trivialized: in the quotient group, all elements have small order
dividing 𝑁 . This allows to work in 𝐶𝑙𝑓/𝐻 but no longer in 𝐶𝑙𝑓 .

Huge discriminants, helping rnfdisc. The format [𝑇,𝐵] is also accepted instead of 𝑇 and computes the con-
ductor of the extension provided it factors completely over the maximal ideals specified by 𝐵, see ??rnfinit:
the valuation of 𝑓0 is then correct at all such maximal ideals but may be incorrect at other primes.

rnfdedekind(nf, pol, pr, flag)
Given a number field𝐾 coded by 𝑛𝑓 and a monic polynomial 𝑃 ∈ Z𝐾 [𝑋], irreducible over𝐾 and thus defining
a relative extension 𝐿 of 𝐾, applies Dedekind’s criterion to the order Z𝐾 [𝑋]/(𝑃 ), at the prime ideal pr. It is
possible to set pr to a vector of prime ideals (test maximality at all primes in the vector), or to omit altogether, in
which case maximality at all primes is tested; in this situation flag is automatically set to 1.

The default historic behavior (flag is 0 or omitted and pr is a single prime ideal) is not so useful since
rnfpseudobasis gives more information and is generally not that much slower. It returns a 3-component vector
[𝑚𝑎𝑥, 𝑏𝑎𝑠𝑖𝑠, 𝑣]:

• basis is a pseudo-basis of an enlarged order 𝑂 produced by Dedekind’s criterion, containing the original
order Z𝐾 [𝑋]/(𝑃 ) with index a power of pr. Possibly equal to the original order.

• max is a flag equal to 1 if the enlarged order 𝑂 could be proven to be pr-maximal and to 0 otherwise; it may
still be maximal in the latter case if pr is ramified in 𝐿,

• 𝑣 is the valuation at pr of the order discriminant.

If flag is nonzero, on the other hand, we just return 1 if the order Z𝐾 [𝑋]/(𝑃 ) is pr-maximal (resp. maximal at all
relevant primes, as described above), and 0 if not. This is much faster than the default, since the enlarged order is
not computed.
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? nf = nfinit(y^2-3); P = x^3 - 2*y;
? pr3 = idealprimedec(nf,3)[1];
? rnfdedekind(nf, P, pr3)
%3 = [1, [[1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 1, 1]], 8]
? rnfdedekind(nf, P, pr3, 1)
%4 = 1

In this example, pr3 is the ramified ideal above 3, and the order generated by the cube roots of 𝑦 is already pr3-
maximal. The order-discriminant has valuation 8. On the other hand, the order is not maximal at the prime above
2:

? pr2 = idealprimedec(nf,2)[1];
? rnfdedekind(nf, P, pr2, 1)
%6 = 0
? rnfdedekind(nf, P, pr2)
%7 = [0, [[2, 0, 0; 0, 1, 0; 0, 0, 1], [[1, 0; 0, 1], [1, 0; 0, 1],
[1, 1/2; 0, 1/2]]], 2]

The enlarged order is not proven to be pr2-maximal yet. In fact, it is; it is in fact the maximal order:

? B = rnfpseudobasis(nf, P)
%8 = [[1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 1, [1, 1/2; 0, 1/2]],
[162, 0; 0, 162], -1]
? idealval(nf,B[3], pr2)
%9 = 2

It is possible to use this routine with nonmonic 𝑃 =
∑︀

𝑖<=𝑛 𝑝𝑖𝑋
𝑖 ∈ Z𝐾 [𝑋] if 𝑓𝑙𝑎𝑔 = 1; in this case, we test

maximality of Dedekind’s order generated by

1, 𝑝𝑛𝛼, 𝑝𝑛𝛼
2 + 𝑝𝑛−1𝛼, ..., 𝑝𝑛𝛼

𝑛−1 + 𝑝𝑛−1𝛼
𝑛−2 + ...+ 𝑝1𝛼.

The routine will fail if 𝑃 vanishes on the projective line over the residue field Z𝐾/𝑝𝑟 (FIXME).

rnfdet(nf, M)

Given a pseudo-matrix 𝑀 over the maximal order of 𝑛𝑓 , computes its determinant.

rnfdisc(nf, T)
Given an nf structure attached to a number field 𝐾, as output by nfinit, and a monic irreducible polynomial
𝑇 ∈ 𝐾[𝑥] defining a relative extension 𝐿 = 𝐾[𝑥]/(𝑇 ), compute the relative discriminant of 𝐿. This is a vector
[𝐷, 𝑑], where 𝐷 is the relative ideal discriminant and 𝑑 is the relative discriminant considered as an element of
𝐾*/𝐾*2. The main variable of 𝑛𝑓 must be of lower priority than that of 𝑇 , see priority (in the PARI manual).

Huge discriminants, helping rnfdisc. The format [𝑇,𝐵] is also accepted instead of 𝑇 and computes an order
which is maximal at all maximal ideals specified by 𝐵, see ??rnfinit: the valuation of 𝐷 is then correct at all
such maximal ideals but may be incorrect at other primes.

rnfeltabstorel(rnf, x)
Let 𝑟𝑛𝑓 be a relative number field extension 𝐿/𝐾 as output by rnfinit and let 𝑥 be an element of 𝐿 expressed
as a polynomial modulo the absolute equation :emphasis:`rnf.pol`, or in terms of the absolute Z-basis for Z𝐿

if rnf contains one (as in rnfinit(nf,pol,1), or after a call to nfinit(rnf)). Computes 𝑥 as an element of
the relative extension 𝐿/𝐾 as a polmod with polmod coefficients.

? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? L.polabs
%2 = x^4 + 1

(continues on next page)
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(continued from previous page)

? rnfeltabstorel(L, Mod(x, L.polabs))
%3 = Mod(x, x^2 + Mod(-y, y^2 + 1))
? rnfeltabstorel(L, 1/3)
%4 = 1/3
? rnfeltabstorel(L, Mod(x, x^2-y))
%5 = Mod(x, x^2 + Mod(-y, y^2 + 1))

? rnfeltabstorel(L, [0,0,0,1]~) \\ Z_L not initialized yet
*** at top-level: rnfeltabstorel(L,[0,
*** ^--------------------
*** rnfeltabstorel: incorrect type in rnfeltabstorel, apply nfinit(rnf).
? nfinit(L); \\ initialize now
? rnfeltabstorel(L, [0,0,0,1]~)
%6 = Mod(Mod(y, y^2 + 1)*x, x^2 + Mod(-y, y^2 + 1))

rnfeltdown(rnf, x, flag)
𝑟𝑛𝑓 being a relative number field extension 𝐿/𝐾 as output by rnfinit and 𝑥 being an element of 𝐿 expressed
as a polynomial or polmod with polmod coefficients (or as a t_COL on nfinit(rnf).zk), computes 𝑥 as an
element of 𝐾 as a t_POLMOD if 𝑓𝑙𝑎𝑔 = 0 and as a t_COL otherwise. If 𝑥 is not in 𝐾, a domain error occurs.

? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? L.pol
%2 = x^4 + 1
? rnfeltdown(L, Mod(x^2, L.pol))
%3 = Mod(y, y^2 + 1)
? rnfeltdown(L, Mod(x^2, L.pol), 1)
%4 = [0, 1]~
? rnfeltdown(L, Mod(y, x^2-y))
%5 = Mod(y, y^2 + 1)
? rnfeltdown(L, Mod(y,K.pol))
%6 = Mod(y, y^2 + 1)
? rnfeltdown(L, Mod(x, L.pol))
*** at top-level: rnfeltdown(L,Mod(x,x
*** ^--------------------
*** rnfeltdown: domain error in rnfeltdown: element not in the base field
? rnfeltdown(L, Mod(y, x^2-y), 1) \\ as a t_COL
%7 = [0, 1]~
? rnfeltdown(L, [0,1,0,0]~) \\ not allowed without absolute nf struct
*** rnfeltdown: incorrect type in rnfeltdown (t_COL).
? nfinit(L); \\ add absolute nf structure to L
? rnfeltdown(L, [0,1,0,0]~) \\ now OK
%8 = Mod(y, y^2 + 1)

If we had started with L = rnfinit(K, x^2-y, 1), then the final would have worked directly.

rnfeltnorm(rnf, x)
𝑟𝑛𝑓 being a relative number field extension 𝐿/𝐾 as output by rnfinit and 𝑥 being an element of 𝐿, returns the
relative norm 𝑁𝐿/𝐾(𝑥) as an element of 𝐾.

? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? rnfeltnorm(L, Mod(x, L.pol))
%2 = Mod(x, x^2 + Mod(-y, y^2 + 1))

(continues on next page)
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(continued from previous page)

? rnfeltnorm(L, 2)
%3 = 4
? rnfeltnorm(L, Mod(x, x^2-y))

rnfeltreltoabs(rnf, x)
𝑟𝑛𝑓 being a relative number field extension 𝐿/𝐾 as output by rnfinit and 𝑥 being an element of 𝐿 expressed
as a polynomial or polmod with polmod coefficients, computes 𝑥 as an element of the absolute extension 𝐿/Q as
a polynomial modulo the absolute equation :emphasis:`rnf.pol`.

? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? L.pol
%2 = x^4 + 1
? rnfeltreltoabs(L, Mod(x, L.pol))
%3 = Mod(x, x^4 + 1)
? rnfeltreltoabs(L, Mod(y, x^2-y))
%4 = Mod(x^2, x^4 + 1)
? rnfeltreltoabs(L, Mod(y,K.pol))
%5 = Mod(x^2, x^4 + 1)

rnfelttrace(rnf, x)
𝑟𝑛𝑓 being a relative number field extension 𝐿/𝐾 as output by rnfinit and 𝑥 being an element of 𝐿, returns the
relative trace 𝑇𝑟𝐿/𝐾(𝑥) as an element of 𝐾.

? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? rnfelttrace(L, Mod(x, L.pol))
%2 = 0
? rnfelttrace(L, 2)
%3 = 4
? rnfelttrace(L, Mod(x, x^2-y))

rnfeltup(rnf, x, flag)
𝑟𝑛𝑓 being a relative number field extension 𝐿/𝐾 as output by rnfinit and 𝑥 being an element of 𝐾, computes
𝑥 as an element of the absolute extension 𝐿/Q. As a t_POLMOD modulo :emphasis:`rnf.pol` if 𝑓𝑙𝑎𝑔 = 0 and
as a t_COL on the absolute field integer basis if 𝑓𝑙𝑎𝑔 = 1.

? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? L.pol
%2 = x^4 + 1
? rnfeltup(L, Mod(y, K.pol))
%3 = Mod(x^2, x^4 + 1)
? rnfeltup(L, y)
%4 = Mod(x^2, x^4 + 1)
? rnfeltup(L, [1,2]~) \\ in terms of K.zk
%5 = Mod(2*x^2 + 1, x^4 + 1)
? rnfeltup(L, y, 1) \\ in terms of nfinit(L).zk
%6 = [0, 1, 0, 0]~
? rnfeltup(L, [1,2]~, 1)
%7 = [1, 2, 0, 0]~

rnfequation(nf, pol, flag)
Given a number field 𝑛𝑓 as output by nfinit (or simply a polynomial) and a polynomial pol with coefficients in
𝑛𝑓 defining a relative extension 𝐿 of 𝑛𝑓 , computes an absolute equation of 𝐿 over Q.
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The main variable of 𝑛𝑓 must be of lower priority than that of pol (see priority (in the PARI manual)). Note that
for efficiency, this does not check whether the relative equation is irreducible over 𝑛𝑓 , but only if it is squarefree.
If it is reducible but squarefree, the result will be the absolute equation of the étale algebra defined by pol. If pol
is not squarefree, raise an e_DOMAIN exception.

? rnfequation(y^2+1, x^2 - y)
%1 = x^4 + 1
? T = y^3-2; rnfequation(nfinit(T), (x^3-2)/(x-Mod(y,T)))
%2 = x^6 + 108 \\ Galois closure of Q(2^(1/3))

If 𝑓𝑙𝑎𝑔 is nonzero, outputs a 3-component row vector [𝑧, 𝑎, 𝑘], where

• 𝑧 is the absolute equation of 𝐿 over Q, as in the default behavior,

• 𝑎 expresses as a t_POLMOD modulo 𝑧 a root 𝛼 of the polynomial defining the base field 𝑛𝑓 ,

• 𝑘 is a small integer such that 𝜃 = 𝛽 + 𝑘𝛼 is a root of 𝑧, where 𝛽 is a root of 𝑝𝑜𝑙. It is guaranteed that 𝑘 = 0
whenever Q(𝛽) = 𝐿.

? T = y^3-2; pol = x^2 +x*y + y^2;
? [z,a,k] = rnfequation(T, pol, 1);
? z
%3 = x^6 + 108
? subst(T, y, a)
%4 = 0
? alpha= Mod(y, T);
? beta = Mod(x*Mod(1,T), pol);
? subst(z, x, beta + k*alpha)
%7 = 0

rnfhnfbasis(bnf, x)
Given 𝑏𝑛𝑓 as output by bnfinit, and either a polynomial 𝑥 with coefficients in 𝑏𝑛𝑓 defining a relative extension
𝐿 of 𝑏𝑛𝑓 , or a pseudo-basis 𝑥 of such an extension, gives either a true 𝑏𝑛𝑓 -basis of 𝐿 in upper triangular Hermite
normal form, if it exists, and returns 0 otherwise.

rnfidealabstorel(rnf, x)
Let 𝑟𝑛𝑓 be a relative number field extension 𝐿/𝐾 as output by rnfinit and let 𝑥 be an ideal of the absolute
extension𝐿/Q. Returns the relative pseudo-matrix in HNF giving the ideal 𝑥 considered as an ideal of the relative
extension 𝐿/𝐾, i.e. as a Z𝐾-module.

Let Labs be an (absolute) nf structure attached to 𝐿, obtained via Labs = nfinit(rnf)). Then rnf “knows”
about Labs and 𝑥 may be given in any format attached to Labs, e.g. a prime ideal or an ideal in HNF wrt.
Labs.zk:

? K = nfinit(y^2+1); rnf = rnfinit(K, x^2-y); Labs = nfinit(rnf);
? m = idealhnf(Labs, 17, x^3+2); \\ some ideal in HNF wrt. Labs.zk
? B = rnfidealabstorel(rnf, m)
%3 = [[1, 8; 0, 1], [[17, 4; 0, 1], 1]] \\ pseudo-basis for m as Z_K-module
? A = rnfidealreltoabs(rnf, B)
%4 = [17, x^2 + 4, x + 8, x^3 + 8*x^2] \\ Z-basis for m in Q[x]/(rnf.polabs)
? mathnf(matalgtobasis(Labs, A)) == m
%5 = 1

If on the other hand, we do not have a Labs at hand, because it would be too expensive to compute, but we
nevertheless have a Z-basis for 𝑥, then we can use the function with this basis as argument. The entries of 𝑥
may be given either modulo rnf.polabs (absolute form, possibly lifted) or modulo rnf.pol (relative form as
t_POLMOD s):
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? K = nfinit(y^2+1); rnf = rnfinit(K, x^2-y);
? rnfidealabstorel(rnf, [17, x^2 + 4, x + 8, x^3 + 8*x^2])
%2 = [[1, 8; 0, 1], [[17, 4; 0, 1], 1]]
? rnfidealabstorel(rnf, Mod([17, y + 4, x + 8, y*x + 8*y], x^2-y))
%3 = [[1, 8; 0, 1], [[17, 4; 0, 1], 1]]

rnfidealdown(rnf, x)
Let 𝑟𝑛𝑓 be a relative number field extension 𝐿/𝐾 as output by rnfinit, and 𝑥 an ideal of 𝐿, given either in
relative form or by a Z-basis of elements of 𝐿 (see rnfidealabstorel (in the PARI manual)). This function
returns the ideal of 𝐾 below 𝑥, i.e. the intersection of 𝑥 with 𝐾.

rnfidealfactor(rnf, x)
Factor into prime ideal powers the ideal 𝑥 in the attached absolute number field 𝐿 = 𝑛𝑓𝑖𝑛𝑖𝑡(𝑟𝑛𝑓). The out-
put format is similar to the factor function, and the prime ideals are represented in the form output by the
idealprimedec function for 𝐿.

? rnf = rnfinit(nfinit(y^2+1), x^2-y+1);
? rnfidealfactor(rnf, y+1) \\ P_2^2
%2 =
[[2, [0,0,1,0]~, 4, 1, [0,0,0,2;0,0,-2,0;-1,-1,0,0;1,-1,0,0]] 2]

? rnfidealfactor(rnf, x) \\ P_2
%3 =
[[2, [0,0,1,0]~, 4, 1, [0,0,0,2;0,0,-2,0;-1,-1,0,0;1,-1,0,0]] 1]

? L = nfinit(rnf);
? id = idealhnf(L, idealhnf(L, 25, (x+1)^2));
? idealfactor(L, id) == rnfidealfactor(rnf, id)
%6 = 1

Note that ideals of the base field 𝐾 must be explicitly lifted to 𝐿 via rnfidealup before they can be factored.

rnfidealhnf(rnf, x)
𝑟𝑛𝑓 being a relative number field extension𝐿/𝐾 as output by rnfinit and 𝑥 being a relative ideal (which can be,
as in the absolute case, of many different types, including of course elements), computes the HNF pseudo-matrix
attached to 𝑥, viewed as a Z𝐾-module.

rnfidealmul(rnf, x, y)
𝑟𝑛𝑓 being a relative number field extension 𝐿/𝐾 as output by rnfinit and 𝑥 and 𝑦 being ideals of the relative
extension 𝐿/𝐾 given by pseudo-matrices, outputs the ideal product, again as a relative ideal.

rnfidealnormabs(rnf, x)
Let 𝑟𝑛𝑓 be a relative number field extension 𝐿/𝐾 as output by rnfinit and let 𝑥 be a relative ideal (which can
be, as in the absolute case, of many different types, including of course elements). This function computes the
norm of the 𝑥 considered as an ideal of the absolute extension 𝐿/Q. This is identical to

idealnorm(rnf, rnfidealnormrel(rnf,x))

but faster.

rnfidealnormrel(rnf, x)
Let 𝑟𝑛𝑓 be a relative number field extension 𝐿/𝐾 as output by rnfinit and let 𝑥 be a relative ideal (which can
be, as in the absolute case, of many different types, including of course elements). This function computes the
relative norm of 𝑥 as an ideal of 𝐾 in HNF.
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rnfidealprimedec(rnf, pr)
Let rnf be a relative number field extension 𝐿/𝐾 as output by rnfinit, and pr a maximal ideal of𝐾 (prid), this
function completes the rnf with a nf structure attached to 𝐿 (see rnfinit (in the PARI manual)) and returns the
prime ideal decomposition of pr in 𝐿/𝐾.

? K = nfinit(y^2+1); rnf = rnfinit(K, x^3+y+1);
? P = idealprimedec(K, 2)[1];
? S = rnfidealprimedec(rnf, P);
? #S
%4 = 1

The argument pr is also allowed to be a prime number 𝑝, in which case the function returns a pair of vectors
[SK,SL], where SK contains the primes of 𝐾 above 𝑝 and SL[𝑖] is the vector of primes of 𝐿 above SK[𝑖].

? [SK,SL] = rnfidealprimedec(rnf, 5);
? [#SK, vector(#SL,i,#SL[i])]
%6 = [2, [2, 2]]

rnfidealreltoabs(rnf, x, flag)
Let 𝑟𝑛𝑓 be a relative number field extension 𝐿/𝐾 as output by rnfinit and let 𝑥 be a relative ideal, given as a
Z𝐾-module by a pseudo matrix [𝐴, 𝐼]. This function returns the ideal 𝑥 as an absolute ideal of 𝐿/Q. If 𝑓𝑙𝑎𝑔 = 0,
the result is given by a vector of t_POLMOD s modulo rnf.pol forming a Z-basis; if 𝑓𝑙𝑎𝑔 = 1, it is given in HNF
in terms of the fixed Z-basis for Z𝐿, see rnfinit (in the PARI manual).

? K = nfinit(y^2+1); rnf = rnfinit(K, x^2-y);
? P = idealprimedec(K,2)[1];
? P = rnfidealup(rnf, P)
%3 = [2, x^2 + 1, 2*x, x^3 + x]
? Prel = rnfidealhnf(rnf, P)
%4 = [[1, 0; 0, 1], [[2, 1; 0, 1], [2, 1; 0, 1]]]
? rnfidealreltoabs(rnf,Prel)
%5 = [2, x^2 + 1, 2*x, x^3 + x]
? rnfidealreltoabs(rnf,Prel,1)
%6 =
[2 1 0 0]

[0 1 0 0]

[0 0 2 1]

[0 0 0 1]

The reason why we do not return by default (𝑓𝑙𝑎𝑔 = 0) the customary HNF in terms of a fixed Z-basis for Z𝐿

is precisely because a rnf does not contain such a basis by default. Completing the structure so that it contains a
nf structure for 𝐿 is polynomial time but costly when the absolute degree is large, thus it is not done by default.
Note that setting 𝑓𝑙𝑎𝑔 = 1 will complete the rnf.

rnfidealtwoelt(rnf, x)
𝑟𝑛𝑓 being a relative number field extension 𝐿/𝐾 as output by rnfinit and 𝑥 being an ideal of the relative
extension 𝐿/𝐾 given by a pseudo-matrix, gives a vector of two generators of 𝑥 over Z𝐿 expressed as polmods
with polmod coefficients.

rnfidealup(rnf, x, flag)
Let 𝑟𝑛𝑓 be a relative number field extension 𝐿/𝐾 as output by rnfinit and let 𝑥 be an ideal of𝐾. This function
returns the ideal 𝑥Z𝐿 as an absolute ideal of 𝐿/Q, in the form of a Z-basis. If 𝑓𝑙𝑎𝑔 = 0, the result is given by a
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vector of polynomials (modulo rnf.pol); if 𝑓𝑙𝑎𝑔 = 1, it is given in HNF in terms of the fixed Z-basis for Z𝐿,
see rnfinit (in the PARI manual).

? K = nfinit(y^2+1); rnf = rnfinit(K, x^2-y);
? P = idealprimedec(K,2)[1];
? rnfidealup(rnf, P)
%3 = [2, x^2 + 1, 2*x, x^3 + x]
? rnfidealup(rnf, P,1)
%4 =
[2 1 0 0]

[0 1 0 0]

[0 0 2 1]

[0 0 0 1]

The reason why we do not return by default (𝑓𝑙𝑎𝑔 = 0) the customary HNF in terms of a fixed Z-basis for Z𝐿

is precisely because a rnf does not contain such a basis by default. Completing the structure so that it contains a
nf structure for 𝐿 is polynomial time but costly when the absolute degree is large, thus it is not done by default.
Note that setting 𝑓𝑙𝑎𝑔 = 1 will complete the rnf.

rnfinit(nf, T, flag)
Given an nf structure attached to a number field 𝐾, as output by nfinit, and a monic irreducible polynomial 𝑇
in Z𝐾 [𝑥] defining a relative extension 𝐿 = 𝐾[𝑥]/(𝑇 ), this computes data to work in 𝐿/𝐾 The main variable of
𝑇 must be of higher priority (see priority (in the PARI manual)) than that of 𝑛𝑓 , and the coefficients of 𝑇 must
be in 𝐾.

The result is a row vector, whose components are technical. We let 𝑚 = [𝐾 : Q] the degree of the base field,
𝑛 = [𝐿 : 𝐾] the relative degree, 𝑟1 and 𝑟2 the number of real and complex places of𝐾. Access to this information
via member functions is preferred since the specific data organization specified below will change in the future.

If 𝑓𝑙𝑎𝑔 = 1, add an nf structure attached to 𝐿 to rnf. This is likely to be very expensive if the absolute degree
𝑚𝑛 is large, but fixes an integer basis for Z𝐿 as a Z-module and allows to input and output elements of 𝐿 in
absolute form: as t_COL for elements, as t_MAT in HNF for ideals, as prid for prime ideals. Without such a call,
elements of 𝐿 are represented as t_POLMOD, etc. Note that a subsequent nfinit(𝑟𝑛𝑓) will also explicitly add
such a component, and so will the following functions rnfidealmul, rnfidealtwoelt, rnfidealprimedec,
rnfidealup (with flag 1) and rnfidealreltoabs (with flag 1). The absolute nf structure attached to 𝐿 can be
recovered using nfinit(rnf).

𝑟𝑛𝑓 [1]) contains the relative polynomial 𝑇 .

𝑟𝑛𝑓 [2] contains the integer basis [𝐴, 𝑑] of 𝐾, as (integral) elements of 𝐿/Q. More precisely, 𝐴 is a vector of
polynomial with integer coefficients, 𝑑 is a denominator, and the integer basis is given by 𝐴/𝑑.

𝑟𝑛𝑓 [3] (rnf.disc) is a two-component row vector [𝑑(𝐿/𝐾), 𝑠] where 𝑑(𝐿/𝐾) is the relative ideal discriminant
of 𝐿/𝐾 and 𝑠 is the discriminant of 𝐿/𝐾 viewed as an element of 𝐾*/(𝐾*)2, in other words it is the output of
rnfdisc.

𝑟𝑛𝑓 [4]) is the ideal index 𝑓 , i.e. such that 𝑑(𝑇 )Z𝐾 = 𝑓2𝑑(𝐿/𝐾).

𝑟𝑛𝑓 [5]) is the list of rational primes dividing the norm of the relative discriminant ideal.

𝑟𝑛𝑓 [7] (rnf.zk) is the pseudo-basis (𝐴, 𝐼) for the maximal order Z𝐿 as a Z𝐾-module: 𝐴 is the relative integral
pseudo basis expressed as polynomials (in the variable of 𝑇 ) with polmod coefficients in 𝑛𝑓 , and the second
component 𝐼 is the ideal list of the pseudobasis in HNF.

𝑟𝑛𝑓 [8] is the inverse matrix of the integral basis matrix, with coefficients polmods in 𝑛𝑓 .

336 Chapter 1. Interface to the PARI library



CyPari2 Documentation, Release 2.1.3

𝑟𝑛𝑓 [9] is currently unused.

𝑟𝑛𝑓 [10] (rnf.nf) is 𝑛𝑓 .

𝑟𝑛𝑓 [11] is an extension of rnfequation(K, T, 1). Namely, a vector [𝑃, 𝑎, 𝑘,𝐾.𝑝𝑜𝑙, 𝑇 ] describing the absolute
extension𝐿/Q: 𝑃 is an absolute equation, more conveniently obtained as rnf.polabs; 𝑎 expresses the generator
𝛼 = 𝑦𝑚𝑜𝑑𝐾.𝑝𝑜𝑙 of the number field 𝐾 as an element of 𝐿, i.e. a polynomial modulo the absolute equation 𝑃 ;

𝑘 is a small integer such that, if 𝛽 is an abstract root of 𝑇 and 𝛼 the generator of𝐾 given above, then 𝑃 (𝛽+𝑘𝛼) =
0. It is guaranteed that 𝑘 = 0 if Q(𝛽) = 𝐿.

Caveat. Be careful if 𝑘! = 0 when dealing simultaneously with absolute and relative quantities since 𝐿 =
Q(𝛽 + 𝑘𝛼) = 𝐾(𝛼), and the generator chosen for the absolute extension is not the same as for the relative one.
If this happens, one can of course go on working, but we advise to change the relative polynomial so that its root
becomes 𝛽 + 𝑘𝛼. Typical GP instructions would be

[P,a,k] = rnfequation(K, T, 1);
if (k, T = subst(T, x, x - k*Mod(y, K.pol)));
L = rnfinit(K, T);

𝑟𝑛𝑓 [12] is by default unused and set equal to 0. This field is used to store further information about the field as it
becomes available (which is rarely needed, hence would be too expensive to compute during the initial rnfinit
call).

Huge discriminants, helping rnfdisc. When 𝑇 has a discriminant which is difficult to factor, it is hard to compute
Z𝐿. As in nfinit, the special input format [𝑇,𝐵] is also accepted, where 𝑇 is a polynomial as above and 𝐵
specifies a list of maximal ideals. The following formats are recognized for 𝐵:

• an integer: the list of all maximal ideals above a rational prime 𝑝 < 𝐵.

• a vector of rational primes or prime ideals: the list of all maximal ideals dividing an element in the list.

Instead of Z𝐿, this produces an order which is maximal at all such maximal ideals primes. The result may
actually be a complete and correct rnf structure if the relative ideal discriminant factors completely over this list
of maximal ideals but this is not guaranteed. In general, the order may not be maximal at primes 𝑝 not in the list
such that 𝑝2 divides the relative ideal discriminant.

rnfisabelian(nf, T)
𝑇 being a relative polynomial with coefficients in nf, return 1 if it defines an abelian extension, and 0 otherwise.

? K = nfinit(y^2 + 23);
? rnfisabelian(K, x^3 - 3*x - y)
%2 = 1

rnfisfree(bnf, x)
Given 𝑏𝑛𝑓 as output by bnfinit, and either a polynomial 𝑥 with coefficients in 𝑏𝑛𝑓 defining a relative extension
𝐿 of 𝑏𝑛𝑓 , or a pseudo-basis 𝑥 of such an extension, returns true (1) if 𝐿/𝑏𝑛𝑓 is free, false (0) if not.

rnfislocalcyclo(rnf )
Let rnf be a relative number field extension 𝐿/𝐾 as output by rnfinit whose degree [𝐿 : 𝐾] is a power of a
prime ℓ. Return 1 if the ℓ-extension is locally cyclotomic (locally contained in the cyclotomic Zℓ-extension of
𝐾𝑣 at all places 𝑣‖ℓ), and 0 if not.

? K = nfinit(y^2 + y + 1);
? L = rnfinit(K, x^3 - y); /* = K(zeta_9), globally cyclotomic */
? rnfislocalcyclo(L)
%3 = 1
\\ we expect 3-adic continuity by Krasner's lemma

(continues on next page)
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? vector(5, i, rnfislocalcyclo(rnfinit(K, x^3 - y + 3^i)))
%5 = [0, 1, 1, 1, 1]

rnfisnorm(T, a, flag)
Similar to bnfisnorm but in the relative case. 𝑇 is as output by rnfisnorminit applied to the extension 𝐿/𝐾.
This tries to decide whether the element 𝑎 in 𝐾 is the norm of some 𝑥 in the extension 𝐿/𝐾.

The output is a vector [𝑥, 𝑞], where 𝑎 = Norm(𝑥) * 𝑞. The algorithm looks for a solution 𝑥 which is an 𝑆-integer,
with 𝑆 a list of places of𝐾 containing at least the ramified primes, the generators of the class group of 𝐿, as well
as those primes dividing 𝑎. If 𝐿/𝐾 is Galois, then this is enough but you may want to add more primes to 𝑆
to produce different elements, possibly smaller; otherwise, 𝑓𝑙𝑎𝑔 is used to add more primes to 𝑆: all the places
above the primes 𝑝 <= 𝑓𝑙𝑎𝑔 (resp. 𝑝‖𝑓𝑙𝑎𝑔) if 𝑓𝑙𝑎𝑔 > 0 (resp. 𝑓𝑙𝑎𝑔 < 0).

The answer is guaranteed (i.e. 𝑎 is a norm iff 𝑞 = 1) if the field is Galois, or, under GRH, if 𝑆 contains all primes
less than 12 log2 ‖disc(𝑀)‖, where 𝑀 is the normal closure of 𝐿/𝐾.

If rnfisnorminit has determined (or was told) that 𝐿/𝐾 is Galois, and 𝑓𝑙𝑎𝑔! = 0, a Warning is issued (so that
you can set 𝑓𝑙𝑎𝑔 = 1 to check whether 𝐿/𝐾 is known to be Galois, according to 𝑇 ). Example:

bnf = bnfinit(y^3 + y^2 - 2*y - 1);
p = x^2 + Mod(y^2 + 2*y + 1, bnf.pol);
T = rnfisnorminit(bnf, p);
rnfisnorm(T, 17)

checks whether 17 is a norm in the Galois extension Q(𝛽)/Q(𝛼), where 𝛼3 + 𝛼2 − 2𝛼− 1 = 0 and 𝛽2 + 𝛼2 +
2𝛼+ 1 = 0 (it is).

rnfisnorminit(pol, polrel, flag)
Let 𝐾 be defined by a root of pol, and 𝐿/𝐾 the extension defined by the polynomial polrel. As usual, pol can in
fact be an nf, or bnf, etc; if pol has degree 1 (the base field is Q), polrel is also allowed to be an nf, etc. Computes
technical data needed by rnfisnorm to solve norm equations 𝑁𝑥 = 𝑎, for 𝑥 in 𝐿, and 𝑎 in 𝐾.

If 𝑓𝑙𝑎𝑔 = 0, do not care whether 𝐿/𝐾 is Galois or not.

If 𝑓𝑙𝑎𝑔 = 1, 𝐿/𝐾 is assumed to be Galois (unchecked), which speeds up rnfisnorm.

If 𝑓𝑙𝑎𝑔 = 2, let the routine determine whether 𝐿/𝐾 is Galois.

rnfkummer(bnr, subgp, precision)
This function is deprecated, use bnrclassfield.

rnflllgram(nf, pol, order, precision)
Given a polynomial pol with coefficients in nf defining a relative extension 𝐿 and a suborder order of 𝐿 (of
maximal rank), as output by rnfpseudobasis(𝑛𝑓, 𝑝𝑜𝑙) or similar, gives [[𝑛𝑒𝑤𝑜𝑟𝑑𝑒𝑟], 𝑈 ], where neworder is a
reduced order and 𝑈 is the unimodular transformation matrix.

rnfnormgroup(bnr, pol)
bnr being a big ray class field as output by bnrinit and pol a relative polynomial defining an Abelian extension,
computes the norm group (alias Artin or Takagi group) corresponding to the Abelian extension of 𝑏𝑛𝑓 =bnr.
bnf defined by pol, where the module corresponding to bnr is assumed to be a multiple of the conductor (i.e. pol
defines a subextension of bnr). The result is the HNF defining the norm group on the given generators of bnr.
gen. Note that neither the fact that pol defines an Abelian extension nor the fact that the module is a multiple of
the conductor is checked. The result is undefined if the assumption is not correct, but the function will return the
empty matrix [;] if it detects a problem; it may also not detect the problem and return a wrong result.
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rnfpolred(nf, pol, precision)
This function is obsolete: use rnfpolredbest instead. Relative version of polred. Given a monic polynomial
pol with coefficients in 𝑛𝑓 , finds a list of relative polynomials defining some subfields, hopefully simpler and
containing the original field. In the present version 2.13.3, this is slower and less efficient than rnfpolredbest.

Remark. This function is based on an incomplete reduction theory of lattices over number fields, implemented
by rnflllgram, which deserves to be improved.

rnfpolredabs(nf, pol, flag)
Relative version of polredabs. Given an irreducible monic polynomial pol with coefficients in the maximal
order of 𝑛𝑓 , finds a canonical relative polynomial defining the same field, hopefully with small coefficients. Note
that the equation is only canonical for a fixed nf, using a different defining polynomial in the nf structure will
produce a different relative equation.

The binary digits of 𝑓𝑙𝑎𝑔 correspond to 1: add information to convert elements to the new representation, 2:
absolute polynomial, instead of relative, 16: possibly use a suborder of the maximal order. More precisely:

0: default, return 𝑃

1: returns [𝑃, 𝑎] where 𝑃 is the default output and 𝑎, a t_POLMOD modulo 𝑃 , is a root of pol.

2: returns Pabs, an absolute, instead of a relative, polynomial. This polynomial is canonical and does not depend
on the nf structure. Same as but faster than

polredabs(rnfequation(nf, pol))

3: returns [𝑃𝑎𝑏𝑠, 𝑎, 𝑏], where Pabs is an absolute polynomial as above, 𝑎, 𝑏 are t_POLMOD modulo Pabs, roots of
nf.pol and pol respectively.

16: (OBSOLETE) possibly use a suborder of the maximal order. This makes rnfpolredabs behave as
rnfpolredbest. Just use the latter.

Warning. The complexity of rnfpolredabs is exponential in the absolute degree. The function
rnfpolredbest runs in polynomial time, and tends to return polynomials with smaller discriminants. It also
supports polynomials with arbitrary coefficients in nf, neither integral nor necessarily monic.

rnfpolredbest(nf, pol, flag)
Relative version of polredbest. Given a polynomial pol with coefficients in 𝑛𝑓 , finds a simpler relative polyno-
mial 𝑃 defining the same field. As opposed to rnfpolredabs this function does not return a smallest (canonical)
polynomial with respect to some measure, but it does run in polynomial time.

The binary digits of 𝑓𝑙𝑎𝑔 correspond to 1: add information to convert elements to the new representation, 2:
absolute polynomial, instead of relative. More precisely:

0: default, return 𝑃

1: returns [𝑃, 𝑎] where 𝑃 is the default output and 𝑎, a t_POLMOD modulo 𝑃 , is a root of pol.

2: returns Pabs, an absolute, instead of a relative, polynomial. Same as but faster than

rnfequation(nf, rnfpolredbest(nf,pol))

3: returns [𝑃𝑎𝑏𝑠, 𝑎, 𝑏], where Pabs is an absolute polynomial as above, 𝑎, 𝑏 are t_POLMOD modulo Pabs, roots of
nf.pol and pol respectively.

? K = nfinit(y^3-2); pol = x^2 +x*y + y^2;
? [P, a] = rnfpolredbest(K,pol,1);
? P
%3 = x^2 - x + Mod(y - 1, y^3 - 2)

(continues on next page)
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? a
%4 = Mod(Mod(2*y^2+3*y+4,y^3-2)*x + Mod(-y^2-2*y-2,y^3-2),
x^2 - x + Mod(y-1,y^3-2))
? subst(K.pol,y,a)
%5 = 0
? [Pabs, a, b] = rnfpolredbest(K,pol,3);
? Pabs
%7 = x^6 - 3*x^5 + 5*x^3 - 3*x + 1
? a
%8 = Mod(-x^2+x+1, x^6-3*x^5+5*x^3-3*x+1)
? b
%9 = Mod(2*x^5-5*x^4-3*x^3+10*x^2+5*x-5, x^6-3*x^5+5*x^3-3*x+1)
? subst(K.pol,y,a)
%10 = 0
? substvec(pol,[x,y],[a,b])
%11 = 0

rnfpseudobasis(nf, T)
Given an nf structure attached to a number field 𝐾, as output by nfinit, and a monic irreducible polynomial 𝑇
in Z𝐾 [𝑥] defining a relative extension𝐿 = 𝐾[𝑥]/(𝑇 ), computes the relative discriminant of𝐿 and a pseudo-basis
(𝐴, 𝐽) for the maximal order Z𝐿 viewed as a Z𝐾-module. This is output as a vector [𝐴, 𝐽,𝐷, 𝑑], where 𝐷 is the
relative ideal discriminant and 𝑑 is the relative discriminant considered as an element of 𝐾*/𝐾*2.

? K = nfinit(y^2+1);
? [A,J,D,d] = rnfpseudobasis(K, x^2+y);
? A
%3 =
[1 0]

[0 1]

? J
%4 = [1, 1]
? D
%5 = [0, -4]~
? d
%6 = [0, -1]~

Huge discriminants, helping rnfdisc. The format [𝑇,𝐵] is also accepted instead of 𝑇 and produce an order
which is maximal at all prime ideals specified by 𝐵, see ??rnfinit.

? p = 585403248812100232206609398101;
? q = 711171340236468512951957953369;
? T = x^2 + 3*(p*q)^2;
? [A,J,D,d] = V = rnfpseudobasis(K, T); D
time = 22,178 ms.
%10 = 3
? [A,J,D,d] = W = rnfpseudobasis(K, [T,100]); D
time = 5 ms.
%11 = 3
? V == W
%12 = 1

(continues on next page)
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? [A,J,D,d] = W = rnfpseudobasis(K, [T, [3]]); D
%13 = 3
? V == W
%14 = 1

In this example, the results are identical since𝐷∩Z factors over primes less than 100 (and in fact, over 3). Had it
not been the case, the order would have been guaranteed maximal at primes 𝑝‖𝑝 for 𝑝 <= 100 only (resp. 𝑝‖3).
And might have been nonmaximal at any other prime ideal 𝑝 such that 𝑝2 divided 𝐷.

rnfsteinitz(nf, x)
Given a number field 𝑛𝑓 as output by nfinit and either a polynomial 𝑥with coefficients in 𝑛𝑓 defining a relative
extension𝐿 of 𝑛𝑓 , or a pseudo-basis 𝑥 of such an extension as output for example by rnfpseudobasis, computes
another pseudo-basis (𝐴, 𝐼) (not in HNF in general) such that all the ideals of 𝐼 except perhaps the last one are
equal to the ring of integers of𝑛𝑓 , and outputs the four-component row vector [𝐴, 𝐼,𝐷, 𝑑] as in rnfpseudobasis.
The name of this function comes from the fact that the ideal class of the last ideal of 𝐼 , which is well defined, is
the Steinitz class of the Z𝐾-module Z𝐿 (its image in 𝑆𝐾0(Z𝐾)).

rootsof1(N, precision)
Return the column vector 𝑣 of all complex 𝑁 -th roots of 1, where 𝑁 is a positive integer. In other words, 𝑣[𝑘] =
exp(2𝐼(𝑘 − 1)𝜋/𝑁) for 𝑘 = 1, ..., 𝑁 . Rational components (e.g., the roots 1 and 𝐼) are given exactly, not as
floating point numbers:

? rootsof1(4)
%1 = [1, I, -1, -I]~
? rootsof1(3)
%2 = [1, -1/2 + 0.866025...*I, -1/2 - 0.866025...*I]~

round(x, e)
If 𝑥 is in R, rounds 𝑥 to the nearest integer (rounding to +𝑜𝑜 in case of ties), then and sets 𝑒 to the number of
error bits, that is the binary exponent of the difference between the original and the rounded value (the “fractional
part”). If the exponent of 𝑥 is too large compared to its precision (i.e. 𝑒 > 0), the result is undefined and an error
occurs if 𝑒 was not given.

Important remark. Contrary to the other truncation functions, this function operates on every coefficient at
every level of a PARI object. For example

𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒((2.4 *𝑋2 − 1.7)/(𝑋)) = 2.4 *𝑋,

whereas

𝑟𝑜𝑢𝑛𝑑((2.4 *𝑋2 − 1.7)/(𝑋)) = (2 *𝑋2 − 2)/(𝑋).

An important use of round is to get exact results after an approximate computation, when theory tells you that
the coefficients must be integers.

select(f, A, flag)
We first describe the default behavior, when 𝑓𝑙𝑎𝑔 is 0 or omitted. Given a vector or list A and a t_CLOSURE f,
select returns the elements 𝑥 of A such that 𝑓(𝑥) is nonzero. In other words, f is seen as a selection function
returning a boolean value.

? select(x->isprime(x), vector(50,i,i^2+1))
%1 = [2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601]
? select(x->(x<100), %)
%2 = [2, 5, 17, 37]
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returns the primes of the form 𝑖2 + 1 for some 𝑖 <= 50, then the elements less than 100 in the preceding result.
The select function also applies to a matrix A, seen as a vector of columns, i.e. it selects columns instead of
entries, and returns the matrix whose columns are the selected ones.

Remark. For 𝑣 a t_VEC, t_COL, t_VECSMALL, t_LIST or t_MAT, the alternative set-notations

[g(x) | x <- v, f(x)]
[x | x <- v, f(x)]
[g(x) | x <- v]

are available as shortcuts for

apply(g, select(f, Vec(v)))
select(f, Vec(v))
apply(g, Vec(v))

respectively:

? [ x | x <- vector(50,i,i^2+1), isprime(x) ]
%1 = [2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601]

If 𝑓𝑙𝑎𝑔 = 1, this function returns instead the indices of the selected elements, and not the elements themselves
(indirect selection):

? V = vector(50,i,i^2+1);
? select(x->isprime(x), V, 1)
%2 = Vecsmall([1, 2, 4, 6, 10, 14, 16, 20, 24, 26, 36, 40])
? vecextract(V, %)
%3 = [2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601]

The following function lists the elements in (Z/𝑁Z)*:

? invertibles(N) = select(x->gcd(x,N) == 1, [1..N])

Finally

? select(x->x, M)

selects the nonzero entries in M. If the latter is a t_MAT, we extract the matrix of nonzero columns. Note that
removing entries instead of selecting them just involves replacing the selection function f with its negation:

? select(x->!isprime(x), vector(50,i,i^2+1))

self()

Return the calling function or closure as a t_CLOSURE object. This is useful for defining anonymous recursive
functions.

? (n -> if(n==0,1,n*self()(n-1)))(5)
%1 = 120 \\ 5!

? (n -> if(n<=1, n, self()(n-1)+self()(n-2)))(20)
%2 = 6765 \\ Fibonacci(20)

seralgdep(s, p, r)
finds a linear relation between powers (1, 𝑠, ..., 𝑠𝑝) of the series 𝑠, with polynomial coefficients of degree <= 𝑟.
In case no relation is found, return 0.
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? s = 1 + 10*y - 46*y^2 + 460*y^3 - 5658*y^4 + 77740*y^5 + O(y^6);
? seralgdep(s, 2, 2)
%2 = -x^2 + (8*y^2 + 20*y + 1)
? subst(%, x, s)
%3 = O(y^6)
? seralgdep(s, 1, 3)
%4 = (-77*y^2 - 20*y - 1)*x + (310*y^3 + 231*y^2 + 30*y + 1)
? seralgdep(s, 1, 2)
%5 = 0

The series main variable must not be 𝑥, so as to be able to express the result as a polynomial in 𝑥.

serchop(s, n)
Remove all terms of degree strictly less than 𝑛 in series 𝑠. When the series contains no terms of degree < 𝑛,
return 𝑂(𝑥𝑛).

? s = 1/x + x + 2*x^2 + O(x^3);
? serchop(s)
%2 = x + 2*x^3 + O(x^3)
? serchop(s, 2)
%3 = 2*x^2 + O(x^3)
? serchop(s, 100)
%4 = O(x^100)

serconvol(x, y)
Convolution (or Hadamard product) of the two power series 𝑥 and 𝑦; in other words if 𝑥 =

∑︀
𝑎𝑘 * 𝑋𝑘 and

𝑦 =
∑︀
𝑏𝑘 *𝑋𝑘 then 𝑠𝑒𝑟𝑐𝑜𝑛𝑣𝑜𝑙(𝑥, 𝑦) =

∑︀
𝑎𝑘 * 𝑏𝑘 *𝑋𝑘.

serlaplace(x)
𝑥 must be a power series with nonnegative exponents or a polynomial. If 𝑥 =

∑︀
(𝑎𝑘/𝑘!) *𝑋𝑘 then the result is∑︀

𝑎𝑘 *𝑋𝑘.

serprec(x, v)
Returns the absolute precision of 𝑥 with respect to power series in the variable 𝑣; this is the minimum precision
of the components of 𝑥. The result is +oo if 𝑥 is an exact object (as a series in 𝑣):

? serprec(x + O(y^2), y)
%1 = 2
? serprec(x + 2, x)
%2 = +oo
? serprec(2 + x + O(x^2), y)
%3 = +oo

serreverse(s)
Reverse power series of 𝑠, i.e. the series 𝑡 such that 𝑡(𝑠) = 𝑥; 𝑠must be a power series whose valuation is exactly
equal to one.

? \ps 8
? t = serreverse(tan(x))
%2 = x - 1/3*x^3 + 1/5*x^5 - 1/7*x^7 + O(x^8)
? tan(t)
%3 = x + O(x^8)
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setbinop(f, X, Y)
The set whose elements are the f(x,y), where x,y run through X,Y. respectively. If 𝑌 is omitted, assume that
𝑋 = 𝑌 and that 𝑓 is symmetric: 𝑓(𝑥, 𝑦) = 𝑓(𝑦, 𝑥) for all 𝑥, 𝑦 in 𝑋 .

? X = [1,2,3]; Y = [2,3,4];
? setbinop((x,y)->x+y, X,Y) \\ set X + Y
%2 = [3, 4, 5, 6, 7]
? setbinop((x,y)->x-y, X,Y) \\ set X - Y
%3 = [-3, -2, -1, 0, 1]
? setbinop((x,y)->x+y, X) \\ set 2X = X + X
%2 = [2, 3, 4, 5, 6]

setintersect(x, y)
Intersection of the two sets 𝑥 and 𝑦 (see setisset). If 𝑥 or 𝑦 is not a set, the result is undefined.

setisset(x)
Returns true (1) if 𝑥 is a set, false (0) if not. In PARI, a set is a row vector whose entries are strictly increasing
with respect to a (somewhat arbitrary) universal comparison function. To convert any object into a set (this is
most useful for vectors, of course), use the function Set.

? a = [3, 1, 1, 2];
? setisset(a)
%2 = 0
? Set(a)
%3 = [1, 2, 3]

setminus(x, y)
Difference of the two sets 𝑥 and 𝑦 (see setisset), i.e. set of elements of 𝑥 which do not belong to 𝑦. If 𝑥 or 𝑦 is
not a set, the result is undefined.

setrand(n)
Reseeds the random number generator using the seed 𝑛. No value is returned. The seed is a small positive in-
teger 0 < 𝑛 < 264 used to generate deterministically a suitable state array. All gp session start by an implicit
setrand(1), so resetting the seed to this value allows to replay all computations since the session start. Alterna-
tively, running a randomized computation starting by setrand (𝑛) twice with the same 𝑛 will generate the exact
same output.

In the other direction, including a call to setrand(getwalltime()) from your gprc will cause GP to produce
different streams of random numbers in each session. (Unix users may want to use /dev/urandom instead of
getwalltime.)

For debugging purposes, one can also record a particular random state using getrand (the value is encoded as a
huge integer) and feed it to setrand:

? state = getrand(); \\ record seed
...
? setrand(state); \\ we can now replay the exact same computations

setsearch(S, x, flag)
Determines whether 𝑥 belongs to the set 𝑆 (see setisset).

We first describe the default behavior, when 𝑓𝑙𝑎𝑔 is zero or omitted. If 𝑥 belongs to the set 𝑆, returns the index
𝑗 such that 𝑆[𝑗] = 𝑥, otherwise returns 0.

344 Chapter 1. Interface to the PARI library



CyPari2 Documentation, Release 2.1.3

? T = [7,2,3,5]; S = Set(T);
? setsearch(S, 2)
%2 = 1
? setsearch(S, 4) \\ not found
%3 = 0
? setsearch(T, 7) \\ search in a randomly sorted vector
%4 = 0 \\ WRONG !

If 𝑆 is not a set, we also allow sorted lists with respect to the cmp sorting function, without repeated entries, as
per listsort(𝐿, 1); otherwise the result is undefined.

? L = List([1,4,2,3,2]); setsearch(L, 4)
%1 = 0 \\ WRONG !
? listsort(L, 1); L \\ sort L first
%2 = List([1, 2, 3, 4])
? setsearch(L, 4)
%3 = 4 \\ now correct

If 𝑓𝑙𝑎𝑔 is nonzero, this function returns the index 𝑗 where 𝑥 should be inserted, and 0 if it already belongs to 𝑆.
This is meant to be used for dynamically growing (sorted) lists, in conjunction with listinsert.

? L = List([1,5,2,3,2]); listsort(L,1); L
%1 = List([1,2,3,5])
? j = setsearch(L, 4, 1) \\ 4 should have been inserted at index j
%2 = 4
? listinsert(L, 4, j); L
%3 = List([1, 2, 3, 4, 5])

setunion(x, y)
Union of the two sets 𝑥 and 𝑦 (see setisset). If 𝑥 or 𝑦 is not a set, the result is undefined.

shift(x, n)
Shifts 𝑥 componentwise left by 𝑛 bits if 𝑛 >= 0 and right by ‖𝑛‖ bits if 𝑛 < 0. May be abbreviated as 𝑥 :literal:`
<< ` 𝑛 or 𝑥 :literal:` >> ` (−𝑛). A left shift by 𝑛 corresponds to multiplication by 2𝑛. A right shift of an integer
𝑥 by ‖𝑛‖ corresponds to a Euclidean division of 𝑥 by 2‖𝑛‖ with a remainder of the same sign as 𝑥, hence is not
the same (in general) as 𝑥 2𝑛.

shiftmul(x, n)
Multiplies 𝑥 by 2𝑛. The difference with shift is that when 𝑛 < 0, ordinary division takes place, hence for
example if 𝑥 is an integer the result may be a fraction, while for shifts Euclidean division takes place when 𝑛 < 0
hence if 𝑥 is an integer the result is still an integer.

sigma(x, k)
Sum of the 𝑘 − 𝑡ℎ powers of the positive divisors of ‖𝑥‖. 𝑥 and 𝑘 must be of type integer.

sign(x)
sign (0, 1 or −1) of 𝑥, which must be of type integer, real or fraction; t_QUAD with positive discriminants and
t_INFINITY are also supported.

simplify(x)
This function simplifies 𝑥 as much as it can. Specifically, a complex or quadratic number whose imaginary part is
the integer 0 (i.e. not Mod(0,2) or 0.E-28) is converted to its real part, and a polynomial of degree 0 is converted
to its constant term. Simplifications occur recursively.

This function is especially useful before using arithmetic functions, which expect integer arguments:
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? x = 2 + y - y
%1 = 2
? isprime(x)
*** at top-level: isprime(x)
*** ^----------
*** isprime: not an integer argument in an arithmetic function
? type(x)
%2 = "t_POL"
? type(simplify(x))
%3 = "t_INT"

Note that GP results are simplified as above before they are stored in the history. (Unless you disable automatic
simplification with \backslash y, that is.) In particular

? type(%1)
%4 = "t_INT"

sin(x, precision)
Sine of 𝑥. Note that, for real 𝑥, cosine and sine can be obtained simultaneously as

cs(x) = my(z = exp(I*x)); [real(z), imag(z)];

and for general complex 𝑥 as

cs2(x) = my(z = exp(I*x), u = 1/z); [(z+u)/2, (z-u)/2];

Note that the latter function suffers from catastrophic cancellation when 𝑧2 1.

sinc(x, precision)
Cardinal sine of 𝑥, i.e. sin(𝑥)/𝑥 if 𝑥! = 0, 1 otherwise. Note that this function also allows to compute

(1 − cos(𝑥))/𝑥2 = 𝑠𝑖𝑛𝑐(𝑥/2)2/2

accurately near 𝑥 = 0.

sinh(x, precision)
Hyperbolic sine of 𝑥.

sizebyte(x)
Outputs the total number of bytes occupied by the tree representing the PARI object 𝑥.

sizedigit(x)
This function is DEPRECATED, essentially meaningless, and provided for backwards compatibility only. Don’t
use it!

outputs a quick upper bound for the number of decimal digits of (the components of) 𝑥, off by at most 1. More
precisely, for a positive integer 𝑥, it computes (approximately) the ceiling of

𝑓𝑙𝑜𝑜𝑟(1 + log2 𝑥) log10 2,

To count the number of decimal digits of a positive integer 𝑥, use #digits(x). To estimate (recursively) the size
of 𝑥, use normlp(x).

sqr(x)
Square of 𝑥. This operation is not completely straightforward, i.e. identical to 𝑥 * 𝑥, since it can usually be
computed more efficiently (roughly one-half of the elementary multiplications can be saved). Also, squaring a
2-adic number increases its precision. For example,
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? (1 + O(2^4))^2
%1 = 1 + O(2^5)
? (1 + O(2^4)) * (1 + O(2^4))
%2 = 1 + O(2^4)

Note that this function is also called whenever one multiplies two objects which are known to be identical, e.g. they
are the value of the same variable, or we are computing a power.

? x = (1 + O(2^4)); x * x
%3 = 1 + O(2^5)
? (1 + O(2^4))^4
%4 = 1 + O(2^6)

(note the difference between %2 and %3 above).

sqrt(x, precision)
Principal branch of the square root of 𝑥, defined as

√
𝑥 = exp(log 𝑥/2). In particular, we have 𝐴𝑟𝑔(𝑠𝑞𝑟𝑡(𝑥)) ∈

] − 𝜋/2, 𝜋/2], and if 𝑥 ∈ R and 𝑥 < 0, then the result is complex with positive imaginary part.

Intmod a prime 𝑝, t_PADIC and t_FFELT are allowed as arguments. In the first 2 cases (t_INTMOD, t_PADIC),
the square root (if it exists) which is returned is the one whose first 𝑝-adic digit is in the interval [0, 𝑝/2]. For
other arguments, the result is undefined.

sqrtint(x, r)
Returns the integer square root of 𝑥, i.e. the largest integer 𝑦 such that 𝑦2 <= 𝑥, where 𝑥 a nonnegative integer.
If 𝑟 is present, set it to the remainder 𝑟 = 𝑥− 𝑦2, which satisfies 0 <= 𝑟 <= 2𝑦

? x = 120938191237; sqrtint(x)
%1 = 347761
? sqrt(x)
%2 = 347761.68741970412747602130964414095216
? y = sqrtint(x, &r)
%3 = 347761
? x - y^2
%4 = 478116

sqrtn(x, n, z, precision)
Principal branch of the 𝑛, i.e. such that 𝐴𝑟𝑔(𝑠𝑞𝑟𝑡𝑛(𝑥)) ∈]− 𝜋/𝑛, 𝜋/𝑛]. Intmod a prime and 𝑝-adics are allowed
as arguments.

If 𝑧 is present, it is set to a suitable root of unity allowing to recover all the other roots. If it was not possible, z is
set to zero. In the case this argument is present and no 𝑛 is returned instead of raising an error.

? sqrtn(Mod(2,7), 2)
%1 = Mod(3, 7)
? sqrtn(Mod(2,7), 2, &z); z
%2 = Mod(6, 7)
? sqrtn(Mod(2,7), 3)
*** at top-level: sqrtn(Mod(2,7),3)
*** ^-----------------
*** sqrtn: nth-root does not exist in gsqrtn.
? sqrtn(Mod(2,7), 3, &z)
%2 = 0
? z
%3 = 0
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The following script computes all roots in all possible cases:

sqrtnall(x,n)=
{ my(V,r,z,r2);
r = sqrtn(x,n, &z);
if (!z, error("Impossible case in sqrtn"));
if (type(x) == "t_INTMOD" || type(x)=="t_PADIC",
r2 = r*z; n = 1;
while (r2!=r, r2*=z;n++));
V = vector(n); V[1] = r;
for(i=2, n, V[i] = V[i-1]*z);
V
}
addhelp(sqrtnall,"sqrtnall(x,n):compute the vector of nth-roots of x");

sqrtnint(x, n)
Returns the integer 𝑛-th root of 𝑥, i.e. the largest integer 𝑦 such that 𝑦𝑛 <= 𝑥, where 𝑥 is a nonnegative integer.

? N = 120938191237; sqrtnint(N, 5)
%1 = 164
? N^(1/5)
%2 = 164.63140849829660842958614676939677391

The special case 𝑛 = 2 is sqrtint

stirling(n, k, flag)
Stirling number of the first kind 𝑠(𝑛, 𝑘) (𝑓𝑙𝑎𝑔 = 1, default) or of the second kind 𝑆(𝑛, 𝑘) (flag = 2), where 𝑛, 𝑘
are nonnegative integers. The former is (−1)𝑛−𝑘 times the number of permutations of 𝑛 symbols with exactly 𝑘
cycles; the latter is the number of ways of partitioning a set of 𝑛 elements into 𝑘 nonempty subsets. Note that if
all 𝑠(𝑛, 𝑘) are needed, it is much faster to compute∑︁

𝑘

𝑠(𝑛, 𝑘)𝑥𝑘 = 𝑥(𝑥− 1)...(𝑥− 𝑛+ 1).

Similarly, if a large number of 𝑆(𝑛, 𝑘) are needed for the same 𝑘, one should use∑︁
𝑛

𝑆(𝑛, 𝑘)𝑥𝑛 = (𝑥𝑘)/((1 − 𝑥)...(1 − 𝑘𝑥)).

(Should be implemented using a divide and conquer product.) Here are simple variants for 𝑛 fixed:

/* list of s(n,k), k = 1..n */
vecstirling(n) = Vec( factorback(vector(n-1,i,1-i*'x)) )

/* list of S(n,k), k = 1..n */
vecstirling2(n) =
{ my(Q = x^(n-1), t);
vector(n, i, t = divrem(Q, x-i); Q=t[1]; simplify(t[2]));
}

/* Bell numbers, B_n = B[n+1] = sum(k = 0, n, S(n,k)), n = 0..N */
vecbell(N)=
{ my (B = vector(N+1));
B[1] = B[2] = 1;
for (n = 2, N,

(continues on next page)
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my (C = binomial(n-1));
B[n+1] = sum(k = 1, n, C[k]*B[k]);
); B;
}

strchr(x)
Converts integer or vector of integers 𝑥 to a string, translating each integer (in the range [1, 255]) into a character
using ASCII encoding.

? strchr(97)
%1 = "a"
? Vecsmall("hello world")
%2 = Vecsmall([104, 101, 108, 108, 111, 32, 119, 111, 114, 108, 100])
? strchr(%)
%3 = "hello world"

strjoin(v, p)
Joins the strings in vector 𝑣, separating them with delimiter 𝑝. The reverse operation is strsplit.

? v = ["abc", "def", "ghi"]
? strjoin(v, "/")
%2 = "abc/def/ghi"
? strjoin(v)
%3 = "abcdefghi"

strsplit(s, p)
Splits the string 𝑠 into a vector of strings, with 𝑝 acting as a delimiter. If 𝑝 is empty or omitted, split the string
into characters.

? strsplit("abc::def::ghi", "::")
%1 = ["abc", "def", "ghi"]
? strsplit("abc", "")
%2 = ["a", "b", "c"]
? strsplit("aba", "a")

If 𝑠 starts (resp. ends) with the pattern 𝑝, then the first (resp. last) entry in the vector is the empty string:

? strsplit("aba", "a")
%3 = ["", "b", ""]

strtime(t)
Return a string describing the time t in milliseconds in the format used by the GP timer.

? print(strtime(12345678))
3h, 25min, 45,678 ms
? {
my(t=getabstime());
F=factor(2^256+1);t=getabstime()-t;
print("factor(2^256+1) took ",strtime(t));
}
factor(2^256+1) took 1,320 ms
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subgrouplist(cyc, bound, flag)
cyc being a vector of positive integers giving the cyclic components for a finite Abelian group 𝐺 (or any object
which has a .cyc method), outputs the list of subgroups of 𝐺. Subgroups are given as HNF left divisors of the
SNF matrix corresponding to 𝐺.

If 𝑓𝑙𝑎𝑔 = 0 (default) and cyc is a bnr structure output by bnrinit, gives only the subgroups whose modulus is
the conductor. Otherwise, all subgroups are given.

If bound is present, and is a positive integer, restrict the output to subgroups of index less than bound. If bound
is a vector containing a single positive integer 𝐵, then only subgroups of index exactly equal to 𝐵 are computed.
For instance

? subgrouplist([6,2])
%1 = [[6, 0; 0, 2], [2, 0; 0, 2], [6, 3; 0, 1], [2, 1; 0, 1], [3, 0; 0, 2],
[1, 0; 0, 2], [6, 0; 0, 1], [2, 0; 0, 1], [3, 0; 0, 1], [1, 0; 0, 1]]
? subgrouplist([6,2],3) \\ index less than 3
%2 = [[2, 1; 0, 1], [1, 0; 0, 2], [2, 0; 0, 1], [3, 0; 0, 1], [1, 0; 0, 1]]
? subgrouplist([6,2],[3]) \\ index 3
%3 = [[3, 0; 0, 1]]
? bnr = bnrinit(bnfinit(x), [120,[1]], 1);
? L = subgrouplist(bnr, [8]);

In the last example, 𝐿 corresponds to the 24 subfields of Q(𝜁120), of degree 8 and conductor 120𝑜𝑜 (by setting
flag, we see there are a total of 43 subgroups of degree 8).

? vector(#L, i, galoissubcyclo(bnr, L[i]))

will produce their equations. (For a general base field, you would have to rely on bnrstark, or bnrclassfield.)

Warning. This function requires factoring the exponent of 𝐺. If you are only interested in subgroups of index 𝑛
(or dividing 𝑛), you may considerably speed up the function by computing the subgroups of𝐺/𝐺𝑛, whose cyclic
components are apply(x- > gcd(n,x), C) (where 𝐶 gives the cyclic components of 𝐺). If you want the bnr
variant, now is a good time to use bnrinit(,,, n) as well, to directly compute the ray class group modulo 𝑛-th
powers.

subst(x, y, z)
Replace the simple variable 𝑦 by the argument 𝑧 in the “polynomial” expression 𝑥. If 𝑧 is a vector, return the
vector of the evaluated expressions subst(x, y, z[i]).

Every type is allowed for 𝑥, but if it is not a genuine polynomial (or power series, or rational function), the
substitution will be done as if the scalar components were polynomials of degree zero. In particular, beware that:

? subst(1, x, [1,2; 3,4])
%1 =
[1 0]

[0 1]

? subst(1, x, Mat([0,1]))
*** at top-level: subst(1,x,Mat([0,1])
*** ^--------------------
*** subst: forbidden substitution by a non square matrix.

If 𝑥 is a power series, 𝑧 must be either a polynomial, a power series, or a rational function. If 𝑥 is a vector, matrix
or list, the substitution is applied to each individual entry.
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Use the function substvec to replace several variables at once, or the function substpol to replace a polynomial
expression.

substpol(x, y, z)
Replace the “variable” 𝑦 by the argument 𝑧 in the “polynomial” expression 𝑥. Every type is allowed for 𝑥, but
the same behavior as subst above apply.

The difference with subst is that 𝑦 is allowed to be any polynomial here. The substitution is done moding out
all components of 𝑥 (recursively) by 𝑦 − 𝑡, where 𝑡 is a new free variable of lowest priority. Then substituting 𝑡
by 𝑧 in the resulting expression. For instance

? substpol(x^4 + x^2 + 1, x^2, y)
%1 = y^2 + y + 1
? substpol(x^4 + x^2 + 1, x^3, y)
%2 = x^2 + y*x + 1
? substpol(x^4 + x^2 + 1, (x+1)^2, y)
%3 = (-4*y - 6)*x + (y^2 + 3*y - 3)

substvec(x, v, w)
𝑣 being a vector of monomials of degree 1 (variables), 𝑤 a vector of expressions of the same length, replace in
the expression 𝑥 all occurrences of 𝑣𝑖 by 𝑤𝑖. The substitutions are done simultaneously; more precisely, the 𝑣𝑖
are first replaced by new variables in 𝑥, then these are replaced by the 𝑤𝑖:

? substvec([x,y], [x,y], [y,x])
%1 = [y, x]
? substvec([x,y], [x,y], [y,x+y])
%2 = [y, x + y] \\ not [y, 2*y]

sumdedekind(h, k)
Returns the Dedekind sum attached to the integers ℎ and 𝑘, corresponding to a fast implementation of

s(h,k) = sum(n = 1, k-1, (n/k)*(frac(h*n/k) - 1/2))

sumdigits(n, B)
Sum of digits in the integer ‖𝑛‖, when written in base 𝐵 > 1.

? sumdigits(123456789)
%1 = 45
? sumdigits(123456789, 2)
%1 = 16

Note that the sum of bits in 𝑛 is also returned by hammingweight. This function is much faster than
vecsum(digits(n,B)) when 𝐵 is 10 or a power of 2, and only slightly faster in other cases.

sumeulerrat(F, s, a, precision)∑︀
𝑝>=𝑎 𝐹 (𝑝𝑠), where the sum is taken over prime numbers and 𝐹 is a rational function.

? sumeulerrat(1/p^2)
%1 = 0.45224742004106549850654336483224793417
? sumeulerrat(1/p, 2)
%2 = 0.45224742004106549850654336483224793417

sumformal(f, v)
formal sum of the polynomial expression 𝑓 with respect to the main variable if 𝑣 is omitted, with respect to the
variable 𝑣 otherwise; it is assumed that the base ring has characteristic zero. In other words, considering 𝑓 as
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a polynomial function in the variable 𝑣, returns 𝐹 , a polynomial in 𝑣 vanishing at 0, such that 𝐹 (𝑏) − 𝐹 (𝑎) =
𝑠𝑢𝑚𝑏

𝑣=𝑎+1𝑓(𝑣):

? sumformal(n) \\ 1 + ... + n
%1 = 1/2*n^2 + 1/2*n
? f(n) = n^3+n^2+1;
? F = sumformal(f(n)) \\ f(1) + ... + f(n)
%3 = 1/4*n^4 + 5/6*n^3 + 3/4*n^2 + 7/6*n
? sum(n = 1, 2000, f(n)) == subst(F, n, 2000)
%4 = 1
? sum(n = 1001, 2000, f(n)) == subst(F, n, 2000) - subst(F, n, 1000)
%5 = 1
? sumformal(x^2 + x*y + y^2, y)
%6 = y*x^2 + (1/2*y^2 + 1/2*y)*x + (1/3*y^3 + 1/2*y^2 + 1/6*y)
? x^2 * y + x * sumformal(y) + sumformal(y^2) == %
%7 = 1

sumnumapinit(asymp, precision)
Initialize tables for Abel-Plana summation of a series

∑︀
𝑓(𝑛), where 𝑓 is holomorphic in a right half-plane. If

given, asymp is of the form [+𝑜𝑜, 𝛼], as in intnum and indicates the decrease rate at infinity of functions to be
summed. A positive 𝛼 > 0 encodes an exponential decrease of type exp(−𝛼𝑛) and a negative −2 < 𝛼 < −1
encodes a slow polynomial decrease of type 𝑛𝛼.

? \p200
? sumnumap(n=1, n^-2);
time = 163 ms.
? tab = sumnumapinit();
time = 160 ms.
? sumnumap(n=1, n^-2, tab); \\ faster
time = 7 ms.

? tab = sumnumapinit([+oo, log(2)]); \\ decrease like 2^-n
time = 164 ms.
? sumnumap(n=1, 2^-n, tab) - 1
time = 36 ms.
%5 = 3.0127431466707723218 E-282

? tab = sumnumapinit([+oo, -4/3]); \\ decrease like n^(-4/3)
time = 166 ms.
? sumnumap(n=1, n^(-4/3), tab);
time = 181 ms.

sumnuminit(asymp, precision)
Initialize tables for Euler-MacLaurin delta summation of a series with positive terms. If given, asymp is of the
form [+𝑜𝑜, 𝛼], as in intnum and indicates the decrease rate at infinity of functions to be summed. A positive
𝛼 > 0 encodes an exponential decrease of type exp(−𝛼𝑛) and a negative −2 < 𝛼 < −1 encodes a slow
polynomial decrease of type 𝑛𝛼.

? \p200
? sumnum(n=1, n^-2);
time = 200 ms.
? tab = sumnuminit();
time = 188 ms.

(continues on next page)
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? sumnum(n=1, n^-2, tab); \\ faster
time = 8 ms.

? tab = sumnuminit([+oo, log(2)]); \\ decrease like 2^-n
time = 200 ms.
? sumnum(n=1, 2^-n, tab)
time = 44 ms.

? tab = sumnuminit([+oo, -4/3]); \\ decrease like n^(-4/3)
time = 200 ms.
? sumnum(n=1, n^(-4/3), tab);
time = 221 ms.

sumnumlagrangeinit(asymp, c1, precision)
Initialize tables for Lagrange summation of a series. By default, assume that the remainder 𝑅(𝑛) =∑︀

𝑚>=𝑛 𝑓(𝑚) has an asymptotic expansion

𝑅(𝑛) =
∑︁

𝑚>=𝑛

𝑓(𝑛)
∑︁
𝑖>=1

𝑎𝑖/𝑛
𝑖

at infinity. The argument asymp allows to specify different expansions:

• a real number 𝛽 means

𝑅(𝑛) = 𝑛−𝛽
∑︁
𝑖>=1

𝑎𝑖/𝑛
𝑖

• a t_CLOSURE 𝑔 means

𝑅(𝑛) = 𝑔(𝑛)
∑︁
𝑖>=1

𝑎𝑖/𝑛
𝑖

(𝑇ℎ𝑒𝑝𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔𝑐𝑎𝑠𝑒𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠𝑡𝑜 : 𝑚𝑎𝑡ℎ : ‘𝑔(𝑛) = 𝑛−𝛽 ‘.)

• a pair [𝛼, 𝛽] where 𝛽 is as above and 𝛼 ∈ 2, 1, 1/2, 1/3, 1/4. We let𝑅2(𝑛) = 𝑅(𝑛)− 𝑓(𝑛)/2 and𝑅𝛼(𝑛) =
𝑅(𝑛) for 𝛼! = 2. Then

𝑅𝛼(𝑛) = 𝑔(𝑛)
∑︁
𝑖>=1

𝑎𝑖/𝑛
𝑖𝛼

𝑁𝑜𝑡𝑒𝑡ℎ𝑎𝑡𝑡ℎ𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒𝑠𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑎𝑏𝑙𝑒𝑓𝑜𝑟𝑡ℎ𝑒 : 𝑚𝑎𝑡ℎ : ‘𝛼‘𝑖𝑠𝑡ℎ𝑖𝑠𝑙𝑖𝑠𝑡(: 𝑚𝑎𝑡ℎ : ‘1/4‘𝑏𝑒𝑖𝑛𝑔𝑡ℎ𝑒𝑠𝑙𝑜𝑤𝑒𝑠𝑡).

The constant 𝑐1 is technical and computed by the program, but can be set by the user: the number of interpolation
steps will be chosen close to 𝑐1.𝐵, where 𝐵 is the bit accuracy.

? \p2000
? sumnumlagrange(n=1, n^-2);
time = 173 ms.
? tab = sumnumlagrangeinit();
time = 172 ms.
? sumnumlagrange(n=1, n^-2, tab);
time = 4 ms.

? \p115
? sumnumlagrange(n=1, n^(-4/3)) - zeta(4/3);

(continues on next page)
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%1 = -0.1093[...] \\ junk: expansion in n^(1/3)
time = 84 ms.
? tab = sumnumlagrangeinit([1/3,0]); \\ alpha = 1/3
time = 336 ms.
? sumnumlagrange(n=1, n^(-4/3), tab) - zeta(4/3)
time = 84 ms.
%3 = 1.0151767349262596893 E-115 \\ now OK

? tab = sumnumlagrangeinit(1/3); \\ alpha = 1, beta = 1/3: much faster
time = 3ms
? sumnumlagrange(n=1, n^(-4/3), tab) - zeta(4/3) \\ ... but wrong
%5 = -0.273825[...] \\ junk !
? tab = sumnumlagrangeinit(-2/3); \\ alpha = 1, beta = -2/3
time = 3ms
? sumnumlagrange(n=1, n^(-4/3), tab) - zeta(4/3)
%6 = 2.030353469852519379 E-115 \\ now OK

in The final example with 𝜁(4/3), the remainder 𝑅1(𝑛) is of the form 𝑛−1/3
∑︀

𝑖>=0 𝑎𝑖/𝑛
𝑖, i.e.

𝑛2/3
∑︀

𝑖>=1 𝑎𝑖/𝑛
𝑖. The explains the wrong result for 𝛽 = 1/3 and the correction with 𝛽 = −2/3.

sumnummonieninit(asymp, w, n0, precision)
Initialize tables for Monien summation of a series

∑︀
𝑛>=𝑛0

𝑓(𝑛) where 𝑓(1/𝑧) has a complex analytic continu-
ation in a (complex) neighbourhood of the segment [0, 1].

By default, assume that 𝑓(𝑛) = 𝑂(𝑛−2) and has a nonzero asymptotic expansion

𝑓(𝑛) =
∑︁
𝑖>=2

𝑎𝑖/𝑛
𝑖

at infinity. Note that the sum starts at 𝑖 = 2! The argument asymp allows to specify different expansions:

• a real number 𝛽 > 0 means

𝑓(𝑛) =
∑︁
𝑖>=1

𝑎𝑖/𝑛
𝑖+𝛽

(𝑁𝑜𝑤𝑡ℎ𝑒𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛𝑠𝑡𝑎𝑟𝑡𝑠𝑎𝑡 : 𝑚𝑎𝑡ℎ : ‘1‘.)

• a vector [𝛼, 𝛽] of reals, where we must have 𝛼 > 0 and 𝛼+ 𝛽 > 1 to ensure convergence, means that

𝑓(𝑛) =
∑︁
𝑖>=1

𝑎𝑖/𝑛
𝛼𝑖+𝛽

𝑁𝑜𝑡𝑒𝑡ℎ𝑎𝑡 : 𝑚𝑎𝑡ℎ : ‘𝑎𝑠𝑦𝑚𝑝 = [1, 𝛽]‘𝑖𝑠𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑡𝑜 : 𝑚𝑎𝑡ℎ : ‘𝑎𝑠𝑦𝑚𝑝 = 𝛽‘.

? \p57
? s = sumnum(n = 1, sin(1/sqrt(n)) / n); \\ reference point

? \p38
? sumnummonien(n = 1, sin(1/sqrt(n)) / n) - s
%2 = -0.001[...] \\ completely wrong

? t = sumnummonieninit(1/2); \\ f(n) = sum_i 1 / n^(i+1/2)
? sumnummonien(n = 1, sin(1/sqrt(n)) / n, t) - s
%3 = 0.E-37 \\ now correct
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(As a matter of fact, in the above summation, the result given by sumnum at \p38 is slighly incorrect, so we had
to increase the accuracy to \p57.)

The argument 𝑤 is used to sum expressions of the form∑︁
𝑛>=𝑛0

𝑓(𝑛)𝑤(𝑛),

for varying 𝑓 as above, and fixed weight function 𝑤, where we further assume that the auxiliary sums

𝑔𝑤(𝑚) =
∑︁

𝑛>=𝑛0

𝑤(𝑛)/𝑛𝛼𝑚+𝛽

converge for all 𝑚 >= 1. Note that for nonnegative integers 𝑘, and weight 𝑤(𝑛) = (log 𝑛)𝑘, the function
𝑔𝑤(𝑚) = 𝜁(𝑘)(𝛼𝑚 + 𝛽) has a simple expression; for general weights, 𝑔𝑤 is computed using sumnum. The
following variants are available

• an integer 𝑘 >= 0, to code 𝑤(𝑛) = (log 𝑛)𝑘;

• a t_CLOSURE computing the values 𝑤(𝑛), where we assume that 𝑤(𝑛) = 𝑂(𝑛𝜖) for all 𝜖 > 0;

• a vector [𝑤, 𝑓𝑎𝑠𝑡], where 𝑤 is a closure as above and fast is a scalar; we assume that 𝑤(𝑛) = 𝑂(𝑛𝑓𝑎𝑠𝑡+𝜖);
note that 𝑤 = [𝑤, 0] is equivalent to 𝑤 = 𝑤. Note that if 𝑤 decreases exponentially, suminf should be used
instead.

The subsequent calls to sumnummonien must use the same value of 𝑛0 as was used here.

? \p300
? sumnummonien(n = 1, n^-2*log(n)) + zeta'(2)
time = 328 ms.
%1 = -1.323[...]E-6 \\ completely wrong, f does not satisfy hypotheses !
? tab = sumnummonieninit(, 1); \\ codes w(n) = log(n)
time = 3,993 ms.
? sumnummonien(n = 1, n^-2, tab) + zeta'(2)
time = 41 ms.
%3 = -5.562684646268003458 E-309 \\ now perfect

? tab = sumnummonieninit(, n->log(n)); \\ generic, slower
time = 9,808 ms.
? sumnummonien(n = 1, n^-2, tab) + zeta'(2)
time = 40 ms.
%5 = -5.562684646268003458 E-309 \\ identical result

sumnumrat(F, a, precision)∑︀
𝑛>=𝑎 𝐹 (𝑛), where 𝐹 is a rational function of degree less than or equal to −2 and where poles of 𝐹 at integers

>= 𝑎 are omitted from the summation. The argument 𝑎 must be a t_INT or -oo.

? sumnumrat(1/(x^2+1)^2,0)
%1 = 1.3068369754229086939178621382829073480
? sumnumrat(1/x^2, -oo) \\ value at x=0 is discarded
%2 = 3.2898681336964528729448303332920503784
? 2*zeta(2)
%3 = 3.2898681336964528729448303332920503784

When deg𝐹 = −1, we define
𝑜𝑜∑︁
−𝑜𝑜

𝐹 (𝑛) :=
∑︁
𝑛>=0

(𝐹 (𝑛) + 𝐹 (−1 − 𝑛)) :

1.1. Guide to real precision in the PARI interface 355



CyPari2 Documentation, Release 2.1.3

? sumnumrat(1/x, -oo)
%4 = 0.E-38

system(str)
str is a string representing a system command. This command is executed, its output written to the standard
output (this won’t get into your logfile), and control returns to the PARI system. This simply calls the C system
command.

tan(x, precision)
Tangent of 𝑥.

tanh(x, precision)
Hyperbolic tangent of 𝑥.

taylor(x, t, serprec)
Taylor expansion around 0 of 𝑥with respect to the simple variable 𝑡. 𝑥 can be of any reasonable type, for example
a rational function. Contrary to Ser, which takes the valuation into account, this function adds 𝑂(𝑡𝑑) to all
components of 𝑥.

? taylor(x/(1+y), y, 5)
%1 = (y^4 - y^3 + y^2 - y + 1)*x + O(y^5)
? Ser(x/(1+y), y, 5)
*** at top-level: Ser(x/(1+y),y,5)
*** ^----------------
*** Ser: main variable must have higher priority in gtoser.

teichmuller(x, tab)
Teichmüller character of the 𝑝-adic number 𝑥, i.e. the unique (𝑝 − 1)-th root of unity congruent to 𝑥/𝑝𝑣𝑝(𝑥)

modulo 𝑝. If 𝑥 is of the form [𝑝, 𝑛], for a prime 𝑝 and integer 𝑛, return the lifts to Z of the images of 𝑖 + 𝑂(𝑝𝑛)
for 𝑖 = 1, ..., 𝑝 − 1, i.e. all roots of 1 ordered by residue class modulo 𝑝. Such a vector can be fed back to
teichmuller, as the optional argument tab, to speed up later computations.

? z = teichmuller(2 + O(101^5))
%1 = 2 + 83*101 + 18*101^2 + 69*101^3 + 62*101^4 + O(101^5)
? z^100
%2 = 1 + O(101^5)
? T = teichmuller([101, 5]);
? teichmuller(2 + O(101^5), T)
%4 = 2 + 83*101 + 18*101^2 + 69*101^3 + 62*101^4 + O(101^5)

As a rule of thumb, if more than

𝑝/2(log2(𝑝) + ℎ𝑎𝑚𝑚𝑖𝑛𝑔𝑤𝑒𝑖𝑔ℎ𝑡(𝑝))

values of teichmuller are to be computed, then it is worthwile to initialize:

? p = 101; n = 100; T = teichmuller([p,n]); \\ instantaneous
? for(i=1,10^3, vector(p-1, i, teichmuller(i+O(p^n), T)))
time = 60 ms.
? for(i=1,10^3, vector(p-1, i, teichmuller(i+O(p^n))))
time = 1,293 ms.
? 1 + 2*(log(p)/log(2) + hammingweight(p))
%8 = 22.316[...]
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Here the precomputation induces a speedup by a factor 1293/60 21.5.

Caveat. If the accuracy of tab (the argument 𝑛 above) is lower than the precision of 𝑥, the former is used, i.e.
the cached value is not refined to higher accuracy. It the accuracy of tab is larger, then the precision of 𝑥 is used:

? Tlow = teichmuller([101, 2]); \\ lower accuracy !
? teichmuller(2 + O(101^5), Tlow)
%10 = 2 + 83*101 + O(101^5) \\ no longer a root of 1

? Thigh = teichmuller([101, 10]); \\ higher accuracy
? teichmuller(2 + O(101^5), Thigh)
%12 = 2 + 83*101 + 18*101^2 + 69*101^3 + 62*101^4 + O(101^5)

theta(q, z, precision)
Jacobi sine theta-function

𝜃1(𝑧, 𝑞) = 2𝑞1/4
∑︁
𝑛>=0

(−1)𝑛𝑞𝑛(𝑛+1) sin((2𝑛+ 1)𝑧).

thetanullk(q, k, precision)
𝑘-th derivative at 𝑧 = 0 of 𝑡ℎ𝑒𝑡𝑎(𝑞, 𝑧).

thue(tnf, a, sol)
Returns all solutions of the equation 𝑃 (𝑥, 𝑦) = 𝑎 in integers 𝑥 and 𝑦, where tnf was created with 𝑡ℎ𝑢𝑒𝑖𝑛𝑖𝑡(𝑃 ).
If present, sol must contain the solutions of Norm(𝑥) = 𝑎 modulo units of positive norm in the number field
defined by 𝑃 (as computed by bnfisintnorm). If there are infinitely many solutions, an error is issued.

It is allowed to input directly the polynomial 𝑃 instead of a tnf, in which case, the function first performs
thueinit(P,0). This is very wasteful if more than one value of 𝑎 is required.

If tnf was computed without assuming GRH (flag 1 in thueinit), then the result is unconditional. Otherwise,
it depends in principle of the truth of the GRH, but may still be unconditionally correct in some favorable cases.
The result is conditional on the GRH if 𝑎! = 1 and 𝑃 has a single irreducible rational factor, whose attached
tentative class number ℎ and regulator 𝑅 (as computed assuming the GRH) satisfy

• ℎ > 1,

• 𝑅/0.2 > 1.5.

Here’s how to solve the Thue equation 𝑥13 − 5𝑦13 = −4:

? tnf = thueinit(x^13 - 5);
? thue(tnf, -4)
%1 = [[1, 1]]

In this case, one checks that bnfinit(x^13 -5).no is 1. Hence, the only solution is (𝑥, 𝑦) = (1, 1) and the
result is unconditional. On the other hand:

? P = x^3-2*x^2+3*x-17; tnf = thueinit(P);
? thue(tnf, -15)
%2 = [[1, 1]] \\ a priori conditional on the GRH.
? K = bnfinit(P); K.no
%3 = 3
? K.reg
%4 = 2.8682185139262873674706034475498755834

This time the result is conditional. All results computed using this particular tnf are likewise conditional, except
for a right-hand side of 1. The above result is in fact correct, so we did not just disprove the GRH:
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? tnf = thueinit(x^3-2*x^2+3*x-17, 1 /*unconditional*/);
? thue(tnf, -15)
%4 = [[1, 1]]

Note that reducible or nonmonic polynomials are allowed:

? tnf = thueinit((2*x+1)^5 * (4*x^3-2*x^2+3*x-17), 1);
? thue(tnf, 128)
%2 = [[-1, 0], [1, 0]]

Reducible polynomials are in fact much easier to handle.

Note. When 𝑃 is irreducible without a real root, the default strategy is to use brute force enumeration in time
‖𝑎‖1/ deg𝑃 and avoid computing a tough bnf attached to 𝑃 , see thueinit. Besides reusing a quantity you might
need for other purposes, the default argument sol can also be used to use a different strategy and prove that there
are no solutions; of course you need to compute a bnf on you own to obtain sol. If there are solutions this won’t
help unless 𝑃 is quadratic, since the enumeration will be performed in any case.

thueinit(P, flag, precision)
Initializes the tnf corresponding to 𝑃 , a nonconstant univariate polynomial with integer coefficients. The result
is meant to be used in conjunction with thue to solve Thue equations 𝑃 (𝑋/𝑌 )𝑌 deg𝑃 = 𝑎, where 𝑎 is an integer.
Accordingly, 𝑃 must either have at least two distinct irreducible factors over Q, or have one irreducible factor 𝑇
with degree > 2 or two conjugate complex roots: under these (necessary and sufficient) conditions, the equation
has finitely many integer solutions.

? S = thueinit(t^2+1);
? thue(S, 5)
%2 = [[-2, -1], [-2, 1], [-1, -2], [-1, 2], [1, -2], [1, 2], [2, -1], [2, 1]]
? S = thueinit(t+1);
*** at top-level: thueinit(t+1)
*** ^-------------
*** thueinit: domain error in thueinit: P = t + 1

The hardest case is when deg𝑃 > 2 and 𝑃 is irreducible with at least one real root. The routine then uses
Bilu-Hanrot’s algorithm.

If 𝑓𝑙𝑎𝑔 is nonzero, certify results unconditionally. Otherwise, assume GRH, this being much faster of course. In
the latter case, the result may still be unconditionally correct, see thue. For instance in most cases where 𝑃 is
reducible (not a pure power of an irreducible), or conditional computed class groups are trivial or the right hand
side is 1, then results are unconditional.

Note. The general philosophy is to disprove the existence of large solutions then to enumerate bounded solutions
naively. The implementation will overflow when there exist huge solutions and the equation has degree > 2 (the
quadratic imaginary case is special, since we can stick to bnfisintnorm, there are no fundamental units):

? thue(t^3+2, 10^30)
*** at top-level: L=thue(t^3+2,10^30)
*** ^-----------------
*** thue: overflow in thue (SmallSols): y <= 80665203789619036028928.
? thue(x^2+2, 10^30) \\ quadratic case much easier
%1 = [[-1000000000000000, 0], [1000000000000000, 0]]

Note. It is sometimes possible to circumvent the above, and in any case obtain an important speed-up, if you
can write 𝑃 = 𝑄(𝑥𝑑) for some 𝑑 > 1 and 𝑄 still satisfying the thueinit hypotheses. You can then solve the
equation attached to 𝑄 then eliminate all solutions (𝑥, 𝑦) such that either 𝑥 or 𝑦 is not a 𝑑-th power.
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? thue(x^4+1, 10^40); \\ stopped after 10 hours
? filter(L,d) =
my(x,y); [[x,y] | v<-L, ispower(v[1],d,&x)&&ispower(v[2],d,&y)];
? L = thue(x^2+1, 10^40);
? filter(L, 2)
%4 = [[0, 10000000000], [10000000000, 0]]

The last 2 commands use less than 20ms.

Note. When 𝑃 is irreducible without a real root, the equation can be solved unconditionnally in time ‖𝑎‖1/ deg𝑃 .
When this latter quantity is huge and the equation has no solutions, this fact may still be ascertained via arithmetic
conditions but this now implies solving norm equations, computing a bnf and possibly assuming the GRH. When
there is no real root, the code does not compute a bnf (with certification if 𝑓𝑙𝑎𝑔 = 1) if it expects this to be an
“easy” computation (because the result would only be used for huge values of 𝑎). See thue for a way to compute
an expensive bnf on your own and still get a result where this default cheap strategy fails.

trace(x)
This applies to quite general 𝑥. If 𝑥 is not a matrix, it is equal to the sum of 𝑥 and its conjugate, except for polmods
where it is the trace as an algebraic number.

For 𝑥 a square matrix, it is the ordinary trace. If 𝑥 is a nonsquare matrix (but not a vector), an error occurs.

truncate(x, e)
Truncates 𝑥 and sets 𝑒 to the number of error bits. When 𝑥 is in R, this means that the part after the decimal
point is chopped away, 𝑒 is the binary exponent of the difference between the original and the truncated value (the
“fractional part”). If the exponent of 𝑥 is too large compared to its precision (i.e. 𝑒 > 0), the result is undefined
and an error occurs if 𝑒 was not given. The function applies componentwise on vector / matrices; 𝑒 is then the
maximal number of error bits. If 𝑥 is a rational function, the result is the “integer part” (Euclidean quotient of
numerator by denominator) and 𝑒 is not set.

Note a very special use of truncate: when applied to a power series, it transforms it into a polynomial or a
rational function with denominator a power of 𝑋 , by chopping away the 𝑂(𝑋𝑘). Similarly, when applied to a
𝑝-adic number, it transforms it into an integer or a rational number by chopping away the 𝑂(𝑝𝑘).

type(x)
This is useful only under gp. Returns the internal type name of the PARI object 𝑥 as a string. Check out existing
type names with the metacommand \t. For example type(1) will return “t_INT”.

unexportall()

Empty the list of variables exported to the parallel world.

valuation(x, p)
Computes the highest exponent of 𝑝 dividing 𝑥. If 𝑝 is of type integer, 𝑥 must be an integer, an intmod whose
modulus is divisible by 𝑝, a fraction, a 𝑞-adic number with 𝑞 = 𝑝, or a polynomial or power series in which case
the valuation is the minimum of the valuation of the coefficients.

If 𝑝 is of type polynomial, 𝑥 must be of type polynomial or rational function, and also a power series if 𝑥 is a
monomial. Finally, the valuation of a vector, complex or quadratic number is the minimum of the component
valuations.

If 𝑥 = 0, the result is +oo if 𝑥 is an exact object. If 𝑥 is a 𝑝-adic numbers or power series, the result is the exponent
of the zero. Any other type combinations gives an error.

varhigher(name, v)
Return a variable name whose priority is higher than the priority of 𝑣 (of all existing variables if 𝑣 is omitted).
This is a counterpart to varlower.
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? Pol([x,x], t)
*** at top-level: Pol([x,x],t)
*** ^------------
*** Pol: incorrect priority in gtopoly: variable x <= t
? t = varhigher("t", x);
? Pol([x,x], t)
%3 = x*t + x

This routine is useful since new GP variables directly created by the interpreter always have lower priority than
existing GP variables. When some basic objects already exist in a variable that is incompatible with some function
requirement, you can now create a new variable with a suitable priority instead of changing variables in existing
objects:

? K = nfinit(x^2+1);
? rnfequation(K,y^2-2)
*** at top-level: rnfequation(K,y^2-2)
*** ^--------------------
*** rnfequation: incorrect priority in rnfequation: variable y >= x
? y = varhigher("y", x);
? rnfequation(K, y^2-2)
%3 = y^4 - 2*y^2 + 9

Caution 1. The name is an arbitrary character string, only used for display purposes and need not be related to
the GP variable holding the result, nor to be a valid variable name. In particular the name can not be used to
retrieve the variable, it is not even present in the parser’s hash tables.

? x = varhigher("#");
? x^2
%2 = #^2

Caution 2. There are a limited number of variables and if no existing variable with the given display name has
the requested priority, the call to varhigher uses up one such slot. Do not create new variables in this way unless
it’s absolutely necessary, reuse existing names instead and choose sensible priority requirements: if you only need
a variable with higher priority than 𝑥, state so rather than creating a new variable with highest priority.

\\ quickly use up all variables
? n = 0; while(1,varhigher("tmp"); n++)
*** at top-level: n=0;while(1,varhigher("tmp");n++)
*** ^-------------------
*** varhigher: no more variables available.
*** Break loop: type 'break' to go back to GP prompt
break> n
65510
\\ infinite loop: here we reuse the same 'tmp'
? n = 0; while(1,varhigher("tmp", x); n++)

variable(x)
Gives the main variable of the object 𝑥 (the variable with the highest priority used in 𝑥), and 𝑝 if 𝑥 is a 𝑝-adic
number. Return 0 if 𝑥 has no variable attached to it.

? variable(x^2 + y)
%1 = x
? variable(1 + O(5^2))

(continues on next page)
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(continued from previous page)

%2 = 5
? variable([x,y,z,t])
%3 = x
? variable(1)
%4 = 0

The construction

if (!variable(x),...)

can be used to test whether a variable is attached to 𝑥.

If 𝑥 is omitted, returns the list of user variables known to the interpreter, by order of decreasing priority. (Highest
priority is initially 𝑥, which come first until varhigher is used.) If varhigher or varlower are used, it is quite
possible to end up with different variables (with different priorities) printed in the same way: they will then appear
multiple times in the output:

? varhigher("y");
? varlower("y");
? variable()
%4 = [y, x, y]

Using v = variable() then v[1], v[2], etc. allows to recover and use existing variables.

variables(x)
Returns the list of all variables occurring in object 𝑥 (all user variables known to the interpreter if 𝑥 is omitted),
sorted by decreasing priority.

? variables([x^2 + y*z + O(t), a+x])
%1 = [x, y, z, t, a]

The construction

if (!variables(x),...)

can be used to test whether a variable is attached to 𝑥.

If varhigher or varlower are used, it is quite possible to end up with different variables (with different priori-
ties) printed in the same way: they will then appear multiple times in the output:

? y1 = varhigher("y");
? y2 = varlower("y");
? variables(y*y1*y2)
%4 = [y, y, y]

varlower(name, v)
Return a variable name whose priority is lower than the priority of 𝑣 (of all existing variables if 𝑣 is omitted).
This is a counterpart to varhigher.

New GP variables directly created by the interpreter always have lower priority than existing GP variables, but it
is not easy to check whether an identifier is currently unused, so that the corresponding variable has the expected
priority when it’s created! Thus, depending on the session history, the same command may fail or succeed:

? t; z; \\ now t > z
? rnfequation(t^2+1,z^2-t)

(continues on next page)
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(continued from previous page)

*** at top-level: rnfequation(t^2+1,z^
*** ^--------------------
*** rnfequation: incorrect priority in rnfequation: variable t >= t

Restart and retry:

? z; t; \\ now z > t
? rnfequation(t^2+1,z^2-t)
%2 = z^4 + 1

It is quite annoying for package authors, when trying to define a base ring, to notice that the package may fail for
some users depending on their session history. The safe way to do this is as follows:

? z; t; \\ In new session: now z > t
...
? t = varlower("t", 'z);
? rnfequation(t^2+1,z^2-2)
%2 = z^4 - 2*z^2 + 9
? variable()
%3 = [x, y, z, t]

? t; z; \\ In new session: now t > z
...
? t = varlower("t", 'z); \\ create a new variable, still printed "t"
? rnfequation(t^2+1,z^2-2)
%2 = z^4 - 2*z^2 + 9
? variable()
%3 = [x, y, t, z, t]

Now both constructions succeed. Note that in the first case, varlower is essentially a no-op, the existing variable
𝑡 has correct priority. While in the second case, two different variables are displayed as t, one with higher priority
than 𝑧 (created in the first line) and another one with lower priority (created by varlower).

Caution 1. The name is an arbitrary character string, only used for display purposes and need not be related to
the GP variable holding the result, nor to be a valid variable name. In particular the name can not be used to
retrieve the variable, it is not even present in the parser’s hash tables.

? x = varlower("#");
? x^2
%2 = #^2

Caution 2. There are a limited number of variables and if no existing variable with the given display name has
the requested priority, the call to varlower uses up one such slot. Do not create new variables in this way unless
it’s absolutely necessary, reuse existing names instead and choose sensible priority requirements: if you only need
a variable with higher priority than 𝑥, state so rather than creating a new variable with highest priority.

\\ quickly use up all variables
? n = 0; while(1,varlower("x"); n++)
*** at top-level: n=0;while(1,varlower("x");n++)
*** ^-------------------
*** varlower: no more variables available.
*** Break loop: type 'break' to go back to GP prompt
break> n

(continues on next page)
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(continued from previous page)

65510
\\ infinite loop: here we reuse the same 'tmp'
? n = 0; while(1,varlower("tmp", x); n++)

vecextract(x, y, z)
Extraction of components of the vector or matrix 𝑥 according to 𝑦. In case 𝑥 is a matrix, its components are the
columns of 𝑥. The parameter 𝑦 is a component specifier, which is either an integer, a string describing a range,
or a vector.

If 𝑦 is an integer, it is considered as a mask: the binary bits of 𝑦 are read from right to left, but correspond to
taking the components from left to right. For example, if 𝑦 = 13 = (1101)2 then the components 1,3 and 4 are
extracted.

If 𝑦 is a vector (t_VEC, t_COL or t_VECSMALL), which must have integer entries, these entries correspond to the
component numbers to be extracted, in the order specified.

If 𝑦 is a string, it can be

• a single (nonzero) index giving a component number (a negative index means we start counting from the
end).

• a range of the form ":math:`a..:math:b”, where :math:`a and 𝑏 are indexes as above. Any of 𝑎 and 𝑏 can
be omitted; in this case, we take as default values 𝑎 = 1 and 𝑏 = −1, i.e. the first and last components
respectively. We then extract all components in the interval [𝑎, 𝑏], in reverse order if 𝑏 < 𝑎.

In addition, if the first character in the string is ^, the complement of the given set of indices is taken.

If 𝑧 is not omitted, 𝑥must be a matrix. 𝑦 is then the row specifier, and 𝑧 the column specifier, where the component
specifier is as explained above.

? v = [a, b, c, d, e];
? vecextract(v, 5) \\ mask
%1 = [a, c]
? vecextract(v, [4, 2, 1]) \\ component list
%2 = [d, b, a]
? vecextract(v, "2..4") \\ interval
%3 = [b, c, d]
? vecextract(v, "-1..-3") \\ interval + reverse order
%4 = [e, d, c]
? vecextract(v, "^2") \\ complement
%5 = [a, c, d, e]
? vecextract(matid(3), "2..", "..")
%6 =
[0 1 0]

[0 0 1]

The range notations v[i..j] and v[^i] (for t_VEC or t_COL) and M[i..j, k..l] and friends (for t_MAT)
implement a subset of the above, in a simpler and faster way, hence should be preferred in most common situations.
The following features are not implemented in the range notation:

• reverse order,

• omitting either 𝑎 or 𝑏 in :math:`a..:math:b`.

vecmax(x, v)
If 𝑥 is a vector or a matrix, returns the largest entry of 𝑥, otherwise returns a copy of 𝑥. Error if 𝑥 is empty.
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If 𝑣 is given, set it to the index of a largest entry (indirect maximum), when 𝑥 is a vector. If 𝑥 is a matrix, set 𝑣 to
coordinates [𝑖, 𝑗] such that 𝑥[𝑖, 𝑗] is a largest entry. This flag is ignored if 𝑥 is not a vector or matrix.

? vecmax([10, 20, -30, 40])
%1 = 40
? vecmax([10, 20, -30, 40], &v); v
%2 = 4
? vecmax([10, 20; -30, 40], &v); v
%3 = [2, 2]

vecmin(x, v)
If 𝑥 is a vector or a matrix, returns the smallest entry of 𝑥, otherwise returns a copy of 𝑥. Error if 𝑥 is empty.

If 𝑣 is given, set it to the index of a smallest entry (indirect minimum), when 𝑥 is a vector. If 𝑥 is a matrix, set 𝑣
to coordinates [𝑖, 𝑗] such that 𝑥[𝑖, 𝑗] is a smallest entry. This is ignored if 𝑥 is not a vector or matrix.

? vecmin([10, 20, -30, 40])
%1 = -30
? vecmin([10, 20, -30, 40], &v); v
%2 = 3
? vecmin([10, 20; -30, 40], &v); v
%3 = [2, 1]

vecprod(v)
Return the product of the components of the vector 𝑣. Return 1 on an empty vector.

? vecprod([1,2,3])
%1 = 6
? vecprod([])
%2 = 1

vecsearch(v, x, cmpf )
Determines whether 𝑥 belongs to the sorted vector or list 𝑣: return the (positive) index where 𝑥 was found, or 0
if it does not belong to 𝑣.

If the comparison function cmpf is omitted, we assume that 𝑣 is sorted in increasing order, according to the
standard comparison function lex, thereby restricting the possible types for 𝑥 and the elements of 𝑣 (integers,
fractions, reals, and vectors of such). We also transparently allow a t_VECSMALL 𝑥 in this case, for the natural
ordering of the integers.

If cmpf is present, it is understood as a comparison function and we assume that 𝑣 is sorted according to it, see
vecsort for how to encode comparison functions.

? v = [1,3,4,5,7];
? vecsearch(v, 3)
%2 = 2
? vecsearch(v, 6)
%3 = 0 \\ not in the list
? vecsearch([7,6,5], 5) \\ unsorted vector: result undefined
%4 = 0

Note that if we are sorting with respect to a key which is expensive to compute (e.g. a discriminant), one should
rather precompute all keys, sort that vector and search in the vector of keys, rather than searching in the original
vector with respect to a comparison function.
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By abuse of notation, 𝑥 is also allowed to be a matrix, seen as a vector of its columns; again by abuse of notation,
a t_VEC is considered as part of the matrix, if its transpose is one of the matrix columns.

? v = vecsort([3,0,2; 1,0,2]) \\ sort matrix columns according to lex order
%1 =
[0 2 3]

[0 2 1]
? vecsearch(v, [3,1]~)
%2 = 3
? vecsearch(v, [3,1]) \\ can search for x or x~
%3 = 3
? vecsearch(v, [1,2])
%4 = 0 \\ not in the list

vecsort(x, cmpf, flag)
Sorts the vector 𝑥 in ascending order, using a mergesort method. 𝑥 must be a list, vector or matrix (seen as a
vector of its columns). Note that mergesort is stable, hence the initial ordering of “equal” entries (with respect to
the sorting criterion) is not changed.

If cmpf is omitted, we use the standard comparison function lex, thereby restricting the possible types for the
elements of 𝑥 (integers, fractions or reals and vectors of those). We also transparently allow a t_VECSMALL 𝑥 in
this case, for the standard ordering on the integers.

If cmpf is present, it is understood as a comparison function and we sort according to it. The following possibilities
exist:

• an integer 𝑘: sort according to the value of the 𝑘-th subcomponents of the components of 𝑥.

• a vector: sort lexicographically according to the components listed in the vector. For example, if 𝑐𝑚𝑝𝑓 =
[2, 1, 3], sort with respect to the second component, and when these are equal, with respect to the first, and
when these are equal, with respect to the third.

• a comparison function: t_CLOSURE with two arguments 𝑥 and 𝑦, and returning a real number which is < 0,
> 0 or = 0 if 𝑥 < 𝑦, 𝑥 > 𝑦 or 𝑥 = 𝑦 respectively.

• a key: t_CLOSURE with one argument 𝑥 and returning the value 𝑓(𝑥) with respect to which we sort.

? vecsort([3,0,2; 1,0,2]) \\ sort columns according to lex order
%1 =
[0 2 3]

[0 2 1]
? vecsort(v, (x,y)->y-x) \\ reverse sort
? vecsort(v, (x,y)->abs(x)-abs(y)) \\ sort by increasing absolute value
? vecsort(v, abs) \\ sort by increasing absolute value, using key
? cmpf(x,y) = my(dx = poldisc(x), dy = poldisc(y)); abs(dx) - abs(dy);
? v = [x^2+1, x^3-2, x^4+5*x+1] vecsort(v, cmpf) \\ comparison function
? vecsort(v, x->abs(poldisc(x))) \\ key

The abs and cmpf examples show how to use a named function instead of an anonymous function. It is preferable
to use a key whenever possible rather than include it in the comparison function as above since the key is evaluated
𝑂(𝑛) times instead of 𝑂(𝑛 log 𝑛), where 𝑛 is the number of entries.

A direct approach is also possible and equivalent to using a sorting key:
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? T = [abs(poldisc(x)) | x<-v];
? perm = vecsort(T,,1); \\ indirect sort
? vecextract(v, perm)

This also provides the vector 𝑇 of all keys, which is interesting for instance in later vecsearch calls: it is more
efficient to sort 𝑇 (T = vecextract(T, perm)) then search for a key in 𝑇 rather than to search in 𝑣 using a
comparison function or a key. Note also that mapisdefined is often easier to use and faster than vecsearch.

The binary digits of flag mean:

• 1: indirect sorting of the vector 𝑥, i.e. if 𝑥 is an 𝑛-component vector, returns a permutation of [1, 2, ..., 𝑛]
which applied to the components of 𝑥 sorts 𝑥 in increasing order. For example, vecextract(x,
vecsort(x,,1)) is equivalent to vecsort(x).

• 4: use descending instead of ascending order.

• 8: remove “duplicate” entries with respect to the sorting function (keep the first occurring entry). For exam-
ple:

? vecsort([Pi,Mod(1,2),z], (x,y)->0, 8) \\ make everything compare equal
%1 = [3.141592653589793238462643383]
? vecsort([[2,3],[0,1],[0,3]], 2, 8)
%2 = [[0, 1], [2, 3]]

vecsum(v)
Return the sum of the components of the vector 𝑣. Return 0 on an empty vector.

? vecsum([1,2,3])
%1 = 6
? vecsum([])
%2 = 0

version()

Returns the current version number as a t_VEC with three integer components (major version number, minor
version number and patchlevel); if your sources were obtained through our version control system, this will be
followed by further more precise arguments, including e.g. a git commit hash.

This function is present in all versions of PARI following releases 2.3.4 (stable) and 2.4.3 (testing).

Unless you are working with multiple development versions, you probably only care about the 3 first numeric
components. In any case, the lex function offers a clever way to check against a particular version number, since
it will compare each successive vector entry, numerically or as strings, and will not mind if the vectors it compares
have different lengths:

if (lex(version(), [2,3,5]) >= 0,
\\ code to be executed if we are running 2.3.5 or more recent.
,
\\ compatibility code
);

On a number of different machines, version() could return either of

%1 = [2, 3, 4] \\ released version, stable branch
%1 = [2, 4, 3] \\ released version, testing branch
%1 = [2, 6, 1, 15174, ""505ab9b"] \\ development
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In particular, if you are only working with released versions, the first line of the gp introductory message can be
emulated by

[M,m,p] = version();
printf("GP/PARI CALCULATOR Version %s.%s.%s", M,m,p);

If you are working with many development versions of PARI/GP, the 4th and/or 5th components can be profitably
included in the name of your logfiles, for instance.

Technical note. For development versions obtained via git, the 4th and 5th components are liable to change
eventually, but we document their current meaning for completeness. The 4th component counts the number of
reachable commits in the branch (analogous to svn’s revision number), and the 5th is the git commit hash. In
particular, lex comparison still orders correctly development versions with respect to each others or to released
versions (provided we stay within a given branch, e.g. master)!

weber(x, flag, precision)
One of Weber’s three 𝑓 functions. If 𝑓𝑙𝑎𝑔 = 0, returns

𝑓(𝑥) = exp(−𝑖𝜋/24).𝜂((𝑥+ 1)/2)/𝜂(𝑥)𝑠𝑢𝑐ℎ𝑡ℎ𝑎𝑡𝑗 = (𝑓24 − 16)3/𝑓24,

where 𝑗 is the elliptic 𝑗-invariant (see the function ellj). If 𝑓𝑙𝑎𝑔 = 1, returns

𝑓1(𝑥) = 𝜂(𝑥/2)/𝜂(𝑥)𝑠𝑢𝑐ℎ𝑡ℎ𝑎𝑡𝑗 = (𝑓241 + 16)3/𝑓241 .

Finally, if 𝑓𝑙𝑎𝑔 = 2, returns

𝑓2(𝑥) =
√

2𝜂(2𝑥)/𝜂(𝑥)𝑠𝑢𝑐ℎ𝑡ℎ𝑎𝑡𝑗 = (𝑓242 + 16)3/𝑓242 .

Note the identities 𝑓8 = 𝑓81 + 𝑓82 and 𝑓𝑓1𝑓2 =
√

2.

writebin(filename, x)
Writes (appends) to filename the object 𝑥 in binary format. This format is not human readable, but contains the
exact internal structure of 𝑥, and is much faster to save/load than a string expression, as would be produced by
write. The binary file format includes a magic number, so that such a file can be recognized and correctly input
by the regular read or \r function. If saved objects refer to polynomial variables that are not defined in the
new session, they will be displayed as t:math:`n` for some integer 𝑛 (the attached variable number). Installed
functions and history objects can not be saved via this function.

If 𝑥 is omitted, saves all user variables from the session, together with their names. Reading such a “named
object” back in a gp session will set the corresponding user variable to the saved value. E.g after

x = 1; writebin("log")

reading log into a clean session will set x to 1. The relative variables priorities (see priority (in the PARI
manual)) of new variables set in this way remain the same (preset variables retain their former priority, but are set
to the new value). In particular, reading such a session log into a clean session will restore all variables exactly
as they were in the original one.

Just as a regular input file, a binary file can be compressed using gzip, provided the file name has the standard
.gz extension.

In the present implementation, the binary files are architecture dependent and compatibility with future versions
of gp is not guaranteed. Hence binary files should not be used for long term storage (also, they are larger and
harder to compress than text files).

zeta(s, precision)
For 𝑠! = 1 a complex number, Riemann’s zeta function 𝜁(𝑠) =

∑︀
𝑛>=1 𝑛

−𝑠, computed using the Euler-Maclaurin
summation formula, except when 𝑠 is of type integer, in which case it is computed using Bernoulli numbers for
𝑠 <= 0 or 𝑠 > 0 and even, and using modular forms for 𝑠 > 0 and odd. Power series are also allowed:
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? zeta(2) - Pi^2/6
%1 = 0.E-38
? zeta(1+x+O(x^3))
%2 = 1.0000000000000000000000000000000000000*x^-1 + \
0.57721566490153286060651209008240243104 + O(x)

For 𝑠! = 1 a 𝑝-adic number, Kubota-Leopoldt zeta function at 𝑠, that is the unique continuous 𝑝-adic function on
the 𝑝-adic integers that interpolates the values of (1−𝑝−𝑘)𝜁(𝑘) at negative integers 𝑘 such that 𝑘 = 1(𝑚𝑜𝑑𝑝−1)
(resp. 𝑘 is odd) if 𝑝 is odd (resp. 𝑝 = 2). Power series are not allowed in this case.

? zeta(-3+O(5^10))
%1 = 4*5^-1 + 4 + 3*5 + 4*5^3 + 4*5^5 + 4*5^7 + O(5^9)))))
? (1-5^3) * zeta(-3)
%2 = -1.0333333333333333333333333333333333333
? bestappr(%)
%3 = -31/30
? zeta(-3+O(5^10)) - (-31/30)
%4 = O(5^9)

zetahurwitz(s, x, der, precision)
Hurwitz zeta function 𝜁(𝑠, 𝑥) =

∑︀
𝑛>=0(𝑛+ 𝑥)−𝑠 and analytically continued, with 𝑠! = 1 and 𝑥 not a negative

or zero integer. Note that 𝜁(𝑠, 1) = 𝜁(𝑠). 𝑠 can also be a polynomial, rational function, or power series. If der
is positive, compute the der’th derivative with respect to 𝑠. Note that the derivative with respect to 𝑥 is simply
−𝑠𝜁(𝑠+ 1, 𝑥).

? zetahurwitz(Pi,Pi)
%1 = 0.056155444497585099925180502385781494484
? zetahurwitz(2,1) - zeta(2)
%2 = -2.350988701644575016 E-38
? zetahurwitz(Pi,3) - (zeta(Pi)-1-1/2^Pi)
%3 = -2.2040519077917890774 E-39
? zetahurwitz(-7/2,1) - zeta(-7/2)
%4 = -2.295887403949780289 E-41
? zetahurwitz(-2.3,Pi+I*log(2))
%5 = -5.1928369229555125820137832704455696057\
- 6.1349660138824147237884128986232049582*I
? zetahurwitz(-1+x^2+O(x^3),1)
%6 = -0.083333333333333333333333333333333333333\
- 0.16542114370045092921391966024278064276*x^2 + O(x^3)
? zetahurwitz(1+x+O(x^4),2)
%7 = 1.0000000000000000000000000000000000000*x^-1\
- 0.42278433509846713939348790991759756896\
+ 0.072815845483676724860586375874901319138*x + O(x^2)
? zetahurwitz(2,1,2) \\ zeta''(2)
%8 = 1.9892802342989010234208586874215163815

zetamult(s, t, precision)
For 𝑠 a vector of positive integers such that 𝑠[1] >= 2, returns the multiple zeta value (MZV)

𝜁(𝑠1, ..., 𝑠𝑘) =
∑︁

𝑛1>...>𝑛𝑘>0

𝑛−𝑠1
1 ...𝑛−𝑠𝑘

𝑘

of length 𝑘 and weight
∑︀

𝑖 𝑠𝑖. More generally, return Yamamoto’s 𝑡-MZV interpolation evaluated at 𝑡: for 𝑡 = 0,
this is the ordinary MZV; for 𝑡 = 1, we obtain the MZSV star value, with >= instead of strict inequalities; and
of course, for 𝑡 =′ 𝑥 we obtain Yamamoto’s one-variable polynomial.
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? zetamult([2,1]) - zeta(3) \\ Euler's identity
%1 = 0.E-38
? zetamult([2,1], 1) \\ star value
%2 = 2.4041138063191885707994763230228999815
? zetamult([2,1], 'x)
%3 = 1.20205[...]*x + 1.20205[...]

If the bit precision is 𝐵, this function runs in time 𝑂(𝑘(𝐵 + 𝑘)2) if 𝑡 = 0, and 𝑂(𝑘𝐵3) otherwise.

In addition to the above format (avec), the function also accepts a binary word format evec (each 𝑠𝑖 is replaced
by 𝑠𝑖 bits, all of them 0 but the last one) giving the MZV representation as an iterated integral, and an index
format (if 𝑒 is the positive integer attached the evec vector of bits, the index is the integer 𝑒 + 2𝑘−2). The
function zetamultconvert allows to pass from one format to the other; the function zetamultall computes
simultaneously all MZVs of weight

∑︀
𝑖<=𝑘 𝑠𝑖 up to 𝑛.

zetamultall(k, flag, precision)
List of all multiple zeta values (MZVs) for weight 𝑠1+...+𝑠𝑟 up to 𝑘. Binary digits of 𝑓𝑙𝑎𝑔mean : 0 = star values
if set; 1 = values up to to duality if set (see zetamultdual, ignored if star values); 2 = values of weight 𝑘 if set (else
all values up to weight 𝑘); 3 = return the 2-component vector [Z, M], where𝑀 is the vector of the corresponding
indices 𝑚, i.e., such that zetamult(M[i]) = Z[i]. Note that it is necessary to use zetamultconvert to have
the corresponding avec (𝑠1, ..., 𝑠𝑟).

With default flag 𝑓𝑙𝑎𝑔 = 0, the function returns a vector with 2𝑘−1− 1 components whose 𝑖-th entry is the MZV
of index 𝑖 (see zetamult). If the bit precision is 𝐵, this function runs in time 𝑂(2𝑘𝑘𝐵2) for an output of size
𝑂(2𝑘𝐵).

? Z = zetamultall(5); #Z \\ 2^4 - 1 MZVs of weight <= 5
%1 = 15
? Z[10]
%2 = 0.22881039760335375976874614894168879193
? zetamultconvert(10)
%3 = Vecsmall([3, 2]) \\ {index 10 corresponds to zeta (3,2)}
? zetamult(%) \\ double check
%4 = 0.22881039760335375976874614894168879193
? zetamult(10) \\ we can use the index directly
%5 = 0.22881039760335375976874614894168879193

If we use flag bits 1 and 2, we avoid unnecessary computations and copying, saving a potential factor 4: half the
values are in lower weight and computing up to duality save another rough factor 2. Unfortunately, the indexing
now no longer corresponds to the new shorter vector of MZVs:

? Z = zetamultall(5, 2); #Z \\ up to duality
%6 = 9
? Z = zetamultall(5, 2); #Z \\ only weight 5
%7 = 8
? Z = zetamultall(5, 2 + 4); #Z \\ both
%8 = 4

So how to recover the value attached to index 10 ? Flag bit 3 returns the actual indices used:

? [Z, M] = zetamultall(5, 2 + 8); M \\ other indices were not included
%9 = Vecsmall([1, 2, 4, 5, 6, 8, 9, 10, 12])
? Z[8] \\ index m = 10 is now in M[8]
%10 = 0.22881039760335375976874614894168879193

(continues on next page)
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(continued from previous page)

? [Z, M] = zetamultall(5, 2 + 4 + 8); M
%11 = Vecsmall([8, 9, 10, 12])
? Z[3] \\ index m = 10 is now in M[3]
%12 = 0.22881039760335375976874614894168879193

The following construction automates the above programmatically, looking up the MZVs of index 10 (= 𝜁(3, 2))
in all cases, without inspecting the various index sets 𝑀 visually:

? Z[vecsearch(M, 10)] \\ works in all the above settings
%13 = 0.22881039760335375976874614894168879193

zetamultconvert(a, fl)
a being either an evec, avec, or index m, converts into evec (fl = 0), avec (fl = 1), or index m (fl = 2).

? zetamultconvert(10)
%1 = Vecsmall([3, 2])
? zetamultconvert(13)
%2 = Vecsmall([2, 2, 1])
? zetamultconvert(10, 0)
%3 = Vecsmall([0, 0, 1, 0, 1])
? zetamultconvert(13, 0)
%4 = Vecsmall([0, 1, 0, 1, 1])

The last two lines imply that [3, 2] and [2, 2, 1] are dual (reverse order of bits and swap 0 and 1 in evec form).
Hence they have the same zeta value:

? zetamult([3,2])
%5 = 0.22881039760335375976874614894168879193
? zetamult([2,2,1])
%6 = 0.22881039760335375976874614894168879193

zetamultdual(s)
𝑠 being either an evec, avec, or index m, return the dual sequence in avec format. The dual of a sequence of
length 𝑟 and weight 𝑘 has length 𝑘 − 𝑟 and weight 𝑘. Duality is an involution and zeta values attached to dual
sequences are the same:

? zetamultdual([4])
%1 = Vecsmall([2, 1, 1])
? zetamultdual(%)
%2 = Vecsmall([4])
? zetamult(%1) - zetamult(%2)
%3 = 0.E-38

In evec form, duality simply reverses the order of bits and swaps 0 and 1:

? zetamultconvert([4], 0)
%4 = Vecsmall([0, 0, 0, 1])
? zetamultconvert([2,1,1], 0)
%5 = Vecsmall([0, 1, 1, 1])

znchar(D)

Given a datum𝐷 describing a group (Z/𝑁Z)* and a Dirichlet character 𝜒, return the pair [G, chi], where G is
znstar(N, 1)) and chi is a GP character.

370 Chapter 1. Interface to the PARI library



CyPari2 Documentation, Release 2.1.3

The following possibilities for 𝐷 are supported

• a nonzero t_INT congruent to 0, 1 modulo 4, return the real character modulo 𝐷 given by the Kronecker
symbol (𝐷/.);

• a t_INTMOD Mod(m, N), return the Conrey character modulo 𝑁 of index 𝑚 (see znconreylog).

• a modular form space as per mfinit([𝑁, 𝑘, 𝜒]) or a modular form for such a space, return the underlying
Dirichlet character 𝜒 (which may be defined modulo a divisor of 𝑁 but need not be primitive).

In the remaining cases, G is initialized by znstar(N, 1).

• a pair [G, chi], where chi is a standard GP Dirichlet character 𝑐 = (𝑐𝑗) on G (generic character t_VEC or
Conrey characters t_COL or t_INT); given generators 𝐺 = ⊕(Z/𝑑𝑗Z)𝑔𝑗 , 𝜒(𝑔𝑗) = 𝑒(𝑐𝑗/𝑑𝑗).

• a pair [G, chin], where chin is a normalized representation [𝑛, 𝑐] of the Dirichlet character 𝑐; 𝜒(𝑔𝑗) =
𝑒( 𝑐𝑗/𝑛) where 𝑛 is minimal (order of 𝜒).

? [G,chi] = znchar(-3);
? G.cyc
%2 = [2]
? chareval(G, chi, 2)
%3 = 1/2
? kronecker(-3,2)
%4 = -1
? znchartokronecker(G,chi)
%5 = -3
? mf = mfinit([28, 5/2, Mod(2,7)]); [f] = mfbasis(mf);
? [G,chi] = znchar(mf); [G.mod, chi]
%7 = [7, [2]~]
? [G,chi] = znchar(f); chi
%8 = [28, [0, 2]~]

zncharconductor(G, chi)
Let G be attached to (Z/𝑞Z)* (as per G = znstar(q, 1)) and chi be a Dirichlet character on (Z/𝑞Z)* (see
dirichletchar (in the PARI manual) or ??character). Return the conductor of chi:

? G = znstar(126000, 1);
? zncharconductor(G,11) \\ primitive
%2 = 126000
? zncharconductor(G,1) \\ trivial character, not primitive!
%3 = 1
? zncharconductor(G,1009) \\ character mod 5^3
%4 = 125

znchardecompose(G, chi, Q)

Let 𝑁 =
∏︀

𝑝 𝑝
𝑒𝑝 and a Dirichlet character 𝜒, we have a decomposition 𝜒 =

∏︀
𝑝 𝜒𝑝 into character modulo 𝑁

where the conductor of 𝜒𝑝 divides 𝑝𝑒𝑝 ; it equals 𝑝𝑒𝑝 for all 𝑝 if and only if 𝜒 is primitive.

Given a znstar G describing a group (Z/𝑁Z)*, a Dirichlet character chi and an integer 𝑄, return
∏︀

𝑝‖(𝑄,𝑁) 𝜒𝑝.
For instance, if 𝑄 = 𝑝 is a prime divisor of 𝑁 , the function returns 𝜒𝑝 (as a character modulo 𝑁 ), given as a
Conrey character (t_COL).

? G = znstar(40, 1);
? G.cyc
%2 = [4, 2, 2]
? chi = [2, 1, 1];

(continues on next page)
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? chi2 = znchardecompose(G, chi, 2)
%4 = [1, 1, 0]~
? chi5 = znchardecompose(G, chi, 5)
%5 = [0, 0, 2]~
? znchardecompose(G, chi, 3)
%6 = [0, 0, 0]~
? c = charmul(G, chi2, chi5)
%7 = [1, 1, 2]~ \\ t_COL: in terms of Conrey generators !
? znconreychar(G,c)
%8 = [2, 1, 1] \\ t_VEC: in terms of SNF generators

znchargauss(G, chi, a, precision)
Given a Dirichlet character 𝜒 on 𝐺 = (Z/𝑁Z)* (see znchar), return the complex Gauss sum

𝑔(𝜒, 𝑎) =

𝑁∑︁
𝑛=1

𝜒(𝑛)𝑒(𝑎𝑛/𝑁)

? [G,chi] = znchar(-3); \\ quadratic Gauss sum: I*sqrt(3)
? znchargauss(G,chi)
%2 = 1.7320508075688772935274463415058723670*I
? [G,chi] = znchar(5);
? znchargauss(G,chi) \\ sqrt(5)
%2 = 2.2360679774997896964091736687312762354
? G = znstar(300,1); chi = [1,1,12]~;
? znchargauss(G,chi) / sqrt(300) - exp(2*I*Pi*11/25) \\ = 0
%4 = 2.350988701644575016 E-38 + 1.4693679385278593850 E-39*I
? lfuntheta([G,chi], 1) \\ = 0
%5 = -5.79[...] E-39 - 2.71[...] E-40*I

zncharinduce(G, chi, N)

Let𝐺 be attached to (Z/𝑞Z)* (as per G = znstar(q,1)) and let chi be a Dirichlet character on (Z/𝑞Z)*, given
by

• a t_VEC: a standard character on bid.gen,

• a t_INT or a t_COL: a Conrey index in (Z/𝑞Z)* or its Conrey logarithm; see dirichletchar (in the PARI
manual) or ??character.

Let𝑁 be a multiple of 𝑞, return the character modulo𝑁 extending chi. As usual for arithmetic functions, the new
modulus𝑁 can be given as a t_INT, via a factorization matrix or a pair [N, factor(N)], or by znstar(N,1).

? G = znstar(4, 1);
? chi = znconreylog(G,1); \\ trivial character mod 4
? zncharinduce(G, chi, 80) \\ now mod 80
%3 = [0, 0, 0]~
? zncharinduce(G, 1, 80) \\ same using directly Conrey label
%4 = [0, 0, 0]~
? G2 = znstar(80, 1);
? zncharinduce(G, 1, G2) \\ same
%4 = [0, 0, 0]~

? chi = zncharinduce(G, 3, G2) \\ extend the nontrivial character mod 4
(continues on next page)
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%5 = [1, 0, 0]~
? [G0,chi0] = znchartoprimitive(G2, chi);
? G0.mod
%7 = 4
? chi0
%8 = [1]~

Here is a larger example:

? G = znstar(126000, 1);
? label = 1009;
? chi = znconreylog(G, label)
%3 = [0, 0, 0, 14, 0]~
? [G0,chi0] = znchartoprimitive(G, label); \\ works also with 'chi'
? G0.mod
%5 = 125
? chi0 \\ primitive character mod 5^3 attached to chi
%6 = [14]~
? G0 = znstar(N0, 1);
? zncharinduce(G0, chi0, G) \\ induce back
%8 = [0, 0, 0, 14, 0]~
? znconreyexp(G, %)
%9 = 1009

zncharisodd(G, chi)
Let 𝐺 be attached to (Z/𝑁Z)* (as per G = znstar(N,1)) and let chi be a Dirichlet character on (Z/𝑁Z)*,
given by

• a t_VEC: a standard character on G.gen,

• a t_INT or a t_COL: a Conrey index in (Z/𝑞Z)* or its Conrey logarithm; see dirichletchar (in the PARI
manual) or ??character.

Return 1 if and only if chi(−1) = −1 and 0 otherwise.

? G = znstar(8, 1);
? zncharisodd(G, 1) \\ trivial character
%2 = 0
? zncharisodd(G, 3)
%3 = 1
? chareval(G, 3, -1)
%4 = 1/2

znchartokronecker(G, chi, flag)
Let 𝐺 be attached to (Z/𝑁Z)* (as per G = znstar(N,1)) and let chi be a Dirichlet character on (Z/𝑁Z)*,
given by

• a t_VEC: a standard character on bid.gen,

• a t_INT or a t_COL: a Conrey index in (Z/𝑞Z)* or its Conrey logarithm; see dirichletchar (in the PARI
manual) or ??character.

If 𝑓𝑙𝑎𝑔 = 0, return the discriminant 𝐷 if chi is real equal to the Kronecker symbol (𝐷/.) and 0 otherwise. The
discriminant 𝐷 is fundamental if and only if chi is primitive.

If 𝑓𝑙𝑎𝑔 = 1, return the fundamental discriminant attached to the corresponding primitive character.

1.1. Guide to real precision in the PARI interface 373



CyPari2 Documentation, Release 2.1.3

? G = znstar(8,1); CHARS = [1,3,5,7]; \\ Conrey labels
? apply(t->znchartokronecker(G,t), CHARS)
%2 = [4, -8, 8, -4]
? apply(t->znchartokronecker(G,t,1), CHARS)
%3 = [1, -8, 8, -4]

znchartoprimitive(G, chi)
Let G be attached to (Z/𝑞Z)* (as per G = znstar(q, 1)) and chi be a Dirichlet character on (Z/𝑞Z)*, of
conductor 𝑞0‖𝑞.

? G = znstar(126000, 1);
? [G0,chi0] = znchartoprimitive(G,11)
? G0.mod
%3 = 126000
? chi0
%4 = 11
? [G0,chi0] = znchartoprimitive(G,1);\\ trivial character, not primitive!
? G0.mod
%6 = 1
? chi0
%7 = []~
? [G0,chi0] = znchartoprimitive(G,1009)
? G0.mod
%4 = 125
? chi0
%5 = [14]~

Note that znconreyconductor is more efficient since it can return 𝜒0 and its conductor 𝑞0 without needing to
initialize 𝐺0. The price to pay is a more cryptic format and the need to initalize 𝐺0 later, but that needs to be
done only once for all characters with conductor 𝑞0.

znconreychar(G, m)

Given a znstar 𝐺 attached to (Z/𝑞Z)* (as per G = znstar(q,1)), this function returns the Dirichlet character
attached to 𝑚 ∈ (Z/𝑞Z)* via Conrey’s logarithm, which establishes a “canonical” bijection between (Z/𝑞Z)*

and its dual.

Let 𝑞 =
∏︀

𝑝 𝑝
𝑒𝑝 be the factorization of 𝑞 into distinct primes. For all odd 𝑝 with 𝑒𝑝 > 0, let 𝑔𝑝 be the element in

(Z/𝑞Z)* which is

• congruent to 1 mod 𝑞/𝑝𝑒𝑝 ,

• congruent mod 𝑝𝑒𝑝 to the smallest positive integer that generates (Z/𝑝2Z)*.

For 𝑝 = 2, we let 𝑔4 (if 2𝑒2 >= 4) and 𝑔8 (if furthermore (2𝑒2 >= 8) be the elements in (Z/𝑞Z)* which are

• congruent to 1 mod 𝑞/2𝑒2 ,

• 𝑔4 = −1𝑚𝑜𝑑2𝑒2 ,

• 𝑔8 = 5𝑚𝑜𝑑2𝑒2 .

Then the 𝑔𝑝 (and the extra 𝑔4 and 𝑔8 if 2𝑒2 >= 2) are independent generators of (Z/𝑞Z)*, i.e. every𝑚 in (Z/𝑞Z)*

can be written uniquely as
∏︀

𝑝 𝑔
𝑚𝑝
𝑝 , where 𝑚𝑝 is defined modulo the order 𝑜𝑝 of 𝑔𝑝 and 𝑝 ∈ 𝑆𝑞 , the set of prime

divisors of 𝑞 together with 4 if 4‖𝑞 and 8 if 8‖𝑞. Note that the 𝑔𝑝 are in general not SNF generators as produced
by znstar whenever 𝜔(𝑞) >= 2, although their number is the same. They however allow to handle the finite
abelian group (Z/𝑞Z)* in a fast and elegant way. (Which unfortunately does not generalize to ray class groups or
Hecke characters.)
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The Conrey logarithm of 𝑚 is the vector (𝑚𝑝)𝑝∈𝑆𝑞 , obtained via znconreylog. The Conrey character 𝜒𝑞(𝑚, .)
attached to 𝑚 mod 𝑞 maps each 𝑔𝑝, 𝑝 ∈ 𝑆𝑞 to 𝑒(𝑚𝑝/𝑜𝑝), where 𝑒(𝑥) = exp(2𝑖𝜋𝑥). This function returns the
Conrey character expressed in the standard PARI way in terms of the SNF generators G.gen.

? G = znstar(8,1);
? G.cyc
%2 = [2, 2] \\ Z/2 x Z/2
? G.gen
%3 = [7, 3]
? znconreychar(G,1) \\ 1 is always the trivial character
%4 = [0, 0]
? znconreychar(G,2) \\ 2 is not coprime to 8 !!!
*** at top-level: znconreychar(G,2)
*** ^-----------------
*** znconreychar: elements not coprime in Zideallog:
2
8
*** Break loop: type 'break' to go back to GP prompt
break>

? znconreychar(G,3)
%5 = [0, 1]
? znconreychar(G,5)
%6 = [1, 1]
? znconreychar(G,7)
%7 = [1, 0]

We indeed get all 4 characters of (Z/8Z)*.

For convenience, we allow to input the Conrey logarithm of 𝑚 instead of 𝑚:

? G = znstar(55, 1);
? znconreychar(G,7)
%2 = [7, 0]
? znconreychar(G, znconreylog(G,7))
%3 = [7, 0]

znconreyconductor(G, chi, chi0)
Let G be attached to (Z/𝑞Z)* (as per G = znstar(q, 1)) and chi be a Dirichlet character on (Z/𝑞Z)*, given
by

• a t_VEC: a standard character on bid.gen,

• a t_INT or a t_COL: a Conrey index in (Z/𝑞Z)* or its Conrey logarithm; see dirichletchar (in the PARI
manual) or ??character.

Return the conductor of chi, as the t_INT bid.mod if chi is primitive, and as a pair [N, faN] (with faN the
factorization of 𝑁 ) otherwise.

If chi0 is present, set it to the Conrey logarithm of the attached primitive character.

? G = znstar(126000, 1);
? znconreyconductor(G,11) \\ primitive
%2 = 126000
? znconreyconductor(G,1) \\ trivial character, not primitive!
%3 = [1, matrix(0,2)]

(continues on next page)
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? N0 = znconreyconductor(G,1009, &chi0) \\ character mod 5^3
%4 = [125, Mat([5, 3])]
? chi0
%5 = [14]~
? G0 = znstar(N0, 1); \\ format [N,factor(N)] accepted
? znconreyexp(G0, chi0)
%7 = 9
? znconreyconductor(G0, chi0) \\ now primitive, as expected
%8 = 125

The group G0 is not computed as part of znconreyconductor because it needs to be computed only once per
conductor, not once per character.

znconreyexp(G, chi)
Given a znstar 𝐺 attached to (Z/𝑞Z)* (as per G = znstar(q, 1)), this function returns the Conrey exponential
of the character chi: it returns the integer 𝑚 ∈ (Z/𝑞Z)* such that znconreylog(G, :math:`m)` is chi.

The character chi is given either as a

• t_VEC: in terms of the generators G.gen;

• t_COL: a Conrey logarithm.

? G = znstar(126000, 1)
? znconreylog(G,1)
%2 = [0, 0, 0, 0, 0]~
? znconreyexp(G,%)
%3 = 1
? G.cyc \\ SNF generators
%4 = [300, 12, 2, 2, 2]
? chi = [100, 1, 0, 1, 0]; \\ some random character on SNF generators
? znconreylog(G, chi) \\ in terms of Conrey generators
%6 = [0, 3, 3, 0, 2]~
? znconreyexp(G, %) \\ apply to a Conrey log
%7 = 18251
? znconreyexp(G, chi) \\ ... or a char on SNF generators
%8 = 18251
? znconreychar(G,%)
%9 = [100, 1, 0, 1, 0]

znconreylog(G, m)

Given a znstar attached to (Z/𝑞Z)* (as per G = znstar(q,1)), this function returns the Conrey logarithm of
𝑚 ∈ (Z/𝑞Z)*.

Let 𝑞 =
∏︀

𝑝 𝑝
𝑒𝑝 be the factorization of 𝑞 into distinct primes, where we assume 𝑒2 = 0 or 𝑒2 >= 2. (If 𝑒2 = 1,

we can ignore 2 from the factorization, as if we replaced 𝑞 by 𝑞/2, since (Z/𝑞Z)* (Z/(𝑞/2)Z)*.)

For all odd 𝑝 with 𝑒𝑝 > 0, let 𝑔𝑝 be the element in (Z/𝑞Z)* which is

• congruent to 1 mod 𝑞/𝑝𝑒𝑝 ,

• congruent mod 𝑝𝑒𝑝 to the smallest positive integer that generates (Z/𝑝2Z)*.

For 𝑝 = 2, we let 𝑔4 (if 2𝑒2 >= 4) and 𝑔8 (if furthermore (2𝑒2 >= 8) be the elements in (Z/𝑞Z)* which are

• congruent to 1 mod 𝑞/2𝑒2 ,

• 𝑔4 = −1𝑚𝑜𝑑2𝑒2 ,
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• 𝑔8 = 5𝑚𝑜𝑑2𝑒2 .

Then the 𝑔𝑝 (and the extra 𝑔4 and 𝑔8 if 2𝑒2 >= 2) are independent generators of Z/𝑞Z*, i.e. every𝑚 in (Z/𝑞Z)*

can be written uniquely as
∏︀

𝑝 𝑔
𝑚𝑝
𝑝 , where 𝑚𝑝 is defined modulo the order 𝑜𝑝 of 𝑔𝑝 and 𝑝 ∈ 𝑆𝑞 , the set of prime

divisors of 𝑞 together with 4 if 4‖𝑞 and 8 if 8‖𝑞. Note that the 𝑔𝑝 are in general not SNF generators as produced
by znstar whenever 𝜔(𝑞) >= 2, although their number is the same. They however allow to handle the finite
abelian group (Z/𝑞Z)* in a fast and elegant way. (Which unfortunately does not generalize to ray class groups or
Hecke characters.)

The Conrey logarithm of 𝑚 is the vector (𝑚𝑝)𝑝∈𝑆𝑞
. The inverse function znconreyexp recovers the Conrey

label 𝑚 from a character.

? G = znstar(126000, 1);
? znconreylog(G,1)
%2 = [0, 0, 0, 0, 0]~
? znconreyexp(G, %)
%3 = 1
? znconreylog(G,2) \\ 2 is not coprime to modulus !!!
*** at top-level: znconreylog(G,2)
*** ^-----------------
*** znconreylog: elements not coprime in Zideallog:
2
126000
*** Break loop: type 'break' to go back to GP prompt
break>
? znconreylog(G,11) \\ wrt. Conrey generators
%4 = [0, 3, 1, 76, 4]~
? log11 = ideallog(,11,G) \\ wrt. SNF generators
%5 = [178, 3, -75, 1, 0]~

For convenience, we allow to input the ordinary discrete log of 𝑚, 𝑖𝑑𝑒𝑎𝑙𝑙𝑜𝑔(,𝑚, 𝑏𝑖𝑑), which allows to convert
discrete logs from bid.gen generators to Conrey generators.

? znconreylog(G, log11)
%7 = [0, 3, 1, 76, 4]~

We also allow a character (t_VEC) on bid.gen and return its representation on the Conrey generators.

? G.cyc
%8 = [300, 12, 2, 2, 2]
? chi = [10,1,0,1,1];
? znconreylog(G, chi)
%10 = [1, 3, 3, 10, 2]~
? n = znconreyexp(G, chi)
%11 = 84149
? znconreychar(G, n)
%12 = [10, 1, 0, 1, 1]

zncoppersmith(P, N, X, B)
Coppersmith’s algorithm. 𝑁 being an integer and 𝑃 ∈ Z[𝑡], finds in polynomial time in log(𝑁) and 𝑑 = 𝑑𝑒𝑔(𝑃 )
all integers 𝑥 with ‖𝑥‖ <= 𝑋 such that

gcd(𝑁,𝑃 (𝑥)) >= 𝐵.

This is a famous application of the LLL algorithm meant to help in the factorization of 𝑁 . Notice that 𝑃 may be
reduced modulo 𝑁Z[𝑡] without affecting the situation. The parameter 𝑋 must not be too large: assume for now
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that the leading coefficient of 𝑃 is coprime to 𝑁 , then we must have

𝑑 log𝑋 log𝑁 < log2𝐵,

i.e., 𝑋 < 𝑁1/𝑑 when 𝐵 = 𝑁 . Let now 𝑃0 be the gcd of the leading coefficient of 𝑃 and 𝑁 . In applications to
factorization, we should have 𝑃0 = 1; otherwise, either 𝑃0 = 𝑁 and we can reduce the degree of 𝑃 , or 𝑃0 is a
non trivial factor of 𝑁 . For completeness, we nevertheless document the exact conditions that 𝑋 must satisfy in
this case: let 𝑝 := log𝑁 𝑃0, 𝑏 := log𝑁 𝐵, 𝑥 := log𝑁 𝑋 , then

• either 𝑝 >= 𝑑/(2𝑑− 1) is large and we must have 𝑥𝑑 < 2𝑏− 1;

• or 𝑝 < 𝑑/(2𝑑− 1) and we must have both 𝑝 < 𝑏 < 1− 𝑝+ 𝑝/𝑑 and 𝑥(𝑑+ 𝑝(1− 2𝑑)) < (𝑏− 𝑝)2. Note that
this reduces to 𝑥𝑑 < 𝑏2 when 𝑝 = 0, i.e., the condition described above.

Some 𝑥 larger than 𝑋 may be returned if you are very lucky. The routine runs in polynomial time in log𝑁 and
𝑑 but the smaller 𝐵, or the larger 𝑋 , the slower. The strength of Coppersmith method is the ability to find roots
modulo a general composite 𝑁 : if 𝑁 is a prime or a prime power, polrootsmod or polrootspadic will be
much faster.

We shall now present two simple applications. The first one is finding nontrivial factors of𝑁 , given some partial
information on the factors; in that case 𝐵 must obviously be smaller than the largest nontrivial divisor of 𝑁 .

setrand(1); \\ to make the example reproducible
[a,b] = [10^30, 10^31]; D = 20;
p = randomprime([a,b]);
q = randomprime([a,b]); N = p*q;
\\ assume we know 0) p | N; 1) p in [a,b]; 2) the last D digits of p
p0 = p % 10^D;

? L = zncoppersmith(10^D*x + p0, N, b \ 10^D, a)
time = 1ms.
%6 = [738281386540]
? gcd(L[1] * 10^D + p0, N) == p
%7 = 1

and we recovered 𝑝, faster than by trying all possibilities 𝑥 < 1011.

The second application is an attack on RSA with low exponent, when the message 𝑥 is short and the padding 𝑃
is known to the attacker. We use the same RSA modulus 𝑁 as in the first example:

setrand(1);
P = random(N); \\ known padding
e = 3; \\ small public encryption exponent
X = floor(N^0.3); \\ N^(1/e - epsilon)
x0 = random(X); \\ unknown short message
C = lift( (Mod(x0,N) + P)^e ); \\ known ciphertext, with padding P
zncoppersmith((P + x)^3 - C, N, X)

\\ result in 244ms.
%14 = [2679982004001230401]

? %[1] == x0
%15 = 1

We guessed an integer of the order of 1018, almost instantly.

znlog(x, g, o)
This functions allows two distinct modes of operation depending on 𝑔:
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• if 𝑔 is the output of znstar (with initialization), we compute the discrete logarithm of 𝑥 with respect to the
generators contained in the structure. See ideallog for details.

• else 𝑔 is an explicit element in (Z/𝑁Z)*, we compute the discrete logarithm of 𝑥 in (Z/𝑁Z)* in base 𝑔. The
rest of this entry describes the latter possibility.

The result is [] when 𝑥 is not a power of 𝑔, though the function may also enter an infinite loop in this case.

If present, 𝑜 represents the multiplicative order of 𝑔, see DLfun (in the PARI manual); the preferred format for
this parameter is [ord, factor(ord)], where ord is the order of 𝑔. This provides a definite speedup when the
discrete log problem is simple:

? p = nextprime(10^4); g = znprimroot(p); o = [p-1, factor(p-1)];
? for(i=1,10^4, znlog(i, g, o))
time = 163 ms.
? for(i=1,10^4, znlog(i, g))
time = 200 ms. \\ a little slower

The result is undefined if 𝑔 is not invertible mod 𝑁 or if the supplied order is incorrect.

This function uses

• a combination of generic discrete log algorithms (see below).

• in (Z/𝑁Z)* when 𝑁 is prime: a linear sieve index calculus method, suitable for 𝑁 < 1050, say, is used for
large prime divisors of the order.

The generic discrete log algorithms are:

• Pohlig-Hellman algorithm, to reduce to groups of prime order 𝑞, where 𝑞‖𝑝−1 and 𝑝 is an odd prime divisor
of 𝑁 ,

• Shanks baby-step/giant-step (𝑞 < 232 is small),

• Pollard rho method (𝑞 > 232).

The latter two algorithms require 𝑂(
√
𝑞) operations in the group on average, hence will not be able to treat cases

where 𝑞 > 1030, say. In addition, Pollard rho is not able to handle the case where there are no solutions: it will
enter an infinite loop.

? g = znprimroot(101)
%1 = Mod(2,101)
? znlog(5, g)
%2 = 24
? g^24
%3 = Mod(5, 101)

? G = znprimroot(2 * 101^10)
%4 = Mod(110462212541120451003, 220924425082240902002)
? znlog(5, G)
%5 = 76210072736547066624
? G^% == 5
%6 = 1
? N = 2^4*3^2*5^3*7^4*11; g = Mod(13, N); znlog(g^110, g)
%7 = 110
? znlog(6, Mod(2,3)) \\ no solution
%8 = []

For convenience, 𝑔 is also allowed to be a 𝑝-adic number:
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? g = 3+O(5^10); znlog(2, g)
%1 = 1015243
? g^%
%2 = 2 + O(5^10)

znorder(x, o)
𝑥must be an integer mod 𝑛, and the result is the order of 𝑥 in the multiplicative group (Z/𝑛Z)*. Returns an error
if 𝑥 is not invertible. The parameter o, if present, represents a nonzero multiple of the order of 𝑥, see DLfun (in the
PARI manual); the preferred format for this parameter is [ord, factor(ord)], where ord = eulerphi(n)
is the cardinality of the group.

znprimroot(n)
Returns a primitive root (generator) of (Z/𝑛Z)*, whenever this latter group is cyclic (𝑛 = 4 or 𝑛 = 2𝑝𝑘 or
𝑛 = 𝑝𝑘, where 𝑝 is an odd prime and 𝑘 >= 0). If the group is not cyclic, the result is undefined. If 𝑛 is a prime
power, then the smallest positive primitive root is returned. This may not be true for 𝑛 = 2𝑝𝑘, 𝑝 odd.

Note that this function requires factoring 𝑝 − 1 for 𝑝 as above, in order to determine the exact order of elements
in (Z/𝑛Z)*: this is likely to be costly if 𝑝 is large.

znstar(n, flag)
Gives the structure of the multiplicative group (Z/𝑛Z)*. The output 𝐺 depends on the value of flag:

• 𝑓𝑙𝑎𝑔 = 0 (default), an abelian group structure [ℎ, 𝑑, 𝑔], where ℎ = 𝜑(𝑛) is the order (G.no), 𝑑 (G.cyc) is a
𝑘-component row-vector 𝑑 of integers 𝑑𝑖 such that 𝑑𝑖 > 1, 𝑑𝑖‖𝑑𝑖−1 for 𝑖 >= 2 and

(Z/𝑛Z)*
𝑘∏︁

𝑖=1

(Z/𝑑𝑖Z),

𝑎𝑛𝑑 : 𝑚𝑎𝑡ℎ : ‘𝑔‘(: 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 : ‘𝐺.𝑔𝑒𝑛‘)𝑖𝑠𝑎 : 𝑚𝑎𝑡ℎ : ‘𝑘‘ − 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑟𝑜𝑤𝑣𝑒𝑐𝑡𝑜𝑟𝑔𝑖𝑣𝑖𝑛𝑔𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟𝑠𝑜𝑓𝑡ℎ𝑒𝑖𝑚𝑎𝑔𝑒𝑜𝑓𝑡ℎ𝑒𝑐𝑦𝑐𝑙𝑖𝑐𝑔𝑟𝑜𝑢𝑝𝑠 : 𝑚𝑎𝑡ℎ : ‘Z/𝑑𝑖Z‘.

• 𝑓𝑙𝑎𝑔 = 1 the result is a bid structure; this allows computing discrete logarithms using znlog (also in the
noncyclic case!).

? G = znstar(40)
%1 = [16, [4, 2, 2], [Mod(17, 40), Mod(21, 40), Mod(11, 40)]]
? G.no \\ eulerphi(40)
%2 = 16
? G.cyc \\ cycle structure
%3 = [4, 2, 2]
? G.gen \\ generators for the cyclic components
%4 = [Mod(17, 40), Mod(21, 40), Mod(11, 40)]
? apply(znorder, G.gen)
%5 = [4, 2, 2]

For user convenience, we define znstar(0) as [2, [2], [-1]], corresponding to Z*, but 𝑓𝑙𝑎𝑔 = 1 is not
implemented in this trivial case.

cypari2.pari_instance.default_bitprec()

Return the default precision in bits.

Examples:

>>> from cypari2.pari_instance import default_bitprec
>>> default_bitprec()
64
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cypari2.pari_instance.prec_bits_to_dec(prec_in_bits)
Convert from precision expressed in bits to precision expressed in decimal.

Examples:

>>> from cypari2.pari_instance import prec_bits_to_dec
>>> prec_bits_to_dec(53)
15
>>> [(32*n, prec_bits_to_dec(32*n)) for n in range(1, 9)]
[(32, 9), (64, 19), (96, 28), (128, 38), (160, 48), (192, 57), (224, 67), (256, 77)]

cypari2.pari_instance.prec_bits_to_words(prec_in_bits)
Convert from precision expressed in bits to pari real precision expressed in words. Note: this rounds up to the
nearest word, adjusts for the two codewords of a pari real, and is architecture-dependent.

Examples:

>>> from cypari2.pari_instance import prec_bits_to_words
>>> import sys
>>> bitness = '64' if sys.maxsize > (1 << 32) else '32'
>>> prec_bits_to_words(70) == (5 if bitness == '32' else 4)
True

>>> ans32 = [(32, 3), (64, 4), (96, 5), (128, 6), (160, 7), (192, 8), (224, 9),␣
→˓(256, 10)]
>>> ans64 = [(32, 3), (64, 3), (96, 4), (128, 4), (160, 5), (192, 5), (224, 6),␣
→˓(256, 6)]
>>> [(32*n, prec_bits_to_words(32*n)) for n in range(1, 9)] == (ans32 if bitness ==
→˓'32' else ans64)
True

cypari2.pari_instance.prec_dec_to_bits(prec_in_dec)
Convert from precision expressed in decimal to precision expressed in bits.

Examples:

>>> from cypari2.pari_instance import prec_dec_to_bits
>>> prec_dec_to_bits(15)
50
>>> [(n, prec_dec_to_bits(n)) for n in range(10, 100, 10)]
[(10, 34), (20, 67), (30, 100), (40, 133), (50, 167), (60, 200), (70, 233), (80,␣
→˓266), (90, 299)]

cypari2.pari_instance.prec_dec_to_words(prec_in_dec)
Convert from precision expressed in decimal to precision expressed in words. Note: this rounds up to the nearest
word, adjusts for the two codewords of a pari real, and is architecture-dependent.

Examples:

>>> from cypari2.pari_instance import prec_dec_to_words
>>> import sys
>>> bitness = '64' if sys.maxsize > (1 << 32) else '32'
>>> prec_dec_to_words(38) == (6 if bitness == '32' else 4)
True
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>>> ans32 = [(10, 4), (20, 5), (30, 6), (40, 7), (50, 8), (60, 9), (70, 10), (80,␣
→˓11)]
>>> ans64 = [(10, 3), (20, 4), (30, 4), (40, 5), (50, 5), (60, 6), (70, 6), (80,␣
→˓7)] # 64-bit
>>> [(n, prec_dec_to_words(n)) for n in range(10, 90, 10)] == (ans32 if bitness ==
→˓'32' else ans64)
True

cypari2.pari_instance.prec_words_to_bits(prec_in_words)
Convert from pari real precision expressed in words to precision expressed in bits. Note: this adjusts for the two
codewords of a pari real, and is architecture-dependent.

Examples:

>>> from cypari2.pari_instance import prec_words_to_bits
>>> import sys
>>> bitness = '64' if sys.maxsize > (1 << 32) else '32'
>>> prec_words_to_bits(10) == (256 if bitness == '32' else 512)
True

>>> ans32 = [(3, 32), (4, 64), (5, 96), (6, 128), (7, 160), (8, 192), (9, 224)]
>>> ans64 = [(3, 64), (4, 128), (5, 192), (6, 256), (7, 320), (8, 384), (9, 448)] #␣
→˓64-bit
>>> [(n, prec_words_to_bits(n)) for n in range(3, 10)] == (ans32 if bitness == '32'␣
→˓else ans64)
True

cypari2.pari_instance.prec_words_to_dec(prec_in_words)
Convert from precision expressed in words to precision expressed in decimal. Note: this adjusts for the two
codewords of a pari real, and is architecture-dependent.

Examples:

>>> from cypari2.pari_instance import prec_words_to_dec
>>> import sys
>>> bitness = '64' if sys.maxsize > (1 << 32) else '32'
>>> prec_words_to_dec(5) == (28 if bitness == '32' else 57)
True

>>> ans32 = [(3, 9), (4, 19), (5, 28), (6, 38), (7, 48), (8, 57), (9, 67)]
>>> ans64 = [(3, 19), (4, 38), (5, 57), (6, 77), (7, 96), (8, 115), (9, 134)]
>>> [(n, prec_words_to_dec(n)) for n in range(3, 10)] == (ans32 if bitness == '32'␣
→˓else ans64)
True
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THE GEN CLASS WRAPPING PARI’S GEN TYPE

AUTHORS:

• William Stein (2006-03-01): updated to work with PARI 2.2.12-beta

• William Stein (2006-03-06): added newtonpoly

• Justin Walker: contributed some of the function definitions

• Gonzalo Tornaria: improvements to conversions; much better error handling.

• Robert Bradshaw, Jeroen Demeyer, William Stein (2010-08-15): Upgrade to PARI 2.4.3 (Sage ticket #9343)

• Jeroen Demeyer (2011-11-12): rewrite various conversion routines (Sage ticket #11611, Sage ticket #11854,
Sage ticket #11952)

• Peter Bruin (2013-11-17): move Pari to a separate file (Sage ticket #15185)

• Jeroen Demeyer (2014-02-09): upgrade to PARI 2.7 (Sage ticket #15767)

• Martin von Gagern (2014-12-17): Added some Galois functions (Sage ticket #17519)

• Jeroen Demeyer (2015-01-12): upgrade to PARI 2.8 (Sage ticket #16997)

• Jeroen Demeyer (2015-03-17): automatically generate methods from pari.desc (Sage ticket #17631 and Sage
ticket #17860)

• Kiran Kedlaya (2016-03-23): implement infinity type

• Luca De Feo (2016-09-06): Separate Sage-specific components from generic C-interface in Pari (Sage ticket
#20241)

• Vincent Delecroix (2017-04-29): Python 3 support and doctest conversion

class cypari2.gen.Gen

Wrapper for a PARI GEN with memory management.

This wraps PARI objects which live either on the PARI stack or on the PARI heap. Results from PARI computa-
tions appear on the PARI stack and we try to keep them there. However, when the stack fills up, we copy (“clone”
in PARI speak) all live objects from the stack to the heap. This happens transparently for the user.

Ser(v, precision)
Return a power series or Laurent series in the variable v constructed from the object f.

INPUT:

• f – PARI gen

• v – PARI variable (default: x)

• precision – the desired relative precision (default: the value returned by pari.
get_series_precision()). This is the absolute precision minus the v-adic valuation.
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OUTPUT:

• PARI object of type t_SER

The series is constructed from f in the following way:

• If f is a scalar, a constant power series is returned.

• If f is a polynomial, it is converted into a power series in the obvious way.

• If f is a rational function, it will be expanded in a Laurent series around v = 0.

• If f is a vector, its coefficients become the coefficients of the power series, starting from the constant
term. This is the convention used by the function Polrev(), and the reverse of that used by Pol().

Warning: This function will not transform objects containing variables of higher priority than v.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari(2).Ser()
2 + O(x^16)
>>> pari('Mod(0, 7)').Ser()
Mod(0, 7)*x^15 + O(x^16)

>>> x = pari([1, 2, 3, 4, 5])
>>> x.Ser()
1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + O(x^16)
>>> f = x.Ser('v'); print(f)
1 + 2*v + 3*v^2 + 4*v^3 + 5*v^4 + O(v^16)
>>> pari(1)/f
1 - 2*v + v^2 + 6*v^5 - 17*v^6 + 16*v^7 - 5*v^8 + 36*v^10 - 132*v^11 + 181*v^12␣
→˓- 110*v^13 + 25*v^14 + 216*v^15 + O(v^16)

>>> pari('x^5').Ser(precision=20)
x^5 + O(x^25)
>>> pari('1/x').Ser(precision=1)
x^-1 + O(x^0)

Str()

Str(self): Return the print representation of self as a PARI object.

INPUT:

• self - gen

OUTPUT:

• gen - a PARI Gen of type t_STR, i.e., a PARI string

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()
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>>> pari([1,2,['abc',1]]).Str()
"[1, 2, [abc, 1]]"
>>> pari([1,1, 1.54]).Str()
"[1, 1, 1.54000000000000]"
>>> pari(1).Str() # 1 is automatically converted to string rep
"1"
>>> x = pari('x') # PARI variable "x"
>>> x.Str() # is converted to string rep.
"x"
>>> x.Str().type()
't_STR'

Strexpand()

Concatenate the entries of the vector x into a single string, then perform tilde expansion and environment
variable expansion similar to shells.

INPUT:

• x – PARI gen. Either a vector or an element which is then treated like [x].

OUTPUT:

• PARI string (type t_STR)

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari('"~/subdir"').Strexpand()
"..."
>>> pari('"$SHELL"').Strexpand()
"..."

Tests:

>>> a = pari('"$HOME"')
>>> a.Strexpand() != a
True

Strtex()

Strtex(x): Translates the vector x of PARI gens to TeX format and returns the resulting concatenated strings
as a PARI t_STR.

INPUT:

• x – PARI gen. Either a vector or an element which is then treated like [x].

OUTPUT:

• PARI string (type t_STR)

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()
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>>> v = pari('x^2')
>>> v.Strtex()
"x^2"
>>> v = pari(['1/x^2','x'])
>>> v.Strtex()
"\\frac{1}{x^2}x"
>>> v = pari(['1 + 1/x + 1/(y+1)','x-1'])
>>> v.Strtex()
"\\frac{ \\left(y\n + 2\\right) \\*x\n + \\left(y\n + 1\\right) }{ \\left(y\n +␣
→˓1\\right) \\*x}x\n - 1"

Zn_issquare(n)
Return True if self is a square modulo n, False if not.

INPUT:

• self – integer

• n – integer or factorisation matrix

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari(3).Zn_issquare(4)
False
>>> pari(4).Zn_issquare(pari(30).factor())
True

Zn_sqrt(n)
Return a square root of self modulo n, if such a square root exists; otherwise, raise a ValueError.

INPUT:

• self – integer

• n – integer or factorisation matrix

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari(3).Zn_sqrt(4)
Traceback (most recent call last):
...
ValueError: 3 is not a square modulo 4
>>> pari(4).Zn_sqrt(pari(30).factor())
22

allocatemem(*args)
Do not use this. Use pari.allocatemem() instead.

Tests:
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>>> from cypari2 import Pari
>>> pari = Pari()
>>> pari(2**10).allocatemem(2**20)
Traceback (most recent call last):
...
NotImplementedError: the method allocatemem() should not be used; use pari.
→˓allocatemem() instead

arity()

Return the number of arguments of this t_CLOSURE.

>>> from cypari2 import Pari
>>> pari = Pari()
>>> pari("() -> 42").arity()
0
>>> pari("(x) -> x").arity()
1
>>> pari("(x,y,z) -> x+y+z").arity()
3

bernfrac()

The Bernoulli number B_x, where B_0 = 1, B_1 = -1/2, B_2 = 1/6,ldots, expressed as a rational number.
The argument x should be of type integer.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari(18).bernfrac()
43867/798
>>> [pari(n).bernfrac() for n in range(10)]
[1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0]

bernreal(precision)
The Bernoulli number B_x, as for the function bernfrac, but B_x is returned as a real number (with the
current precision).

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari(18).bernreal()
54.9711779448622

besselk(x, precision)
nu.besselk(x): K-Bessel function (modified Bessel function of the second kind) of index nu, which can be
complex, and argument x.

If nu or x is an exact argument, it is first converted to a real or complex number using the optional parameter
precision (in bits). If the arguments are inexact (e.g. real), the smallest of their precisions is used in the
computation, and the parameter precision is ignored.

INPUT:
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• nu - a complex number

• x - real number (positive or negative)

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari(complex(2, 1)).besselk(3)
0.0455907718407551 + 0.0289192946582081*I

>>> pari(complex(2, 1)).besselk(-3)
-4.34870874986752 - 5.38744882697109*I

>>> pari(complex(2, 1)).besselk(300)
3.74224603319728 E-132 + 2.49071062641525 E-134*I

bid_get_cyc()

Returns the structure of the group (O_K/I)^*, where I is the ideal represented by self.

NOTE: self must be a “big ideal” (bid) as returned by idealstar for example.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> i = pari('i')
>>> K = (i**2 + 1).bnfinit()
>>> J = K.idealstar(4*i + 2)
>>> J.bid_get_cyc()
[4, 2]

bid_get_gen()

Returns a vector of generators of the group (O_K/I)^*, where I is the ideal represented by self.

NOTE: self must be a “big ideal” (bid) with generators, as returned by idealstar with flag = 2.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> i = pari('i')
>>> K = (i**2 + 1).bnfinit()
>>> J = K.idealstar(4*i + 2, 2)
>>> J.bid_get_gen()
[7, [-2, -1]~]

We get an exception if we do not supply flag = 2 to idealstar:

>>> J = K.idealstar(3)
>>> J.bid_get_gen()
Traceback (most recent call last):

(continues on next page)
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(continued from previous page)

...
PariError: missing bid generators. Use idealstar(,,2)

bittest(n)
bittest(x, long n): Returns bit number n (coefficient of 2^n in binary) of the integer x. Negative numbers
behave as if modulo a big power of 2.

INPUT:

• x - Gen (pari integer)

OUTPUT:

• bool - a Python bool

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> x = pari(6)
>>> x.bittest(0)
False
>>> x.bittest(1)
True
>>> x.bittest(2)
True
>>> x.bittest(3)
False
>>> pari(-3).bittest(0)
True
>>> pari(-3).bittest(1)
False
>>> [pari(-3).bittest(n) for n in range(10)]
[True, False, True, True, True, True, True, True, True, True]

bnf_get_cyc()

Returns the structure of the class group of this number field as a vector of SNF invariants.

NOTE: self must be a “big number field” (bnf).

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> x = pari('x')
>>> K = (x**2 + 65).bnfinit()
>>> K.bnf_get_cyc()
[4, 2]

bnf_get_fu()

Return the fundamental units

Examples:
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>>> from cypari2 import Pari
>>> pari = Pari()

>>> x = pari('x')

>>> (x**2 - 65).bnfinit().bnf_get_fu()
[Mod(x - 8, x^2 - 65)]
>>> (x**4 - x**2 + 1).bnfinit().bnf_get_fu()
[Mod(x - 1, x^4 - x^2 + 1)]
>>> p = x**8 - 40*x**6 + 352*x**4 - 960*x**2 + 576
>>> len(p.bnfinit().bnf_get_fu())
7

bnf_get_gen()

Returns a vector of generators of the class group of this number field.

NOTE: self must be a “big number field” (bnf).

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> x = pari('x')
>>> K = (x**2 + 65).bnfinit()
>>> G = K.bnf_get_gen(); G
[[3, 2; 0, 1], [2, 1; 0, 1]]

bnf_get_no()

Returns the class number of self, a “big number field” (bnf).

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> x = pari('x')
>>> K = (x**2 + 65).bnfinit()
>>> K.bnf_get_no()
8

bnf_get_reg()

Returns the regulator of this number field.

NOTE: self must be a “big number field” (bnf).

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> x = pari('x')
>>> K = (x**4 - 4*x**2 + 1).bnfinit()

(continues on next page)
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>>> K.bnf_get_reg()
2.66089858019037...

bnf_get_tu()

Return the torsion unit

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> x = pari('x')

>>> for p in [x**2 - 65, x**4 - x**2 + 1, x**8 - 40*x**6 + 352*x**4 - 960*x**2␣
→˓+ 576]:
... bnf = p.bnfinit()
... n, z = bnf.bnf_get_tu()
... if pari.version() < (2,11,0) and z.lift().poldegree() == 0: z = z.lift()
... print([p, n, z])
[x^2 - 65, 2, -1]
[x^4 - x^2 + 1, 12, Mod(x, x^4 - x^2 + 1)]
[x^8 - 40*x^6 + 352*x^4 - 960*x^2 + 576, 2, -1]

bnfunit()

Deprecated in cypari 2.1.2

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> x = pari('x')

>>> import warnings
>>> with warnings.catch_warnings(record=True) as w:
... warnings.simplefilter('always')
... funits = (x**2 - 65).bnfinit().bnfunit()
... assert len(w) == 1
... assert issubclass(w[0].category, DeprecationWarning)
>>> funits
[Mod(x - 8, x^2 - 65)]

change_variable_name(var)
In self, which must be a t_POL or t_SER, set the variable to var. If the variable of self is already var,
then return self.

Warning: You should be careful with variable priorities when applying this on a polynomial or series
of which the coefficients have polynomial components. To be safe, only use this function on polynomials
with integer or rational coefficients. For a safer alternative, use subst().

Examples:
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>>> from cypari2 import Pari
>>> pari = Pari()

>>> f = pari('x^3 + 17*x + 3')
>>> f.change_variable_name("y")
y^3 + 17*y + 3
>>> f = pari('1 + 2*y + O(y^10)')
>>> f.change_variable_name("q")
1 + 2*q + O(q^10)
>>> f.change_variable_name("y") is f
True

In PARI, I refers to the square root of -1, so it cannot be used as variable name. Note the difference with
subst():

>>> f = pari('x^2 + 1')
>>> f.change_variable_name("I")
Traceback (most recent call last):
...
PariError: I already exists with incompatible valence
>>> f.subst("x", "I")
0

cmp(right)
Compare self and right.

This uses PARI’s cmp_universal() routine, which defines a total ordering on the set of all PARI objects
(up to the indistinguishability relation given by gidentical()).

Warning: This comparison is only mathematically meaningful when comparing 2 integers. In partic-
ular, when comparing rationals or reals, this does not correspond to the natural ordering.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()
>>> pari(5).cmp(pari(5))
0
>>> pari('x^2 + 1').cmp(pari('I-1'))
1
>>> I = pari('I')
>>> I.cmp(I)
0
>>> pari('2/3').cmp(pari('2/5'))
-1
>>> two = pari('2.000000000000000000000000')
>>> two.cmp(pari(1.0))
1
>>> two.cmp(pari(2.0))
1
>>> two.cmp(pari(3.0))
1

(continues on next page)
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>>> f = pari("0*ffgen(ffinit(29, 10))")
>>> pari(0).cmp(f)
-1
>>> pari("'x").cmp(f)
1
>>> pari("'x").cmp(0)
Traceback (most recent call last):
...
TypeError: Cannot convert int to cypari2.gen.Gen_base

debug(depth)
Show the internal structure of self (like the \x command in gp).

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari('[1/2, 1 + 1.0*I]').debug()
[&=...] VEC(lg=3):...
1st component = [&=...] FRAC(lg=3):...
num = [&=...] INT(lg=3):... (+,lgefint=3):...
den = [&=...] INT(lg=3):... (+,lgefint=3):...

2nd component = [&=...] COMPLEX(lg=3):...
real = [&=...] INT(lg=3):... (+,lgefint=3):...
imag = [&=...] REAL(lg=...):... (+,expo=0):...

disc()

Return the discriminant of this object.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> e = pari([0, -1, 1, -10, -20]).ellinit()
>>> e.disc()
-161051
>>> _.factor()
[-1, 1; 11, 5]

eint1(n, precision)
x.eint1(n): exponential integral E1(x): ∫︁ ∞

𝑥

𝑒−𝑡

𝑡
𝑑𝑡

If n is present, output the vector [eint1(x), eint1(2*x), . . . , eint1(n*x)]. This is faster than repeatedly calling
eint1(i*x).

If x is an exact argument, it is first converted to a real or complex number using the optional parameter
precision (in bits). If x is inexact (e.g. real), its own precision is used in the computation, and the parameter
precision is ignored.

REFERENCE:
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• See page 262, Prop 5.6.12, of Cohen’s book “A Course in Computational Algebraic Number Theory”.

Examples:

ellan(n, python_ints)
Return the first n Fourier coefficients of the modular form attached to this elliptic curve. See ellak for more
details.

INPUT:

• n - a long integer

• python_ints - bool (default is False); if True, return a list of Python ints instead of a PARI Gen
wrapper.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> e = pari([0, -1, 1, -10, -20]).ellinit()
>>> e.ellan(3)
[1, -2, -1]
>>> e.ellan(20)
[1, -2, -1, 2, 1, 2, -2, 0, -2, -2, 1, -2, 4, 4, -1, -4, -2, 4, 0, 2]
>>> e.ellan(-1)
[]
>>> v = e.ellan(10, python_ints=True); v
[1, -2, -1, 2, 1, 2, -2, 0, -2, -2]
>>> type(v)
<... 'list'>
>>> type(v[0])
<... 'int'>

ellaplist(n, python_ints)
e.ellaplist(n): Returns a PARI list of all the prime-indexed coefficients a_p (up to n) of the L-function of
the elliptic curve e, i.e. the Fourier coefficients of the newform attached to e.

INPUT:

• self – an elliptic curve

• n – a long integer

• python_ints – bool (default is False); if True, return a list of Python ints instead of a PARI Gen
wrapper.

Warning: The curve e must be a medium or long vector of the type given by ellinit. For this function
to work for every n and not just those prime to the conductor, e must be a minimal Weierstrass equation.
If this is not the case, use the function ellminimalmodel first before using ellaplist (or you will get
INCORRECT RESULTS!)

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()
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>>> e = pari([0, -1, 1, -10, -20]).ellinit()
>>> v = e.ellaplist(10); v
[-2, -1, 1, -2]
>>> type(v)
<... 'cypari2.gen.Gen'>
>>> v.type()
't_VEC'
>>> e.ellan(10)
[1, -2, -1, 2, 1, 2, -2, 0, -2, -2]
>>> v = e.ellaplist(10, python_ints=True); v
[-2, -1, 1, -2]
>>> type(v)
<... 'list'>
>>> type(v[0])
<... 'int'>

Tests:

>>> v = e.ellaplist(1)
>>> v, type(v)
([], <... 'cypari2.gen.Gen'>)
>>> v = e.ellaplist(1, python_ints=True)
>>> v, type(v)
([], <... 'list'>)

ellisoncurve(x)
e.ellisoncurve(x): return True if the point x is on the elliptic curve e, False otherwise.

If the point or the curve have inexact coefficients, an attempt is made to take this into account.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> e = pari([0,1,1,-2,0]).ellinit()
>>> e.ellisoncurve([1,0])
True
>>> e.ellisoncurve([1,1])
False
>>> e.ellisoncurve([1,0.00000000000000001])
False
>>> e.ellisoncurve([1,0.000000000000000001])
True
>>> e.ellisoncurve([0])
True

ellminimalmodel()

ellminimalmodel(e): return the standard minimal integral model of the rational elliptic curve e and the
corresponding change of variables. INPUT:

• e - Gen (that defines an elliptic curve)

OUTPUT:

• gen - minimal model

395



CyPari2 Documentation, Release 2.1.3

• gen - change of coordinates

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> e = pari([1,2,3,4,5]).ellinit()
>>> F, ch = e.ellminimalmodel()
>>> F[:5]
[1, -1, 0, 4, 3]
>>> ch
[1, -1, 0, -1]
>>> e.ellchangecurve(ch)[:5]
[1, -1, 0, 4, 3]

elltors()

Return information about the torsion subgroup of the given elliptic curve.

INPUT:

• e - elliptic curve over QQ

OUTPUT:

• gen - the order of the torsion subgroup, a.k.a. the number of points of finite order

• gen - vector giving the structure of the torsion subgroup as a product of cyclic groups, sorted in non-
increasing order

• gen - vector giving points on e generating these cyclic groups

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> e = pari([1,0,1,-19,26]).ellinit()
>>> e.elltors()
[12, [6, 2], [[1, 2], [3, -2]]]

ellwp(z, n, flag, precision)
Return the value or the series expansion of the Weierstrass P-function at z on the lattice self (or the lattice
defined by the elliptic curve self ).

INPUT:

• self – an elliptic curve created using ellinit or a list [om1, om2] representing generators for a
lattice.

• z – (default: ‘z’) a complex number or a variable name (as string or PARI variable).

• n – (default: 20) if ‘z’ is a variable, compute the series expansion up to at least O(z^n).

• flag – (default = 0): If flag is 0, compute only P(z). If flag is 1, compute [P(z), P’(z)].

OUTPUT:

• P(z) (if flag is 0) or [P(z), P’(z)] (if flag is 1).
numbers
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Examples:

We first define the elliptic curve X_0(11):

>>> from cypari2 import Pari
>>> pari = Pari()

>>> E = pari([0,-1,1,-10,-20]).ellinit()

Compute P(1):

>>> E.ellwp(1)
13.9658695257485

Compute P(1+i), where i = sqrt(-1):

>>> E.ellwp(pari(complex(1, 1)))
-1.11510682565555 + 2.33419052307470*I
>>> E.ellwp(complex(1, 1))
-1.11510682565555 + 2.33419052307470*I

The series expansion, to the default O(z^20) precision:

>>> E.ellwp()
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + 77531/41580*z^8 + 1202285717/
→˓928746000*z^10 + 2403461/2806650*z^12 + 30211462703/43418875500*z^14 +␣
→˓3539374016033/7723451736000*z^16 + 413306031683977/1289540602350000*z^18 +␣
→˓O(z^20)

Compute the series for wp to lower precision:

>>> E.ellwp(n=4)
z^-2 + 31/15*z^2 + O(z^4)

Next we use the version where the input is generators for a lattice:

>>> pari([1.2692, complex(0.63, 1.45)]).ellwp(1)
13.9656146936689 + 0.000644829272810...*I

With flag=1, compute the pair P(z) and P’(z):

>>> E.ellwp(1, flag=1)
[13.9658695257485, 101.123860176015]

eval(*args, **kwds)
Evaluate self with the given arguments.

This is currently implemented in 3 cases:

• univariate polynomials, rational functions, power series and Laurent series (using a single unnamed
argument or keyword arguments),

• any PARI object supporting the PARI function pari:substvec (in particular, multivariate polynomials)
using keyword arguments,

• objects of type t_CLOSURE (functions in GP bytecode form) using unnamed arguments.
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In no case is mixing unnamed and keyword arguments allowed.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> f = pari('x^2 + 1')
>>> f.type()
't_POL'
>>> f.eval(pari('I'))
0
>>> f.eval(x=2)
5
>>> (1/f).eval(x=1)
1/2

The notation f(x) is an alternative for f.eval(x):

>>> f(3) == f.eval(3)
True

>>> f = pari('Mod(x^2 + x + 1, 3)')
>>> f(2)
Mod(1, 3)

Evaluating a power series:

>>> f = pari('1 + x + x^3 + O(x^7)')
>>> f(2*pari('y')**2)
1 + 2*y^2 + 8*y^6 + O(y^14)

Substituting zero is sometimes possible, and trying to do so in illegal cases can raise various errors:

>>> pari('1 + O(x^3)').eval(0)
1
>>> pari('1/x').eval(0)
Traceback (most recent call last):
...
PariError: impossible inverse in gdiv: 0
>>> pari('1/x + O(x^2)').eval(0)
Traceback (most recent call last):
...
PariError: impossible inverse in gsubst: 0
>>> pari('1/x + O(x^2)').eval(pari('O(x^3)'))
Traceback (most recent call last):
...
PariError: impossible inverse in ...
>>> pari('O(x^0)').eval(0)
Traceback (most recent call last):
...
PariError: forbidden substitution t_SER , t_INT

Evaluating multivariate polynomials:
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>>> f = pari('y^2 + x^3')
>>> f(1) # Dangerous, depends on PARI variable ordering
y^2 + 1
>>> f(x=1) # Safe
y^2 + 1
>>> f(y=1)
x^3 + 1
>>> f(1, 2)
Traceback (most recent call last):
...
TypeError: evaluating PARI t_POL takes exactly 1 argument (2 given)
>>> f(y='x', x='2*y')
x^2 + 8*y^3
>>> f()
x^3 + y^2

It’s not an error to substitute variables which do not appear:

>>> f.eval(z=37)
x^3 + y^2
>>> pari(42).eval(t=0)
42

We can define and evaluate closures as follows:

>>> T = pari('n -> n + 2')
>>> T.type()
't_CLOSURE'
>>> T.eval(3)
5

>>> T = pari('() -> 42')
>>> T()
42

>>> pr = pari('s -> print(s)')
>>> pr.eval('"hello world"')
hello world

>>> f = pari('myfunc(x,y) = x*y')
>>> f.eval(5, 6)
30

Default arguments work, missing arguments are treated as zero (like in GP):

>>> f = pari("(x, y, z=1.0) -> [x, y, z]")
>>> f(1, 2, 3)
[1, 2, 3]
>>> f(1, 2)
[1, 2, 1.00000000000000]
>>> f(1)
[1, 0, 1.00000000000000]

(continues on next page)
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>>> f()
[0, 0, 1.00000000000000]

Variadic closures are supported as well (Sage ticket #18623):

>>> f = pari("(v[..])->length(v)")
>>> f('a', f)
2
>>> g = pari("(x,y,z[..])->[x,y,z]")
>>> g(), g(1), g(1,2), g(1,2,3), g(1,2,3,4)
([0, 0, []], [1, 0, []], [1, 2, []], [1, 2, [3]], [1, 2, [3, 4]])

Using keyword arguments, we can substitute in more complicated objects, for example a number field:

>>> nf = pari('x^2 + 1').nfinit()
>>> nf
[x^2 + 1, [0, 1], -4, 1, [Mat([1, 0.E-38 + 1.00000000000000*I]), [1, 1.
→˓00000000000000; 1, -1.00000000000000], ..., [2, 0; 0, -2], [2, 0; 0, 2], [1,␣
→˓0; 0, -1], [1, [0, -1; 1, 0]], [2]], [0.E-38 + 1.00000000000000*I], [1, x],␣
→˓[1, 0; 0, 1], [1, 0, 0, -1; 0, 1, 1, 0]]
>>> nf(x='y')
[y^2 + 1, [0, 1], -4, 1, [Mat([1, 0.E-38 + 1.00000000000000*I]), [1, 1.
→˓00000000000000; 1, -1.00000000000000], ..., [2, 0; 0, -2], [2, 0; 0, 2], [1,␣
→˓0; 0, -1], [1, [0, -1; 1, 0]], [2]], [0.E-38 + 1.00000000000000*I], [1, y],␣
→˓[1, 0; 0, 1], [1, 0, 0, -1; 0, 1, 1, 0]]

Tests:

>>> T = pari('n -> 1/n')
>>> T.type()
't_CLOSURE'
>>> T(0)
Traceback (most recent call last):
...
PariError: _/_: impossible inverse in gdiv: 0
>>> pari('() -> 42')(1,2,3)
Traceback (most recent call last):
...
PariError: too many parameters in user-defined function call
>>> pari('n -> n')(n=2)
Traceback (most recent call last):
...
TypeError: cannot evaluate a PARI closure using keyword arguments
>>> pari('x + y')(4, y=1)
Traceback (most recent call last):
...
TypeError: mixing unnamed and keyword arguments not allowed when evaluating a␣
→˓PARI object
>>> pari("12345")(4)
Traceback (most recent call last):
...
TypeError: cannot evaluate PARI t_INT using unnamed arguments
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factor(limit, proof )
Return the factorization of x.

INPUT:

• limit – (default: -1) is optional and can be set whenever x is of (possibly recursive) rational type. If
limit is set, return partial factorization, using primes up to limit.

• proof – optional flag. If False (not the default), returned factors larger than 2^{64} may only be pseu-
doprimes. If True, always check primality. If not given, use the global PARI default factor_proven
which is True by default in cypari.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari('x^10-1').factor()
[x - 1, 1; x + 1, 1; x^4 - x^3 + x^2 - x + 1, 1; x^4 + x^3 + x^2 + x + 1, 1]
>>> pari(2**100-1).factor()
[3, 1; 5, 3; 11, 1; 31, 1; 41, 1; 101, 1; 251, 1; 601, 1; 1801, 1; 4051, 1;␣
→˓8101, 1; 268501, 1]
>>> pari(2**100-1).factor(proof=True)
[3, 1; 5, 3; 11, 1; 31, 1; 41, 1; 101, 1; 251, 1; 601, 1; 1801, 1; 4051, 1;␣
→˓8101, 1; 268501, 1]
>>> pari(2**100-1).factor(proof=False)
[3, 1; 5, 3; 11, 1; 31, 1; 41, 1; 101, 1; 251, 1; 601, 1; 1801, 1; 4051, 1;␣
→˓8101, 1; 268501, 1]

We illustrate setting a limit:

>>> pari(pari(10**50).nextprime()*pari(10**60).nextprime()*pari(10**4).
→˓nextprime()).factor(10**5)
[10007, 1;␣
→˓100000000000000000000000000000000000000000000000151000000000700000000000000000000000000000000000000000000001057,
→˓ 1]

Setting a limit is invalid when factoring polynomials:

>>> pari('x^11 + 1').factor(limit=17)
Traceback (most recent call last):
...
PariError: incorrect type in boundfact (t_POL)

factorpadic(p, r)
p-adic factorization of the polynomial pol to precision r.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> pol = pari('x^2 - 1')**2
>>> pari(pol).factorpadic(5)
[(1 + O(5^20))*x + (1 + O(5^20)), 2; (1 + O(5^20))*x + (4 + 4*5 + 4*5^2 + 4*5^3␣

(continues on next page)
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→˓+ 4*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + 4*5^8 + 4*5^9 + 4*5^10 + 4*5^11 + 4*5^12 +␣
→˓4*5^13 + 4*5^14 + 4*5^15 + 4*5^16 + 4*5^17 + 4*5^18 + 4*5^19 + O(5^20)), 2]
>>> pari(pol).factorpadic(5,3)
[(1 + O(5^3))*x + (1 + O(5^3)), 2; (1 + O(5^3))*x + (4 + 4*5 + 4*5^2 + O(5^3)),␣
→˓2]

ffprimroot()

Return a primitive root of the multiplicative group of the definition field of the given finite field element.

INPUT:

• self – a PARI finite field element (FFELT)

OUTPUT:

• A generator of the multiplicative group of the finite field generated by self.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> b = pari(9).ffgen().ffprimroot()
>>> b.fforder()
8

fibonacci()

Return the Fibonacci number of index x.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari(18).fibonacci()
2584
>>> [pari(n).fibonacci() for n in range(10)]
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

galoissubfields(flag, v)
List all subfields of the Galois group self.

This wraps the galoissubfields function from PARI.

This method is essentially the same as applying galoisfixedfield() to each group returned by
galoissubgroups().

INPUT:

• self – A Galois group as generated by galoisinit().

• flag – Has the same meaning as in galoisfixedfield().

• v – Has the same meaning as in galoisfixedfield().

OUTPUT:

A vector of all subfields of this group. Each entry is as described in the galoisfixedfield() method.

Examples:
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>>> from cypari2 import Pari
>>> pari = Pari()

>>> G = pari('x^6 + 108').galoisinit()
>>> G.galoissubfields(flag=1)
[x, x^2 + 972, x^3 + 54, x^3 + 864, x^3 - 54, x^6 + 108]
>>> G = pari('x^4 + 1').galoisinit()
>>> G.galoissubfields(flag=2, v='z')[3]
[...^2 + 2, Mod(x^3 + x, x^4 + 1), [x^2 - z*x - 1, x^2 + z*x - 1]]

gequal(b)
Check whether a and b are equal using PARI’s gequal.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> a = pari(1); b = pari(1.0); c = pari('"some_string"')
>>> a.gequal(a)
True
>>> b.gequal(b)
True
>>> c.gequal(c)
True
>>> a.gequal(b)
True
>>> a.gequal(c)
False

WARNING: this relation is not transitive:

>>> a = pari('[0]'); b = pari(0); c = pari('[0,0]')
>>> a.gequal(b)
True
>>> b.gequal(c)
True
>>> a.gequal(c)
False

gequal0()

Check whether a is equal to zero.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari(0).gequal0()
True
>>> pari(1).gequal0()
False
>>> pari(1e-100).gequal0()

(continues on next page)
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False
>>> pari("0.0 + 0.0*I").gequal0()
True
>>> (pari('ffgen(3^20)')*0).gequal0()
True

gequal_long(b)
Check whether a is equal to the long int b using PARI’s gequalsg.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> a = pari(1); b = pari(2.0); c = pari('3*matid(3)')
>>> a.gequal_long(1)
True
>>> a.gequal_long(-1)
False
>>> a.gequal_long(0)
False
>>> b.gequal_long(2)
True
>>> b.gequal_long(-2)
False
>>> c.gequal_long(3)
True
>>> c.gequal_long(-3)
False

getattr(attr)
Return the PARI attribute with the given name.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> K = pari("nfinit(x^2 - x - 1)")
>>> K.getattr("pol")
x^2 - x - 1
>>> K.getattr("disc")
5

>>> K.getattr("reg")
Traceback (most recent call last):
...
PariError: _.reg: incorrect type in reg (t_VEC)
>>> K.getattr("zzz")
Traceback (most recent call last):
...
PariError: not a function in function call
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idealmoddivisor(ideal)
Return a ‘small’ ideal equivalent to ideal in the ray class group that the bnr structure self encodes.

INPUT:

• self – a bnr structure as outputted from bnrinit.

• ideal – an ideal in the underlying number field of the bnr structure.

OUTPUT: An ideal representing the same ray class as ideal but with ‘small’ generators. If ideal is not
coprime to the modulus of the bnr, this results in an error.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()
>>> i = pari('i')
>>> K = (i**4 - 2).bnfinit()
>>> R = K.bnrinit(5,1)
>>> R.idealmoddivisor(K[6][6][1])
[2, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1]
>>> R.idealmoddivisor(K.idealhnf(5))
Traceback (most recent call last):
...
PariError: elements not coprime in idealaddtoone:

[5, 0, 0, 0; 0, 5, 0, 0; 0, 0, 5, 0; 0, 0, 0, 5]
[5, 0, 0, 0; 0, 5, 0, 0; 0, 0, 5, 0; 0, 0, 0, 5]

ispower(k)
Determine whether or not self is a perfect k-th power. If k is not specified, find the largest k so that self is
a k-th power.

INPUT:

• k - int (optional)

OUTPUT:

• power - int, what power it is

• g - what it is a power of

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()
>>> pari(9).ispower()
(2, 3)
>>> pari(17).ispower()
(1, 17)
>>> pari(17).ispower(2)
(False, None)
>>> pari(17).ispower(1)
(1, 17)
>>> pari(2).ispower()
(1, 2)

isprime(flag)
Return True if x is a PROVEN prime number, and False otherwise.
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INPUT:

• flag – If flag is 0 or omitted, use a combination of algorithms. If flag is 1, the primality is certified
by the Pocklington-Lehmer Test. If flag is 2, the primality is certified using the APRCL test. If flag is
3, use ECPP.

OUTPUT: bool

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()
>>> pari(9).isprime()
False
>>> pari(17).isprime()
True
>>> n = pari(561) # smallest Carmichael number
>>> n.isprime() # not just a pseudo-primality test!
False
>>> n.isprime(1)
False
>>> n.isprime(2)
False
>>> n = pari(2**31-1)
>>> n.isprime(1)
True

isprimepower()

Check whether self is a prime power (with an exponent >= 1).

INPUT:

• self - A PARI integer

OUTPUT:

A tuple (k, p) where k is a Python integer and p a PARI integer.

• If the input was a prime power, p is the prime and k the power.

• Otherwise, k = 0 and p is self.

See also:
If you don’t need a proof that p is prime, you can use ispseudoprimepower() instead.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()
>>> pari(9).isprimepower()
(2, 3)
>>> pari(17).isprimepower()
(1, 17)
>>> pari(18).isprimepower()
(0, 18)
>>> pari(3**12345).isprimepower()
(12345, 3)
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ispseudoprime(flag)
ispseudoprime(x, flag=0): Returns True if x is a pseudo-prime number, and False otherwise.

INPUT:

• flag - int 0 (default): checks whether x is a Baillie-Pomerance-Selfridge-Wagstaff pseudo prime
(strong Rabin-Miller pseudo prime for base 2, followed by strong Lucas test for the sequence (P,-
1), P smallest positive integer such that P^2 - 4 is not a square mod x). 0: checks whether x is a strong
Miller-Rabin pseudo prime for flag randomly chosen bases (with end-matching to catch square roots
of -1).

OUTPUT:

• bool - True or False, or when flag=1, either False or a tuple (True, cert) where cert is a primality
certificate.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()
>>> pari(9).ispseudoprime()
False
>>> pari(17).ispseudoprime()
True
>>> n = pari(561) # smallest Carmichael number
>>> n.ispseudoprime(2)
False

ispseudoprimepower()

Check whether self is the power (with an exponent >= 1) of a pseudo-prime.

INPUT:

• self - A PARI integer

OUTPUT:

A tuple (k, p) where k is a Python integer and p a PARI integer.

• If the input was a pseudoprime power, p is the pseudoprime and k the power.

• Otherwise, k = 0 and p is self.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari(3**12345).ispseudoprimepower()
(12345, 3)
>>> p = pari(2**1500 + 1465) # nextprime(2^1500)
>>> (p**11).ispseudoprimepower()[0] # very fast
11

issquare(find_root)
issquare(x,n): True if x is a square, False if not. If find_root is given, also returns the exact square
root.

407



CyPari2 Documentation, Release 2.1.3

issquarefree()

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari(10).issquarefree()
True
>>> pari(20).issquarefree()
False

j()

Return the j-invariant of this object.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> e = pari([0, -1, 1, -10, -20]).ellinit()
>>> e.j()
-122023936/161051
>>> _.factor()
[-1, 1; 2, 12; 11, -5; 31, 3]

lift_centered(v)
Same as lift, except that t_INTMOD and t_PADIC components are lifted using centered residues:

• for a t_INTMOD 𝑥 ∈ Z/𝑛Z, the lift 𝑦 is such that −𝑛/2 < 𝑦 <= 𝑛/2.

• a t_PADIC 𝑥 is lifted in the same way as above (modulo 𝑝𝑝𝑎𝑑𝑖𝑐𝑝𝑟𝑒𝑐(𝑥)) if its valuation 𝑣 is nonneg-
ative; if not, returns the fraction 𝑝𝑣 centerlift(𝑥𝑝−𝑣); in particular, rational reconstruction is not
attempted. Use bestappr for this.

For backward compatibility, centerlift(x,'v) is allowed as an alias for lift(x,'v).

list()

Convert self to a Python list with Gen components.

Examples:

A PARI vector becomes a Python list:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> L = pari("vector(10,i,i^2)").list()
>>> L
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
>>> type(L)
<... 'list'>
>>> type(L[0])
<... 'cypari2.gen.Gen'>

For polynomials, list() returns the list of coefficients:
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>>> pol = pari("x^3 + 5/3*x"); pol.list()
[0, 5/3, 0, 1]

For power series or Laurent series, we get all coefficients starting from the lowest degree term. This includes
trailing zeros:

>>> pari('x^2 + O(x^8)').list()
[1, 0, 0, 0, 0, 0]
>>> pari('x^-2 + O(x^0)').list()
[1, 0]

For matrices, we get a list of columns:

>>> M = pari.matrix(3,2,[1,4,2,5,3,6]); M
[1, 4; 2, 5; 3, 6]
>>> M.list()
[[1, 2, 3]~, [4, 5, 6]~]

log_gamma(precision)
Principal branch of the logarithm of the gamma function of 𝑥. This function is analytic on the complex
plane with nonpositive integers removed, and can have much larger arguments than gamma itself.

For 𝑥 a power series such that 𝑥(0) is not a pole of gamma, compute the Taylor expansion. (PARI only
knows about regular power series and can’t include logarithmic terms.)

? lngamma(1+x+O(x^2))
%1 = -0.57721566490153286060651209008240243104*x + O(x^2)
? lngamma(x+O(x^2))
*** at top-level: lngamma(x+O(x^2))
*** ^-----------------
*** lngamma: domain error in lngamma: valuation != 0

? lngamma(-1+x+O(x^2))
*** lngamma: Warning: normalizing a series with 0 leading term.
*** at top-level: lngamma(-1+x+O(x^2))
*** ^--------------------
*** lngamma: domain error in intformal: residue(series, pole) != 0

matkerint(flag)
Return the integer kernel of a matrix.

This is the LLL-reduced Z-basis of the kernel of the matrix x with integral entries.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari('[2,1;2,1]').matkerint()
[1; -2]
>>> import warnings
>>> with warnings.catch_warnings(record=True) as w:
... warnings.simplefilter('always')
... pari('[2,1;2,1]').matkerint(1)
... assert len(w) == 1

(continues on next page)
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... assert issubclass(w[0].category, DeprecationWarning)
[1; -2]

mattranspose()

Transpose of the matrix self.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari('[1,2,3; 4,5,6; 7,8,9]').mattranspose()
[1, 4, 7; 2, 5, 8; 3, 6, 9]

Unlike PARI, this always returns a matrix:

>>> pari('[1,2,3]').mattranspose()
[1; 2; 3]
>>> pari('[1,2,3]~').mattranspose()
Mat([1, 2, 3])

mod()

Given an INTMOD or POLMOD Mod(a,m), return the modulus m.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari(4).Mod(5).mod()
5
>>> pari("Mod(x, x*y)").mod()
y*x
>>> pari("[Mod(4,5)]").mod()
Traceback (most recent call last):
...
TypeError: Not an INTMOD or POLMOD in mod()

multiplicative_order(o)
𝑥 must be an integer mod 𝑛, and the result is the order of 𝑥 in the multiplicative group (Z/𝑛Z)*. Returns
an error if 𝑥 is not invertible. The parameter o, if present, represents a nonzero multiple of the order of 𝑥,
see DLfun (in the PARI manual); the preferred format for this parameter is [ord, factor(ord)], where
ord = eulerphi(n) is the cardinality of the group.

ncols()

Return the number of columns of self.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()
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>>> pari('matrix(19,8)').ncols()
8

nextprime(add_one)
nextprime(x): smallest pseudoprime greater than or equal to x. If add_one is non-zero, return the smallest
pseudoprime strictly greater than x.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari(1).nextprime()
2
>>> pari(2).nextprime()
2
>>> pari(2).nextprime(add_one = 1)
3
>>> pari(2**100).nextprime()
1267650600228229401496703205653

nf_get_diff()

Returns the different of this number field as a PARI ideal.

INPUT:

• self – A PARI number field being the output of nfinit(),
bnfinit() or bnrinit().

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> x = pari('x')
>>> K = (x**4 - 4*x**2 + 1).nfinit()
>>> K.nf_get_diff()
[12, 0, 0, 0; 0, 12, 8, 0; 0, 0, 4, 0; 0, 0, 0, 4]

nf_get_pol()

Returns the defining polynomial of this number field.

INPUT:

• self – A PARI number field being the output of nfinit(),
bnfinit() or bnrinit().

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> x = pari('x')
>>> K = (x**4 - 4*x**2 + 1).bnfinit()
>>> bnr = K.bnrinit(2*x)

(continues on next page)
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>>> bnr.nf_get_pol()
x^4 - 4*x^2 + 1

For relative number fields, this returns the relative polynomial:

>>> y = pari.varhigher('y')
>>> L = K.rnfinit(y**2 - 5)
>>> L.nf_get_pol()
y^2 - 5

An error is raised for invalid input:

>>> pari("[0]").nf_get_pol()
Traceback (most recent call last):
...
PariError: incorrect type in pol (t_VEC)

nf_get_sign()

Returns a Python list [r1, r2], where r1 and r2 are Python ints representing the number of real embed-
dings and pairs of complex embeddings of this number field, respectively.

INPUT:

• self – A PARI number field being the output of nfinit(),
bnfinit() or bnrinit().

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> x = pari('x')
>>> K = (x**4 - 4*x**2 + 1).nfinit()
>>> s = K.nf_get_sign(); s
[4, 0]
>>> type(s); type(s[0])
<... 'list'>
<... 'int'>
>>> pari.polcyclo(15).nfinit().nf_get_sign()
[0, 4]

nf_get_zk()

Returns a vector with a ZZ-basis for the ring of integers of this number field. The first element is always 1.

INPUT:

• self – A PARI number field being the output of nfinit(),
bnfinit() or bnrinit().

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()
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>>> x = pari('x')
>>> K = (x**4 - 4*x**2 + 1).nfinit()
>>> K.nf_get_zk()
[1, x, x^3 - 4*x, x^2 - 2]

nf_subst(z)
Given a PARI number field self, return the same PARI number field but in the variable z.

INPUT:

• self – A PARI number field being the output of nfinit(),
bnfinit() or bnrinit().

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> K = pari('y^2 + 5').nfinit()

We can substitute in a PARI nf structure:

>>> K.nf_get_pol()
y^2 + 5
>>> L = K.nf_subst('a')
>>> L.nf_get_pol()
a^2 + 5

We can also substitute in a PARI bnf structure:

>>> K = pari('y^2 + 5').bnfinit()
>>> K.nf_get_pol()
y^2 + 5
>>> K.bnf_get_cyc() # Structure of class group
[2]
>>> L = K.nf_subst('a')
>>> L.nf_get_pol()
a^2 + 5
>>> L.bnf_get_cyc() # We still have a bnf after substituting
[2]

nfbasis(flag, fa)
Integral basis of the field QQ[a], where a is a root of the polynomial x.

INPUT:

• flag: if set to 1 and fa is not given: assume that no square of a prime > 500000 divides the discrim-
inant of x.

• fa: If present, encodes a subset of primes at which to check for maximality. This must be one of the
three following things:

– an integer: check all primes up to fa using trial division.

– a vector: a list of primes to check.

– a matrix: a partial factorization of the discriminant of x.
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Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari('x^3 - 17').nfbasis()
[1, x, 1/3*x^2 - 1/3*x + 1/3]

We test flag = 1, noting it gives a wrong result when the discriminant (-4 * p`^2 * `q in the example below)
has a big square factor:

>>> p = pari(10**10).nextprime(); q = (p+1).nextprime()
>>> x = pari('x'); f = x**2 + p**2*q
>>> pari(f).nfbasis(1) # Wrong result
[1, x]
>>> pari(f).nfbasis() # Correct result
[1, 1/10000000019*x]
>>> pari(f).nfbasis(fa=10**6) # Check primes up to 10^6: wrong result
[1, x]
>>> pari(f).nfbasis(fa="[2,2; %s,2]"%p) # Correct result and faster
[1, 1/10000000019*x]
>>> pari(f).nfbasis(fa=[2,p]) # Equivalent with the above
[1, 1/10000000019*x]

The following alternative syntax closer to PARI/GP can be used

>>> pari.nfbasis([f, 1])
[1, x]
>>> pari.nfbasis(f)
[1, 1/10000000019*x]
>>> pari.nfbasis([f, 10**6])
[1, x]
>>> pari.nfbasis([f, "[2,2; %s,2]"%p])
[1, 1/10000000019*x]
>>> pari.nfbasis([f, [2,p]])
[1, 1/10000000019*x]

nfbasis_d(flag, fa)
Like nfbasis(), but return a tuple (B, D) where B is the integral basis and D the discriminant.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> F = pari('x^3 - 2').nfinit()
>>> F[0].nfbasis_d()
([1, x, x^2], -108)

>>> G = pari('x^5 - 11').nfinit()
>>> G[0].nfbasis_d()
([1, x, x^2, x^3, x^4], 45753125)
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>>> pari([-2,0,0,1]).Polrev().nfbasis_d()
([1, x, x^2], -108)

nfbasistoalg_lift(x)
Transforms the column vector x on the integral basis into a polynomial representing the algebraic number.

INPUT:

• nf – a number field

• x – a column of rational numbers of length equal to the degree of nf or a single rational number

OUTPUT:

• nf.nfbasistoalg(x).lift()

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> K = pari('x^3 - 17').nfinit()
>>> K.nf_get_zk()
[1, 1/3*x^2 - 1/3*x + 1/3, x]
>>> K.nfbasistoalg_lift(42)
42
>>> K.nfbasistoalg_lift("[3/2, -5, 0]~")
-5/3*x^2 + 5/3*x - 1/6
>>> K.nf_get_zk() * pari("[3/2, -5, 0]~")
-5/3*x^2 + 5/3*x - 1/6

nfeltval(x, p)
Return the valuation of the number field element x at the prime p.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> nf = pari('x^2 + 1').nfinit()
>>> p = nf.idealprimedec(5)[0]
>>> nf.nfeltval('50 - 25*x', p)
3

nrows()

Return the number of rows of self.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari('matrix(19,8)').nrows()
19
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omega()

Return the basis for the period lattice of this elliptic curve.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> e = pari([0, -1, 1, -10, -20]).ellinit()
>>> e.omega()
[1.26920930427955, 0.634604652139777 - 1.45881661693850*I]

The precision is determined by the ellinit call:

>>> e = pari([0, -1, 1, -10, -20]).ellinit(precision=256)
>>> e.omega().bitprecision()
256

This also works over quadratic imaginary number fields:

>>> e = pari.ellinit([0, -1, 1, -10, -20], "nfinit(y^2 - 2)")
>>> if pari.version() >= (2, 10, 1):
... w = e.omega()

padicprime()

The uniformizer of the p-adic ring this element lies in, as a t_INT.

INPUT:

• x - gen, of type t_PADIC

OUTPUT:

• p - gen, of type t_INT

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> y = pari('11^-10 + 5*11^-7 + 11^-6 + O(11)')
>>> y.padicprime()
11
>>> y.padicprime().type()
't_INT'

polinterpolate(ya, x)
self.polinterpolate(ya,x,e): polynomial interpolation at x according to data vectors self, ya (i.e. return P
such that P(self[i]) = ya[i] for all i). Also return an error estimate on the returned value.

polred(*args, **kwds)
This function is deprecated, use polredbest() instead.

polylog(m, flag, precision)
x.polylog(m,flag=0): m-th polylogarithm of x. flag is optional, and can be 0: default, 1: D_m -modified
m-th polylog of x, 2: D_m-modified m-th polylog of x, 3: P_m-modified m-th polylog of x.
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If x is an exact argument, it is first converted to a real or complex number using the optional parameter
precision (in bits). If x is inexact (e.g. real), its own precision is used in the computation, and the parameter
precision is ignored.

TODO: Add more explanation, copied from the PARI manual.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari(10).polylog(3)
5.64181141475134 - 8.32820207698027*I
>>> pari(10).polylog(3,0)
5.64181141475134 - 8.32820207698027*I
>>> pari(10).polylog(3,1)
0.523778453502411
>>> pari(10).polylog(3,2)
-0.400459056163451

pr_get_e()

Returns the ramification index (over QQ) of this prime ideal.

NOTE: self must be a PARI prime ideal (as returned by idealprimedec for example).

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> i = pari('i')
>>> K = (i**2 + 1).nfinit()
>>> K.idealprimedec(2)[0].pr_get_e()
2
>>> K.idealprimedec(3)[0].pr_get_e()
1
>>> K.idealprimedec(5)[0].pr_get_e()
1

pr_get_f()

Returns the residue class degree (over QQ) of this prime ideal.

NOTE: self must be a PARI prime ideal (as returned by idealprimedec for example).

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> i = pari('i')
>>> K = (i**2 + 1).nfinit()
>>> K.idealprimedec(2)[0].pr_get_f()
1
>>> K.idealprimedec(3)[0].pr_get_f()
2

(continues on next page)
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>>> K.idealprimedec(5)[0].pr_get_f()
1

pr_get_gen()

Returns the second generator of this PARI prime ideal, where the first generator is self.pr_get_p().

NOTE: self must be a PARI prime ideal (as returned by idealprimedec for example).

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> i = pari('i')
>>> K = (i**2 + 1).nfinit()
>>> g = K.idealprimedec(2)[0].pr_get_gen(); g
[1, 1]~
>>> g = K.idealprimedec(3)[0].pr_get_gen(); g
[3, 0]~
>>> g = K.idealprimedec(5)[0].pr_get_gen(); g
[-2, 1]~

pr_get_p()

Returns the prime of ZZ lying below this prime ideal.

NOTE: self must be a PARI prime ideal (as returned by idealprimedec for example).

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> i = pari('i')
>>> K = (i**2 + 1).nfinit()
>>> F = K.idealprimedec(5); F
[[5, [-2, 1]~, 1, 1, [2, -1; 1, 2]], [5, [2, 1]~, 1, 1, [-2, -1; 1, -2]]]
>>> F[0].pr_get_p()
5

python()

Return the closest Python equivalent of the given PARI object.

See gen_to_python() for more informations.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari('1.2').python()
1.2
>>> pari('389/17').python()
Fraction(389, 17)
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python_list()

Return a Python list of the PARI gens. This object must be of type t_VEC or t_COL.

INPUT: None

OUTPUT:

• list - Python list whose elements are the elements of the input gen.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> v = pari([1,2,3,10,102,10])
>>> w = v.python_list()
>>> w
[1, 2, 3, 10, 102, 10]
>>> type(w[0])
<... 'cypari2.gen.Gen'>
>>> pari("[1,2,3]").python_list()
[1, 2, 3]

>>> pari("[1,2,3]~").python_list()
[1, 2, 3]

python_list_small()

Return a Python list of the PARI gens. This object must be of type t_VECSMALL, and the resulting list
contains python ‘int’s.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> v=pari([1,2,3,10,102,10]).Vecsmall()
>>> w = v.python_list_small()
>>> w
[1, 2, 3, 10, 102, 10]
>>> type(w[0])
<... 'int'>

qfrep(B, flag)
Vector of (half) the number of vectors of norms from 1 to B for the integral and definite quadratic form
self. Binary digits of flag mean 1: count vectors of even norm from 1 to 2B, 2: return a t_VECSMALL
instead of a t_VEC (which is faster).

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> M = pari("[5,1,1;1,3,1;1,1,1]")
>>> M.qfrep(20)
[1, 1, 2, 2, 2, 4, 4, 3, 3, 4, 2, 4, 6, 0, 4, 6, 4, 5, 6, 4]

(continues on next page)
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(continued from previous page)

>>> M.qfrep(20, flag=1)
[1, 2, 4, 3, 4, 4, 0, 6, 5, 4, 12, 4, 4, 8, 0, 3, 8, 6, 12, 12]
>>> M.qfrep(20, flag=2)
Vecsmall([1, 1, 2, 2, 2, 4, 4, 3, 3, 4, 2, 4, 6, 0, 4, 6, 4, 5, 6, 4])

round(estimate)
round(x,estimate=False): If x is a real number, returns x rounded to the nearest integer (rounding up). If
the optional argument estimate is True, also returns the binary exponent e of the difference between the
original and the rounded value (the “fractional part”) (this is the integer ceiling of log_2(error)).

When x is a general PARI object, this function returns the result of rounding every coefficient at every level
of PARI object. Note that this is different than what the truncate function does (see the example below).

One use of round is to get exact results after a long approximate computation, when theory tells you that
the coefficients must be integers.

INPUT:

• x - gen

• estimate - (optional) bool, False by default

OUTPUT:

• if estimate is False, return a single gen.

• if estimate is True, return rounded version of x and error estimate in bits, both as gens.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari('1.5').round()
2
>>> pari('1.5').round(True)
(2, -1)
>>> pari('1.5 + 2.1*I').round()
2 + 2*I
>>> pari('1.0001').round(True)
(1, -14)
>>> pari('(2.4*x^2 - 1.7)/x').round()
(2*x^2 - 2)/x
>>> pari('(2.4*x^2 - 1.7)/x').truncate()
2.40000000000000*x

sage(locals)
Return the closest SageMath equivalent of the given PARI object.

INPUT:

• locals – optional dictionary used in fallback cases that involve sage_eval

See gen_to_sage() for more information.

sizebyte()

Return the total number of bytes occupied by the complete tree of the object x. Note that this number
depends on whether the computer is 32-bit or 64-bit.
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INPUT:

• x - gen

OUTPUT: int (a Python int)

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> import sys
>>> bitness = '64' if sys.maxsize > (1 << 32) else '32'
>>> pari('1').sizebyte() == (12 if bitness == '32' else 24)
True

sizeword()

Return the total number of machine words occupied by the complete tree of the object x. A machine word
is 32 or 64 bits, depending on the computer.

INPUT:

• x - gen

OUTPUT: int (a Python int)

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari('0').sizeword()
2
>>> pari('1').sizeword()
3
>>> pari('1000000').sizeword()
3

>>> import sys
>>> bitness = '64' if sys.maxsize > (1 << 32) else '32'
>>> pari('10^100').sizeword() == (13 if bitness == '32' else 8)
True
>>> pari(1.0).sizeword() == (4 if bitness == '32' else 3)
True

>>> pari('x + 1').sizeword()
10
>>> pari('[x + 1, 1]').sizeword()
16

sqrtn(n, precision)
x.sqrtn(n): return the principal branch of the n-th root of x, i.e., the one such that arg(sqrt(x)) in ]-pi/n,
pi/n]. Also returns a second argument which is a suitable root of unity allowing one to recover all the other
roots. If it was not possible to find such a number, then this second return value is 0. If the argument is
present and no square root exists, return 0 instead of raising an error.
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If x is an exact argument, it is first converted to a real or complex number using the optional parameter
precision (in bits). If x is inexact (e.g. real), its own precision is used in the computation, and the parameter
precision is ignored.

Note: intmods (modulo a prime) and p-adic numbers are allowed as arguments.

INPUT:

• x - gen

• n - integer

OUTPUT:

• gen - principal n-th root of x

• gen - root of unity z that gives the other roots

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> s, z = pari(2).sqrtn(5)
>>> z
0.309016994374947 + 0.951056516295154*I
>>> s
1.14869835499704
>>> s**5
2.00000000000000
>>> (s*z)**5
2.00000000000000 + 0.E-19*I

>>> import sys
>>> bitness = '64' if sys.maxsize > (1 << 32) else '32'
>>> s = str(z**5)
>>> s == ('1.00000000000000 - 2.710505431 E-20*I' if bitness == '32' else '1.
→˓00000000000000 - 2.71050543121376 E-20*I')
True

sumdiv()

Return the sum of the divisors of n.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari(10).sumdiv()
18

sumdivk(k)
Return the sum of the k-th powers of the divisors of n.

Examples:
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>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari(10).sumdivk(2)
130

truncate(estimate)
truncate(x,estimate=False): Return the truncation of x. If estimate is True, also return the number of error
bits.

When x is in the real numbers, this means that the part after the decimal point is chopped away, e is the
binary exponent of the difference between the original and truncated value (the “fractional part”). If x is
a rational function, the result is the integer part (Euclidean quotient of numerator by denominator) and if
requested the error estimate is 0.

When truncate is applied to a power series (in X), it transforms it into a polynomial or a rational function
with denominator a power of X, by chopping away the O(X^k). Similarly, when applied to a p-adic number,
it transforms it into an integer or a rational number by chopping away the O(p^k).

INPUT:

• x - gen

• estimate - (optional) bool, which is False by default

OUTPUT:

• if estimate is False, return a single gen.

• if estimate is True, return rounded version of x and error estimate in bits, both as gens.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari('(x^2+1)/x').round()
(x^2 + 1)/x
>>> pari('(x^2+1)/x').truncate()
x
>>> pari('1.043').truncate()
1
>>> pari('1.043').truncate(True)
(1, -5)
>>> pari('1.6').truncate()
1
>>> pari('1.6').round()
2
>>> pari('1/3 + 2 + 3^2 + O(3^3)').truncate()
34/3
>>> pari('sin(x+O(x^10))').truncate()
1/362880*x^9 - 1/5040*x^7 + 1/120*x^5 - 1/6*x^3 + x
>>> pari('sin(x+O(x^10))').round() # each coefficient has abs < 1
x + O(x^10)

type()

Return the PARI type of self as a string.
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Note: In Cython, it is much faster to simply use typ(self.g) for checking PARI types.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari(7).type()
't_INT'
>>> pari('x').type()
't_POL'
>>> pari('oo').type()
't_INFINITY'

vecmax()

Return the maximum of the elements of the vector/matrix x.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari([1, '-5/3', 8.0]).vecmax()
8.00000000000000

vecmin()

Return the minimum of the elements of the vector/matrix x.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari([1, '-5/3', 8.0]).vecmin()
-5/3

class cypari2.gen.Gen_base

Wrapper for a PARI GEN containing auto-generated methods.

This class does not manage the GEN inside in any way. It is just a dumb wrapper. In particular, it might be invalid
if the GEN is on the PARI stack and the PARI stack has been garbage collected.

You almost certainly want to use one of the derived class Gen instead. That being said, Gen_base can be used
by itself to pass around a temporary GEN within Python where we cannot use C calls.

Col(n)
Transforms the object 𝑥 into a column vector. The dimension of the resulting vector can be optionally
specified via the extra parameter 𝑛.

If 𝑛 is omitted or 0, the dimension depends on the type of 𝑥; the vector has a single component, except
when 𝑥 is

• a vector or a quadratic form (in which case the resulting vector is simply the initial object considered
as a row vector),
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• a polynomial or a power series. In the case of a polynomial, the coefficients of the vector start with
the leading coefficient of the polynomial, while for power series only the significant coefficients are
taken into account, but this time by increasing order of degree. In this last case, Vec is the reciprocal
function of Pol and Ser respectively,

• a matrix (the column of row vector comprising the matrix is returned),

• a character string (a vector of individual characters is returned).

In the last two cases (matrix and character string), 𝑛 is meaningless and must be omitted or an error is
raised. Otherwise, if 𝑛 is given, 0 entries are appended at the end of the vector if 𝑛 > 0, and prepended at
the beginning if 𝑛 < 0. The dimension of the resulting vector is ‖𝑛‖.

See ??Vec for examples.

Colrev(n)
As 𝐶𝑜𝑙(𝑥,−𝑛), then reverse the result. In particular, Colrev is the reciprocal function of Polrev: the
coefficients of the vector start with the constant coefficient of the polynomial and the others follow by
increasing degree.

List()

Transforms a (row or column) vector 𝑥 into a list, whose components are the entries of 𝑥. Similarly for a
list, but rather useless in this case. For other types, creates a list with the single element 𝑥.

Map()

A “Map” is an associative array, or dictionary: a data type composed of a collection of (key, value)
pairs, such that each key appears just once in the collection. This function converts the matrix
[𝑎1, 𝑏1; 𝑎2, 𝑏2; ...; 𝑎𝑛, 𝑏𝑛] to the map 𝑎𝑖 : −−− > 𝑏𝑖.

? M = Map(factor(13!));
? mapget(M,3)
%2 = 5

If the argument 𝑥 is omitted, creates an empty map, which may be filled later via mapput.

Mat()

Transforms the object 𝑥 into a matrix. If 𝑥 is already a matrix, a copy of 𝑥 is created. If 𝑥 is a row (resp.
column) vector, this creates a 1-row (resp. 1-column) matrix, unless all elements are column (resp. row)
vectors of the same length, in which case the vectors are concatenated sideways and the attached big matrix
is returned. If 𝑥 is a binary quadratic form, creates the attached 2𝑥2 matrix. Otherwise, this creates a 1𝑥1
matrix containing 𝑥.

? Mat(x + 1)
%1 =
[x + 1]
? Vec( matid(3) )
%2 = [[1, 0, 0]~, [0, 1, 0]~, [0, 0, 1]~]
? Mat(%)
%3 =
[1 0 0]

[0 1 0]

[0 0 1]
? Col( [1,2; 3,4] )
%4 = [[1, 2], [3, 4]]~
? Mat(%)

(continues on next page)
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(continued from previous page)

%5 =
[1 2]

[3 4]
? Mat(Qfb(1,2,3))
%6 =
[1 1]

[1 3]

Mod(b)
In its basic form, create an intmod or a polmod (𝑎𝑚𝑜𝑑𝑏); 𝑏 must be an integer or a polynomial. We then
obtain a t_INTMOD and a t_POLMOD respectively:

? t = Mod(2,17); t^8
%1 = Mod(1, 17)
? t = Mod(x,x^2+1); t^2
%2 = Mod(-1, x^2+1)

If 𝑎%𝑏 makes sense and yields a result of the appropriate type (t_INT or scalar/t_POL), the operation
succeeds as well:

? Mod(1/2, 5)
%3 = Mod(3, 5)
? Mod(7 + O(3^6), 3)
%4 = Mod(1, 3)
? Mod(Mod(1,12), 9)
%5 = Mod(1, 3)
? Mod(1/x, x^2+1)
%6 = Mod(-x, x^2+1)
? Mod(exp(x), x^4)
%7 = Mod(1/6*x^3 + 1/2*x^2 + x + 1, x^4)

If 𝑎 is a complex object, “base change” it to Z/𝑏Z or 𝐾[𝑥]/(𝑏), which is equivalent to, but faster than,
multiplying it by Mod(1,b):

? Mod([1,2;3,4], 2)
%8 =
[Mod(1, 2) Mod(0, 2)]

[Mod(1, 2) Mod(0, 2)]
? Mod(3*x+5, 2)
%9 = Mod(1, 2)*x + Mod(1, 2)
? Mod(x^2 + y*x + y^3, y^2+1)
%10 = Mod(1, y^2 + 1)*x^2 + Mod(y, y^2 + 1)*x + Mod(-y, y^2 + 1)

This function is not the same as 𝑥 % 𝑦, the result of which has no knowledge of the intended modulus 𝑦.
Compare

? x = 4 % 5; x + 1
%11 = 5
? x = Mod(4,5); x + 1
%12 = Mod(0,5)

426 Chapter 2. The Gen class wrapping PARI’s GEN type



CyPari2 Documentation, Release 2.1.3

Note that such “modular” objects can be lifted via lift or centerlift. The modulus of a t_INTMOD or
t_POLMOD 𝑧 can be recovered via :math:`z.mod`.

Pol(v)
Transforms the object 𝑡 into a polynomial with main variable 𝑣. If 𝑡 is a scalar, this gives a constant
polynomial. If 𝑡 is a power series with nonnegative valuation or a rational function, the effect is similar
to truncate, i.e. we chop off the 𝑂(𝑋𝑘) or compute the Euclidean quotient of the numerator by the
denominator, then change the main variable of the result to 𝑣.

The main use of this function is when 𝑡 is a vector: it creates the polynomial whose coefficients are given by
𝑡, with 𝑡[1] being the leading coefficient (which can be zero). It is much faster to evaluate Pol on a vector
of coefficients in this way, than the corresponding formal expression 𝑎𝑛𝑋𝑛 + ...+ 𝑎0, which is evaluated
naively exactly as written (linear versus quadratic time in 𝑛). Polrev can be used if one wants 𝑥[1] to be
the constant coefficient:

? Pol([1,2,3])
%1 = x^2 + 2*x + 3
? Polrev([1,2,3])
%2 = 3*x^2 + 2*x + 1

The reciprocal function of Pol (resp. Polrev) is Vec (resp. Vecrev).

? Vec(Pol([1,2,3]))
%1 = [1, 2, 3]
? Vecrev( Polrev([1,2,3]) )
%2 = [1, 2, 3]

Warning. This is not a substitution function. It will not transform an object containing variables of higher
priority than 𝑣.

? Pol(x + y, y)
*** at top-level: Pol(x+y,y)
*** ^----------
*** Pol: variable must have higher priority in gtopoly.

Polrev(v)
Transform the object 𝑡 into a polynomial with main variable 𝑣. If 𝑡 is a scalar, this gives a constant polyno-
mial. If 𝑡 is a power series, the effect is identical to truncate, i.e. it chops off the 𝑂(𝑋𝑘).

The main use of this function is when 𝑡 is a vector: it creates the polynomial whose coefficients are given
by 𝑡, with 𝑡[1] being the constant term. Pol can be used if one wants 𝑡[1] to be the leading coefficient:

? Polrev([1,2,3])
%1 = 3*x^2 + 2*x + 1
? Pol([1,2,3])
%2 = x^2 + 2*x + 3

The reciprocal function of Pol (resp. Polrev) is Vec (resp. Vecrev).

Qfb(b, c, D, precision)
Creates the binary quadratic form 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2. If 𝑏2 − 4𝑎𝑐 > 0, initialize Shanks’ distance function
to 𝐷. Negative definite forms are not implemented, use their positive definite counterpart instead.

Ser(v, d, serprec)
Transforms the object 𝑠 into a power series with main variable 𝑣 (𝑥 by default) and precision (number of
significant terms) equal to 𝑑 >= 0 (𝑑 = 𝑠𝑒𝑟𝑖𝑒𝑠𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 by default). If 𝑠 is a scalar, this gives a constant
power series in 𝑣 with precision d. If 𝑠 is a polynomial, the polynomial is truncated to 𝑑 terms if needed
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? \ps
seriesprecision = 16 significant terms

? Ser(1) \\ 16 terms by default
%1 = 1 + O(x^16)
? Ser(1, 'y, 5)
%2 = 1 + O(y^5)
? Ser(x^2,, 5)
%3 = x^2 + O(x^7)
? T = polcyclo(100)
%4 = x^40 - x^30 + x^20 - x^10 + 1
? Ser(T, 'x, 11)
%5 = 1 - x^10 + O(x^11)

The function is more or less equivalent with multiplication by 1 +𝑂(𝑣𝑑) in theses cases, only faster.

For the remaining types, vectors and power series, we first explain what occurs if 𝑑 is omitted. In this case,
the function uses exactly the amount of information given in the input:

• If 𝑠 is already a power series in 𝑣, we return it verbatim;

• If 𝑠 is a vector, the coefficients of the vector are understood to be the coefficients of the power series
starting from the constant term (as in Polrev(𝑥)); in other words we convert t_VEC / t_COL to the
power series whose significant terms are exactly given by the vector entries.

On the other hand, if 𝑑 is explicitly given, we abide by its value and return a series, truncated or extended
with zeros as needed, with 𝑑 significant terms.

? v = [1,2,3];
? Ser(v, t) \\ 3 terms: seriesprecision is ignored!
%7 = 1 + 2*t + 3*t^2 + O(t^3)
? Ser(v, t, 7) \\ 7 terms as explicitly requested
%8 = 1 + 2*t + 3*t^2 + O(t^7)
? s = 1+x+O(x^2);
? Ser(s)
%10 = 1 + x + O(x^2) \\ 2 terms: seriesprecision is ignored
? Ser(s, x, 7) \\ extend to 7 terms
%11 = 1 + x + O(x^7)
? Ser(s, x, 1) \\ truncate to 1 term
%12 = 1 + O(x)

The warning given for Pol also applies here: this is not a substitution function.

Set()

Converts 𝑥 into a set, i.e. into a row vector, with strictly increasing entries with respect to the (some-
what arbitrary) universal comparison function cmp. Standard container types t_VEC, t_COL, t_LIST and
t_VECSMALL are converted to the set with corresponding elements. All others are converted to a set with
one element.

? Set([1,2,4,2,1,3])
%1 = [1, 2, 3, 4]
? Set(x)
%2 = [x]
? Set(Vecsmall([1,3,2,1,3]))
%3 = [1, 2, 3]
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Strchr()

Deprecated alias for strchr.

Vec(n)
Transforms the object 𝑥 into a row vector. The dimension of the resulting vector can be optionally specified
via the extra parameter 𝑛. If 𝑛 is omitted or 0, the dimension depends on the type of 𝑥; the vector has a
single component, except when 𝑥 is

• a vector or a quadratic form: returns the initial object considered as a row vector,

• a polynomial or a power series: returns a vector consisting of the coefficients. In the case of a poly-
nomial, the coefficients of the vector start with the leading coefficient of the polynomial, while for
power series only the significant coefficients are taken into account, but this time by increasing order
of degree. In particular the valuation is ignored (which makes the function useful for series of negative
valuation):

? Vec(3*x^2 + x)
%1 = [3, 1, 0]
? Vec(x^2 + 3*x^3 + O(x^5))
%2 = [1, 3, 0]
? Vec(x^-2 + 3*x^-1 + O(x))
%3 = [1, 3, 0]

Vec is the reciprocal function of Pol for a polynomial and of Ser for power series of valuation 0.

• a matrix: returns the vector of columns comprising the matrix,

? m = [1,2,3;4,5,6]
%4 =
[1 2 3]

[4 5 6]
? Vec(m)
%5 = [[1, 4]~, [2, 5]~, [3, 6]~]

• a character string: returns the vector of individual characters,

? Vec("PARI")
%6 = ["P", "A", "R", "I"]

• a map: returns the vector of the domain of the map,

• an error context (t_ERROR): returns the error components, see iferr.

In the last four cases (matrix, character string, map, error), 𝑛 is meaningless and must be omitted or an error
is raised. Otherwise, if 𝑛 is given, 0 entries are appended at the end of the vector if 𝑛 > 0, and prepended
at the beginning if 𝑛 < 0. The dimension of the resulting vector is ‖𝑛‖. This allows to write a conversion
function for series that takes positive valuations into account:

? serVec(s) = Vec(s, -serprec(s,variable(s)));
? Vec(x^2 + 3*x^3 + O(x^5))
%2 = [0, 0, 1, 3, 0]

(That function is not intended for series of negative valuation.)
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Vecrev(n)
As 𝑉 𝑒𝑐(𝑥,−𝑛), then reverse the result. In particular, Vecrev is the reciprocal function of Polrev: the
coefficients of the vector start with the constant coefficient of the polynomial and the others follow by
increasing degree.

Vecsmall(n)
Transforms the object 𝑥 into a row vector of type t_VECSMALL. The dimension of the resulting vector can
be optionally specified via the extra parameter 𝑛.

This acts as Vec(𝑥, 𝑛), but only on a limited set of objects: the result must be representable as a vector of
small integers. If 𝑥 is a character string, a vector of individual characters in ASCII encoding is returned
(strchr yields back the character string).

abs(precision)
Absolute value of 𝑥 (modulus if 𝑥 is complex). Rational functions are not allowed. Contrary to most
transcendental functions, an exact argument is not converted to a real number before applying abs and an
exact result is returned if possible.

? abs(-1)
%1 = 1
? abs(3/7 + 4/7*I)
%2 = 5/7
? abs(1 + I)
%3 = 1.414213562373095048801688724

If 𝑥 is a polynomial, returns −𝑥 if the leading coefficient is real and negative else returns 𝑥. For a power
series, the constant coefficient is considered instead.

acos(precision)
Principal branch of cos−1(𝑥) = −𝑖 log(𝑥 + 𝑖

√
1 − 𝑥2). In particular, ℜ(𝑎𝑐𝑜𝑠(𝑥)) ∈ [0, 𝜋] and if 𝑥 ∈ R

and ‖𝑥‖ > 1, then 𝑎𝑐𝑜𝑠(𝑥) is complex. The branch cut is in two pieces: ] − 𝑜𝑜,−1] , continuous with
quadrant II, and [1,+𝑜𝑜[, continuous with quadrant IV. We have 𝑎𝑐𝑜𝑠(𝑥) = 𝜋/2 − 𝑎𝑠𝑖𝑛(𝑥) for all 𝑥.

acosh(precision)

Principal branch of cosh−1(𝑥) = 2 log(
√︀

(𝑥+ 1)/2 +
√︀

(𝑥− 1)/2). In particular, ℜ(𝑎𝑐𝑜𝑠ℎ(𝑥)) >= 0
and ℑ(𝑎𝑐𝑜𝑠ℎ(𝑥)) ∈] − 𝜋, 𝜋]; if 𝑥 ∈ R and 𝑥 < 1, then 𝑎𝑐𝑜𝑠ℎ(𝑥) is complex.

addprimes()

Adds the integers contained in the vector 𝑥 (or the single integer 𝑥) to a special table of “user-defined
primes”, and returns that table. Whenever factor is subsequently called, it will trial divide by the elements
in this table. If 𝑥 is empty or omitted, just returns the current list of extra primes.

? addprimes(37975227936943673922808872755445627854565536638199)
? factor(15226050279225333605356183781326374297180681149613806\
88657908494580122963258952897654000350692006139)

%2 =
[37975227936943673922808872755445627854565536638199 1]

[40094690950920881030683735292761468389214899724061 1]
? ##
*** last result computed in 0 ms.

The entries in 𝑥 must be primes: there is no internal check, even if the factor_proven default is set. To
remove primes from the list use removeprimes.
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agm(y, precision)
Arithmetic-geometric mean of 𝑥 and 𝑦. In the case of complex or negative numbers, the optimal AGM is
returned (the largest in absolute value over all choices of the signs of the square roots). 𝑝-adic or power
series arguments are also allowed. Note that a 𝑝-adic agm exists only if 𝑥/𝑦 is congruent to 1 modulo 𝑝
(modulo 16 for 𝑝 = 2). 𝑥 and 𝑦 cannot both be vectors or matrices.

airy(precision)
Airy [𝐴𝑖,𝐵𝑖] functions of argument 𝑧.

? [A,B] = airy(1);
? A
%2 = 0.13529241631288141552414742351546630617
? B
%3 = 1.2074235949528712594363788170282869954

algadd(x, y)
Given two elements 𝑥 and 𝑦 in al, computes their sum 𝑥+ 𝑦 in the algebra al.

? A = alginit(nfinit(y),[-1,1]);
? algadd(A,[1,0]~,[1,2]~)
%2 = [2, 2]~

Also accepts matrices with coefficients in al.

algalgtobasis(x)
Given an element x in the central simple algebra al output by alginit, transforms it to a column vector
on the integral basis of al. This is the inverse function of algbasistoalg.

? A = alginit(nfinit(y^2-5),[2,y]);
? algalgtobasis(A,[y,1]~)
%2 = [0, 2, 0, -1, 2, 0, 0, 0]~
? algbasistoalg(A,algalgtobasis(A,[y,1]~))
%3 = [Mod(Mod(y, y^2 - 5), x^2 - 2), 1]~

algaut()

Given a cyclic algebra 𝑎𝑙 = (𝐿/𝐾, 𝜎, 𝑏) output by alginit, returns the automorphism 𝜎.

? nf = nfinit(y);
? p = idealprimedec(nf,7)[1];
? p2 = idealprimedec(nf,11)[1];
? A = alginit(nf,[3,[[p,p2],[1/3,2/3]],[0]]);
? algaut(A)
%5 = -1/3*x^2 + 1/3*x + 26/3

algb()

Given a cyclic algebra 𝑎𝑙 = (𝐿/𝐾, 𝜎, 𝑏) output by alginit, returns the element 𝑏 ∈ 𝐾.

nf = nfinit(y);
? p = idealprimedec(nf,7)[1];
? p2 = idealprimedec(nf,11)[1];
? A = alginit(nf,[3,[[p,p2],[1/3,2/3]],[0]]);
? algb(A)
%5 = Mod(-77, y)
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algbasis()

Given a central simple algebra al output by alginit, returns a Z-basis of the order 𝑂0 stored in al with
respect to the natural order in al. It is a maximal order if one has been computed.

A = alginit(nfinit(y), [-1,-1]);
? algbasis(A)
%2 =
[1 0 0 1/2]

[0 1 0 1/2]

[0 0 1 1/2]

[0 0 0 1/2]

algbasistoalg(x)
Given an element x in the central simple algebra al output by alginit, transforms it to its algebraic repre-
sentation in al. This is the inverse function of algalgtobasis.

? A = alginit(nfinit(y^2-5),[2,y]);
? z = algbasistoalg(A,[0,1,0,0,2,-3,0,0]~);
? liftall(z)
%3 = [(-1/2*y - 2)*x + (-1/4*y + 5/4), -3/4*y + 7/4]~
? algalgtobasis(A,z)
%4 = [0, 1, 0, 0, 2, -3, 0, 0]~

algcenter()

If al is a table algebra output by algtableinit, returns a basis of the center of the algebra al over its prime
field (Q or F𝑝). If al is a central simple algebra output by alginit, returns the center of al, which is stored
in al.

A simple example: the 2𝑥2 upper triangular matrices over Q, generated by 𝐼2, 𝑎 = [0, 1; 0, 0] and 𝑏 =
[0, 0; 0, 1], such that 𝑎2 = 0, 𝑎𝑏 = 𝑎, 𝑏𝑎 = 0, 𝑏2 = 𝑏: the diagonal matrices form the center.

? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt);
? algcenter(A) \\ = (I_2)
%3 =
[1]

[0]

[0]

An example in the central simple case:

? nf = nfinit(y^3-y+1);
? A = alginit(nf, [-1,-1]);
? algcenter(A).pol
%3 = y^3 - y + 1

algcentralproj(z, maps)
Given a table algebra al output by algtableinit and a t_VEC 𝑧 = [𝑧1, ..., 𝑧𝑛] of orthogonal central
idempotents, returns a t_VEC [𝑎𝑙1, ..., 𝑎𝑙𝑛] of algebras such that 𝑎𝑙𝑖 = 𝑧𝑖𝑎𝑙. If 𝑚𝑎𝑝𝑠 = 1, each 𝑎𝑙𝑖 is a
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t_VEC [𝑞𝑢𝑜, 𝑝𝑟𝑜𝑗, 𝑙𝑖𝑓𝑡] where quo is the quotient algebra, proj is a t_MAT representing the projection onto
this quotient and lift is a t_MAT representing a lift.

A simple example: F2𝑥F4, generated by 1 = (1, 1), 𝑒 = (1, 0) and 𝑥 such that 𝑥2 + 𝑥 + 1 = 0. We
have 𝑒2 = 𝑒, 𝑥2 = 𝑥+ 1 and 𝑒𝑥 = 0.

? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);
? e = [0,1,0]~;
? e2 = algsub(A,[1,0,0]~,e);
? [a,a2] = algcentralproj(A,[e,e2]);
? algdim(a)
%6 = 1
? algdim(a2)
%7 = 2

algchar()

Given an algebra al output by alginit or algtableinit, returns the characteristic of al.

? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,13);
? algchar(A)
%3 = 13

algcharpoly(b, v, abs)
Given an element 𝑏 in al, returns its characteristic polynomial as a polynomial in the variable 𝑣. If al is
a table algebra output by algtableinit or if 𝑎𝑏𝑠 = 1, returns the absolute characteristic polynomial of
b, which is an element of F𝑝[𝑣] or Q[𝑣]; if al is a central simple algebra output by alginit and 𝑎𝑏𝑠 = 0,
returns the reduced characteristic polynomial of b, which is an element of 𝐾[𝑣] where 𝐾 is the center of
al.

? al = alginit(nfinit(y), [-1,-1]); \\ (-1,-1)_Q
? algcharpoly(al, [0,1]~)
%2 = x^2 + 1
? algcharpoly(al, [0,1]~,,1)
%3 = x^4 + 2*x^2 + 1
? nf = nfinit(y^2-5);
? al = alginit(nf,[-1,y]);
? a = [y,1+x]~*Mod(1,y^2-5)*Mod(1,x^2+1);
? P = lift(algcharpoly(al,a))
%7 = x^2 - 2*y*x + (-2*y + 5)
? algcharpoly(al,a,,1)
%8 = x^8 - 20*x^6 - 80*x^5 + 110*x^4 + 800*x^3 + 1500*x^2 - 400*x + 25
? lift(P*subst(P,y,-y)*Mod(1,y^2-5))^2
%9 = x^8 - 20*x^6 - 80*x^5 + 110*x^4 + 800*x^3 + 1500*x^2 - 400*x + 25

Also accepts a square matrix with coefficients in al.

algdegree()

Given a central simple algebra al output by alginit, returns the degree of al.

? nf = nfinit(y^3-y+1);
? A = alginit(nf, [-1,-1]);
? algdegree(A)
%3 = 2
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algdep(k, flag)
𝑧 being real/complex, or 𝑝-adic, finds a polynomial (in the variable 'x) of degree at most 𝑘, with integer
coefficients, having 𝑧 as approximate root. Note that the polynomial which is obtained is not necessarily
the “correct” one. In fact it is not even guaranteed to be irreducible. One can check the closeness either by
a polynomial evaluation (use subst), or by computing the roots of the polynomial given by algdep (use
polroots or polrootspadic).

Internally, lindep([1, 𝑧, ..., 𝑧𝑘], 𝑓 𝑙𝑎𝑔) is used. A nonzero value of 𝑓𝑙𝑎𝑔 may improve on the default behav-
ior if the input number is known to a huge accuracy, and you suspect the last bits are incorrect: if 𝑓𝑙𝑎𝑔 > 0
the computation is done with an accuracy of 𝑓𝑙𝑎𝑔 decimal digits; to get meaningful results, the parameter
𝑓𝑙𝑎𝑔 should be smaller than the number of correct decimal digits in the input. But default values are usually
sufficient, so try without 𝑓𝑙𝑎𝑔 first:

? \p200
? z = 2^(1/6)+3^(1/5);
? algdep(z, 30); \\ right in 280ms
? algdep(z, 30, 100); \\ wrong in 169ms
? algdep(z, 30, 170); \\ right in 288ms
? algdep(z, 30, 200); \\ wrong in 320ms
? \p250
? z = 2^(1/6)+3^(1/5); \\ recompute to new, higher, accuracy !
? algdep(z, 30); \\ right in 329ms
? algdep(z, 30, 200); \\ right in 324ms
? \p500
? algdep(2^(1/6)+3^(1/5), 30); \\ right in 677ms
? \p1000
? algdep(2^(1/6)+3^(1/5), 30); \\ right in 1.5s

The changes in realprecision only affect the quality of the initial approximation to 21/6 +31/5, algdep
itself uses exact operations. The size of its operands depend on the accuracy of the input of course: more
accurate input means slower operations.

Proceeding by increments of 5 digits of accuracy, algdep with default flag produces its first correct result
at 195 digits, and from then on a steady stream of correct results:

\\ assume T contains the correct result, for comparison
forstep(d=100, 250, 5, localprec(d);\
print(d, " ", algdep(2^(1/6)+3^(1/5),30) == T))

The above example is the test case studied in a 2000 paper by Borwein and Lisonek: Applications of
integer relation algorithms, Discrete Math., 217, p. 65–82. The version of PARI tested there was 1.39,
which succeeded reliably from precision 265 on, in about 200 as much time as the current version.

algdim(abs)
If al is a table algebra output by algtableinit or if 𝑎𝑏𝑠 = 1, returns the dimension of al over its prime
subfield (Q or F𝑝). If al is a central simple algebra output by alginit and 𝑎𝑏𝑠 = 0, returns the dimension
of al over its center.

? nf = nfinit(y^3-y+1);
? A = alginit(nf, [-1,-1]);
? algdim(A)
%3 = 4
? algdim(A,1)
%4 = 12
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algdisc()

Given a central simple algebra al output by alginit, computes the discriminant of the order 𝑂0 stored in
al, that is the determinant of the trace form Tr : O0xO0 → Z.

? nf = nfinit(y^2-5);
? A = alginit(nf, [-3,1-y]);
? [PR,h] = alghassef(A)
%3 = [[[2, [2, 0]~, 1, 2, 1], [3, [3, 0]~, 1, 2, 1]], Vecsmall([0, 1])]
? n = algdegree(A);
? D = algdim(A,1);
? h = vector(#h, i, n - gcd(n,h[i]));
? n^D * nf.disc^(n^2) * idealnorm(nf, idealfactorback(nf,PR,h))^n
%4 = 12960000
? algdisc(A)
%5 = 12960000

algdivl(x, y)
Given two elements 𝑥 and 𝑦 in al, computes their left quotient 𝑥∖𝑦 in the algebra al: an element 𝑧 such that
𝑥𝑧 = 𝑦 (such an element is not unique when 𝑥 is a zerodivisor). If 𝑥 is invertible, this is the same as 𝑥−1𝑦.
Assumes that 𝑦 is left divisible by 𝑥 (i.e. that 𝑧 exists). Also accepts matrices with coefficients in al.

algdivr(x, y)
Given two elements 𝑥 and 𝑦 in al, returns 𝑥𝑦−1. Also accepts matrices with coefficients in al.

alggroup(p)
Initializes the group algebra 𝐾[𝐺] over 𝐾 = Q (𝑝 omitted) or F𝑝 where 𝐺 is the underlying group of the
galoisinit structure gal. The input gal is also allowed to be a t_VEC of permutations that is closed under
products.

Example:

? K = nfsplitting(x^3-x+1);
? gal = galoisinit(K);
? al = alggroup(gal);
? algissemisimple(al)
%4 = 1
? G = [Vecsmall([1,2,3]), Vecsmall([1,3,2])];
? al2 = alggroup(G, 2);
? algissemisimple(al2)
%8 = 0

alggroupcenter(p, cc)
Initializes the center 𝑍(𝐾[𝐺]) of the group algebra 𝐾[𝐺] over 𝐾 = Q (𝑝 = 0 or omitted) or F𝑝 where 𝐺
is the underlying group of the galoisinit structure gal. The input gal is also allowed to be a t_VEC
of permutations that is closed under products. Sets cc to a t_VEC [𝑒𝑙𝑡𝑠, 𝑐𝑜𝑛𝑗𝑐𝑙𝑎𝑠𝑠, 𝑟𝑒𝑝, 𝑓𝑙𝑎𝑔] where elts
is a sorted t_VEC containing the list of elements of 𝐺, conjclass is a t_VECSMALL of the same length
as elts containing the index of the conjugacy class of the corresponding element (an integer between 1 and
the number of conjugacy classes), and rep is a t_VECSMALL of length the number of conjugacy classes
giving for each conjugacy class the index in elts of a representative of this conjugacy class. Finally flag
is 1 if and only if the permutation representation of 𝐺 is transitive, in which case the 𝑖-th element of elts
is characterized by 𝑔[1] = 𝑖; this is always the case when gal is a galoisinit structure. The basis
of 𝑍(𝐾[𝐺]) as output consists of the indicator functions of the conjugacy classes in the ordering given
by cc. Example:
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? K = nfsplitting(x^4+x+1);
? gal = galoisinit(K); \\ S4
? al = alggroupcenter(gal,,&cc);
? algiscommutative(al)
%4 = 1
? #cc[3] \\ number of conjugacy classes of S4
%5 = 5
? gal = [Vecsmall([1,2,3]),Vecsmall([1,3,2])]; \\ C2
? al = alggroupcenter(gal,,&cc);
? cc[3]
%8 = Vecsmall([1, 2])
? cc[4]
%9 = 0

alghasse(pl)
Given a central simple algebra al output by alginit and a prime ideal or an integer between 1 and 𝑟1 +𝑟2,
returns a t_FRAC ℎ : the local Hasse invariant of al at the place specified by pl.

? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? alghasse(A, 1)
%3 = 1/2
? alghasse(A, 2)
%4 = 0
? alghasse(A, idealprimedec(nf,2)[1])
%5 = 1/2
? alghasse(A, idealprimedec(nf,5)[1])
%6 = 0

alghassef()

Given a central simple algebra al output by alginit, returns a t_VEC [𝑃𝑅, ℎ𝑓 ] describing the local Hasse
invariants at the finite places of the center: PR is a t_VEC of primes and ℎ𝑓 is a t_VECSMALL of integers
modulo the degree 𝑑 of al. The Hasse invariant of al at the primes outside PR is 0, but PR can include
primes at which the Hasse invariant is 0.

? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,2*y-1]);
? [PR,hf] = alghassef(A);
? PR
%4 = [[19, [10, 2]~, 1, 1, [-8, 2; 2, -10]], [2, [2, 0]~, 1, 2, 1]]
? hf
%5 = Vecsmall([1, 0])

alghassei()

Given a central simple algebra al output by alginit, returns a t_VECSMALL ℎ𝑖 of 𝑟1 integers modulo the
degree 𝑑 of al, where 𝑟1 is the number of real places of the center: the local Hasse invariants of al at infinite
places.

? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? alghassei(A)
%3 = Vecsmall([1, 0])
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algindex(pl)
Returns the index of the central simple algebra 𝐴 over 𝐾 (as output by alginit), that is the degree 𝑒 of the
unique central division algebra 𝐷 over 𝐾 such that 𝐴 is isomorphic to some matrix algebra 𝑀𝑘(𝐷). If pl
is set, it should be a prime ideal of 𝐾 or an integer between 1 and 𝑟1 + 𝑟2, and in that case return the local
index at the place pl instead.

? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? algindex(A, 1)
%3 = 2
? algindex(A, 2)
%4 = 1
? algindex(A, idealprimedec(nf,2)[1])
%5 = 2
? algindex(A, idealprimedec(nf,5)[1])
%6 = 1
? algindex(A)
%7 = 2

alginit(C, v, maxord)
Initializes the central simple algebra defined by data 𝐵, 𝐶 and variable 𝑣, as follows.

• (multiplication table)𝐵 is the base number field𝐾 in nfinit form, 𝐶 is a “multiplication table” over
𝐾. As a 𝐾-vector space, the algebra is generated by a basis (𝑒1 = 1, ..., 𝑒𝑛); the table is given as a
t_VEC of 𝑛 matrices in 𝑀𝑛(𝐾), giving the left multiplication by the basis elements 𝑒𝑖, in the given
basis. Assumes that 𝑒1 = 1, that the multiplication table is integral, and that (

⨁︀𝑛
𝑖=1𝐾𝑒𝑖, 𝐶) describes

a central simple algebra over 𝐾.

{ mi = [0,-1,0, 0;
1, 0,0, 0;
0, 0,0,-1;
0, 0,1, 0];
mj = [0, 0,-1,0;
0, 0, 0,1;
1, 0, 0,0;
0,-1, 0,0];
mk = [0, 0, 0, 0;
0, 0,-1, 0;
0, 1, 0, 0;
1, 0, 0,-1];
A = alginit(nfinit(y), [matid(4), mi,mj,mk], 0); }

represents (in a complicated way) the quaternion algebra (−1,−1)Q. See below for a simpler solution.

• (cyclic algebra) 𝐵 is an rnf structure attached to a cyclic number field extension 𝐿/𝐾 of degree 𝑑,
𝐶 is a t_VEC [sigma,b] with 2 components: sigma is a t_POLMOD representing an automorphism
generating𝐺𝑎𝑙(𝐿/𝐾), 𝑏 is an element in𝐾*. This represents the cyclic algebra (𝐿/𝐾, 𝜎, 𝑏). Currently
the element 𝑏 has to be integral.

? Q = nfinit(y); T = polcyclo(5, 'x); F = rnfinit(Q, T);
? A = alginit(F, [Mod(x^2,T), 3]);

defines the cyclic algebra (𝐿/Q, 𝜎, 3), where 𝐿 = Q(𝜁5) and 𝜎 : 𝜁 : −−− > 𝜁2 generates 𝐺𝑎𝑙(𝐿/Q).

• (quaternion algebra, special case of the above) 𝐵 is an nf structure attached to a number field 𝐾,
𝐶 = [𝑎, 𝑏] is a vector containing two elements of 𝐾* with 𝑎 not a square in 𝐾, returns the quaternion
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algebra (𝑎, 𝑏)𝐾 . The variable 𝑣 ('x by default) must have higher priority than the variable of 𝐾.pol
and is used to represent elements in the splitting field 𝐿 = 𝐾[𝑥]/(𝑥2 − 𝑎).

? Q = nfinit(y); A = alginit(Q, [-1,-1]); \\ (-1,-1)_Q

• (algebra/𝐾 defined by local Hasse invariants) 𝐵 is an nf structure attached to a number field 𝐾, 𝐶 =
[𝑑, [𝑃𝑅, ℎ𝑓 ], ℎ𝑖] is a triple containing an integer 𝑑 > 1, a pair [𝑃𝑅, ℎ𝑓 ] describing the Hasse invariants
at finite places, and ℎ𝑖 the Hasse invariants at archimedean (real) places. A local Hasse invariant
belongs to (1/𝑑)Z/Z ⊂ Q/Z, and is given either as a t_FRAC (lift to (1/𝑑)Z), a t_INT or t_INTMOD
modulo 𝑑 (lift to Z/𝑑Z); a whole vector of local invariants can also be given as a t_VECSMALL, whose
entries are handled as t_INT s. PR is a list of prime ideals (prid structures), and ℎ𝑓 is a vector of the
same length giving the local invariants at those maximal ideals. The invariants at infinite real places
are indexed by the real roots 𝐾.roots: if the Archimedean place 𝑣 is attached to the 𝑗-th root, the
value of ℎ𝑣 is given by ℎ𝑖[𝑗], must be 0 or 1/2 (or 𝑑/2 modulo 𝑑), and can be nonzero only if 𝑑 is even.

By class field theory, provided the local invariants ℎ𝑣 sum to 0, up to Brauer equivalence, there is a unique
central simple algebra over 𝐾 with given local invariants and trivial invariant elsewhere. In particular, up
to isomorphism, there is a unique such algebra 𝐴 of degree 𝑑.

We realize𝐴 as a cyclic algebra through class field theory. The variable 𝑣 ('x by default) must have higher
priority than the variable of𝐾.pol and is used to represent elements in the (cyclic) splitting field extension
𝐿/𝐾 for 𝐴.

? nf = nfinit(y^2+1);
? PR = idealprimedec(nf,5); #PR
%2 = 2
? hi = [];
? hf = [PR, [1/3,-1/3]];
? A = alginit(nf, [3,hf,hi]);
? algsplittingfield(A).pol
%6 = x^3 - 21*x + 7

• (matrix algebra, toy example) 𝐵 is an nf structure attached to a number field 𝐾, 𝐶 = 𝑑 is a positive
integer. Returns a cyclic algebra isomorphic to the matrix algebra 𝑀𝑑(𝐾).

In all cases, this function computes a maximal order for the algebra by default, which may require a lot of
time. Setting 𝑚𝑎𝑥𝑜𝑟𝑑 = 0 prevents this computation.

The pari object representing such an algebra 𝐴 is a t_VEC with the following data:

• A splitting field 𝐿 of 𝐴 of the same degree over 𝐾 as 𝐴, in rnfinit format, accessed with
algsplittingfield.

• The Hasse invariants at the real places of 𝐾, accessed with alghassei.

• The Hasse invariants of𝐴 at the finite primes of𝐾 that ramify in the natural order of𝐴, accessed with
alghassef.

• A basis of an order 𝑂0 expressed on the basis of the natural order, accessed with algbasis.

• A basis of the natural order expressed on the basis of 𝑂0, accessed with alginvbasis.

• The left multiplication table of 𝑂0 on the previous basis, accessed with algmultable.

• The characteristic of 𝐴 (always 0), accessed with algchar.

• The absolute traces of the elements of the basis of 𝑂0.
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• If 𝐴 was constructed as a cyclic algebra (𝐿/𝐾, 𝜎, 𝑏) of degree 𝑑, a t_VEC [𝜎, 𝜎2, ..., 𝜎𝑑−1]. The func-
tion algaut returns 𝜎.

• If 𝐴 was constructed as a cyclic algebra (𝐿/𝐾, 𝜎, 𝑏), the element 𝑏, accessed with algb.

• If 𝐴 was constructed with its multiplication table 𝑚𝑡 over 𝐾, the t_VEC of t_MAT𝑚𝑡, accessed with
algrelmultable.

• If 𝐴 was constructed with its multiplication table 𝑚𝑡 over 𝐾, a t_VEC with three components: a
t_COL representing an element of 𝐴 generating the splitting field 𝐿 as a maximal subfield of 𝐴, a
t_MAT representing an 𝐿-basis 𝐵 of 𝐴 expressed on the Z-basis of 𝑂0, and a t_MAT representing the
Z-basis of 𝑂0 expressed on 𝐵. This data is accessed with algsplittingdata.

alginv(x)
Given an element 𝑥 in al, computes its inverse 𝑥−1 in the algebra al. Assumes that 𝑥 is invertible.

? A = alginit(nfinit(y), [-1,-1]);
? alginv(A,[1,1,0,0]~)
%2 = [1/2, 1/2, 0, 0]~

Also accepts matrices with coefficients in al.

alginvbasis()

Given an central simple algebra al output by alginit, returns a Z-basis of the natural order in al with
respect to the order 𝑂0 stored in al.

A = alginit(nfinit(y), [-1,-1]);
? alginvbasis(A)
%2 =
[1 0 0 -1]

[0 1 0 -1]

[0 0 1 -1]

[0 0 0 2]

algisassociative(p)
Returns 1 if the multiplication table mt is suitable for algtableinit(mt,p), 0 otherwise. More pre-
cisely, mt should be a t_VEC of 𝑛matrices in𝑀𝑛(𝐾), giving the left multiplications by the basis elements
𝑒1, ..., 𝑒𝑛 (structure constants). We check whether the first basis element 𝑒1 is 1 and 𝑒𝑖(𝑒𝑗𝑒𝑘) = (𝑒𝑖𝑒𝑗)𝑒𝑘
for all 𝑖, 𝑗, 𝑘.

? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? algisassociative(mt)
%2 = 1

May be used to check a posteriori an algebra: we also allow mt as output by algtableinit (𝑝 is ignored
in this case).

algiscommutative()

al being a table algebra output by algtableinit or a central simple algebra output by alginit, tests
whether the algebra al is commutative.

? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt);

(continues on next page)
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? algiscommutative(A)
%3 = 0
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);
? algiscommutative(A)
%6 = 1

algisdivision(pl)
Given a central simple algebra al output by alginit, tests whether al is a division algebra. If pl is set, it
should be a prime ideal of𝐾 or an integer between 1 and 𝑟1 +𝑟2, and in that case tests whether al is locally
a division algebra at the place pl instead.

? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? algisdivision(A, 1)
%3 = 1
? algisdivision(A, 2)
%4 = 0
? algisdivision(A, idealprimedec(nf,2)[1])
%5 = 1
? algisdivision(A, idealprimedec(nf,5)[1])
%6 = 0
? algisdivision(A)
%7 = 1

algisdivl(x, y, z)
Given two elements 𝑥 and 𝑦 in al, tests whether 𝑦 is left divisible by 𝑥, that is whether there exists 𝑧 in al
such that 𝑥𝑧 = 𝑦, and sets 𝑧 to this element if it exists.

? A = alginit(nfinit(y), [-1,1]);
? algisdivl(A,[x+2,-x-2]~,[x,1]~)
%2 = 0
? algisdivl(A,[x+2,-x-2]~,[-x,x]~,&z)
%3 = 1
? z
%4 = [Mod(-2/5*x - 1/5, x^2 + 1), 0]~

Also accepts matrices with coefficients in al.

algisinv(x, ix)
Given an element 𝑥 in al, tests whether 𝑥 is invertible, and sets 𝑖𝑥 to the inverse of 𝑥.

? A = alginit(nfinit(y), [-1,1]);
? algisinv(A,[-1,1]~)
%2 = 0
? algisinv(A,[1,2]~,&ix)
%3 = 1
? ix
%4 = [Mod(Mod(-1/3, y), x^2 + 1), Mod(Mod(2/3, y), x^2 + 1)]~

Also accepts matrices with coefficients in al.

algisramified(pl)
Given a central simple algebra al output by alginit, tests whether al is ramified, i.e. not isomorphic to a
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matrix algebra over its center. If pl is set, it should be a prime ideal of𝐾 or an integer between 1 and 𝑟1+𝑟2,
and in that case tests whether al is locally ramified at the place pl instead.

? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? algisramified(A, 1)
%3 = 1
? algisramified(A, 2)
%4 = 0
? algisramified(A, idealprimedec(nf,2)[1])
%5 = 1
? algisramified(A, idealprimedec(nf,5)[1])
%6 = 0
? algisramified(A)
%7 = 1

algissemisimple()

al being a table algebra output by algtableinit or a central simple algebra output by alginit, tests
whether the algebra al is semisimple.

? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt);
? algissemisimple(A)
%3 = 0
? m_i=[0,-1,0,0;1,0,0,0;0,0,0,-1;0,0,1,0]; \\ quaternion algebra (-1,-1)
? m_j=[0,0,-1,0;0,0,0,1;1,0,0,0;0,-1,0,0];
? m_k=[0,0,0,-1;0,0,-1,0;0,1,0,0;1,0,0,0];
? mt = [matid(4), m_i, m_j, m_k];
? A = algtableinit(mt);
? algissemisimple(A)
%9 = 1

algissimple(ss)
al being a table algebra output by algtableinit or a central simple algebra output by alginit, tests
whether the algebra al is simple. If 𝑠𝑠 = 1, assumes that the algebra al is semisimple without testing it.

? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt); \\ matrices [*,*; 0,*]
? algissimple(A)
%3 = 0
? algissimple(A,1) \\ incorrectly assume that A is semisimple
%4 = 1
? m_i=[0,-1,0,0;1,0,0,0;0,0,0,-1;0,0,1,0];
? m_j=[0,0,-1,0;0,0,0,1;1,0,0,0;0,-1,0,0];
? m_k=[0,0,0,-1;0,0,b,0;0,1,0,0;1,0,0,0];
? mt = [matid(4), m_i, m_j, m_k];
? A = algtableinit(mt); \\ quaternion algebra (-1,-1)
? algissimple(A)
%10 = 1
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2); \\ direct product F_4 x F_2
? algissimple(A)
%13 = 0
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algissplit(pl)
Given a central simple algebra al output by alginit, tests whether al is split, i.e. isomorphic to a matrix
algebra over its center. If pl is set, it should be a prime ideal of 𝐾 or an integer between 1 and 𝑟1 + 𝑟2, and
in that case tests whether al is locally split at the place pl instead.

? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? algissplit(A, 1)
%3 = 0
? algissplit(A, 2)
%4 = 1
? algissplit(A, idealprimedec(nf,2)[1])
%5 = 0
? algissplit(A, idealprimedec(nf,5)[1])
%6 = 1
? algissplit(A)
%7 = 0

alglatadd(lat1, lat2, ptinter)
Given an algebra al and two lattices lat1 and lat2 in al, computes the sum 𝑙𝑎𝑡1 + 𝑙𝑎𝑡2. If ptinter is present,
set it to the intersection 𝑙𝑎𝑡1 ∩ 𝑙𝑎𝑡2.

? al = alginit(nfinit(y^2+7), [-1,-1]);
? lat1 = alglathnf(al,[1,1,0,0,0,0,0,0]~);
? lat2 = alglathnf(al,[1,0,1,0,0,0,0,0]~);
? latsum = alglatadd(al,lat1,lat2,&latinter);
? matdet(latsum[1])
%5 = 4
? matdet(latinter[1])
%6 = 64

alglatcontains(lat, x, ptc)
Given an algebra al, a lattice lat and x in al, tests whether 𝑥 ∈ 𝑙𝑎𝑡. If ptc is present, sets it to the t_COL of
coordinates of 𝑥 in the basis of lat.

? al = alginit(nfinit(y^2+7), [-1,-1]);
? a1 = [1,-1,0,1,2,0,1,2]~;
? lat1 = alglathnf(al,a1);
? alglatcontains(al,lat1,a1,&c)
%4 = 1
? c
%5 = [-1, -2, -1, 1, 2, 0, 1, 1]~

alglatelement(lat, c)
Given an algebra al, a lattice lat and a t_COL c, returns the element of al whose coordinates on the
mathbb{Z}-basis of lat are given by c.

? al = alginit(nfinit(y^2+7), [-1,-1]);
? a1 = [1,-1,0,1,2,0,1,2]~;
? lat1 = alglathnf(al,a1);
? c = [1..8]~;
? elt = alglatelement(al,lat1,c);
? alglatcontains(al,lat1,elt,&c2)

(continues on next page)
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%6 = 1
? c==c2
%7 = 1

alglathnf(m, d)
Given an algebra al and a matrix m with columns representing elements of al, returns the lattice𝐿 generated
by the columns of m. If provided, d must be a rational number such that 𝐿 contains d times the natural
basis of al. The argument m is also allowed to be a t_VEC of t_MAT, in which case m is replaced by the
concatenation of the matrices, or a t_COL, in which case m is replaced by its left multiplication table as an
element of al.

? al = alginit(nfinit(y^2+7), [-1,-1]);
? a = [1,1,-1/2,1,1/3,-1,1,1]~;
? mt = algtomatrix(al,a,1);
? lat = alglathnf(al,mt);
? lat[2]
%5 = 1/6

alglatindex(lat1, lat2)
Given an algebra al and two lattices lat1 and lat2 in al, computes the generalized index of lat1 relative
to lat2, i.e. ‖𝑙𝑎𝑡2/𝑙𝑎𝑡1 ∩ 𝑙𝑎𝑡2‖/‖𝑙𝑎𝑡1/𝑙𝑎𝑡1 ∩ 𝑙𝑎𝑡2‖.

? al = alginit(nfinit(y^2+7), [-1,-1]);
? lat1 = alglathnf(al,[1,1,0,0,0,0,0,0]~);
? lat2 = alglathnf(al,[1,0,1,0,0,0,0,0]~);
? alglatindex(al,lat1,lat2)
%4 = 1
? lat1==lat2
%5 = 0

alglatinter(lat1, lat2, ptsum)

Given an algebra al and two lattices lat1 and lat2 in al, computes the intersection 𝑙𝑎𝑡1 ∩ 𝑙𝑎𝑡2. If ptsum is
present, sets it to the sum 𝑙𝑎𝑡1 + 𝑙𝑎𝑡2.

? al = alginit(nfinit(y^2+7), [-1,-1]);
? lat1 = alglathnf(al,[1,1,0,0,0,0,0,0]~);
? lat2 = alglathnf(al,[1,0,1,0,0,0,0,0]~);
? latinter = alglatinter(al,lat1,lat2,&latsum);
? matdet(latsum[1])
%5 = 4
? matdet(latinter[1])
%6 = 64

alglatlefttransporter(lat1, lat2)
Given an algebra al and two lattices lat1 and lat2 in al, computes the left transporter from lat1 to lat2, i.e.
the set of 𝑥 ∈ 𝑎𝑙 such that 𝑥.𝑙𝑎𝑡1 ⊂ 𝑙𝑎𝑡2.

? al = alginit(nfinit(y^2+7), [-1,-1]);
? lat1 = alglathnf(al,[1,-1,0,1,2,0,5,2]~);
? lat2 = alglathnf(al,[0,1,-2,-1,0,0,3,1]~);
? tr = alglatlefttransporter(al,lat1,lat2);
? a = alglatelement(al,tr,[0,0,0,0,0,0,1,0]~);

(continues on next page)
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? alglatsubset(al,alglatmul(al,a,lat1),lat2)
%6 = 1
? alglatsubset(al,alglatmul(al,lat1,a),lat2)
%7 = 0

alglatmul(lat1, lat2)
Given an algebra al and two lattices lat1 and lat2 in al, computes the lattice generated by the products of
elements of lat1 and lat2. One of lat1 and lat2 is also allowed to be an element of al; in this case, computes
the product of the element and the lattice.

? al = alginit(nfinit(y^2+7), [-1,-1]);
? a1 = [1,-1,0,1,2,0,1,2]~;
? a2 = [0,1,2,-1,0,0,3,1]~;
? lat1 = alglathnf(al,a1);
? lat2 = alglathnf(al,a2);
? lat3 = alglatmul(al,lat1,lat2);
? matdet(lat3[1])
%7 = 29584
? lat3 == alglathnf(al, algmul(al,a1,a2))
%8 = 0
? lat3 == alglatmul(al, lat1, a2)
%9 = 0
? lat3 == alglatmul(al, a1, lat2)
%10 = 0

alglatrighttransporter(lat1, lat2)
Given an algebra al and two lattices lat1 and lat2 in al, computes the right transporter from lat1 to lat2, i.e.
the set of 𝑥 ∈ 𝑎𝑙 such that 𝑙𝑎𝑡1.𝑥 ⊂ 𝑙𝑎𝑡2.

? al = alginit(nfinit(y^2+7), [-1,-1]);
? lat1 = alglathnf(al,matdiagonal([1,3,7,1,2,8,5,2]));
? lat2 = alglathnf(al,matdiagonal([5,3,8,1,9,8,7,1]));
? tr = alglatrighttransporter(al,lat1,lat2);
? a = alglatelement(al,tr,[0,0,0,0,0,0,0,1]~);
? alglatsubset(al,alglatmul(al,lat1,a),lat2)
%6 = 1
? alglatsubset(al,alglatmul(al,a,lat1),lat2)
%7 = 0

alglatsubset(lat1, lat2, ptindex)
Given an algebra al and two lattices lat1 and lat2 in al, tests whether 𝑙𝑎𝑡1 ⊂ 𝑙𝑎𝑡2. If it is true and ptindex
is present, sets it to the index of lat1 in lat2.

? al = alginit(nfinit(y^2+7), [-1,-1]);
? lat1 = alglathnf(al,[1,1,0,0,0,0,0,0]~);
? lat2 = alglathnf(al,[1,0,1,0,0,0,0,0]~);
? alglatsubset(al,lat1,lat2)
%4 = 0
? latsum = alglatadd(al,lat1,lat2);
? alglatsubset(al,lat1,latsum,&index)
%6 = 1

(continues on next page)
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? index
%7 = 4

algmakeintegral(maps)
mt being a multiplication table over Q in the same format as the input of algtableinit, computes an
integral multiplication table mt2 for an isomorphic algebra. When𝑚𝑎𝑝𝑠 = 1, returns a t_VEC [𝑚𝑡2, 𝑆, 𝑇 ]
where S and T are matrices respectively representing the map from the algebra defined by mt to the one
defined by mt2 and its inverse.

? mt = [matid(2),[0,-1/4;1,0]];
? algtableinit(mt);
*** at top-level: algtableinit(mt)
*** ^----------------
*** algtableinit: domain error in algtableinit: denominator(mt) != 1

? mt2 = algmakeintegral(mt);
? al = algtableinit(mt2);
? algisassociative(al)
%4 = 1
? [mt2, S, T] = algmakeintegral(mt,1);
? S
%6 =
[1 0]

[0 1/4]
? T
%7 =
[1 0]

[0 4]
? vector(#mt, i, S * (mt * T[,i]) * T) == mt2
%8 = 1

algmul(x, y)
Given two elements 𝑥 and 𝑦 in al, computes their product 𝑥𝑦 in the algebra al.

? A = alginit(nfinit(y), [-1,-1]);
? algmul(A,[1,1,0,0]~,[0,0,2,1]~)
%2 = [2, 3, 5, -4]~

Also accepts matrices with coefficients in al.

algmultable()

Returns a multiplication table of al over its prime subfield (Q or F𝑝), as a t_VEC of t_MAT: the left multi-
plication tables of basis elements. If al was output by algtableinit, returns the multiplication table used
to define al. If al was output by alginit, returns the multiplication table of the order 𝑂0 stored in al.

? A = alginit(nfinit(y), [-1,-1]);
? M = algmultable(A);
? #M
%3 = 4
? M[1] \\ multiplication by e_1 = 1
%4 =

(continues on next page)
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[1 0 0 0]

[0 1 0 0]

[0 0 1 0]

[0 0 0 1]

? M[2]
%5 =
[0 -1 1 0]

[1 0 1 1]

[0 0 1 1]

[0 0 -2 -1]

algneg(x)
Given an element 𝑥 in al, computes its opposite −𝑥 in the algebra al.

? A = alginit(nfinit(y), [-1,-1]);
? algneg(A,[1,1,0,0]~)
%2 = [-1, -1, 0, 0]~

Also accepts matrices with coefficients in al.

algnorm(x, abs)
Given an element x in al, computes its norm. If al is a table algebra output by algtableinit or if 𝑎𝑏𝑠 = 1,
returns the absolute norm of x, which is an element of F𝑝 of Q; if al is a central simple algebra output by
alginit and 𝑎𝑏𝑠 = 0 (default), returns the reduced norm of x, which is an element of the center of al.

? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,19);
? algnorm(A,[0,-2,3]~)
%3 = 18
? nf = nfinit(y^2-5);
? B = alginit(nf,[-1,y]);
? b = [x,1]~;
? n = algnorm(B,b)
%7 = Mod(-y + 1, y^2 - 5)
? algnorm(B,b,1)
%8 = 16
? nfeltnorm(nf,n)^algdegree(B)
%9 = 16

Also accepts a square matrix with coefficients in al.

algpoleval(T, b)
Given an element 𝑏 in al and a polynomial 𝑇 in 𝐾[𝑋], computes 𝑇 (𝑏) in al. Also accepts as input a
t_VEC [𝑏,𝑚𝑏] where 𝑚𝑏 is the left multiplication table of 𝑏.
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? nf = nfinit(y^2-5);
? al = alginit(nf,[y,-1]);
? b = [1..8]~;
? pol = algcharpoly(al,b,,1);
? algpoleval(al,pol,b)==0
%5 = 1
? mb = algtomatrix(al,b,1);
? algpoleval(al,pol,[b,mb])==0
%7 = 1

algpow(x, n)
Given an element 𝑥 in al and an integer 𝑛, computes the power 𝑥𝑛 in the algebra al.

? A = alginit(nfinit(y), [-1,-1]);
? algpow(A,[1,1,0,0]~,7)
%2 = [8, -8, 0, 0]~

Also accepts a square matrix with coefficients in al.

algprimesubalg()

al being the output of algtableinit representing a semisimple algebra of positive characteristic, returns
a basis of the prime subalgebra of al. The prime subalgebra of al is the subalgebra fixed by the Frobenius
automorphism of the center of al. It is abstractly isomorphic to a product of copies of F𝑝.

? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);
? algprimesubalg(A)
%3 =
[1 0]

[0 1]

[0 0]

algquotient(I, maps)
al being a table algebra output by algtableinit and I being a basis of a two-sided ideal of al represented
by a matrix, returns the quotient 𝑎𝑙/𝐼 . When𝑚𝑎𝑝𝑠 = 1, returns a t_VEC [𝑎𝑙/𝐼, 𝑝𝑟𝑜𝑗, 𝑙𝑖𝑓𝑡] where proj and
lift are matrices respectively representing the projection map and a section of it.

? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);
? AQ = algquotient(A,[0;1;0]);
? algdim(AQ)
%4 = 2

algradical()

al being a table algebra output by algtableinit, returns a basis of the Jacobson radical of the algebra al
over its prime field (Q or F𝑝).

Here is an example with 𝐴 = Q[𝑥]/(𝑥2), with the basis (1, 𝑥):

? mt = [matid(2),[0,0;1,0]];
? A = algtableinit(mt);

(continues on next page)
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? algradical(A) \\ = (x)
%3 =
[0]

[1]

Another one with 2𝑥2 upper triangular matrices over Q, with basis 𝐼2, 𝑎 = [0, 1; 0, 0] and 𝑏 = [0, 0; 0, 1],
such that 𝑎2 = 0, 𝑎𝑏 = 𝑎, 𝑏𝑎 = 0, 𝑏2 = 𝑏:

? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt);
? algradical(A) \\ = (a)
%6 =
[0]

[1]

[0]

algramifiedplaces()

Given a central simple algebra al output by alginit, returns a t_VEC containing the list of places of the
center of al that are ramified in al. Each place is described as an integer between 1 and 𝑟1 or as a prime
ideal.

? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? algramifiedplaces(A)
%3 = [1, [2, [2, 0]~, 1, 2, 1]]

algrandom(b)
Given an algebra al and an integer b, returns a random element in al with coefficients in [−𝑏, 𝑏].

algrelmultable()

Given a central simple algebra al output by alginit defined by a multiplication table over its center (a
number field), returns this multiplication table.

? nf = nfinit(y^3-5); a = y; b = y^2;
? {m_i = [0,a,0,0;
1,0,0,0;
0,0,0,a;
0,0,1,0];}

? {m_j = [0, 0,b, 0;
0, 0,0,-b;
1, 0,0, 0;
0,-1,0, 0];}

? {m_k = [0, 0,0,-a*b;
0, 0,b, 0;
0,-a,0, 0;
1, 0,0, 0];}

? mt = [matid(4), m_i, m_j, m_k];
? A = alginit(nf,mt,'x);
? M = algrelmultable(A);

(continues on next page)

448 Chapter 2. The Gen class wrapping PARI’s GEN type



CyPari2 Documentation, Release 2.1.3

(continued from previous page)

? M[2] == m_i
%8 = 1
? M[3] == m_j
%9 = 1
? M[4] == m_k
%10 = 1

algsimpledec(maps)
al being the output of algtableinit, returns a t_VEC [𝐽, [𝑎𝑙1, 𝑎𝑙2, ..., 𝑎𝑙𝑛]] where 𝐽 is a basis of the Jacob-
son radical of al and 𝑎𝑙/𝐽 is isomorphic to the direct product of the simple algebras 𝑎𝑙𝑖. When𝑚𝑎𝑝𝑠 = 1,
each 𝑎𝑙𝑖 is replaced with a t_VEC [𝑎𝑙𝑖, 𝑝𝑟𝑜𝑗𝑖, 𝑙𝑖𝑓𝑡𝑖] where 𝑝𝑟𝑜𝑗𝑖 and 𝑙𝑖𝑓𝑡𝑖 are matrices respectively repre-
senting the projection map 𝑎𝑙 → 𝑎𝑙𝑖 and a section of it. Modulo 𝐽 , the images of the 𝑙𝑖𝑓𝑡𝑖 form a direct
sum in 𝑎𝑙/𝐽 , so that the images of 1𝑖 under 𝑙𝑖𝑓𝑡𝑖 are central primitive idempotents of 𝑎𝑙/𝐽 . The factors are
sorted by increasing dimension, then increasing dimension of the center. This ensures that the ordering of
the isomorphism classes of the factors is deterministic over finite fields, but not necessarily over Q.

algsplit(v)
If al is a table algebra over F𝑝 output by algtableinit that represents a simple algebra, computes an
isomorphism between al and a matrix algebra 𝑀𝑑(F𝑝𝑛) where 𝑁 = 𝑛𝑑2 is the dimension of al. Returns a
t_VEC [𝑚𝑎𝑝,𝑚𝑎𝑝𝑖], where:

• map is a t_VEC of𝑁 matrices of size 𝑑𝑥𝑑with t_FFELT coefficients using the variable v, representing
the image of the basis of al under the isomorphism.

• mapi is an 𝑁𝑥𝑁 matrix with t_INT coefficients, representing the image in al by the inverse isomor-
phism of the basis (𝑏𝑖) of 𝑀𝑑(F𝑝[𝛼]) (where 𝛼 has degree 𝑛 over F𝑝) defined as follows: let 𝐸𝑖,𝑗 be
the matrix having all coefficients 0 except the (𝑖, 𝑗)-th coefficient equal to 1, and define

𝑏𝑖3+𝑛(𝑖2+𝑑𝑖1)+1 = 𝐸𝑖1+1,𝑖2+1𝛼
𝑖3 ,

𝑤ℎ𝑒𝑟𝑒 : 𝑚𝑎𝑡ℎ : ‘0 <= 𝑖1, 𝑖2 < 𝑑‘𝑎𝑛𝑑 : 𝑚𝑎𝑡ℎ : ‘0 <= 𝑖3 < 𝑛‘.

Example:

? al0 = alginit(nfinit(y^2+7), [-1,-1]);
? al = algtableinit(algmultable(al0), 3); \\ isomorphic to M_2(F_9)
? [map,mapi] = algsplit(al, 'a);
? x = [1,2,1,0,0,0,0,0]~; fx = map*x
%4 =
[2*a 0]

[ 0 2]
? y = [0,0,0,0,1,0,0,1]~; fy = map*y
%5 =
[1 2*a]

[2 a + 2]
? map*algmul(al,x,y) == fx*fy
%6 = 1
? map*mapi[,6]
%7 =
[0 0]

[a 0]
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Warning. If al is not simple, algsplit(al) can trigger an error, but can also run into an infinite loop.
Example:

? al = alginit(nfinit(y),[-1,-1]); \\ ramified at 2
? al2 = algtableinit(algmultable(al),2); \\ maximal order modulo 2
? algsplit(al2); \\ not semisimple, infinite loop

algsplittingdata()

Given a central simple algebra al output by alginit defined by a multiplication table over its center 𝐾
(a number field), returns data stored to compute a splitting of al over an extension. This data is a t_VEC
[t,Lbas,Lbasinv] with 3 components:

• an element 𝑡 of al such that 𝐿 = 𝐾(𝑡) is a maximal subfield of al;

• a matrix Lbas expressing a 𝐿-basis of al (given an 𝐿-vector space structure by multiplication on the
right) on the integral basis of al;

• a matrix Lbasinv expressing the integral basis of al on the previous 𝐿-basis.

? nf = nfinit(y^3-5); a = y; b = y^2;
? {m_i = [0,a,0,0;
1,0,0,0;
0,0,0,a;
0,0,1,0];}

? {m_j = [0, 0,b, 0;
0, 0,0,-b;
1, 0,0, 0;
0,-1,0, 0];}

? {m_k = [0, 0,0,-a*b;
0, 0,b, 0;
0,-a,0, 0;
1, 0,0, 0];}

? mt = [matid(4), m_i, m_j, m_k];
? A = alginit(nf,mt,'x);
? [t,Lb,Lbi] = algsplittingdata(A);
? t
%8 = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]~;
? matsize(Lb)
%9 = [12, 2]
? matsize(Lbi)
%10 = [2, 12]

algsplittingfield()

Given a central simple algebra al output by alginit, returns an rnf structure: the splitting field of al that
is stored in al, as a relative extension of the center.

nf = nfinit(y^3-5);
a = y; b = y^2;
{m_i = [0,a,0,0;
1,0,0,0;
0,0,0,a;
0,0,1,0];}

{m_j = [0, 0,b, 0;
0, 0,0,-b;
1, 0,0, 0;

(continues on next page)
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0,-1,0, 0];}
{m_k = [0, 0,0,-a*b;
0, 0,b, 0;
0,-a,0, 0;
1, 0,0, 0];}

mt = [matid(4), m_i, m_j, m_k];
A = alginit(nf,mt,'x);
algsplittingfield(A).pol
%8 = x^2 - y

algsqr(x)
Given an element 𝑥 in al, computes its square 𝑥2 in the algebra al.

? A = alginit(nfinit(y), [-1,-1]);
? algsqr(A,[1,0,2,0]~)
%2 = [-3, 0, 4, 0]~

Also accepts a square matrix with coefficients in al.

algsub(x, y)
Given two elements 𝑥 and 𝑦 in al, computes their difference 𝑥− 𝑦 in the algebra al.

? A = alginit(nfinit(y), [-1,-1]);
? algsub(A,[1,1,0,0]~,[1,0,1,0]~)
%2 = [0, 1, -1, 0]~

Also accepts matrices with coefficients in al.

algsubalg(B)
al being a table algebra output by algtableinit and B being a basis of a subalgebra of al represented by
a matrix, computes an algebra al2 isomorphic to B.

Returns [𝑎𝑙2, 𝐵2] where B2 is a possibly different basis of the subalgebra al2, with respect to which the
multiplication table of al2 is defined.

? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);
? B = algsubalg(A,[1,0; 0,0; 0,1]);
? algdim(A)
%4 = 3
? algdim(B[1])
%5 = 2
? m = matcompanion(x^4+1);
? mt = [m^i | i <- [0..3]];
? al = algtableinit(mt);
? B = [1,0;0,0;0,1/2;0,0];
? al2 = algsubalg(al,B);
? algdim(al2[1])
? al2[2]
%13 =
[1 0]

[0 0]
(continues on next page)
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[0 1]

[0 0]

algtableinit(p)
Initializes the associative algebra over 𝐾 = Q (𝑝 omitted) or F𝑝 defined by the multiplication table mt. As
a 𝐾-vector space, the algebra is generated by a basis (𝑒1 = 1, 𝑒2, ..., 𝑒𝑛); the table is given as a t_VEC of
𝑛 matrices in 𝑀𝑛(𝐾), giving the left multiplication by the basis elements 𝑒𝑖, in the given basis. Assumes
that 𝑒1 = 1, that 𝐾𝑒1 ⊕ ... ⊕𝐾𝑒𝑛] describes an associative algebra over 𝐾, and in the case 𝐾 = Q that
the multiplication table is integral. If the algebra is already known to be central and simple, then the case
𝐾 = F𝑝 is useless, and one should use alginit directly.

The point of this function is to input a finite dimensional𝐾-algebra, so as to later compute its radical, then
to split the quotient algebra as a product of simple algebras over 𝐾.

The pari object representing such an algebra 𝐴 is a t_VEC with the following data:

• The characteristic of 𝐴, accessed with algchar.

• The multiplication table of 𝐴, accessed with algmultable.

• The traces of the elements of the basis.

A simple example: the 2𝑥2 upper triangular matrices over Q, generated by 𝐼2, 𝑎 = [0, 1; 0, 0] and 𝑏 =
[0, 0; 0, 1], such that 𝑎2 = 0, 𝑎𝑏 = 𝑎, 𝑏𝑎 = 0, 𝑏2 = 𝑏:

? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt);
? algradical(A) \\ = (a)
%6 =
[0]

[1]

[0]
? algcenter(A) \\ = (I_2)
%7 =
[1]

[0]

[0]

algtensor(al2, maxord)
Given two algebras al1 and al2, computes their tensor product. Computes a maximal order by default.
Prevent this computation by setting 𝑚𝑎𝑥𝑜𝑟𝑑 = 0.

Currently only implemented for cyclic algebras of coprime degree over the same center 𝐾, and the tensor
product is over 𝐾.

algtomatrix(x, abs)
Given an element x in al, returns the image of x under a homomorphism to a matrix algebra. If al is a table
algebra output by algtableinit or if 𝑎𝑏𝑠 = 1, returns the left multiplication table on the integral basis;
if al is a central simple algebra and 𝑎𝑏𝑠 = 0, returns 𝜑(𝑥) where 𝜑 : 𝐴 ⊗𝐾 𝐿 → 𝑀𝑑(𝐿) (where 𝑑 is the
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degree of the algebra and 𝐿 is an extension of 𝐿 with [𝐿 : 𝐾] = 𝑑) is an isomorphism stored in al. Also
accepts a square matrix with coefficients in al.

? A = alginit(nfinit(y), [-1,-1]);
? algtomatrix(A,[0,0,0,2]~)
%2 =
[Mod(x + 1, x^2 + 1) Mod(Mod(1, y)*x + Mod(-1, y), x^2 + 1)]

[Mod(x + 1, x^2 + 1) Mod(-x + 1, x^2 + 1)]
? algtomatrix(A,[0,1,0,0]~,1)
%2 =
[0 -1 1 0]

[1 0 1 1]

[0 0 1 1]

[0 0 -2 -1]
? algtomatrix(A,[0,x]~,1)
%3 =
[-1 0 0 -1]

[-1 0 1 0]

[-1 -1 0 -1]

[ 2 0 0 1]

Also accepts matrices with coefficients in al.

algtrace(x, abs)
Given an element x in al, computes its trace. If al is a table algebra output by algtableinit or if 𝑎𝑏𝑠 = 1,
returns the absolute trace of x, which is an element of F𝑝 or Q; if al is the output of alginit and 𝑎𝑏𝑠 = 0
(default), returns the reduced trace of x, which is an element of the center of al.

? A = alginit(nfinit(y), [-1,-1]);
? algtrace(A,[5,0,0,1]~)
%2 = 11
? algtrace(A,[5,0,0,1]~,1)
%3 = 22
? nf = nfinit(y^2-5);
? A = alginit(nf,[-1,y]);
? a = [1+x+y,2*y]~*Mod(1,y^2-5)*Mod(1,x^2+1);
? t = algtrace(A,a)
%7 = Mod(2*y + 2, y^2 - 5)
? algtrace(A,a,1)
%8 = 8
? algdegree(A)*nfelttrace(nf,t)
%9 = 8

Also accepts a square matrix with coefficients in al.

algtype()

Given an algebra al output by alginit or by algtableinit, returns an integer indicating the type of
algebra:
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• 0: not a valid algebra.

• 1: table algebra output by algtableinit.

• 2: central simple algebra output by alginit and represented by a multiplication table over its center.

• 3: central simple algebra output by alginit and represented by a cyclic algebra.

? algtype([])
%1 = 0
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);
? algtype(A)
%4 = 1
? nf = nfinit(y^3-5);
? a = y; b = y^2;
? {m_i = [0,a,0,0;
1,0,0,0;
0,0,0,a;
0,0,1,0];}

? {m_j = [0, 0,b, 0;
0, 0,0,-b;
1, 0,0, 0;
0,-1,0, 0];}

? {m_k = [0, 0,0,-a*b;
0, 0,b, 0;
0,-a,0, 0;
1, 0,0, 0];}

? mt = [matid(4), m_i, m_j, m_k];
? A = alginit(nf,mt,'x);
? algtype(A)
%12 = 2
? A = alginit(nfinit(y), [-1,-1]);
? algtype(A)
%14 = 3

apply(A)
Apply the t_CLOSURE f to the entries of A.

• If A is a scalar, return f(A).

• If A is a polynomial or power series
∑︀
𝑎𝑖𝑥

𝑖 (+𝑂(𝑥𝑁 )), apply f on all coefficients and return∑︀
𝑓(𝑎𝑖)𝑥

𝑖 (+𝑂(𝑥𝑁 )).

• If A is a vector or list [𝑎1, ..., 𝑎𝑛], return the vector or list [𝑓(𝑎1), ..., 𝑓(𝑎𝑛)]. If A is a matrix, return the
matrix whose entries are the 𝑓(𝐴[𝑖, 𝑗]).

? apply(x->x^2, [1,2,3,4])
%1 = [1, 4, 9, 16]
? apply(x->x^2, [1,2;3,4])
%2 =
[1 4]

[9 16]
? apply(x->x^2, 4*x^2 + 3*x+ 2)
%3 = 16*x^2 + 9*x + 4

(continues on next page)
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? apply(sign, 2 - 3* x + 4*x^2 + O(x^3))
%4 = 1 - x + x^2 + O(x^3)

Note that many functions already act componentwise on vectors or matrices, but they almost never act on
lists; in this case, apply is a good solution:

? L = List([Mod(1,3), Mod(2,4)]);
? lift(L)
*** at top-level: lift(L)
*** ^-------
*** lift: incorrect type in lift.

? apply(lift, L);
%2 = List([1, 2])

Remark. For 𝑣 a t_VEC, t_COL, t_VECSMALL, t_LIST or t_MAT, the alternative set-notations

[g(x) | x <- v, f(x)]
[x | x <- v, f(x)]
[g(x) | x <- v]

are available as shortcuts for

apply(g, select(f, Vec(v)))
select(f, Vec(v))
apply(g, Vec(v))

respectively:

? L = List([Mod(1,3), Mod(2,4)]);
? [ lift(x) | x<-L ]
%2 = [1, 2]

arg(precision)
Argument of the complex number 𝑥, such that −𝜋 < arg(𝑥) <= 𝜋.

arity()

Return the arity of the closure 𝐶, i.e., the number of its arguments.

? f1(x,y=0)=x+y;
? arity(f1)
%1 = 2
? f2(t,s[..])=print(t,":",s);
? arity(f2)
%2 = 2

Note that a variadic argument, such as 𝑠 in f2 above, is counted as a single argument.

asin(precision)
Principal branch of sin−1(𝑥) = −𝑖 log(𝑖𝑥 +

√
1 − 𝑥2). In particular, ℜ(𝑎𝑠𝑖𝑛(𝑥)) ∈ [−𝜋/2, 𝜋/2] and if

𝑥 ∈ R and ‖𝑥‖ > 1 then 𝑎𝑠𝑖𝑛(𝑥) is complex. The branch cut is in two pieces: ]−𝑜𝑜,−1], continuous with
quadrant II, and [1,+𝑜𝑜[ continuous with quadrant IV. The function satisfies 𝑖𝑎𝑠𝑖𝑛(𝑥) = 𝑎𝑠𝑖𝑛ℎ(𝑖𝑥).

asinh(precision)
Principal branch of sinh−1(𝑥) = log(𝑥 +

√
1 + 𝑥2). In particular ℑ(𝑎𝑠𝑖𝑛ℎ(𝑥)) ∈ [−𝜋/2, 𝜋/2]. The
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branch cut is in two pieces: ] − 𝑖𝑜𝑜,−𝑖], continuous with quadrant III and [+𝑖,+𝑖𝑜𝑜[, continuous with
quadrant I.

asympnum(alpha, precision)
Asymptotic expansion of expr, corresponding to a sequence 𝑢(𝑛), assuming it has the shape

𝑢(𝑛)
∑︁
𝑖>=0

𝑎𝑖𝑛
−𝑖𝛼

with rational coefficients 𝑎𝑖 with reasonable height; the algorithm is heuristic and performs repeated calls
to limitnum, with alpha as in limitnum. As in limitnum, 𝑢(𝑛) may be given either by a closure 𝑛 :
−−− > 𝑢(𝑛) or as a closure 𝑁 : −−− > [𝑢(1), ..., 𝑢(𝑁)], the latter being often more efficient.

? f(n) = n! / (n^n*exp(-n)*sqrt(n));
? asympnum(f)
%2 = [] \\ failure !
? localprec(57); l = limitnum(f)
%3 = 2.5066282746310005024157652848110452530
? asympnum(n->f(n)/l) \\ normalize
%4 = [1, 1/12, 1/288, -139/51840, -571/2488320, 163879/209018880,
5246819/75246796800]

and we indeed get a few terms of Stirling’s expansion. Note that it definitely helps to normalize with a limit
computed to higher accuracy (as a rule of thumb, multiply the bit accuracy by 1.612):

? l = limitnum(f)
? asympnum(n->f(n) / l) \\ failure again !!!
%6 = []

We treat again the example of the Motzkin numbers 𝑀𝑛 given in limitnum:

\\ [M_k, M_{k*2}, ..., M_{k*N}] / (3^n / n^(3/2))
? vM(N, k = 1) =
{ my(q = k*N, V);
if (q == 1, return ([1/3]));
V = vector(q); V[1] = V[2] = 1;
for(n = 2, q - 1,
V[n+1] = ((2*n + 1)*V[n] + 3*(n - 1)*V[n-1]) / (n + 2));
f = (n -> 3^n / n^(3/2));
return (vector(N, n, V[n*k] / f(n*k)));

}
? localprec(100); l = limitnum(n->vM(n,10)); \\ 3/sqrt(12*Pi)
? \p38
? asympnum(n->vM(n,10)/l)
%2 = [1, -3/32, 101/10240, -1617/1638400, 505659/5242880000, ...]

If alpha is not a rational number, loss of accuracy is expected, so it should be precomputed to double
accuracy, say:

? \p38
? asympnum(n->log(1+1/n^Pi),Pi)
%1 = [0, 1, -1/2, 1/3, -1/4, 1/5]
? localprec(76); a = Pi;
? asympnum(n->log(1+1/n^Pi), a) \\ more terms
%3 = [0, 1, -1/2, 1/3, -1/4, 1/5, -1/6, 1/7, -1/8, 1/9, -1/10, 1/11, -1/12]

(continues on next page)
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? asympnum(n->log(1+1/sqrt(n)),1/2) \\ many more terms
%4 = 49

The expression is evaluated for 𝑛 = 1, 2, ..., 𝑁 for an 𝑁 = 𝑂(𝐵) if the current bit accuracy is 𝐵. If it is
not defined for one of these values, translate or rescale accordingly:

? asympnum(n->log(1-1/n)) \\ can't evaluate at n = 1 !
*** at top-level: asympnum(n->log(1-1/n))
*** ^-----------------------
*** in function asympnum: log(1-1/n)
*** ^----------
*** log: domain error in log: argument = 0

? asympnum(n->-log(1-1/(2*n)))
%5 = [0, 1/2, 1/8, 1/24, ...]
? asympnum(n->-log(1-1/(n+1)))
%6 = [0, 1, -1/2, 1/3, -1/4, ...]

asympnumraw(N, alpha, precision)
Return the𝑁+1 first terms of asymptotic expansion of expr, corresponding to a sequence 𝑢(𝑛), as floating
point numbers. Assume that the expansion has the shape

𝑢(𝑛)
∑︁
𝑖>=0

𝑎𝑖𝑛
−𝑖𝛼

and return approximation of [𝑎0, 𝑎1, ..., 𝑎𝑁 ]. The algorithm is heuristic and performs repeated calls to
limitnum, with alpha as in limitnum. As in limitnum, 𝑢(𝑛) may be given either by a closure 𝑛 :
− − − > 𝑢(𝑛) or as a closure 𝑁 : − − − > [𝑢(1), ..., 𝑢(𝑁)], the latter being often more efficient. This
function is related to, but more flexible than, asympnum, which requires rational asymptotic expansions.

? f(n) = n! / (n^n*exp(-n)*sqrt(n));
? asympnum(f)
%2 = [] \\ failure !
? v = asympnumraw(f, 10);
? v[1] - sqrt(2*Pi)
%4 = 0.E-37
? bestappr(v / v[1], 2^60)
%5 = [1, 1/12, 1/288, -139/51840, -571/2488320, 163879/209018880,...]

and we indeed get a few terms of Stirling’s expansion (the first 9 terms are correct). If𝑢(𝑛) has an asymptotic
expansion in 𝑛−𝛼 with 𝛼 not an integer, the default 𝑎𝑙𝑝ℎ𝑎 = 1 is inaccurate:

? f(n) = (1+1/n^(7/2))^(n^(7/2));
? v1 = asympnumraw(f,10);
? v1[1] - exp(1)
%8 = 4.62... E-12
? v2 = asympnumraw(f,10,7/2);
? v2[1] - exp(1)
%7 0.E-37

As in asympnum, if alpha is not a rational number, loss of accuracy is expected, so it should be precomputed
to double accuracy, say.

atan(precision)
Principal branch of 𝑡𝑎𝑛−1(𝑥) = log((1 + 𝑖𝑥)/(1− 𝑖𝑥))/2𝑖. In particular the real part of 𝑎𝑡𝑎𝑛(𝑥) belongs
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to ] − 𝜋/2, 𝜋/2[. The branch cut is in two pieces: ] − 𝑖𝑜𝑜,−𝑖[, continuous with quadrant IV, and ]𝑖,+𝑖𝑜𝑜[
continuous with quadrant II. The function satisfies 𝑎𝑡𝑎𝑛(𝑥) = −𝑖𝑎𝑡𝑎𝑛ℎ(𝑖𝑥) for all 𝑥! = 𝑖.

atanh(precision)
Principal branch of 𝑡𝑎𝑛ℎ−1(𝑥) = log((1 + 𝑥)/(1 − 𝑥))/2. In particular the imaginary part of 𝑎𝑡𝑎𝑛ℎ(𝑥)
belongs to [−𝜋/2, 𝜋/2]; if 𝑥 ∈ R and ‖𝑥‖ > 1 then 𝑎𝑡𝑎𝑛ℎ(𝑥) is complex.

besselh1(x, precision)
𝐻1-Bessel function of index nu and argument 𝑥.

besselh2(x, precision)
𝐻2-Bessel function of index nu and argument 𝑥.

besseli(x, precision)
𝐼-Bessel function of index nu and argument 𝑥. If 𝑥 converts to a power series, the initial factor
(𝑥/2)𝜈/Γ(𝜈 + 1) is omitted (since it cannot be represented in PARI when 𝜈 is not integral).

besselj(x, precision)
𝐽-Bessel function of index nu and argument 𝑥. If 𝑥 converts to a power series, the initial factor
(𝑥/2)𝜈/Γ(𝜈 + 1) is omitted (since it cannot be represented in PARI when 𝜈 is not integral).

besseljh(x, precision)
𝐽-Bessel function of half integral index. More precisely, 𝑏𝑒𝑠𝑠𝑒𝑙𝑗ℎ(𝑛, 𝑥) computes 𝐽𝑛+1/2(𝑥) where 𝑛
must be of type integer, and 𝑥 is any element of C. In the present version 2.13.3, this function is not very
accurate when 𝑥 is small.

besselk(x, precision)
𝐾-Bessel function of index nu and argument 𝑥.

besseln(x, precision)
Deprecated alias for bessely.

bessely(x, precision)
𝑌 -Bessel function of index nu and argument 𝑥.

bestappr(B)
Using variants of the extended Euclidean algorithm, returns a rational approximation 𝑎/𝑏 to 𝑥, whose
denominator is limited by 𝐵, if present. If 𝐵 is omitted, returns the best approximation affordable given
the input accuracy; if you are looking for true rational numbers, presumably approximated to sufficient
accuracy, you should first try that option. Otherwise,𝐵must be a positive real scalar (impose 0 < 𝑏 <= 𝐵).

• If 𝑥 is a t_REAL or a t_FRAC, this function uses continued fractions.

? bestappr(Pi, 100)
%1 = 22/7
? bestappr(0.1428571428571428571428571429)
%2 = 1/7
? bestappr([Pi, sqrt(2) + 'x], 10^3)
%3 = [355/113, x + 1393/985]

By definition, 𝑎/𝑏 is the best rational approximation to 𝑥 if ‖𝑏𝑥 − 𝑎‖ < ‖𝑣𝑥 − 𝑢‖ for all integers (𝑢, 𝑣)
with 0 < 𝑣 <= 𝐵. (Which implies that 𝑛/𝑑 is a convergent of the continued fraction of 𝑥.)

• If 𝑥 is a t_INTMOD modulo 𝑁 or a t_PADIC of precision 𝑁 = 𝑝𝑘, this function performs rational
modular reconstruction modulo𝑁 . The routine then returns the unique rational number 𝑎/𝑏 in coprime
integers ‖𝑎‖ < 𝑁/2𝐵 and 𝑏 <= 𝐵 which is congruent to 𝑥 modulo 𝑁 . Omitting 𝐵 amounts to
choosing it of the order of

√︀
𝑁/2. If rational reconstruction is not possible (no suitable 𝑎/𝑏 exists),

returns [].
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? bestappr(Mod(18526731858, 11^10))
%1 = 1/7
? bestappr(Mod(18526731858, 11^20))
%2 = []
? bestappr(3 + 5 + 3*5^2 + 5^3 + 3*5^4 + 5^5 + 3*5^6 + O(5^7))
%2 = -1/3

In most concrete uses, 𝐵 is a prime power and we performed Hensel lifting to obtain 𝑥.

The function applies recursively to components of complex objects (polynomials, vectors,. . . ). If rational
reconstruction fails for even a single entry, returns [].

bestapprPade(B)
Using variants of the extended Euclidean algorithm (Padé approximants), returns a rational function ap-
proximation 𝑎/𝑏 to 𝑥, whose denominator is limited by 𝐵, if present. If 𝐵 is omitted, return the best ap-
proximation affordable given the input accuracy; if you are looking for true rational functions, presumably
approximated to sufficient accuracy, you should first try that option. Otherwise, 𝐵 must be a nonnegative
real (impose 0 <= 𝑑𝑒𝑔𝑟𝑒𝑒(𝑏) <= 𝐵).

• If 𝑥 is a t_POLMOD modulo 𝑁 this function performs rational modular reconstruction modulo 𝑁 . The
routine then returns the unique rational function 𝑎/𝑏 in coprime polynomials, with 𝑑𝑒𝑔𝑟𝑒𝑒(𝑏) <= 𝐵
and 𝑑𝑒𝑔𝑟𝑒𝑒(𝑎) minimal, which is congruent to 𝑥modulo𝑁 . Omitting𝐵 amounts to choosing it equal
to the floor of 𝑑𝑒𝑔𝑟𝑒𝑒(𝑁)/2. If rational reconstruction is not possible (no suitable 𝑎/𝑏 exists), returns
[].

? T = Mod(x^3 + x^2 + x + 3, x^4 - 2);
? bestapprPade(T)
%2 = (2*x - 1)/(x - 1)
? U = Mod(1 + x + x^2 + x^3 + x^5, x^9);
? bestapprPade(U) \\ internally chooses B = 4
%3 = []
? bestapprPade(U, 5) \\ with B = 5, a solution exists
%4 = (2*x^4 + x^3 - x - 1)/(-x^5 + x^3 + x^2 - 1)

• If 𝑥 is a t_SER, we implicitly convert the input to a t_POLMOD modulo 𝑁 = 𝑡𝑘 where 𝑘 is the series
absolute precision.

? T = 1 + t + t^2 + t^3 + t^4 + t^5 + t^6 + O(t^7); \\ mod t^7
? bestapprPade(T)
%1 = 1/(-t + 1)

• If 𝑥 is a t_RFRAC, we implicitly convert the input to a t_POLMOD modulo 𝑁 = 𝑡𝑘 where 𝑘 = 2𝐵+ 1.
If 𝐵 was omitted, we return 𝑥:

? T = (4*t^2 + 2*t + 3)/(t+1)^10;
? bestapprPade(T,1)
%2 = [] \\ impossible
? bestapprPade(T,2)
%3 = 27/(337*t^2 + 84*t + 9)
? bestapprPade(T,3)
%4 = (4253*t - 3345)/(-39007*t^3 - 28519*t^2 - 8989*t - 1115)
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The function applies recursively to components of complex objects (polynomials, vectors,. . . ). If rational
reconstruction fails for even a single entry, return [].

bestapprnf(T, rootT, precision)
𝑇 being an integral polynomial and 𝑉 being a scalar, vector, or matrix with complex coefficients, return a
reasonable approximation of 𝑉 with polmods modulo 𝑇 . 𝑇 can also be any number field structure, in which
case the minimal polynomial attached to the structure (:math:`T`.pol) is used. The rootT argument, if
present, must be an element of polroots(:math:`T)` (or :math:`T`.pol), i.e. a complex root of 𝑇 fixing
an embedding of Q[𝑥]/(𝑇 ) into C.

? bestapprnf(sqrt(5), polcyclo(5))
%1 = Mod(-2*x^3 - 2*x^2 - 1, x^4 + x^3 + x^2 + x + 1)
? bestapprnf(sqrt(5), polcyclo(5), exp(4*I*Pi/5))
%2 = Mod(2*x^3 + 2*x^2 + 1, x^4 + x^3 + x^2 + x + 1)

When the output has huge rational coefficients, try to increase the working realbitprecision: if the
answer does not stabilize, consider that the reconstruction failed. Beware that if 𝑇 is not Galois over Q,
some embeddings may not allow to reconstruct 𝑉 :

? T = x^3-2; vT = polroots(T); z = 3*2^(1/3)+1;
? bestapprnf(z, T, vT[1])
%2 = Mod(3*x + 1, x^3 - 2)
? bestapprnf(z, T, vT[2])
%3 = 4213714286230872/186454048314072 \\ close to 3*2^(1/3) + 1

bezout(y)
Deprecated alias for gcdext

bezoutres(B, v)
Deprecated alias for polresultantext

bigomega()

Number of prime divisors of the integer ‖𝑥‖ counted with multiplicity:

? factor(392)
%1 =
[2 3]

[7 2]

? bigomega(392)
%2 = 5; \\ = 3+2
? omega(392)
%3 = 2; \\ without multiplicity

binary()

Outputs the vector of the binary digits of ‖𝑥‖. Here 𝑥 can be an integer, a real number (in which case the
result has two components, one for the integer part, one for the fractional part) or a vector/matrix.

? binary(10)
%1 = [1, 0, 1, 0]

? binary(3.14)
%2 = [[1, 1], [0, 0, 1, 0, 0, 0, [...]]

(continues on next page)
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(continued from previous page)

? binary([1,2])
%3 = [[1], [1, 0]]

For integer 𝑥 >= 1, the number of bits is 𝑙𝑜𝑔𝑖𝑛𝑡(𝑥, 2) + 1. By convention, 0 has no digits:

? binary(0)
%4 = []

binomial(k)
binomial coefficient 𝑏𝑖𝑛𝑜𝑚𝑥𝑘. Here 𝑘 must be an integer, but 𝑥 can be any PARI object.

? binomial(4,2)
%1 = 6
? n = 4; vector(n+1, k, binomial(n,k-1))
%2 = [1, 4, 6, 4, 1]

The argument 𝑘 may be omitted if 𝑥 = 𝑛 is a nonnegative integer; in this case, return the vector with 𝑛+ 1
components whose 𝑘 + 1-th entry is binomial(𝑛, 𝑘)

? binomial(4)
%3 = [1, 4, 6, 4, 1]

bitand(y)
Bitwise and of two integers 𝑥 and 𝑦, that is the integer∑︁

𝑖

(𝑥𝑖 𝑎𝑛𝑑 𝑦𝑖)2
𝑖

Negative numbers behave 2-adically, i.e. the result is the 2-adic limit of bitand(𝑥𝑛, 𝑦𝑛), where 𝑥𝑛 and
𝑦𝑛 are nonnegative integers tending to 𝑥 and 𝑦 respectively. (The result is an ordinary integer, possibly
negative.)

? bitand(5, 3)
%1 = 1
? bitand(-5, 3)
%2 = 3
? bitand(-5, -3)
%3 = -7

bitneg(n)
bitwise negation of an integer 𝑥, truncated to 𝑛 bits, 𝑛 >= 0, that is the integer

𝑛−1∑︁
𝑖=0

𝑛𝑜𝑡(𝑥𝑖)2
𝑖.

The special case 𝑛 = −1 means no truncation: an infinite sequence of leading 1 is then represented as a
negative number.

See bitand (in the PARI manual) for the behavior for negative arguments.

bitnegimply(y)
Bitwise negated imply of two integers 𝑥 and 𝑦 (or not (𝑥 ==> 𝑦)), that is the integer∑︁

(𝑥𝑖 𝑎𝑛𝑑𝑛𝑜𝑡(𝑦𝑖))2
𝑖
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See bitand (in the PARI manual) for the behavior for negative arguments.

bitor(y)
bitwise (inclusive) or of two integers 𝑥 and 𝑦, that is the integer∑︁

(𝑥𝑖 𝑜𝑟 𝑦𝑖)2
𝑖

See bitand (in the PARI manual) for the behavior for negative arguments.

bitprecision(n)
The function behaves differently according to whether 𝑛 is present or not. If 𝑛 is missing, the function
returns the (floating point) precision in bits of the PARI object 𝑥.

If 𝑥 is an exact object, the function returns +oo.

? bitprecision(exp(1e-100))
%1 = 512 \\ 512 bits
? bitprecision( [ exp(1e-100), 0.5 ] )
%2 = 128 \\ minimal accuracy among components
? bitprecision(2 + x)
%3 = +oo \\ exact object

Use getlocalbitprec() to retrieve the working bit precision (as modified by possible localbitprec
statements).

If 𝑛 is present and positive, the function creates a new object equal to 𝑥 with the new bit-precision roughly
𝑛. In fact, the smallest multiple of 64 (resp. 32 on a 32-bit machine) larger than or equal to 𝑛.

For 𝑥 a vector or a matrix, the operation is done componentwise; for series and polynomials, the operation
is done coefficientwise. For real 𝑥, 𝑛 is the number of desired significant bits. If 𝑛 is smaller than the
precision of 𝑥, 𝑥 is truncated, otherwise 𝑥 is extended with zeros. For exact or non-floating-point types, no
change.

? bitprecision(Pi, 10) \\ actually 64 bits ~ 19 decimal digits
%1 = 3.141592653589793239
? bitprecision(1, 10)
%2 = 1
? bitprecision(1 + O(x), 10)
%3 = 1 + O(x)
? bitprecision(2 + O(3^5), 10)
%4 = 2 + O(3^5)

bittest(n)
Outputs the 𝑛− 𝑡ℎ bit of 𝑥 starting from the right (i.e. the coefficient of 2𝑛 in the binary expansion of 𝑥).
The result is 0 or 1. For 𝑥 >= 1, the highest 1-bit is at 𝑛 = 𝑙𝑜𝑔𝑖𝑛𝑡(𝑥) (and bigger 𝑛 gives 0).

? bittest(7, 0)
%1 = 1 \\ the bit 0 is 1
? bittest(7, 2)
%2 = 1 \\ the bit 2 is 1
? bittest(7, 3)
%3 = 0 \\ the bit 3 is 0

See bitand (in the PARI manual) for the behavior at negative arguments.
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bitxor(y)
Bitwise (exclusive) or of two integers 𝑥 and 𝑦, that is the integer∑︁

(𝑥𝑖 𝑥𝑜𝑟 𝑦𝑖)2
𝑖

See bitand (in the PARI manual) for the behavior for negative arguments.

bnfcertify(flag)
𝑏𝑛𝑓 being as output by bnfinit, checks whether the result is correct, i.e. whether it is possible to remove
the assumption of the Generalized Riemann Hypothesis. It is correct if and only if the answer is 1. If it is
incorrect, the program may output some error message, or loop indefinitely. You can check its progress by
increasing the debug level. The bnf structure must contain the fundamental units:

? K = bnfinit(x^3+2^2^3+1); bnfcertify(K)
*** at top-level: K=bnfinit(x^3+2^2^3+1);bnfcertify(K)
*** ^-------------
*** bnfcertify: precision too low in makeunits [use bnfinit(,1)].

? K = bnfinit(x^3+2^2^3+1, 1); \\ include units
? bnfcertify(K)
%3 = 1

If flag is present, only certify that the class group is a quotient of the one computed in bnf (much simpler
in general); likewise, the computed units may form a subgroup of the full unit group. In this variant, the
units are no longer needed:

? K = bnfinit(x^3+2^2^3+1); bnfcertify(K, 1)
%4 = 1

bnfdecodemodule(m)

If 𝑚 is a module as output in the first component of an extension given by bnrdisclist, outputs the true
module.

? K = bnfinit(x^2+23); L = bnrdisclist(K, 10); s = L[2]
%1 = [[[Vecsmall([8]), Vecsmall([1])], [[0, 0, 0]]],
[[Vecsmall([9]), Vecsmall([1])], [[0, 0, 0]]]]

? bnfdecodemodule(K, s[1][1])
%2 =
[2 0]

[0 1]
? bnfdecodemodule(K,s[2][1])
%3 =
[2 1]

[0 1]

bnfinit(flag, tech, precision)
Initializes a bnf structure. Used in programs such as bnfisprincipal, bnfisunit or bnfnarrow. By
default, the results are conditional on the GRH, see GRHbnf (in the PARI manual). The result is a 10-
component vector bnf.

This implements Buchmann’s sub-exponential algorithm for computing the class group, the regulator and a
system of fundamental units of the general algebraic number field𝐾 defined by the irreducible polynomial
𝑃 with integer coefficients. The meaning of flag is as follows:
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• 𝑓𝑙𝑎𝑔 = 0 (default). This is the historical behavior, kept for compatibility reasons and speed. It has
severe drawbacks but is likely to be a little faster than the alternative, twice faster say, so only use it
if speed is paramount, you obtain a useful speed gain for the fields under consideration, and you are
only interested in the field invariants such as the classgroup structure or its regulator. The computations
involve exact algebraic numbers which are replaced by floating point embeddings for the sake of speed.
If the precision is insufficient, gp may not be able to compute fundamental units, nor to solve some
discrete logarithm problems. It may be possible to increase the precision of the bnf structure using
nfnewprec but this may fail, in particular when fundamental units are large. In short, the resulting
bnf structure is correct and contains useful information but later function calls to bnfisprincpal or
bnrclassfield may fail.

When 𝑓𝑙𝑎𝑔 = 1, we keep an exact algebraic version of all floating point data and this allows to guarantee that
functions using the structure will always succeed, as well as to compute the fundamental units exactly. The
units are computed in compact form, as a product of small 𝑆-units, possibly with huge exponents. This flag
also allows bnfisprincipal to compute generators of principal ideals in factored form as well. Be warned
that expanding such products explicitly can take a very long time, but they can easily be mapped to floating
point or ℓ-adic embeddings of bounded accuracy, or to 𝐾*/(𝐾*)ℓ, and this is enough for applications. In
short, this flag should be used by default, unless you have a very good reason for it, for instance building
massive tables of class numbers, and you do not care about units or the effect large units would have on
your computation.

𝑡𝑒𝑐ℎ is a technical vector (empty by default, see GRHbnf (in the PARI manual)). Careful use of this param-
eter may speed up your computations, but it is mostly obsolete and you should leave it alone.

The components of a bnf are technical. In fact: never access a component directly, always use a proper
member function. However, for the sake of completeness and internal documentation, their description is
as follows. We use the notations explained in the book by H. Cohen, A Course in Computational Algebraic
Number Theory, Graduate Texts in Maths 138, Springer-Verlag, 1993, Section 6.5, and subsection 6.5.5 in
particular.

𝑏𝑛𝑓 [1] contains the matrix 𝑊 , i.e. the matrix in Hermite normal form giving relations for the class group
on prime ideal generators (𝑝𝑖)1<=𝑖<=𝑟.

𝑏𝑛𝑓 [2] contains the matrix 𝐵, i.e. the matrix containing the expressions of the prime ideal factorbase in
terms of the 𝑝𝑖. It is an 𝑟𝑥𝑐 matrix.

𝑏𝑛𝑓 [3] contains the complex logarithmic embeddings of the system of fundamental units which has been
found. It is an (𝑟1 + 𝑟2)𝑥(𝑟1 + 𝑟2 − 1) matrix.

𝑏𝑛𝑓 [4] contains the matrix 𝑀”𝐶 of Archimedean components of the relations of the matrix (𝑊‖𝐵).

𝑏𝑛𝑓 [5] contains the prime factor base, i.e. the list of prime ideals used in finding the relations.

𝑏𝑛𝑓 [6] contains a dummy 0.

𝑏𝑛𝑓 [7] or :emphasis:`bnf.nf` is equal to the number field data 𝑛𝑓 as would be given by nfinit.

𝑏𝑛𝑓 [8] is a vector containing the classgroup :emphasis:`bnf.clgp` as a finite abelian group, the regulator
:emphasis:`bnf.reg`, the number of roots of unity and a generator :emphasis:`bnf.tu`, the funda-
mental units in expanded form :emphasis:`bnf.fu`. If the fundamental units were omitted in the bnf,
:emphasis:`bnf.fu` returns the sentinel value 0. If 𝑓𝑙𝑎𝑔 = 1, this vector contain also algebraic data
corresponding to the fundamental units and to the discrete logarithm problem (see bnfisprincipal). In
particular, if 𝑓𝑙𝑎𝑔 = 1 we may only know the units in factored form: the first call to :emphasis:`bnf.fu`
expands them, which may be very costly, then caches the result.

𝑏𝑛𝑓 [9] is a vector used in bnfisprincipal only and obtained as follows. Let 𝐷 = 𝑈𝑊𝑉 obtained by
applying the Smith normal form algorithm to the matrix 𝑊 ( = 𝑏𝑛𝑓 [1]) and let 𝑈𝑟 be the reduction of 𝑈
modulo 𝐷. The first elements of the factorbase are given (in terms of bnf.gen) by the columns of 𝑈𝑟,
with Archimedean component 𝑔𝑎; let also 𝐺𝐷𝑎 be the Archimedean components of the generators of the

464 Chapter 2. The Gen class wrapping PARI’s GEN type



CyPari2 Documentation, Release 2.1.3

(principal) ideals defined by the bnf.gen[i]^bnf.cyc[i]. Then 𝑏𝑛𝑓 [9] = [𝑈𝑟, 𝑔𝑎, 𝐺𝐷𝑎], followed by
technical exact components which allow to recompute 𝑔𝑎 and 𝐺𝐷𝑎 to higher accuracy.

𝑏𝑛𝑓 [10] is by default unused and set equal to 0. This field is used to store further information about the field
as it becomes available, which is rarely needed, hence would be too expensive to compute during the initial
bnfinit call. For instance, the generators of the principal ideals bnf.gen[i]^bnf.cyc[i] (during a call
to bnrisprincipal), or those corresponding to the relations in𝑊 and𝐵 (when the bnf internal precision
needs to be increased).

bnfisintnorm(x)
Computes a complete system of solutions (modulo units of positive norm) of the absolute norm equation
Norm(𝑎) = 𝑥, where 𝑎 is an integer in 𝑏𝑛𝑓 . If 𝑏𝑛𝑓 has not been certified, the correctness of the result
depends on the validity of GRH.

See also bnfisnorm.

bnfisnorm(x, flag)
Tries to tell whether the rational number 𝑥 is the norm of some element y in 𝑏𝑛𝑓 . Returns a vector [𝑎, 𝑏]
where 𝑥 = 𝑁𝑜𝑟𝑚(𝑎) * 𝑏. Looks for a solution which is an 𝑆-unit, with 𝑆 a certain set of prime ideals
containing (among others) all primes dividing 𝑥. If 𝑏𝑛𝑓 is known to be Galois, you may set 𝑓𝑙𝑎𝑔 = 0 (in
this case, 𝑥 is a norm iff 𝑏 = 1). If 𝑓𝑙𝑎𝑔 is nonzero the program adds to 𝑆 the following prime ideals,
depending on the sign of 𝑓𝑙𝑎𝑔. If 𝑓𝑙𝑎𝑔 > 0, the ideals of norm less than 𝑓𝑙𝑎𝑔. And if 𝑓𝑙𝑎𝑔 < 0 the ideals
dividing 𝑓𝑙𝑎𝑔.

Assuming GRH, the answer is guaranteed (i.e. 𝑥 is a norm iff 𝑏 = 1), if 𝑆 contains all primes less than
12 log(disc(𝐵𝑛𝑓))2, where 𝐵𝑛𝑓 is the Galois closure of 𝑏𝑛𝑓 .

See also bnfisintnorm.

bnfisprincipal(x, flag)
𝑏𝑛𝑓 being the number field data output by bnfinit, and 𝑥 being an ideal, this function tests whether the
ideal is principal or not. The result is more complete than a simple true/false answer and solves a general
discrete logarithm problem. Assume the class group is ⊕(Z/𝑑𝑖Z)𝑔𝑖 (where the generators 𝑔𝑖 and their
orders 𝑑𝑖 are respectively given by bnf.gen and bnf.cyc). The routine returns a row vector [𝑒, 𝑡], where
𝑒 is a vector of exponents 0 <= 𝑒𝑖 < 𝑑𝑖, and 𝑡 is a number field element such that

𝑥 = (𝑡)
∏︁
𝑖

𝑔𝑒𝑖𝑖 .

For given 𝑔𝑖 (i.e. for a given bnf), the 𝑒𝑖 are unique, and 𝑡 is unique modulo units.

In particular, 𝑥 is principal if and only if 𝑒 is the zero vector. Note that the empty vector, which is returned
when the class number is 1, is considered to be a zero vector (of dimension 0).

? K = bnfinit(y^2+23);
? K.cyc
%2 = [3]
? K.gen
%3 = [[2, 0; 0, 1]] \\ a prime ideal above 2
? P = idealprimedec(K,3)[1]; \\ a prime ideal above 3
? v = bnfisprincipal(K, P)
%5 = [[2]~, [3/4, 1/4]~]
? idealmul(K, v[2], idealfactorback(K, K.gen, v[1]))
%6 =
[3 0]

[0 1]
(continues on next page)
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? % == idealhnf(K, P)
%7 = 1

The binary digits of flag mean:

• 1: If set, outputs [𝑒, 𝑡] as explained above, otherwise returns only 𝑒, which is much easier to compute.
The following idiom only tests whether an ideal is principal:

is_principal(bnf, x) = !bnfisprincipal(bnf,x,0);

• 2: It may not be possible to recover 𝑡, given the initial accuracy to which the bnf structure was com-
puted. In that case, a warning is printed and 𝑡 is set equal to the empty vector []~. If this bit is set,
increase the precision and recompute needed quantities until 𝑡 can be computed. Warning: setting this
may induce lengthy computations and you should consider using flag 4 instead.

• 4: Return 𝑡 in factored form (compact representation), as a small product of 𝑆-units for a small set of
finite places 𝑆, possibly with huge exponents. This kind of result can be cheaply mapped to𝐾*/(𝐾*)ℓ

or to C or Q𝑝 to bounded accuracy and this is usually enough for applications. Explicitly expanding
such a compact representation is possible using nffactorback but may be very costly. The algorithm
is guaranteed to succeed if the bnf was computed using bnfinit(,1). If not, the algorithm may fail
to compute a huge generator in this case (and replace it by []~). This is orders of magnitude faster
than flag 2 when the generators are indeed large.

bnfissunit(sfu, x)
This function is obsolete, use bnfisunit.

bnfisunit(x, U)

bnf being the number field data output by bnfinit and 𝑥 being an algebraic number (type integer, rational
or polmod), this outputs the decomposition of 𝑥 on the fundamental units and the roots of unity if 𝑥 is a
unit, the empty vector otherwise. More precisely, if 𝑢1,. . . ,:math:u_r are the fundamental units, and 𝜁 is
the generator of the group of roots of unity (bnf.tu), the output is a vector [𝑥1, ..., 𝑥𝑟, 𝑥𝑟+1] such that
𝑥 = 𝑢𝑥1

1 ...𝑢
𝑥𝑟
𝑟 .𝜁𝑥𝑟+1 . The 𝑥𝑖 are integers but the last one (𝑖 = 𝑟 + 1) is only defined modulo the order 𝑤

of 𝜁 and is guaranteed to be in [0, 𝑤[.

Note that bnf need not contain the fundamental units explicitly: it may contain the placeholder 0 instead:

? setrand(1); bnf = bnfinit(x^2-x-100000);
? bnf.fu
%2 = 0
? u = [119836165644250789990462835950022871665178127611316131167, \
379554884019013781006303254896369154068336082609238336]~;

? bnfisunit(bnf, u)
%3 = [-1, 0]~

The given 𝑢 is 1/𝑢1, where 𝑢1 is the fundamental unit implicitly stored in bnf. In this case, 𝑢1 was not com-
puted and stored in algebraic form since the default accuracy was too low. Re-run the bnfinit command
at \g1 or higher to see such diagnostics.

This function allows 𝑥 to be given in factored form, but it then assumes that 𝑥 is an actual unit. (Because
it is general too costly to check whether this is the case.)

? { v = [2, 85; 5, -71; 13, -162; 17, -76; 23, -37; 29, -104; [224, 1]~, -66;
[-86, 1]~, 86; [-241, 1]~, -20; [44, 1]~, 30; [124, 1]~, 11; [125, -1]~, -11;
[-214, 1]~, 33; [-213, -1]~, -33; [189, 1]~, 74; [190, -1]~, 104;

(continues on next page)
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[-168, 1]~, 2; [-167, -1]~, -8]; }
? bnfisunit(bnf,v)
%5 = [1, 0]~

Note that 𝑣 is the fundamental unit of bnf given in compact (factored) form.

If the argument U is present, as output by bnfunits(bnf, S), then the function decomposes 𝑥 on the
𝑆-units generators given in U[1].

? bnf = bnfinit(x^4 - x^3 + 4*x^2 + 3*x + 9, 1);
? bnf.sign
%2 = [0, 2]
? S = idealprimedec(bnf,5); #S
%3 = 2
? US = bnfunits(bnf,S);
? g = US[1]; #g \\ #S = #g, four S-units generators, in factored form
%5 = 4
? g[1]
%6 = [[6, -3, -2, -2]~ 1]
? g[2]
%7 =
[[-1, 1/2, -1/2, -1/2]~ 1]

[ [4, -2, -1, -1]~ 1]
? [nffactorback(bnf, x) | x <- g]
%8 = [[6, -3, -2, -2]~, [-5, 5, 0, 0]~, [-1, 1, -1, 0]~,
[1, -1, 0, 0]~]

? u = [10,-40,24,11]~;
? a = bnfisunit(bnf, u, US)
%9 = [2, 0, 1, 4]~
? nffactorback(bnf, g, a) \\ prod_i g[i]^a[i] still in factored form
%10 =
[[6, -3, -2, -2]~ 2]

[ [0, 0, -1, -1]~ 1]

[ [2, -1, -1, 0]~ -2]

[ [1, 1, 0, 0]~ 2]

[ [-1, 1, 1, 1]~ -1]

[ [1, -1, 0, 0]~ 4]

? nffactorback(bnf,%) \\ u = prod_i g[i]^a[i]
%11 = [10, -40, 24, 11]~

bnflog(l)
Let bnf be a bnf structure attached to the number field 𝐹 and let 𝑙 be a prime number (hereafter denoted
ℓ for typographical reasons). Return the logarithmic ℓ-class group 𝐶𝑙𝐹 of 𝐹 . This is an abelian group,
conjecturally finite (known to be finite if 𝐹/Q is abelian). The function returns if and only if the group is
indeed finite (otherwise it would run into an infinite loop). Let 𝑆 = 𝑝1, ..., 𝑝𝑘 be the set of ℓ-adic places
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(maximal ideals containing ℓ). The function returns [𝐷,𝐺(ℓ), 𝐺′], where

• 𝐷 is the vector of elementary divisors for 𝐶𝑙𝐹 .

• 𝐺(ℓ) is the vector of elementary divisors for the (conjecturally finite) abelian group

,
where the :math:‘p𝑖‘𝑎𝑟𝑒𝑡ℎ𝑒 : 𝑚𝑎𝑡ℎ : ‘ℓ‘−𝑎𝑑𝑖𝑐𝑝𝑙𝑎𝑐𝑒𝑠𝑜𝑓 : 𝑚𝑎𝑡ℎ : ‘𝐹 ‘; 𝑡ℎ𝑖𝑠𝑖𝑠𝑎𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝𝑜𝑓 : 𝑚𝑎𝑡ℎ : ‘ Cl‘.

• 𝐺′ is the vector of elementary divisors for the ℓ-Sylow 𝐶𝑙′ of the 𝑆-class group of 𝐹 ; the group Cl maps to
𝐶𝑙′ with a simple co-kernel.

bnflogdegree(A, l)
Let nf be a nf structure attached to a number field 𝐹 , and let 𝑙 be a prime number (hereafter denoted ℓ). The
ℓ-adified group of id\`{e}les of 𝐹 quotiented by the group of logarithmic units is identified to the ℓ-group of
logarithmic divisors ⊕Zℓ[𝑝], generated by the maximal ideals of 𝐹 .

The degree map deg𝐹 is additive with values in Zℓ, defined by deg𝐹 𝑝 = 𝑓𝑝 degℓ 𝑝, where the integer 𝑓𝑝 is as
in bnflogef and degℓ 𝑝 is logℓ 𝑝 for 𝑝! = ℓ, logℓ(1 + ℓ) for 𝑝 = ℓ! = 2 and logℓ(1 + 22) for 𝑝 = ℓ = 2.

Let 𝐴 =
∏︀
𝑝𝑛𝑝 be an ideal and let 𝐴 =

∑︀
𝑛𝑝[𝑝] be the attached logarithmic divisor. Return the exponential of

the ℓ-adic logarithmic degree deg𝐹 𝐴, which is a natural number.

bnflogef(pr)
Let nf be a nf structure attached to a number field 𝐹 and let pr be a prid structure attached to a maximal ideal 𝑝/𝑝.
Return [ 𝑒(𝐹𝑝/Q𝑝), 𝑓(𝐹𝑝/Q𝑝)] the logarithmic ramification and residue degrees. Let Q𝑐

𝑝/Q𝑝 be the cyclotomic
Z𝑝-extension, then 𝑒 = [𝐹𝑝 : 𝐹𝑝 ∩Q𝑐

𝑝] and 𝑓 = [𝐹𝑝 ∩Q𝑐
𝑝 : Q𝑝]. Note that 𝑒 𝑓 = 𝑒(𝑝/𝑝)𝑓(𝑝/𝑝), where 𝑒(𝑝/𝑝)

and 𝑓(𝑝/𝑝) denote the usual ramification and residue degrees.

? F = nfinit(y^6 - 3*y^5 + 5*y^3 - 3*y + 1);
? bnflogef(F, idealprimedec(F,2)[1])
%2 = [6, 1]
? bnflogef(F, idealprimedec(F,5)[1])
%3 = [1, 2]

bnfnarrow()

bnf being as output by bnfinit, computes the narrow class group of bnf. The output is a 3-component row
vector 𝑣 analogous to the corresponding class group component :emphasis:`bnf.clgp`: the first component is
the narrow class number :math:`v.no`, the second component is a vector containing the SNF cyclic components
:math:`v.cyc` of the narrow class group, and the third is a vector giving the generators of the corresponding
:math:`v.gen` cyclic groups. Note that this function is a special case of bnrinit; the bnf need not contain
fundamental units.

bnfsignunit()

𝑏𝑛𝑓 being as output by bnfinit, this computes an 𝑟1𝑥(𝑟1 + 𝑟2 − 1) matrix having 1 components, giving the
signs of the real embeddings of the fundamental units. The following functions compute generators for the totally
positive units:

/* exponents of totally positive units generators on K.tu, K.fu */
tpuexpo(K)=
{ my(M, S = bnfsignunit(K), [m,n] = matsize(S));
\\ m = K.r1, n = r1+r2-1
S = matrix(m,n, i,j, if (S[i,j] < 0, 1,0));

(continues on next page)
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S = concat(vectorv(m,i,1), S); \\ add sign(-1)
M = matkermod(S, 2);
if (M, mathnfmodid(M, 2), 2*matid(n+1))
}

/* totally positive fundamental units of bnf K */
tpu(K)=
{ my(ex = tpuexpo(K)[,^1]); \\ remove ex[,1], corresponds to 1 or -1
my(v = concat(K.tu[2], K.fu));
[ nffactorback(K, v, c) | c <- ex];
}

bnfsunit(S, precision)
Computes the fundamental 𝑆-units of the number field 𝑏𝑛𝑓 (output by bnfinit), where 𝑆 is a list of prime ideals
(output by idealprimedec). The output is a vector 𝑣 with 6 components.

𝑣[1] gives a minimal system of (integral) generators of the 𝑆-unit group modulo the unit group.

𝑣[2] contains technical data needed by bnfissunit.

𝑣[3] is an obsoleted component, now the empty vector.

𝑣[4] is the 𝑆-regulator (this is the product of the regulator, the 𝑆-class number and the natural logarithms of the
norms of the ideals in 𝑆).

𝑣[5] gives the 𝑆-class group structure, in the usual abelian group format: a vector whose three components give
in order the 𝑆-class number, the cyclic components and the generators.

𝑣[6] is a copy of 𝑆.

bnfunits(S)
Return the fundamental units of the number field bnf output by bnfinit; if 𝑆 is present and is a list of prime ideals,
compute fundamental 𝑆-units instead. The first component of the result contains independent integral 𝑆-units
generators: first nonunits, then 𝑟1 + 𝑟2 − 1 fundamental units, then the torsion unit. The result may be used as
an optional argument to bnfisunit. The units are given in compact form: no expensive computation is attempted
if the bnf does not already contain units.

? bnf = bnfinit(x^4 - x^3 + 4*x^2 + 3*x + 9, 1);
? bnf.sign \\ r1 + r2 - 1 = 1
%2 = [0, 2]
? U = bnfunits(bnf); u = U[1];
? #u \\ r1 + r2 = 2 units
%5 = 2;
? u[1] \\ fundamental unit as factorization matrix
%6 =
[[0, 0, -1, -1]~ 1]

[[2, -1, -1, 0]~ -2]

[ [1, 1, 0, 0]~ 2]

[ [-1, 1, 1, 1]~ -1]
? u[2] \\ torsion unit as factorization matrix
%7 =
[[1, -1, 0, 0]~ 1]

(continues on next page)
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? [nffactorback(bnf, z) | z <- u] \\ same units in expanded form
%8 = [[-1, 1, -1, 0]~, [1, -1, 0, 0]~]

Now an example involving 𝑆-units for a nontrivial 𝑆:

? S = idealprimedec(bnf,5); #S
%9 = 2
? US = bnfunits(bnf, S); uS = US[1];
? g = [nffactorback(bnf, z) | z <- uS] \\ now 4 units
%11 = [[6, -3, -2, -2]~, [-5, 5, 0, 0]~, [-1, 1, -1, 0]~, [1, -1, 0, 0]~]
? bnfisunit(bnf,[10,-40,24,11]~)
%12 = []~ \\ not a unit
? e = bnfisunit(bnf, [10,-40,24,11]~, US)
%13 = [2, 0, 1, 4]~ \\ ...but an S-unit
? nffactorback(bnf, g, e)
%14 = [10, -40, 24, 11]~
? nffactorback(bnf, uS, e) \\ in factored form
%15 =
[[6, -3, -2, -2]~ 2]

[ [0, 0, -1, -1]~ 1]

[ [2, -1, -1, 0]~ -2]

[ [1, 1, 0, 0]~ 2]

[ [-1, 1, 1, 1]~ -1]

[ [1, -1, 0, 0]~ 4]

Note that in more complicated cases, any nffactorback fully expanding an element in factored form could be
very expensive. On the other hand, the final example expands a factorization whose components are themselves
in factored form, hence the result is a factored form: this is a cheap operation.

bnrL1(H, flag, precision)
Let bnr be the number field data output by bnrinit and H be a square matrix defining a congruence subgroup
of the ray class group corresponding to bnr (the trivial congruence subgroup if omitted). This function returns,
for each character 𝜒 of the ray class group which is trivial on 𝐻 , the value at 𝑠 = 1 (or 𝑠 = 0) of the abelian
𝐿-function attached to 𝜒. For the value at 𝑠 = 0, the function returns in fact for each 𝜒 a vector [𝑟𝜒, 𝑐𝜒] where

𝐿(𝑠, 𝜒) = 𝑐.𝑠𝑟 +𝑂(𝑠𝑟+1)

near 0.

The argument flag is optional, its binary digits mean 1: compute at 𝑠 = 0 if unset or 𝑠 = 1 if set, 2: compute
the primitive 𝐿-function attached to 𝜒 if unset or the 𝐿-function with Euler factors at prime ideals dividing the
modulus of bnr removed if set (that is 𝐿𝑆(𝑠, 𝜒), where 𝑆 is the set of infinite places of the number field together
with the finite prime ideals dividing the modulus of bnr), 3: return also the character if set.

K = bnfinit(x^2-229);
bnr = bnrinit(K,1);
bnrL1(bnr)

returns the order and the first nonzero term of 𝐿(𝑠, 𝜒) at 𝑠 = 0 where 𝜒 runs through the characters of the class
group of 𝐾 = Q(

√
229). Then
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bnr2 = bnrinit(K,2);
bnrL1(bnr2,,2)

returns the order and the first nonzero terms of 𝐿𝑆(𝑠, 𝜒) at 𝑠 = 0 where 𝜒 runs through the characters of the class
group of 𝐾 and 𝑆 is the set of infinite places of 𝐾 together with the finite prime 2. Note that the ray class group
modulo 2 is in fact the class group, so bnrL1(bnr2,0) returns the same answer as bnrL1(bnr,0).

This function will fail with the message

*** bnrL1: overflow in zeta_get_N0 [need too many primes].

if the approximate functional equation requires us to sum too many terms (if the discriminant of 𝐾 is too large).

bnrchar(g, v)
Returns all characters 𝜒 on bnr.clgp such that 𝜒(𝑔𝑖) = 𝑒(𝑣𝑖), where 𝑒(𝑥) = exp(2𝑖𝜋𝑥). If 𝑣 is omitted, returns
all characters that are trivial on the 𝑔𝑖. Else the vectors 𝑔 and 𝑣 must have the same length, the 𝑔𝑖 must be ideals in
any form, and each 𝑣𝑖 is a rational number whose denominator must divide the order of 𝑔𝑖 in the ray class group.
For convenience, the vector of the 𝑔𝑖 can be replaced by a matrix whose columns give their discrete logarithm, as
given by bnrisprincipal; this allows to specify abstractly a subgroup of the ray class group.

? bnr = bnrinit(bnfinit(x), [160,[1]], 1); /* (Z/160Z)^* */
? bnr.cyc
%2 = [8, 4, 2]
? g = bnr.gen;
? bnrchar(bnr, g, [1/2,0,0])
%4 = [[4, 0, 0]] \\ a unique character
? bnrchar(bnr, [g[1],g[3]]) \\ all characters trivial on g[1] and g[3]
%5 = [[0, 1, 0], [0, 2, 0], [0, 3, 0], [0, 0, 0]]
? bnrchar(bnr, [1,0,0;0,1,0;0,0,2])
%6 = [[0, 0, 1], [0, 0, 0]] \\ characters trivial on given subgroup

bnrclassfield(subgp, flag, precision)
bnr being as output by bnrinit, returns a relative equation for the class field corresponding to the congruence
group defined by (𝑏𝑛𝑟, 𝑠𝑢𝑏𝑔𝑝) (the full ray class field if subgp is omitted). The subgroup can also be a t_INT 𝑛,
meaning 𝑛.𝐶𝑙𝑓 . The function also handles a vector of subgroup, e.g, from subgrouplist and returns the vector
of individual results in this case.

If 𝑓𝑙𝑎𝑔 = 0, returns a vector of polynomials such that the compositum of the corresponding fields is the class
field; if 𝑓𝑙𝑎𝑔 = 1 returns a single polynomial; if 𝑓𝑙𝑎𝑔 = 2 returns a single absolute polynomial.

? bnf = bnfinit(y^3+14*y-1); bnf.cyc
%1 = [4, 2]
? pol = bnrclassfield(bnf,,1) \\ Hilbert class field
%2 = x^8 - 2*x^7 + ... + Mod(11*y^2 - 82*y + 116, y^3 + 14*y - 1)
? rnfdisc(bnf,pol)[1]
%3 = 1
? bnr = bnrinit(bnf,3*5*7); bnr.cyc
%4 = [24, 12, 12, 2]
? bnrclassfield(bnr,2) \\ maximal 2-elementary subextension
%5 = [x^2 + (-21*y - 105), x^2 + (-5*y - 25), x^2 + (-y - 5), x^2 + (-y - 1)]
\\ quadratic extensions of maximal conductor
? bnrclassfield(bnr, subgrouplist(bnr,[2]))
%6 = [[x^2 - 105], [x^2 + (-105*y^2 - 1260)], [x^2 + (-105*y - 525)],
[x^2 + (-105*y - 105)]]

(continues on next page)
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? #bnrclassfield(bnr,subgrouplist(bnr,[2],1)) \\ all quadratic extensions
%7 = 15

When the subgroup contains 𝑛𝐶𝑙𝑓 , where 𝑛 is fixed, it is advised to directly compute the bnr modulo 𝑛 to avoid
expensive discrete logarithms:

? bnf = bnfinit(y^2-5); p = 1594287814679644276013;
? bnr = bnrinit(bnf,p); \\ very slow
time = 24,146 ms.
? bnrclassfield(bnr, 2) \\ ... even though the result is trivial
%3 = [x^2 - 1594287814679644276013]
? bnr2 = bnrinit(bnf,p,,2); \\ now fast
time = 1 ms.
? bnrclassfield(bnr2, 2)
%5 = [x^2 - 1594287814679644276013]

This will save a lot of time when the modulus contains a maximal ideal whose residue field is large.

bnrclassno(B, C)
Let 𝐴, 𝐵, 𝐶 define a class field 𝐿 over a ground field 𝐾 (of type [:emphasis:`bnr]`, [:emphasis:`bnr,
subgroup]`, or [:emphasis:`bnf, modulus]`, or [:emphasis:`bnf, modulus,:emphasis:subgroup]`, CFT (in
the PARI manual)); this function returns the relative degree [𝐿 : 𝐾].

In particular if𝐴 is a bnf (with units), and𝐵 a modulus, this function returns the corresponding ray class number
modulo 𝐵. One can input the attached bid (with generators if the subgroup 𝐶 is non trivial) for 𝐵 instead of the
module itself, saving some time.

This function is faster than bnrinit and should be used if only the ray class number is desired. See
bnrclassnolist if you need ray class numbers for all moduli less than some bound.

bnrclassnolist(list)
𝑏𝑛𝑓 being as output by bnfinit, and list being a list of moduli (with units) as output by ideallist or
ideallistarch, outputs the list of the class numbers of the corresponding ray class groups. To compute a
single class number, bnrclassno is more efficient.

? bnf = bnfinit(x^2 - 2);
? L = ideallist(bnf, 100, 2);
? H = bnrclassnolist(bnf, L);
? H[98]
%4 = [1, 3, 1]
? l = L[1][98]; ids = vector(#l, i, l[i].mod[1])
%5 = [[98, 88; 0, 1], [14, 0; 0, 7], [98, 10; 0, 1]]

The weird l[i].mod[1], is the first component of l[i].mod, i.e. the finite part of the conductor. (This is
cosmetic: since by construction the Archimedean part is trivial, I do not want to see it). This tells us that the ray
class groups modulo the ideals of norm 98 (printed as %5) have respectively order 1, 3 and 1. Indeed, we may
check directly:

? bnrclassno(bnf, ids[2])
%6 = 3

bnrconductor(B, C, flag)
Conductor 𝑓 of the subfield of a ray class field as defined by [𝐴,𝐵,𝐶] (of type [:emphasis:`bnr]`,
[:emphasis:`bnr, subgroup]`, [:emphasis:`bnf, modulus]` or [:emphasis:`bnf, modulus, subgroup]`,
CFT (in the PARI manual))
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If 𝑓𝑙𝑎𝑔 = 0, returns 𝑓 .

If 𝑓𝑙𝑎𝑔 = 1, returns [𝑓, 𝐶𝑙𝑓 , 𝐻], where 𝐶𝑙𝑓 is the ray class group modulo 𝑓 , as a finite abelian group; finally 𝐻
is the subgroup of 𝐶𝑙𝑓 defining the extension.

If 𝑓𝑙𝑎𝑔 = 2, returns [𝑓, 𝑏𝑛𝑟(𝑓), 𝐻], as above except𝐶𝑙𝑓 is replaced by a bnr structure, as output by 𝑏𝑛𝑟𝑖𝑛𝑖𝑡(, 𝑓),
without generators unless the input contained a bnr with generators.

In place of a subgroup 𝐻 , this function also accepts a character chi = (𝑎𝑗), expressed as usual in terms of the
generators bnr.gen: 𝜒(𝑔𝑗) = exp(2𝑖𝜋𝑎𝑗/𝑑𝑗), where 𝑔𝑗 has order 𝑑𝑗 = 𝑏𝑛𝑟.𝑐𝑦𝑐[𝑗]. In which case, the function
returns respectively

If 𝑓𝑙𝑎𝑔 = 0, the conductor 𝑓 of 𝐾𝑒𝑟𝜒.

If 𝑓𝑙𝑎𝑔 = 1, [𝑓, 𝐶𝑙𝑓 , 𝜒𝑓 ], where 𝜒𝑓 is 𝜒 expressed on the minimal ray class group, whose modulus is the con-
ductor.

If 𝑓𝑙𝑎𝑔 = 2, [𝑓, 𝑏𝑛𝑟(𝑓), 𝜒𝑓 ].

Note. Using this function with 𝑓𝑙𝑎𝑔! = 0 is usually a bad idea and kept for compatibility and convenience only:
𝑓𝑙𝑎𝑔 = 1 has always been useless, since it is no faster than 𝑓𝑙𝑎𝑔 = 2 and returns less information; 𝑓𝑙𝑎𝑔 = 2 is
mostly OK with two subtle drawbacks:

• it returns the full bnr attached to the full ray class group, whereas in applications we only need 𝐶𝑙𝑓 modulo
𝑁 -th powers, where 𝑁 is any multiple of the exponent of 𝐶𝑙𝑓/𝐻 . Computing directly the conductor, then
calling bnrinit with optional argument 𝑁 avoids this problem.

• computing the bnr needs only be done once for each conductor, which is not possible using this function.

For maximal efficiency, the recommended procedure is as follows. Starting from data (character or congruence
subgroups) attached to a modulus𝑚, we can first compute the conductors using this function with default 𝑓𝑙𝑎𝑔 =
0. Then for all data with a common conductor 𝑓‖𝑚, compute (once!) the bnr attached to 𝑓 using bnrinit
(modulo 𝑁 -th powers for a suitable 𝑁 !) and finally map original data to the new bnr using bnrmap.

bnrconductorofchar(chi)
This function is obsolete, use bnrconductor.

bnrdisc(B, C, flag)
𝐴, 𝐵, 𝐶 defining a class field 𝐿 over a ground field 𝐾 (of type [:emphasis:`bnr]`, [:emphasis:`bnr, sub-
group]`, [:emphasis:`bnr, character]`, [:emphasis:`bnf, modulus]` or [:emphasis:`bnf, modulus, sub-
group]`, CFT (in the PARI manual)), outputs data [𝑁, 𝑟1, 𝐷] giving the discriminant and signature of𝐿, depending
on the binary digits of flag:

• 1: if this bit is unset, output absolute data related to 𝐿/Q: 𝑁 is the absolute degree [𝐿 : Q], 𝑟1 the number of
real places of 𝐿, and 𝐷 the discriminant of 𝐿/Q. Otherwise, output relative data for 𝐿/𝐾: 𝑁 is the relative
degree [𝐿 : 𝐾], 𝑟1 is the number of real places of 𝐾 unramified in 𝐿 (so that the number of real places of 𝐿
is equal to 𝑟1 times 𝑁 ), and 𝐷 is the relative discriminant ideal of 𝐿/𝐾.

• 2: if this bit is set and if the modulus is not the conductor of 𝐿, only return 0.

bnrdisclist(bound, arch)
𝑏𝑛𝑓 being as output by bnfinit (with units), computes a list of discriminants of Abelian extensions of the number
field by increasing modulus norm up to bound bound. The ramified Archimedean places are given by arch; all
possible values are taken if arch is omitted.

The alternative syntax 𝑏𝑛𝑟𝑑𝑖𝑠𝑐𝑙𝑖𝑠𝑡(𝑏𝑛𝑓, 𝑙𝑖𝑠𝑡) is supported, where list is as output by ideallist or
ideallistarch (with units), in which case arch is disregarded.

The output 𝑣 is a vector, where 𝑣[𝑘] is itself a vector 𝑤, whose length is the number of ideals of norm 𝑘.

• We consider first the case where arch was specified. Each component of 𝑤 corresponds to an ideal 𝑚 of
norm 𝑘, and gives invariants attached to the ray class field 𝐿 of 𝑏𝑛𝑓 of conductor [𝑚, 𝑎𝑟𝑐ℎ]. Namely, each
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contains a vector [𝑚, 𝑑, 𝑟,𝐷] with the following meaning: 𝑚 is the prime ideal factorization of the modulus,
𝑑 = [𝐿 : Q] is the absolute degree of 𝐿, 𝑟 is the number of real places of 𝐿, and 𝐷 is the factorization of its
absolute discriminant. We set 𝑑 = 𝑟 = 𝐷 = 0 if 𝑚 is not the finite part of a conductor.

• If arch was omitted, all 𝑡 = 2𝑟1 possible values are taken and a component of 𝑤 has the form
[𝑚, [[𝑑1, 𝑟1, 𝐷1], ..., [𝑑𝑡, 𝑟𝑡, 𝐷𝑡]]], where𝑚 is the finite part of the conductor as above, and [𝑑𝑖, 𝑟𝑖, 𝐷𝑖] are the
invariants of the ray class field of conductor [𝑚, 𝑣𝑖], where 𝑣𝑖 is the 𝑖-th Archimedean component, ordered
by inverse lexicographic order; so 𝑣1 = [0, ..., 0], 𝑣2 = [1, 0..., 0], etc. Again, we set 𝑑𝑖 = 𝑟𝑖 = 𝐷𝑖 = 0 if
[𝑚, 𝑣𝑖] is not a conductor.

Finally, each prime ideal 𝑝𝑟 = [𝑝, 𝛼, 𝑒, 𝑓, 𝛽] in the prime factorization 𝑚 is coded as the integer 𝑝.𝑛2 + (𝑓 −
1).𝑛+ (𝑗 − 1), where 𝑛 is the degree of the base field and 𝑗 is such that

pr = idealprimedec(:emphasis:`nf,p)[j]`.

𝑚 can be decoded using bnfdecodemodule.

Note that to compute such data for a single field, either bnrclassno or bnrdisc are (much) more efficient.

bnrgaloisapply(mat, H)

Apply the automorphism given by its matrix mat to the congruence subgroup 𝐻 given as a HNF matrix. The
matrix mat can be computed with bnrgaloismatrix.

bnrgaloismatrix(aut)
Return the matrix of the action of the automorphism aut of the base field bnf.nf on the generators of the ray
class field bnr.gen; aut can be given as a polynomial, an algebraic number, or a vector of automorphisms or a
Galois group as output by galoisinit, in which case a vector of matrices is returned (in the later case, only for
the generators aut.gen).

The generators bnr.gen need not be explicitly computed in the input bnr, which saves time: the result is well
defined in this case also.

? K = bnfinit(a^4-3*a^2+253009); B = bnrinit(K,9); B.cyc
%1 = [8400, 12, 6, 3]
? G = nfgaloisconj(K)
%2 = [-a, a, -1/503*a^3 + 3/503*a, 1/503*a^3 - 3/503*a]~
? bnrgaloismatrix(B, G[2]) \\ G[2] = Id ...
%3 =
[1 0 0 0]

[0 1 0 0]

[0 0 1 0]

[0 0 0 1]
? bnrgaloismatrix(B, G[3]) \\ automorphism of order 2
%4 =
[799 0 0 2800]

[ 0 7 0 4]

[ 4 0 5 2]

[ 0 0 0 2]
? M = %^2; for (i=1, #B.cyc, M[i,] %= B.cyc[i]); M
%5 = \\ acts on ray class group as automorphism of order 2
[1 0 0 0]

(continues on next page)
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(continued from previous page)

[0 1 0 0]

[0 0 1 0]

[0 0 0 1]

See bnrisgalois for further examples.

bnrinit(f, flag, cycmod)
𝑏𝑛𝑓 is as output by bnfinit (including fundamental units), 𝑓 is a modulus, initializes data linked to the ray
class group structure corresponding to this module, a so-called bnr structure. One can input the attached bid
with generators for 𝑓 instead of the module itself, saving some time. (As in idealstar, the finite part of the
conductor may be given by a factorization into prime ideals, as produced by idealfactor.)

If the positive integer cycmod is present, only compute the ray class group modulo cycmod, which may save a lot
of time when some maximal ideals in 𝑓 have a huge residue field. In applications, we are given a congruence sub-
group 𝐻 and study the class field attached to 𝐶𝑙𝑓/𝐻 . If that finite Abelian group has an exponent which divides
cycmod, then we have changed nothing theoretically, while trivializing expensive discrete logs in residue fields
(since computations can be made modulo cycmod-th powers). This is useful in bnrclassfield, for instance
when computing 𝑝-elementary extensions.

The following member functions are available on the result: .bnf is the underlying bnf, .mod the modulus, .bid
the bid structure attached to the modulus; finally, .clgp, .no, .cyc, .gen refer to the ray class group (as a finite
abelian group), its cardinality, its elementary divisors, its generators (only computed if 𝑓𝑙𝑎𝑔 = 1).

The last group of functions are different from the members of the underlying bnf, which refer to the class group;
use :emphasis:`bnr.bnf.:emphasis:xxx` to access these, e.g. :emphasis:`bnr.bnf.cyc` to get the cyclic de-
composition of the class group.

They are also different from the members of the underlying bid, which refer to (Z𝐾/𝑓)*; use
:emphasis:`bnr.bid.:emphasis:xxx` to access these, e.g. :emphasis:`bnr.bid.no` to get 𝜑(𝑓).

If 𝑓𝑙𝑎𝑔 = 0 (default), the generators of the ray class group are not explicitly computed, which saves time. Hence
:emphasis:`bnr.gen` would produce an error. Note that implicit generators are still fixed and stored in the bnr
(and guaranteed to be the same for fixed bnf and bid inputs), in terms of bnr.bnf.gen and bnr.bid.gen. The
computation which is not performed is the expansion of such products in the ray class group so as to fix eplicit
ideal representatives.

If 𝑓𝑙𝑎𝑔 = 1, as the default, except that generators are computed.

bnrisconductor(B, C)
Fast variant of bnrconductor(𝐴,𝐵,𝐶); 𝐴, 𝐵, 𝐶 represent an extension of the base field, given by class field
theory (see CFT (in the PARI manual)). Outputs 1 if this modulus is the conductor, and 0 otherwise. This is
slightly faster than bnrconductor when the character or subgroup is not primitive.

bnrisgalois(gal, H)

Check whether the class field attached to the subgroup 𝐻 is Galois over the subfield of bnr.nf fixed by the
group gal, which can be given as output by galoisinit, or as a matrix or a vector of matrices as output by
bnrgaloismatrix, the second option being preferable, since it saves the recomputation of the matrices. Note:
The function assumes that the ray class field attached to bnr is Galois, which is not checked.

In the following example, we lists the congruence subgroups of subextension of degree at most 3 of the ray class
field of conductor 9 which are Galois over the rationals.
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? K = bnfinit(a^4-3*a^2+253009); B = bnrinit(K,9); G = galoisinit(K);
? [H | H<-subgrouplist(B,3), bnrisgalois(B,G,H)];
time = 160 ms.
? M = bnrgaloismatrix(B,G);
? [H | H<-subgrouplist(B,3), bnrisgalois(B,M,H)]
time = 1 ms.

The second computation is much faster since bnrgaloismatrix(B,G) is computed only once.

bnrisprincipal(x, flag)
Let bnr be the ray class group data output by bnrinit(, , 1) and let 𝑥 be an ideal in any form, coprime to the
modulus 𝑓 = 𝑏𝑛𝑟.𝑚𝑜𝑑. Solves the discrete logarithm problem in the ray class group, with respect to the generators
bnr.gen, in a way similar to bnfisprincipal. If 𝑥 is not coprime to the modulus of bnr the result is undefined.
Note that bnr need not contain the ray class group generators, i.e. it may be created with bnrinit(, , 0); in that
case, although bnr.gen is undefined, we can still fix natural generators for the ray class group (in terms of the
generators in bnr.bnf.gen and bnr.bid.gen) and compute with respect to them.

The binary digits of 𝑓𝑙𝑎𝑔 (default 𝑓𝑙𝑎𝑔 = 1) mean:

• 1: If set returns a 2-component vector [𝑒, 𝛼] where 𝑒 is the vector of components of 𝑥 on the ray class group
generators, 𝛼 is an element congruent to 1 𝑚𝑜𝑑*𝑓 such that 𝑥 = 𝛼

∏︀
𝑖 𝑔

𝑒𝑖
𝑖 . If unset, returns only 𝑒.

• 4: If set, returns [𝑒, 𝛼] where𝛼 is given in factored form (compact representation). This is orders of magnitude
faster.

? K = bnfinit(x^2 - 30); bnr = bnrinit(K, [4, [1,1]]);
? bnr.clgp \\ ray class group is isomorphic to Z/4 x Z/2 x Z/2
%2 = [16, [4, 2, 2]]
? P = idealprimedec(K, 3)[1]; \\ the ramified prime ideal above 3
? bnrisprincipal(bnr,P) \\ bnr.gen undefined !
%5 = [[3, 0, 0]~, 9]
? bnrisprincipal(bnr,P, 0) \\ omit principal part
%5 = [3, 0, 0]~
? bnr = bnrinit(bnr, bnr.bid, 1); \\ include explicit generators
? bnrisprincipal(bnr,P) \\ ... alpha is different !
%7 = [[3, 0, 0]~, 1/128625]

It may be surprising that the generator𝛼 is different although the underlying bnf and bid are the same. This defines
unique generators for the ray class group as ideal classes, whether we use bnrinit(,0) or bnrinit(,1). But
the actual ideal representatives (implicit if the flag is 0, computed and stored in the bnr if the flag is 1) are in
general different and this is what happens here. Indeed, the implicit generators are naturally expressed expressed
in terms of bnr.bnf.gen and bnr.bid.gen and then expanded and simplified (in the same ideal class) so that
we obtain ideal representatives for bnr.gen which are as simple as possible. And indeed the quotient of the two
𝛼 found is 1 modulo the conductor (and positive at the infinite places it contains), and this is the only guaranteed
property.

Beware that, when bnr is generated using bnrinit(, cycmod), the results are given in 𝐶𝑙𝑓 modulo cycmod-th
powers:

? bnr2 = bnrinit(K, bnr.mod,, 2); \\ modulo squares
? bnr2.clgp
%9 = [8, [2, 2, 2]] \\ bnr.clgp tensored by Z/2Z
? bnrisprincipal(bnr2,P, 0)
%10 = [1, 0, 0]~
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bnrmap(B)
This function has two different uses:

• if 𝐴 and 𝐵 are bnr structures for the same bnf attached to moduli 𝑚𝐴 and 𝑚𝐵 with 𝑚𝐵‖𝑚𝐴, return the
canonical surjection from 𝐴 to 𝐵, i.e. from the ray class group moodulo 𝑚𝐴 to the ray class group modulo
𝑚𝐵 . The map is coded by a triple [𝑀, 𝑐𝑦𝑐𝐴, 𝑐𝑦𝑐𝐵 ]: 𝑀 gives the image of the fixed ray class group generators
of 𝐴 in terms of the ones in 𝐵, 𝑐𝑦𝑐𝐴 and 𝑐𝑦𝑐𝐵 are the cyclic structures A.cyc and B.cyc respectively. Note
that this function does not need 𝐴 or 𝐵 to contain explicit generators for the ray class groups: they may be
created using bnrinit(,0).

If 𝐵 is only known modulo 𝑁 -th powers (from bnrinit(,N)), the result is correct provided 𝑁 is a multiple of
the exponent of 𝐴.

• if 𝐴 is a projection map as above and 𝐵 is either a congruence subgroup 𝐻 , or a ray class character 𝜒, or
a discrete logarithm (from bnrisprincipal) modulo 𝑚𝐴 whose conductor divides 𝑚𝐵 , return the image
of the subgroup (resp. the character, the discrete logarighm) as defined modulo 𝑚𝐵 . The main use of this
variant is to compute the primitive subgroup or character attached to a bnr modulo their conductor. This is
more efficient than bnrconductor in two respects: the bnr attached to the conductor need only be computed
once and, most importantly, the ray class group can be computed modulo𝑁 -th powers, where𝑁 is a multiple
of the exponent of 𝐶𝑙𝑚𝐴

/𝐻 (resp. of the order of 𝜒). Whereas bnrconductor is specified to return a bnr
attached to the full ray class group, which may lead to untractable discrete logarithms in the full ray class
group instead of a tiny quotient.

bnrrootnumber(chi, flag, precision)
If 𝜒 = 𝑐ℎ𝑖 is a character over bnr, not necessarily primitive, let 𝐿(𝑠, 𝜒) =

∑︀
𝑖𝑑 𝜒(𝑖𝑑)𝑁(𝑖𝑑)−𝑠 be the attached

Artin L-function. Returns the so-called Artin root number, i.e. the complex number 𝑊 (𝜒) of modulus 1 such
that

Λ(1 − 𝑠, 𝜒) = 𝑊 (𝜒)Λ(𝑠, 𝜒)

where Λ(𝑠, 𝜒) = 𝐴(𝜒)𝑠/2𝛾𝜒(𝑠)𝐿(𝑠, 𝜒) is the enlarged L-function attached to 𝐿.

You can set 𝑓𝑙𝑎𝑔 = 1 if the character is known to be primitive. Example:

bnf = bnfinit(x^2 - x - 57);
bnr = bnrinit(bnf, [7,[1,1]]);
bnrrootnumber(bnr, [2,1])

returns the root number of the character 𝜒 of Cl7𝑜𝑜1𝑜𝑜2(Q(
√

229)) defined by 𝜒(𝑔𝑎1𝑔
𝑏
2) = 𝜁2𝑎1 𝜁𝑏2 . Here 𝑔1, 𝑔2 are

the generators of the ray-class group given by bnr.gen and 𝜁1 = 𝑒2𝑖𝜋/𝑁1 , 𝜁2 = 𝑒2𝑖𝜋/𝑁2 where 𝑁1, 𝑁2 are the
orders of 𝑔1 and 𝑔2 respectively (𝑁1 = 6 and 𝑁2 = 3 as bnr.cyc readily tells us).

bnrstark(subgroup, precision)
bnr being as output by bnrinit, finds a relative equation for the class field corresponding to the modulus in bnr
and the given congruence subgroup (as usual, omit 𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝 if you want the whole ray class group).

The main variable of bnr must not be 𝑥, and the ground field and the class field must be totally real. When the
base field is Q, the vastly simpler galoissubcyclo is used instead. Here is an example:

bnf = bnfinit(y^2 - 3);
bnr = bnrinit(bnf, 5);
bnrstark(bnr)

returns the ray class field of Q(
√

3) modulo 5. Usually, one wants to apply to the result one of

rnfpolredbest(bnf, pol) \\ compute a reduced relative polynomial
rnfpolredbest(bnf, pol, 2) \\ compute a reduced absolute polynomial
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The routine uses Stark units and needs to find a suitable auxiliary conductor, which may not exist when the class
field is not cyclic over the base. In this case bnrstark is allowed to return a vector of polynomials defining inde-
pendent relative extensions, whose compositum is the requested class field. We decided that it was useful to keep
the extra information thus made available, hence the user has to take the compositum herself, see nfcompositum.

Even if it exists, the auxiliary conductor may be so large that later computations become unfeasible. (And of
course, Stark’s conjecture may simply be wrong.) In case of difficulties, try bnrclassfield:

? bnr = bnrinit(bnfinit(y^8-12*y^6+36*y^4-36*y^2+9,1), 2);
? bnrstark(bnr)
*** at top-level: bnrstark(bnr)
*** ^-------------
*** bnrstark: need 3919350809720744 coefficients in initzeta.
*** Computation impossible.
? bnrclassfield(bnr)
time = 20 ms.
%2 = [x^2 + (-2/3*y^6 + 7*y^4 - 14*y^2 + 3)]

call(A)
𝐴 = [𝑎1, ..., 𝑎𝑛] being a vector and 𝑓 being a function, returns the evaluation of 𝑓(𝑎1, ..., 𝑎𝑛). 𝑓 can also be
the name of a built-in GP function. If #𝐴 = 1, call (𝑓,𝐴) = apply (𝑓,𝐴)[1]. If 𝑓 is variadic, the variadic
arguments must grouped in a vector in the last component of 𝐴.

This function is useful

• when writing a variadic function, to call another one:

fprintf(file,format,args[..]) = write(file,call(strprintf,[format,args]))

• when dealing with function arguments with unspecified arity

The function below implements a global memoization interface:

memo=Map();
memoize(f,A[..])=
{
my(res);
if(!mapisdefined(memo, [f,A], &res),
res = call(f,A);
mapput(memo,[f,A],res));
res;
}

for example:

? memoize(factor,2^128+1)
%3 = [59649589127497217,1;5704689200685129054721,1]
? ##
*** last result computed in 76 ms.
? memoize(factor,2^128+1)
%4 = [59649589127497217,1;5704689200685129054721,1]
? ##
*** last result computed in 0 ms.
? memoize(ffinit,3,3)
%5 = Mod(1,3)*x^3+Mod(1,3)*x^2+Mod(1,3)*x+Mod(2,3)

(continues on next page)
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(continued from previous page)

? fibo(n)=if(n==0,0,n==1,1,memoize(fibo,n-2)+memoize(fibo,n-1));
? fibo(100)
%7 = 354224848179261915075

• to call operators through their internal names without using alias

matnbelts(M) = call("_*_",matsize(M))

ceil()

Ceiling of 𝑥. When 𝑥 is in R, the result is the smallest integer greater than or equal to 𝑥. Applied to a rational
function, 𝑐𝑒𝑖𝑙(𝑥) returns the Euclidean quotient of the numerator by the denominator.

centerlift(v)
Same as lift, except that t_INTMOD and t_PADIC components are lifted using centered residues:

• for a t_INTMOD 𝑥 ∈ Z/𝑛Z, the lift 𝑦 is such that −𝑛/2 < 𝑦 <= 𝑛/2.

• a t_PADIC 𝑥 is lifted in the same way as above (modulo 𝑝𝑝𝑎𝑑𝑖𝑐𝑝𝑟𝑒𝑐(𝑥)) if its valuation 𝑣 is nonnegative; if
not, returns the fraction 𝑝𝑣 centerlift(𝑥𝑝−𝑣); in particular, rational reconstruction is not attempted. Use
bestappr for this.

For backward compatibility, centerlift(x,'v) is allowed as an alias for lift(x,'v).

characteristic()

Returns the characteristic of the base ring over which 𝑥 is defined (as defined by t_INTMOD and t_FFELT compo-
nents). The function raises an exception if incompatible primes arise from t_FFELT and t_PADIC components.

? characteristic(Mod(1,24)*x + Mod(1,18)*y)
%1 = 6

charconj(chi)
Let cyc represent a finite abelian group by its elementary divisors, i.e. (𝑑𝑗) represents

∑︀
𝑗<=𝑘 Z/𝑑𝑗Z with

𝑑𝑘|...‖𝑑1; any object which has a .cyc method is also allowed, e.g. the output of znstar or bnrinit. A char-
acter on this group is given by a row vector 𝜒 = [𝑎1, ..., 𝑎𝑛] such that 𝜒(

∏︀
𝑔
𝑛𝑗

𝑗 ) = exp(2𝜋𝑖
∑︀
𝑎𝑗𝑛𝑗/𝑑𝑗), where

𝑔𝑗 denotes the generator (of order 𝑑𝑗) of the 𝑗-th cyclic component.

This function returns the conjugate character.

? cyc = [15,5]; chi = [1,1];
? charconj(cyc, chi)
%2 = [14, 4]
? bnf = bnfinit(x^2+23);
? bnf.cyc
%4 = [3]
? charconj(bnf, [1])
%5 = [2]

For Dirichlet characters (when cyc is znstar(q,1)), characters in Conrey representation are available, see
dirichletchar (in the PARI manual) or ??character:

? G = znstar(8, 1); \\ (Z/8Z)^*
? charorder(G, 3) \\ Conrey label
%2 = 2
? chi = znconreylog(G, 3);

(continues on next page)
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? charorder(G, chi) \\ Conrey logarithm
%4 = 2

chardiv(a, b)
Let cyc represent a finite abelian group by its elementary divisors, i.e. (𝑑𝑗) represents

∑︀
𝑗<=𝑘 Z/𝑑𝑗Z with

𝑑𝑘|...‖𝑑1; any object which has a .cyc method is also allowed, e.g. the output of znstar or bnrinit. A char-
acter on this group is given by a row vector 𝑎 = [𝑎1, ..., 𝑎𝑛] such that 𝜒(

∏︀
𝑔
𝑛𝑗

𝑗 ) = exp(2𝜋𝑖
∑︀
𝑎𝑗𝑛𝑗/𝑑𝑗), where

𝑔𝑗 denotes the generator (of order 𝑑𝑗) of the 𝑗-th cyclic component.

Given two characters 𝑎 and 𝑏, return the character 𝑎/𝑏 = 𝑎𝑏.

? cyc = [15,5]; a = [1,1]; b = [2,4];
? chardiv(cyc, a,b)
%2 = [14, 2]
? bnf = bnfinit(x^2+23);
? bnf.cyc
%4 = [3]
? chardiv(bnf, [1], [2])
%5 = [2]

For Dirichlet characters on (Z/𝑁Z)*, additional representations are available (Conrey labels, Conrey logarithm),
see dirichletchar (in the PARI manual) or ??character. If the two characters are in the same format, the
result is given in the same format, otherwise a Conrey logarithm is used.

? G = znstar(100, 1);
? G.cyc
%2 = [20, 2]
? a = [10, 1]; \\ usual representation for characters
? b = 7; \\ Conrey label;
? c = znconreylog(G, 11); \\ Conrey log
? chardiv(G, b,b)
%6 = 1 \\ Conrey label
? chardiv(G, a,b)
%7 = [0, 5]~ \\ Conrey log
? chardiv(G, a,c)
%7 = [0, 14]~ \\ Conrey log

chareval(chi, x, z)
Let 𝐺 be an abelian group structure affording a discrete logarithm method, e.g 𝐺 = 𝑧𝑛𝑠𝑡𝑎𝑟(𝑁, 1) for (Z/𝑁Z)*

or a bnr structure, let 𝑥 be an element of 𝐺 and let chi be a character of 𝐺 (see the note below for details). This
function returns the value of chi at 𝑥.

Note on characters. Let𝐾 be some field. If𝐺 is an abelian group, let 𝜒 : 𝐺→ 𝐾* be a character of finite order
and let 𝑜 be a multiple of the character order such that 𝜒(𝑛) = 𝜁𝑐(𝑛) for some fixed 𝜁 ∈ 𝐾* of multiplicative
order 𝑜 and a unique morphism 𝑐 : 𝐺→ (Z/𝑜Z,+). Our usual convention is to write

𝐺 = (Z/𝑜1Z)𝑔1 ⊕ ...⊕ (Z/𝑜𝑑Z)𝑔𝑑

for some generators (𝑔𝑖) of respective order 𝑑𝑖, where the group has exponent 𝑜 := 𝑙𝑐𝑚𝑖𝑜𝑖. Since 𝜁𝑜 = 1, the
vector (𝑐𝑖) in

∏︀
(Z/𝑜𝑖Z) defines a character 𝜒 on 𝐺 via 𝜒(𝑔𝑖) = 𝜁𝑐𝑖(𝑜/𝑜𝑖) for all 𝑖. Classical Dirichlet characters

have values in 𝐾 = C and we can take 𝜁 = exp(2𝑖𝜋/𝑜).

Note on Dirichlet characters. In the special case where bid is attached to𝐺 = (Z/𝑞Z)* (as per G = znstar(q,
1)), the Dirichlet character chi can be written in one of the usual 3 formats: a t_VEC in terms of bid.gen as
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above, a t_COL in terms of the Conrey generators, or a t_INT (Conrey label); see dirichletchar (in the PARI
manual) or ??character.

The character value is encoded as follows, depending on the optional argument 𝑧:

• If 𝑧 is omitted: return the rational number 𝑐(𝑥)/𝑜 for 𝑥 coprime to 𝑞, where we normalize 0 <= 𝑐(𝑥) < 𝑜.
If 𝑥 can not be mapped to the group (e.g. 𝑥 is not coprime to the conductor of a Dirichlet or Hecke character)
we return the sentinel value −1.

• If 𝑧 is an integer 𝑜, then we assume that 𝑜 is a multiple of the character order and we return the integer 𝑐(𝑥)
when 𝑥 belongs to the group, and the sentinel value −1 otherwise.

• 𝑧 can be of the form [𝑧𝑒𝑡𝑎, 𝑜], where zeta is an 𝑜-th root of 1 and 𝑜 is a multiple of the character order. We
return 𝜁𝑐(𝑥) if 𝑥 belongs to the group, and the sentinel value 0 otherwise. (Note that this coincides with the
usual extension of Dirichlet characters to Z, or of Hecke characters to general ideals.)

• Finally, 𝑧 can be of the form [𝑣𝑧𝑒𝑡𝑎, 𝑜], where vzeta is a vector of powers 𝜁0, ..., 𝜁𝑜−1 of some 𝑜-th root of
1 and 𝑜 is a multiple of the character order. As above, we return 𝜁𝑐(𝑥) after a table lookup. Or the sentinel
value 0.

chargalois(ORD)

Let cyc represent a finite abelian group by its elementary divisors (any object which has a .cyc method is also
allowed, i.e. the output of znstar or bnrinit). Return a list of representatives for the Galois orbits of complex
characters of 𝐺. If ORD is present, select characters depending on their orders:

• if ORD is a t_INT, restrict to orders less than this bound;

• if ORD is a t_VEC or t_VECSMALL, restrict to orders in the list.

? G = znstar(96);
? #chargalois(G) \\ 16 orbits of characters mod 96
%2 = 16
? #chargalois(G,4) \\ order less than 4
%3 = 12
? chargalois(G,[1,4]) \\ order 1 or 4; 5 orbits
%4 = [[0, 0, 0], [2, 0, 0], [2, 1, 0], [2, 0, 1], [2, 1, 1]]

Given a character𝜒, of order𝑛 (charorder(G,chi)), the elements in its orbit are the 𝜑(𝑛) characters𝜒𝑖, (𝑖, 𝑛) =
1.

charker(chi)
Let cyc represent a finite abelian group by its elementary divisors, i.e. (𝑑𝑗) represents

∑︀
𝑗<=𝑘 Z/𝑑𝑗Z with

𝑑𝑘|...‖𝑑1; any object which has a .cyc method is also allowed, e.g. the output of znstar or bnrinit. A char-
acter on this group is given by a row vector 𝜒 = [𝑎1, ..., 𝑎𝑛] such that 𝜒(

∏︀
𝑔
𝑛𝑗

𝑗 ) = exp(2𝜋𝑖
∑︀
𝑎𝑗𝑛𝑗/𝑑𝑗), where

𝑔𝑗 denotes the generator (of order 𝑑𝑗) of the 𝑗-th cyclic component.

This function returns the kernel of 𝜒, as a matrix 𝐾 in HNF which is a left-divisor of matdiagonal(d). Its
columns express in terms of the 𝑔𝑗 the generators of the subgroup. The determinant of 𝐾 is the kernel index.

? cyc = [15,5]; chi = [1,1];
? charker(cyc, chi)
%2 =
[15 12]

[ 0 1]

? bnf = bnfinit(x^2+23);
? bnf.cyc

(continues on next page)
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%4 = [3]
? charker(bnf, [1])
%5 =
[3]

Note that for Dirichlet characters (when cyc is znstar(q, 1)), characters in Conrey representation are available,
see dirichletchar (in the PARI manual) or ??character.

? G = znstar(8, 1); \\ (Z/8Z)^*
? charker(G, 1) \\ Conrey label for trivial character
%2 =
[1 0]

[0 1]

charmul(a, b)
Let cyc represent a finite abelian group by its elementary divisors, i.e. (𝑑𝑗) represents

∑︀
𝑗<=𝑘 Z/𝑑𝑗Z with

𝑑𝑘|...‖𝑑1; any object which has a .cyc method is also allowed, e.g. the output of znstar or bnrinit. A char-
acter on this group is given by a row vector 𝑎 = [𝑎1, ..., 𝑎𝑛] such that 𝜒(

∏︀
𝑔
𝑛𝑗

𝑗 ) = exp(2𝜋𝑖
∑︀
𝑎𝑗𝑛𝑗/𝑑𝑗), where

𝑔𝑗 denotes the generator (of order 𝑑𝑗) of the 𝑗-th cyclic component.

Given two characters 𝑎 and 𝑏, return the product character 𝑎𝑏.

? cyc = [15,5]; a = [1,1]; b = [2,4];
? charmul(cyc, a,b)
%2 = [3, 0]
? bnf = bnfinit(x^2+23);
? bnf.cyc
%4 = [3]
? charmul(bnf, [1], [2])
%5 = [0]

For Dirichlet characters on (Z/𝑁Z)*, additional representations are available (Conrey labels, Conrey logarithm),
see dirichletchar (in the PARI manual) or ??character. If the two characters are in the same format, their
product is given in the same format, otherwise a Conrey logarithm is used.

? G = znstar(100, 1);
? G.cyc
%2 = [20, 2]
? a = [10, 1]; \\ usual representation for characters
? b = 7; \\ Conrey label;
? c = znconreylog(G, 11); \\ Conrey log
? charmul(G, b,b)
%6 = 49 \\ Conrey label
? charmul(G, a,b)
%7 = [0, 15]~ \\ Conrey log
? charmul(G, a,c)
%7 = [0, 6]~ \\ Conrey log

charorder(chi)
Let cyc represent a finite abelian group by its elementary divisors, i.e. (𝑑𝑗) represents

∑︀
𝑗<=𝑘 Z/𝑑𝑗Z with

𝑑𝑘|...‖𝑑1; any object which has a .cyc method is also allowed, e.g. the output of znstar or bnrinit. A char-
acter on this group is given by a row vector 𝜒 = [𝑎1, ..., 𝑎𝑛] such that 𝜒(

∏︀
𝑔
𝑛𝑗

𝑗 ) = exp(2𝜋𝑖
∑︀
𝑎𝑗𝑛𝑗/𝑑𝑗), where

𝑔𝑗 denotes the generator (of order 𝑑𝑗) of the 𝑗-th cyclic component.
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This function returns the order of the character chi.

? cyc = [15,5]; chi = [1,1];
? charorder(cyc, chi)
%2 = 15
? bnf = bnfinit(x^2+23);
? bnf.cyc
%4 = [3]
? charorder(bnf, [1])
%5 = 3

For Dirichlet characters (when cyc is znstar(q, 1)), characters in Conrey representation are available, see
dirichletchar (in the PARI manual) or ??character:

? G = znstar(100, 1); \\ (Z/100Z)^*
? charorder(G, 7) \\ Conrey label
%2 = 4

charpoly(v, flag)
characteristic polynomial of𝐴 with respect to the variable 𝑣, i.e. determinant of 𝑣 * 𝐼−𝐴 if𝐴 is a square matrix.

? charpoly([1,2;3,4]);
%1 = x^2 - 5*x - 2
? charpoly([1,2;3,4],, 't)
%2 = t^2 - 5*t - 2

If 𝐴 is not a square matrix, the function returns the characteristic polynomial of the map “multiplication by 𝐴” if
𝐴 is a scalar:

? charpoly(Mod(x+2, x^3-2))
%1 = x^3 - 6*x^2 + 12*x - 10
? charpoly(I)
%2 = x^2 + 1
? charpoly(quadgen(5))
%3 = x^2 - x - 1
? charpoly(ffgen(ffinit(2,4)))
%4 = Mod(1, 2)*x^4 + Mod(1, 2)*x^3 + Mod(1, 2)*x^2 + Mod(1, 2)*x + Mod(1, 2)

The value of 𝑓𝑙𝑎𝑔 is only significant for matrices, and we advise to stick to the default value. Let 𝑛 be the
dimension of 𝐴.

If 𝑓𝑙𝑎𝑔 = 0, same method (Le Verrier’s) as for computing the adjoint matrix, i.e. using the traces of the powers
of 𝐴. Assumes that 𝑛! is invertible; uses 𝑂(𝑛4) scalar operations.

If 𝑓𝑙𝑎𝑔 = 1, uses Lagrange interpolation which is usually the slowest method. Assumes that 𝑛! is invertible; uses
𝑂(𝑛4) scalar operations.

If 𝑓𝑙𝑎𝑔 = 2, uses the Hessenberg form. Assumes that the base ring is a field. Uses 𝑂(𝑛3) scalar operations, but
suffers from coefficient explosion unless the base field is finite or R.

If 𝑓𝑙𝑎𝑔 = 3, uses Berkowitz’s division free algorithm, valid over any ring (commutative, with unit). Uses 𝑂(𝑛4)
scalar operations.

If 𝑓𝑙𝑎𝑔 = 4, 𝑥 must be integral. Uses a modular algorithm: Hessenberg form for various small primes, then
Chinese remainders.

If 𝑓𝑙𝑎𝑔 = 5 (default), uses the “best” method given 𝑥. This means we use Berkowitz unless the base ring is Z
(use 𝑓𝑙𝑎𝑔 = 4) or a field where coefficient explosion does not occur, e.g. a finite field or the reals (use 𝑓𝑙𝑎𝑔 = 2).
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charpow(a, n)
Let cyc represent a finite abelian group by its elementary divisors, i.e. (𝑑𝑗) represents

∑︀
𝑗<=𝑘 Z/𝑑𝑗Z with

𝑑𝑘|...‖𝑑1; any object which has a .cyc method is also allowed, e.g. the output of znstar or bnrinit. A char-
acter on this group is given by a row vector 𝑎 = [𝑎1, ..., 𝑎𝑛] such that 𝜒(

∏︀
𝑔
𝑛𝑗

𝑗 ) = exp(2𝜋𝑖
∑︀
𝑎𝑗𝑛𝑗/𝑑𝑗), where

𝑔𝑗 denotes the generator (of order 𝑑𝑗) of the 𝑗-th cyclic component.

Given 𝑛 ∈ Z and a character 𝑎, return the character 𝑎𝑛.

? cyc = [15,5]; a = [1,1];
? charpow(cyc, a, 3)
%2 = [3, 3]
? charpow(cyc, a, 5)
%2 = [5, 0]
? bnf = bnfinit(x^2+23);
? bnf.cyc
%4 = [3]
? charpow(bnf, [1], 3)
%5 = [0]

For Dirichlet characters on (Z/𝑁Z)*, additional representations are available (Conrey labels, Conrey logarithm),
see dirichletchar (in the PARI manual) or ??character and the output uses the same format as the input.

? G = znstar(100, 1);
? G.cyc
%2 = [20, 2]
? a = [10, 1]; \\ standard representation for characters
? b = 7; \\ Conrey label;
? c = znconreylog(G, 11); \\ Conrey log
? charpow(G, a,3)
%6 = [10, 1] \\ standard representation
? charpow(G, b,3)
%7 = 43 \\ Conrey label
? charpow(G, c,3)
%8 = [1, 8]~ \\ Conrey log

chinese(y)
If 𝑥 and 𝑦 are both intmods or both polmods, creates (with the same type) a 𝑧 in the same residue class as 𝑥 and
in the same residue class as 𝑦, if it is possible.

? chinese(Mod(1,2), Mod(2,3))
%1 = Mod(5, 6)
? chinese(Mod(x,x^2-1), Mod(x+1,x^2+1))
%2 = Mod(-1/2*x^2 + x + 1/2, x^4 - 1)

This function also allows vector and matrix arguments, in which case the operation is recursively applied to each
component of the vector or matrix.

? chinese([Mod(1,2),Mod(1,3)], [Mod(1,5),Mod(2,7)])
%3 = [Mod(1, 10), Mod(16, 21)]

For polynomial arguments in the same variable, the function is applied to each coefficient; if the polynomials have
different degrees, the high degree terms are copied verbatim in the result, as if the missing high degree terms in
the polynomial of lowest degree had been Mod(0,1). Since the latter behavior is usually not the desired one, we
propose to convert the polynomials to vectors of the same length first:
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? P = x+1; Q = x^2+2*x+1;
? chinese(P*Mod(1,2), Q*Mod(1,3))
%4 = Mod(1, 3)*x^2 + Mod(5, 6)*x + Mod(3, 6)
? chinese(Vec(P,3)*Mod(1,2), Vec(Q,3)*Mod(1,3))
%5 = [Mod(1, 6), Mod(5, 6), Mod(4, 6)]
? Pol(%)
%6 = Mod(1, 6)*x^2 + Mod(5, 6)*x + Mod(4, 6)

If 𝑦 is omitted, and 𝑥 is a vector, chinese is applied recursively to the components of 𝑥, yielding a residue
belonging to the same class as all components of 𝑥.

Finally 𝑐ℎ𝑖𝑛𝑒𝑠𝑒(𝑥, 𝑥) = 𝑥 regardless of the type of 𝑥; this allows vector arguments to contain other data, so long
as they are identical in both vectors.

cmp(y)
Gives the result of a comparison between arbitrary objects 𝑥 and 𝑦 (as −1, 0 or 1). The underlying order relation
is transitive, the function returns 0 if and only if 𝑥 === 𝑦. It has no mathematical meaning but satisfies the
following properties when comparing entries of the same type:

• two t_INT s compare as usual (i.e. cmp(𝑥, 𝑦) < 0 if and only if 𝑥 < 𝑦);

• two t_VECSMALL s of the same length compare lexicographically;

• two t_STR s compare lexicographically.

In case all components are equal up to the smallest length of the operands, the more complex is considered to be
larger. More precisely, the longest is the largest; when lengths are equal, we have matrix > vector > scalar. For
example:

? cmp(1, 2)
%1 = -1
? cmp(2, 1)
%2 = 1
? cmp(1, 1.0) \\ note that 1 == 1.0, but (1===1.0) is false.
%3 = -1
? cmp(x + Pi, [])
%4 = -1

This function is mostly useful to handle sorted lists or vectors of arbitrary objects. For instance, if 𝑣 is a vector,
the construction vecsort(v, cmp) is equivalent to Set(v).

component(n)
Extracts the 𝑛− 𝑡ℎ-component of 𝑥. This is to be understood as follows: every PARI type has one or two initial
code words. The components are counted, starting at 1, after these code words. In particular if 𝑥 is a vector, this is
indeed the 𝑛− 𝑡ℎ-component of 𝑥, if 𝑥 is a matrix, the 𝑛− 𝑡ℎ column, if 𝑥 is a polynomial, the 𝑛− 𝑡ℎ coefficient
(i.e. of degree 𝑛− 1), and for power series, the 𝑛− 𝑡ℎ significant coefficient.

For polynomials and power series, one should rather use polcoeff, and for vectors and matrices, the [] operator.
Namely, if 𝑥 is a vector, then x[n] represents the 𝑛− 𝑡ℎ component of 𝑥. If 𝑥 is a matrix, x[m,n] represents the
coefficient of row m and column n of the matrix, x[m,] represents the𝑚− 𝑡ℎ row of 𝑥, and x[,n] represents the
𝑛− 𝑡ℎ column of 𝑥.

Using of this function requires detailed knowledge of the structure of the different PARI types, and thus it should
almost never be used directly. Some useful exceptions:

? x = 3 + O(3^5);
? component(x, 2)

(continues on next page)
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%2 = 81 \\ p^(p-adic accuracy)
? component(x, 1)
%3 = 3 \\ p
? q = Qfb(1,2,3);
? component(q, 1)
%5 = 1

concat(y)
Concatenation of 𝑥 and 𝑦. If 𝑥 or 𝑦 is not a vector or matrix, it is considered as a one-dimensional vector. All
types are allowed for 𝑥 and 𝑦, but the sizes must be compatible. Note that matrices are concatenated horizontally,
i.e. the number of rows stays the same. Using transpositions, one can concatenate them vertically, but it is often
simpler to use matconcat.

? x = matid(2); y = 2*matid(2);
? concat(x,y)
%2 =
[1 0 2 0]

[0 1 0 2]
? concat(x~,y~)~
%3 =
[1 0]

[0 1]

[2 0]

[0 2]
? matconcat([x;y])
%4 =
[1 0]

[0 1]

[2 0]

[0 2]

To concatenate vectors sideways (i.e. to obtain a two-row or two-column matrix), use Mat instead, or matconcat:

? x = [1,2];
? y = [3,4];
? concat(x,y)
%3 = [1, 2, 3, 4]

? Mat([x,y]~)
%4 =
[1 2]

[3 4]
? matconcat([x;y])
%5 =

(continues on next page)
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[1 2]

[3 4]

Concatenating a row vector to a matrix having the same number of columns will add the row to the matrix (top
row if the vector is 𝑥, i.e. comes first, and bottom row otherwise).

The empty matrix [;] is considered to have a number of rows compatible with any operation, in particular
concatenation. (Note that this is not the case for empty vectors [ ] or [ ]~.)

If 𝑦 is omitted, 𝑥 has to be a row vector or a list, in which case its elements are concatenated, from left to right,
using the above rules.

? concat([1,2], [3,4])
%1 = [1, 2, 3, 4]
? a = [[1,2]~, [3,4]~]; concat(a)
%2 =
[1 3]

[2 4]

? concat([1,2; 3,4], [5,6]~)
%3 =
[1 2 5]

[3 4 6]
? concat([%, [7,8]~, [1,2,3,4]])
%5 =
[1 2 5 7]

[3 4 6 8]

[1 2 3 4]

conj()

Conjugate of 𝑥. The meaning of this is clear, except that for real quadratic numbers, it means conjugation in
the real quadratic field. This function has no effect on integers, reals, intmods, fractions or 𝑝-adics. The only
forbidden type is polmod (see conjvec for this).

conjvec(precision)
Conjugate vector representation of 𝑧. If 𝑧 is a polmod, equal to Mod(𝑎, 𝑇 ), this gives a vector of length 𝑑𝑒𝑔𝑟𝑒𝑒(𝑇 )
containing:

• the complex embeddings of 𝑧 if 𝑇 has rational coefficients, i.e. the 𝑎(𝑟[𝑖]) where 𝑟 = 𝑝𝑜𝑙𝑟𝑜𝑜𝑡𝑠(𝑇 );

• the conjugates of 𝑧 if 𝑇 has some intmod coefficients;

if 𝑧 is a finite field element, the result is the vector of conjugates [𝑧, 𝑧𝑝, 𝑧𝑝
2

, ..., 𝑧𝑝
𝑛−1

] where 𝑛 = 𝑑𝑒𝑔𝑟𝑒𝑒(𝑇 ).

If 𝑧 is an integer or a rational number, the result is 𝑧. If 𝑧 is a (row or column) vector, the result is a matrix whose
columns are the conjugate vectors of the individual elements of 𝑧.

content(D)

Computes the gcd of all the coefficients of 𝑥, when this gcd makes sense. This is the natural definition if 𝑥 is a
polynomial (and by extension a power series) or a vector/matrix. This is in general a weaker notion than the ideal
generated by the coefficients:
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? content(2*x+y)
%1 = 1 \\ = gcd(2,y) over Q[y]

If 𝑥 is a scalar, this simply returns the absolute value of 𝑥 if 𝑥 is rational (t_INT or t_FRAC), and either 1 (inexact
input) or 𝑥 (exact input) otherwise; the result should be identical to gcd(x, 0).

The content of a rational function is the ratio of the contents of the numerator and the denominator. In recursive
structures, if a matrix or vector coefficient 𝑥 appears, the gcd is taken not with 𝑥, but with its content:

? content([ [2], 4*matid(3) ])
%1 = 2

The content of a t_VECSMALL is computed assuming the entries are signed integers.

The optional argument 𝐷 allows to control over which ring we compute and get a more predictable behaviour:

• 1: we only consider the underlying Q-structure and the denominator is a (positive) rational number

• a simple variable, say 'x: all entries are considered as rational functions in 𝐾(𝑥) for some field 𝐾 and the
content is an element of 𝐾.

? f = x + 1/y + 1/2;
? content(f) \\ as a t_POL in x
%2 = 1/(2*y)
? content(f, 1) \\ Q-content
%3 = 1/2
? content(f, y) \\ as a rational function in y
%4 = 1/2
? g = x^2*y + y^2*x;
? content(g, x)
%6 = y
? content(g, y)
%7 = x

contfrac(b, nmax)
Returns the row vector whose components are the partial quotients of the continued fraction expansion of 𝑥. In
other words, a result [𝑎0, ..., 𝑎𝑛] means that 𝑥 𝑎0 + 1/(𝑎1 + ...+ 1/𝑎𝑛). The output is normalized so that 𝑎𝑛! = 1
(unless we also have 𝑛 = 0).

The number of partial quotients 𝑛 + 1 is limited by nmax. If nmax is omitted, the expansion stops at the last
significant partial quotient.

? \p19
realprecision = 19 significant digits
? contfrac(Pi)
%1 = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2]
? contfrac(Pi,, 3) \\ n = 2
%2 = [3, 7, 15]

𝑥 can also be a rational function or a power series.

If a vector 𝑏 is supplied, the numerators are equal to the coefficients of 𝑏, instead of all equal to 1 as above; more
precisely, 𝑥 (1/𝑏0)(𝑎0 + 𝑏1/(𝑎1 + ...+ 𝑏𝑛/𝑎𝑛)); for a numerical continued fraction (𝑥 real), the 𝑎𝑖 are integers,
as large as possible; if 𝑥 is a rational function, they are polynomials with deg 𝑎𝑖 = deg 𝑏𝑖 + 1. The length of
the result is then equal to the length of 𝑏, unless the next partial quotient cannot be reliably computed, in which
case the expansion stops. This happens when a partial remainder is equal to zero (or too small compared to the
available significant digits for 𝑥 a t_REAL).
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A direct implementation of the numerical continued fraction contfrac(x,b) described above would be

\\ "greedy" generalized continued fraction
cf(x, b) =
{ my( a= vector(#b), t );

x *= b[1];
for (i = 1, #b,
a[i] = floor(x);
t = x - a[i]; if (!t || i == #b, break);
x = b[i+1] / t;
); a;
}

There is some degree of freedom when choosing the 𝑎𝑖; the program above can easily be modified to derive
variants of the standard algorithm. In the same vein, although no builtin function implements the related Engel
expansion (a special kind of Egyptian fraction decomposition: 𝑥 = 1/𝑎1 + 1/(𝑎1𝑎2) + ... ), it can be obtained
as follows:

\\ n terms of the Engel expansion of x
engel(x, n = 10) =
{ my( u = x, a = vector(n) );
for (k = 1, n,
a[k] = ceil(1/u);
u = u*a[k] - 1;
if (!u, break);
); a
}

Obsolete hack. (don’t use this): if 𝑏 is an integer, nmax is ignored and the command is understood as
contfrac(:math:`x,, b)`.

contfraceval(t, lim)

Given a continued fraction CF output by contfracinit, evaluate the first lim terms of the continued fraction at
t (all terms if lim is negative or omitted; if positive, lim must be less than or equal to the length of CF.

contfracinit(lim)

Given 𝑀 representing the power series 𝑆 =
∑︀

𝑛>=0𝑀 [𝑛+ 1]𝑧𝑛, transform it into a continued fraction in Euler
form, using the quotient-difference algorithm; restrict to 𝑛 <= 𝑙𝑖𝑚 if latter is nonnegative. 𝑀 can be a vector,
a power series, a polynomial; if the limiting parameter lim is present, a rational function is also allowed (and
converted to a power series of that accuracy).

The result is a 2-component vector [𝐴,𝐵] such that 𝑆 = 𝑀 [1]/(1 +𝐴[1]𝑧+𝐵[1]𝑧2/(1 +𝐴[2]𝑧+𝐵[2]𝑧2/(1 +
...1/(1 +𝐴[𝑙𝑖𝑚/2]𝑧)))). Does not work if any coefficient of 𝑀 vanishes, nor for series for which certain partial
denominators vanish.

contfracpnqn(n)
When 𝑥 is a vector or a one-row matrix, 𝑥 is considered as the list of partial quotients [𝑎0, 𝑎1, ..., 𝑎𝑛] of a rational
number, and the result is the 2 by 2 matrix [𝑝𝑛, 𝑝𝑛−1; 𝑞𝑛, 𝑞𝑛−1] in the standard notation of continued fractions, so
𝑝𝑛/𝑞𝑛 = 𝑎0 + 1/(𝑎1 + ...+ 1/𝑎𝑛). If 𝑥 is a matrix with two rows [𝑏0, 𝑏1, ..., 𝑏𝑛] and [𝑎0, 𝑎1, ..., 𝑎𝑛], this is then
considered as a generalized continued fraction and we have similarly 𝑝𝑛/𝑞𝑛 = (1/𝑏0)(𝑎0+𝑏1/(𝑎1+...+𝑏𝑛/𝑎𝑛)).
Note that in this case one usually has 𝑏0 = 1.

If 𝑛 >= 0 is present, returns all convergents from 𝑝0/𝑞0 up to 𝑝𝑛/𝑞𝑛. (All convergents if 𝑥 is too small to
compute the 𝑛+ 1 requested convergents.)
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? a = contfrac(Pi,10)
%1 = [3, 7, 15, 1, 292, 1, 1, 1, 3]
? allpnqn(x) = contfracpnqn(x,#x) \\ all convergents
? allpnqn(a)
%3 =
[3 22 333 355 103993 104348 208341 312689 1146408]

[1 7 106 113 33102 33215 66317 99532 364913]
? contfracpnqn(a) \\ last two convergents
%4 =
[1146408 312689]

[ 364913 99532]

? contfracpnqn(a,3) \\ first three convergents
%5 =
[3 22 333 355]

[1 7 106 113]

core(flag)
If 𝑛 is an integer written as 𝑛 = 𝑑𝑓2 with 𝑑 squarefree, returns 𝑑. If 𝑓𝑙𝑎𝑔 is nonzero, returns the two-element row
vector [𝑑, 𝑓 ]. By convention, we write 0 = 0𝑥12, so core(0, 1) returns [0, 1].

coredisc(flag)
A fundamental discriminant is an integer of the form 𝑡 = 1𝑚𝑜𝑑4 or 4𝑡 = 8, 12𝑚𝑜𝑑16, with 𝑡 squarefree (i.e. 1
or the discriminant of a quadratic number field). Given a nonzero integer 𝑛, this routine returns the (unique)
fundamental discriminant 𝑑 such that 𝑛 = 𝑑𝑓2, 𝑓 a positive rational number. If 𝑓𝑙𝑎𝑔 is nonzero, returns the
two-element row vector [𝑑, 𝑓 ]. If 𝑛 is congruent to 0 or 1 modulo 4, 𝑓 is an integer, and a half-integer otherwise.

By convention, coredisc(0, 1)) returns [0, 1].

Note that quaddisc(𝑛) returns the same value as coredisc(𝑛), and also works with rational inputs 𝑛 ∈ Q*.

cos(precision)
Cosine of 𝑥. Note that, for real 𝑥, cosine and sine can be obtained simultaneously as

cs(x) = my(z = exp(I*x)); [real(z), imag(z)];

and for general complex 𝑥 as

cs2(x) = my(z = exp(I*x), u = 1/z); [(z+u)/2, (z-u)/2];

Note that the latter function suffers from catastrophic cancellation when 𝑧2 1.

cosh(precision)
Hyperbolic cosine of 𝑥.

cotan(precision)
Cotangent of 𝑥.

cotanh(precision)
Hyperbolic cotangent of 𝑥.
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denominator(D)

Denominator of 𝑓 . The meaning of this is clear when 𝑓 is a rational number or function. If 𝑓 is an integer or a
polynomial, it is treated as a rational number or function, respectively, and the result is equal to 1. For polynomials,
you probably want to use

denominator( content(f) )

instead. As for modular objects, t_INTMOD and t_PADIC have denominator 1, and the denominator of a t_POLMOD
is the denominator of its lift.

If 𝑓 is a recursive structure, for instance a vector or matrix, the lcm of the denominators of its components (a
common denominator) is computed. This also applies for t_COMPLEX s and t_QUAD s.

Warning. Multivariate objects are created according to variable priorities, with possibly surprising side effects
(𝑥/𝑦 is a polynomial, but 𝑦/𝑥 is a rational function). See priority (in the PARI manual).

The optional argument 𝐷 allows to control over which ring we compute the denominator and get a more pre-
dictable behaviour:

• 1: we only consider the underlying Q-structure and the denominator is a (positive) rational integer

• a simple variable, say 'x: all entries as rational functions in𝐾(𝑥) and the denominator is a polynomial in 𝑥.

? f = x + 1/y + 1/2;
? denominator(f) \\ a t_POL in x
%2 = 1
? denominator(f, 1) \\ Q-denominator
%3 = 2
? denominator(f, x) \\ as a t_POL in x, seen above
%4 = 1
? denominator(f, y) \\ as a rational function in y
%5 = 2*y

deriv(v)
Derivative of 𝑥 with respect to the main variable if 𝑣 is omitted, and with respect to 𝑣 otherwise. The derivative
of a scalar type is zero, and the derivative of a vector or matrix is done componentwise. One can use 𝑥′ as a
shortcut if the derivative is with respect to the main variable of 𝑥; and also use 𝑥”, etc., for multiple derivatives
altough derivn is often preferrable.

By definition, the main variable of a t_POLMOD is the main variable among the coefficients from its two poly-
nomial components (representative and modulus); in other words, assuming a polmod represents an element of
𝑅[𝑋]/(𝑇 (𝑋)), the variable 𝑋 is a mute variable and the derivative is taken with respect to the main variable
used in the base ring 𝑅.

? f = (x/y)^5;
? deriv(f)
%2 = 5/y^5*x^4
? f'
%3 = 5/y^5*x^4
? deriv(f, 'x) \\ same since 'x is the main variable
%4 = 5/y^5*x^4
? deriv(f, 'y)
%5 = -5/y^6*x^5

This function also operates on closures, in which case the variable must be omitted. It returns a closure performing
a numerical differentiation as per derivnum:
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? f(x) = x^2;
? g = deriv(f)
? g(1)
%3 = 2.0000000000000000000000000000000000000
? f(x) = sin(exp(x));
? deriv(f)(0)
%5 = 0.54030230586813971740093660744297660373
? cos(1)
%6 = 0.54030230586813971740093660744297660373

derivn(n, v)
𝑛-th derivative of 𝑥 with respect to the main variable if 𝑣 is omitted, and with respect to 𝑣 otherwise; the integer
𝑛 must be nonnegative. The derivative of a scalar type is zero, and the derivative of a vector or matrix is done
componentwise. One can use 𝑥′, 𝑥”, etc., as a shortcut if the derivative is with respect to the main variable of 𝑥.

By definition, the main variable of a t_POLMOD is the main variable among the coefficients from its two poly-
nomial components (representative and modulus); in other words, assuming a polmod represents an element of
𝑅[𝑋]/(𝑇 (𝑋)), the variable 𝑋 is a mute variable and the derivative is taken with respect to the main variable
used in the base ring 𝑅.

? f = (x/y)^5;
? derivn(f, 2)
%2 = 20/y^5*x^3
? f''
%3 = 20/y^5*x^3
? derivn(f, 2, 'x) \\ same since 'x is the main variable
%4 = 20/y^5*x^3
? derivn(f, 2, 'y)
%5 = 30/y^7*x^5

This function also operates on closures, in which case the variable must be omitted. It returns a closure performing
a numerical differentiation as per derivnum:

? f(x) = x^10;
? g = derivn(f, 5)
? g(1)
%3 = 30240.000000000000000000000000000000000

? derivn(zeta, 2)(0)
%4 = -2.0063564559085848512101000267299604382
? zeta''(0)
%5 = -2.0063564559085848512101000267299604382

diffop(v, d, n)
Let 𝑣 be a vector of variables, and 𝑑 a vector of the same length, return the image of 𝑥 by the 𝑛-power (1 if n is
not given) of the differential operator 𝐷 that assumes the value d[i] on the variable v[i]. The value of 𝐷 on a
scalar type is zero, and𝐷 applies componentwise to a vector or matrix. When applied to a t_POLMOD, if no value
is provided for the variable of the modulus, such value is derived using the implicit function theorem.

Examples. This function can be used to differentiate formal expressions: if 𝐸 = exp(𝑋2) then we have 𝐸′ =
2 *𝑋 * 𝐸. We derivate 𝑋 * 𝑒𝑥𝑝(𝑋2) as follows:

? diffop(E*X,[X,E],[1,2*X*E])
%1 = (2*X^2 + 1)*E
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Let Sin and Cos be two function such that 𝑆𝑖𝑛2 +𝐶𝑜𝑠2 = 1 and 𝐶𝑜𝑠′ = −𝑆𝑖𝑛. We can differentiate 𝑆𝑖𝑛/𝐶𝑜𝑠
as follows, PARI inferring the value of 𝑆𝑖𝑛′ from the equation:

? diffop(Mod('Sin/'Cos,'Sin^2+'Cos^2-1),['Cos],[-'Sin])
%1 = Mod(1/Cos^2, Sin^2 + (Cos^2 - 1))

Compute the Bell polynomials (both complete and partial) via the Faa di Bruno formula:

Bell(k,n=-1)=
{ my(x, v, dv, var = i->eval(Str("X",i)));

v = vector(k, i, if (i==1, 'E, var(i-1)));
dv = vector(k, i, if (i==1, 'X*var(1)*'E, var(i)));
x = diffop('E,v,dv,k) / 'E;
if (n < 0, subst(x,'X,1), polcoef(x,n,'X));
}

digits(b)
Outputs the vector of the digits of ‖𝑥‖ in base 𝑏, where 𝑥 and 𝑏 are integers (𝑏 = 10 by default). For 𝑥 >= 1, the
number of digits is 𝑙𝑜𝑔𝑖𝑛𝑡(𝑥, 𝑏) + 1. See fromdigits for the reverse operation.

? digits(1230)
%1 = [1, 2, 3, 0]

? digits(10, 2) \\ base 2
%2 = [1, 0, 1, 0]

By convention, 0 has no digits:

? digits(0)
%3 = []

dilog(precision)
Principal branch of the dilogarithm of 𝑥, i.e. analytic continuation of the power series log2(𝑥) =

∑︀
𝑛>=1 𝑥

𝑛/𝑛2.

dirdiv(y)
𝑥 and 𝑦 being vectors of perhaps different lengths but with 𝑦[1]! = 0 considered as Dirichlet series, computes the
quotient of 𝑥 by 𝑦, again as a vector.

dirmul(y)
𝑥 and 𝑦 being vectors of perhaps different lengths representing the Dirichlet series

∑︀
𝑛 𝑥𝑛𝑛

−𝑠 and
∑︀

𝑛 𝑦𝑛𝑛
−𝑠,

computes the product of 𝑥 by 𝑦, again as a vector.

? dirmul(vector(10,n,1), vector(10,n,moebius(n)))
%1 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

The product length is the minimum of # 𝑥 * 𝑣(𝑦) and # 𝑦 * 𝑣(𝑥), where 𝑣(𝑥) is the index of the first nonzero
coefficient.

? dirmul([0,1], [0,1]);
%2 = [0, 0, 0, 1]

dirpowerssum(x, precision)
For positive integer 𝑛 and complex number 𝑥, return the sum 1𝑥 + 2𝑥 + ... + 𝑛𝑥. This is the same as
vecsum(dirpowers(n,x)), but faster and using only 𝑂(

√
𝑛) memory instead of 𝑂(𝑛).
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? dirpowers(5, 2)
%1 = [1, 4, 9, 16, 25]
? vecsum(%)
%2 = 55
? dirpowerssum(5, 2)
%3 = 55
? \p200
? dirpowerssum(10^7, 1/2 + I * sqrt(3));
time = 29,884 ms.
? vecsum(dirpowers(10^7, 1/2 + I * sqrt(3)))
time = 41,894 ms.

The penultimate command works with default stack size, the last one requires a stacksize of at least 5GB.

When 𝑛 <= 0, the function returns 0.

dirzetak(b)
Gives as a vector the first 𝑏 coefficients of the Dedekind zeta function of the number field 𝑛𝑓 considered as a
Dirichlet series.

divisors(flag)
Creates a row vector whose components are the divisors of 𝑥. The factorization of 𝑥 (as output by factor) can
be used instead. If 𝑓𝑙𝑎𝑔 = 1, return pairs [𝑑, 𝑓𝑎𝑐𝑡𝑜𝑟(𝑑)].

By definition, these divisors are the products of the irreducible factors of 𝑛, as produced by factor(n), raised to
appropriate powers (no negative exponent may occur in the factorization). If 𝑛 is an integer, they are the positive
divisors, in increasing order.

? divisors(12)
%1 = [1, 2, 3, 4, 6, 12]
? divisors(12, 1) \\ include their factorization
%2 = [[1, matrix(0,2)], [2, Mat([2, 1])], [3, Mat([3, 1])],
[4, Mat([2, 2])], [6, [2, 1; 3, 1]], [12, [2, 2; 3, 1]]]

? divisors(x^4 + 2*x^3 + x^2) \\ also works for polynomials
%3 = [1, x, x^2, x + 1, x^2 + x, x^3 + x^2, x^2 + 2*x + 1,
x^3 + 2*x^2 + x, x^4 + 2*x^3 + x^2]

This function requires a lot of memory if 𝑥 has many divisors. The following idiom runs through all divisors
using very little memory, in no particular order this time:

F = factor(x); P = F[,1]; E = F[,2];
forvec(e = vectorv(#E,i,[0,E[i]]), d = factorback(P,e); ...)

If the factorization of 𝑑 is also desired, then [𝑃, 𝑒] almost provides it but not quite: 𝑒 may contain 0 exponents,
which are not allowed in factorizations. These must be sieved out as in:

tofact(P,E) =
my(v = select(x->x, E, 1)); Mat([vecextract(P,v), vecextract(E,v)]);

? tofact([2,3,5,7]~, [4,0,2,0]~)
%4 =
[2 4]

[5 2]

494 Chapter 2. The Gen class wrapping PARI’s GEN type



CyPari2 Documentation, Release 2.1.3

We can then run the above loop with tofact(P,e) instead of, or together with, factorback.

divisorslenstra(r, s)
Given three integers 𝑁 > 𝑠 > 𝑟 >= 0 such that (𝑟, 𝑠) = 1 and 𝑠3 > 𝑁 , find all divisors 𝑑 of 𝑁 such that
𝑑 = 𝑟(𝑚𝑜𝑑𝑠). There are at most 11 such divisors (Lenstra).

? N = 245784; r = 19; s = 65 ;
? divisorslenstra(N, r, s)
%2 = [19, 84, 539, 1254, 3724, 245784]
? [ d | d <- divisors(N), d % s == r]
%3 = [19, 84, 539, 1254, 3724, 245784]

When the preconditions are not met, the result is undefined:

? N = 4484075232; r = 7; s = 1303; s^3 > N
%4 = 0
? divisorslenstra(N, r, s)
? [ d | d <- divisors(N), d % s == r ]
%6 = [7, 2613, 9128, 19552, 264516, 3407352, 344928864]

(Divisors were missing but 𝑠3 < 𝑁 .)

divrem(y, v)
Creates a column vector with two components, the first being the Euclidean quotient (:math:`x \:math:y`), the
second the Euclidean remainder (:math:`x - (𝑥\:math:y)*:math:y`), of the division of 𝑥 by 𝑦. This avoids the
need to do two divisions if one needs both the quotient and the remainder. If 𝑣 is present, and 𝑥, 𝑦 are multivariate
polynomials, divide with respect to the variable 𝑣.

Beware that divrem(:math:`x,:math:y)[2]` is in general not the same as :math:`x % 𝑦; no GP operator corre-
sponds to it:

? divrem(1/2, 3)[2]
%1 = 1/2
? (1/2) % 3
%2 = 2
? divrem(Mod(2,9), 3)[2]
*** at top-level: divrem(Mod(2,9),3)[2
*** ^--------------------
*** forbidden division t_INTMOD \ t_INT.
? Mod(2,9) % 6
%3 = Mod(2,3)

eint1(n, precision)
Exponential integral

∫︀ 𝑜

𝑥
𝑜(𝑒−𝑡)/(𝑡)𝑑𝑡 = 𝑖𝑛𝑐𝑔𝑎𝑚(0, 𝑥), where the latter expression extends the function definition

from real 𝑥 > 0 to all complex 𝑥! = 0.

If 𝑛 is present, we must have 𝑥 > 0; the function returns the 𝑛-dimensional vector [𝑒𝑖𝑛𝑡1(𝑥), ..., 𝑒𝑖𝑛𝑡1(𝑛𝑥)].
Contrary to other transcendental functions, and to the default case (𝑛 omitted), the values are correct up to a
bounded absolute, rather than relative, error 10−𝑛, where 𝑛 is precision(𝑥) if 𝑥 is a t_REAL and defaults to
realprecision otherwise. (In the most important application, to the computation of 𝐿-functions via approxi-
mate functional equations, those values appear as weights in long sums and small individual relative errors are
less useful than controlling the absolute error.) This is faster than repeatedly calling eint1(:math:`i * x)`, but
less precise.
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ellE(precision)
Complete elliptic integral of the second kind

𝐸(𝑘) =

∫︁ 𝜋/2

0

(1 − 𝑘2 sin(𝑡)2)1/2𝑑𝑡

for the complex parameter 𝑘 using the agm.

ellK(precision)
Complete elliptic integral of the first kind

𝐾(𝑘) =

∫︁ 𝜋/2

0

(1 − 𝑘2 sin(𝑡)2)−1/2𝑑𝑡

for the complex parameter 𝑘 using the agm.

ellL1(r, precision)
Returns the value at 𝑠 = 1 of the derivative of order 𝑟 of the 𝐿-function of the elliptic curve 𝐸.

? E = ellinit("11a1"); \\ order of vanishing is 0
? ellL1(E)
%2 = 0.2538418608559106843377589233
? E = ellinit("389a1"); \\ order of vanishing is 2
? ellL1(E)
%4 = -5.384067311837218089235032414 E-29
? ellL1(E, 1)
%5 = 0
? ellL1(E, 2)
%6 = 1.518633000576853540460385214

The main use of this function, after computing at low accuracy the order of vanishing using ellanalyticrank,
is to compute the leading term at high accuracy to check (or use) the Birch and Swinnerton-Dyer conjecture:

? \p18
realprecision = 18 significant digits
? E = ellinit("5077a1"); ellanalyticrank(E)
time = 8 ms.
%1 = [3, 10.3910994007158041]
? \p200
realprecision = 202 significant digits (200 digits displayed)
? ellL1(E, 3)
time = 104 ms.
%3 = 10.3910994007158041387518505103609170697263563756570092797[...]

elladd(z1, z2)
Sum of the points 𝑧1 and 𝑧2 on the elliptic curve corresponding to 𝐸.

ellak(n)
Computes the coefficient 𝑎𝑛 of the 𝐿-function of the elliptic curve 𝐸/Q, i.e. coefficients of a newform of weight
2 by the modularity theorem (Taniyama-Shimura-Weil conjecture). 𝐸 must be an ell structure over Q as output
by ellinit. 𝐸 must be given by an integral model, not necessarily minimal, although a minimal model will
make the function faster.

? E = ellinit([1,-1,0,4,3]);
? ellak(E, 10)

(continues on next page)
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%2 = -3
? e = ellchangecurve(E, [1/5,0,0,0]); \\ made not minimal at 5
? ellak(e, 10) \\ wasteful but works
%3 = -3
? E = ellminimalmodel(e); \\ now minimal
? ellak(E, 5)
%5 = -3

If the model is not minimal at a number of bad primes, then the function will be slower on those 𝑛 divisible by
the bad primes. The speed should be comparable for other 𝑛:

? for(i=1,10^6, ellak(E,5))
time = 699 ms.
? for(i=1,10^6, ellak(e,5)) \\ 5 is bad, markedly slower
time = 1,079 ms.

? for(i=1,10^5,ellak(E,5*i))
time = 1,477 ms.
? for(i=1,10^5,ellak(e,5*i)) \\ still slower but not so much on average
time = 1,569 ms.

ellan(n)
Computes the vector of the first 𝑛 Fourier coefficients 𝑎𝑘 corresponding to the elliptic curve 𝐸 defined over a
number field. If 𝐸 is defined over Q, the curve may be given by an arbitrary model, not necessarily minimal,
although a minimal model will make the function faster. Over a more general number field, the model must be
locally minimal at all primes above 2 and 3.

ellanalyticrank(eps, precision)
Returns the order of vanishing at 𝑠 = 1 of the 𝐿-function of the elliptic curve 𝐸 and the value of the first nonzero
derivative. To determine this order, it is assumed that any value less than eps is zero. If eps is omitted, 2−𝑏/2 is
used, where 𝑏 is the current bit precision.

? E = ellinit("11a1"); \\ rank 0
? ellanalyticrank(E)
%2 = [0, 0.2538418608559106843377589233]
? E = ellinit("37a1"); \\ rank 1
? ellanalyticrank(E)
%4 = [1, 0.3059997738340523018204836835]
? E = ellinit("389a1"); \\ rank 2
? ellanalyticrank(E)
%6 = [2, 1.518633000576853540460385214]
? E = ellinit("5077a1"); \\ rank 3
? ellanalyticrank(E)
%8 = [3, 10.39109940071580413875185035]

ellap(p)
Let E be an ell structure as output by ellinit, attached to an elliptic curve 𝐸/𝐾. If the field 𝐾 = F𝑞 is finite,
return the trace of Frobenius 𝑡, defined by the equation #𝐸(F𝑞) = 𝑞 + 1 − 𝑡.

For other fields of definition and 𝑝 defining a finite residue field F𝑞 , return the trace of Frobenius for the reduction
of 𝐸: the argument 𝑝 is best left omitted if 𝐾 = Qℓ (else we must have 𝑝 = ℓ) and must be a prime number
(𝐾 = Q) or prime ideal (𝐾 a general number field) with residue field F𝑞 otherwise. The equation need not be
minimal or even integral at 𝑝; of course, a minimal model will be more efficient.
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For a number field𝐾, the trace of Frobenius is the 𝑎𝑝 coefficient in the Euler product defining the curve 𝐿-series,
whence the function name:

𝐿(𝐸/𝐾, 𝑠) =
∏︁
𝑏𝑎𝑑𝑝

(1 − 𝑎𝑝(𝑁𝑝)−𝑠)−1
∏︁

𝑔𝑜𝑜𝑑𝑝

(1 − 𝑎𝑝(𝑁𝑝)−𝑠 + (𝑁𝑝)1−2𝑠)−1.

When the characteristic of the finite field is large, the availability of the seadata package will speed up the
computation.

? E = ellinit([0,1]); \\ y^2 = x^3 + 0.x + 1, defined over Q
? ellap(E, 7) \\ 7 necessary here
%2 = -4 \\ #E(F_7) = 7+1-(-4) = 12
? ellcard(E, 7)
%3 = 12 \\ OK

? E = ellinit([0,1], 11); \\ defined over F_11
? ellap(E) \\ no need to repeat 11
%4 = 0
? ellap(E, 11) \\ ... but it also works
%5 = 0
? ellgroup(E, 13) \\ ouch, inconsistent input!
*** at top-level: ellap(E,13)
*** ^-----------
*** ellap: inconsistent moduli in Rg_to_Fp:
11
13
? a = ffgen(ffinit(11,3), 'a); \\ defines F_q := F_{11^3}
? E = ellinit([a+1,a]); \\ y^2 = x^3 + (a+1)x + a, defined over F_q
? ellap(E)
%8 = -3

If the curve is defined over a more general number field than Q, the maximal ideal 𝑝 must be explicitly given in
idealprimedec format. There is no assumption of local minimality at 𝑝.

? K = nfinit(a^2+1); E = ellinit([1+a,0,1,0,0], K);
? fa = idealfactor(K, E.disc)
%2 =
[ [5, [-2, 1]~, 1, 1, [2, -1; 1, 2]] 1]

[[13, [5, 1]~, 1, 1, [-5, -1; 1, -5]] 2]
? ellap(E, fa[1,1])
%3 = -1 \\ nonsplit multiplicative reduction
? ellap(E, fa[2,1])
%4 = 1 \\ split multiplicative reduction
? P17 = idealprimedec(K,17)[1];
? ellap(E, P17)
%6 = 6 \\ good reduction
? E2 = ellchangecurve(E, [17,0,0,0]);
? ellap(E2, P17)
%8 = 6 \\ same, starting from a nonmiminal model

? P3 = idealprimedec(K,3)[1];
? ellap(E, P3) \\ OK: E is minimal at P3
%10 = -2
? E3 = ellchangecurve(E, [3,0,0,0]);

(continues on next page)
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? ellap(E3, P3) \\ not integral at P3
*** at top-level: ellap(E3,P3)
*** ^------------
*** ellap: impossible inverse in Rg_to_ff: Mod(0, 3).

Algorithms used. If 𝐸/F𝑞 has CM by a principal imaginary quadratic order we use a fast explicit formula
(involving essentially Kronecker symbols and Cornacchia’s algorithm), in 𝑂(log 𝑞)2 bit operations. Otherwise,
we use Shanks-Mestre’s baby-step/giant-step method, which runs in time 𝑂(𝑞1/4) using 𝑂(𝑞1/4) storage, hence
becomes unreasonable when 𝑞 has about 30 digits. Above this range, the SEA algorithm becomes available,
heuristically in 𝑂(log 𝑞)4, and primes of the order of 200 digits become feasible. In small characteristic we use
Mestre’s (p = 2), Kohel’s (p = 3,5,7,13), Satoh-Harley (all in 𝑂(𝑝2𝑛2)) or Kedlaya’s (in 𝑂(𝑝𝑛3)) algorithms.

ellbil(z1, z2, precision)
Deprecated alias for ellheight(E,P,Q).

ellbsd(precision)
The object 𝐸 being an elliptic curve over a number field, returns a real number 𝑐 such that the BSD conjecture
predicts that 𝐿(𝑟)

𝐸 (1)/𝑟! = 𝑐𝑅𝑆 where 𝑟 is the rank, 𝑅 the regulator and 𝑆 the cardinal of the Tate-Shafarevich
group.

? e = ellinit([0,-1,1,-10,-20]); \\ rank 0
? ellbsd(e)
%2 = 0.25384186085591068433775892335090946105
? lfun(e,1)
%3 = 0.25384186085591068433775892335090946104
? e = ellinit([0,0,1,-1,0]); \\ rank 1
? P = ellheegner(e);
? ellbsd(e)*ellheight(e,P)
%6 = 0.30599977383405230182048368332167647445
? lfun(e,1,1)
%7 = 0.30599977383405230182048368332167647445
? e = ellinit([1+a,0,1,0,0],nfinit(a^2+1)); \\ rank 0
? ellbsd(e)
%9 = 0.42521832235345764503001271536611593310
? lfun(e,1)
%10 = 0.42521832235345764503001271536611593309

ellcard(p)
Let E be an ell structure as output by ellinit, attached to an elliptic curve 𝐸/𝐾. If 𝐾 = F𝑞 is finite, return
the order of the group 𝐸(F𝑞).

? E = ellinit([-3,1], 5); ellcard(E)
%1 = 7
? t = ffgen(3^5,'t); E = ellinit([t,t^2+1]); ellcard(E)
%2 = 217

For other fields of definition and 𝑝 defining a finite residue field F𝑞 , return the order of the reduction of 𝐸: the
argument 𝑝 is best left omitted if 𝐾 = Qℓ (else we must have 𝑝 = ℓ) and must be a prime number (𝐾 = Q)
or prime ideal (𝐾 a general number field) with residue field F𝑞 otherwise. The equation need not be minimal
or even integral at 𝑝; of course, a minimal model will be more efficient. The function considers the group of
nonsingular points of the reduction of a minimal model of the curve at 𝑝, so also makes sense when the curve has
bad reduction.
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? E = ellinit([-3,1]);
? factor(E.disc)
%2 =
[2 4]

[3 4]
? ellcard(E, 5) \\ as above !
%3 = 7
? ellcard(E, 2) \\ additive reduction
%4 = 2

When the characteristic of the finite field is large, the availability of the seadata package will speed the compu-
tation. See also ellap for the list of implemented algorithms.

ellchangecurve(v)
Changes the data for the elliptic curve 𝐸 by changing the coordinates using the vector v = [u,r,s,t], i.e. if 𝑥′
and 𝑦′ are the new coordinates, then 𝑥 = 𝑢2𝑥′ + 𝑟, 𝑦 = 𝑢3𝑦′ + 𝑠𝑢2𝑥′ + 𝑡. 𝐸 must be an ell structure as output
by ellinit. The special case 𝑣 = 1 is also used instead of [1, 0, 0, 0] to denote the trivial coordinate change.

ellchangepoint(v)
Changes the coordinates of the point or vector of points 𝑥 using the vector v = [u,r,s,t], i.e. if 𝑥′ and 𝑦′ are
the new coordinates, then 𝑥 = 𝑢2𝑥′ + 𝑟, 𝑦 = 𝑢3𝑦′ + 𝑠𝑢2𝑥′ + 𝑡 (see also ellchangecurve).

? E0 = ellinit([1,1]); P0 = [0,1]; v = [1,2,3,4];
? E = ellchangecurve(E0, v);
? P = ellchangepoint(P0,v)
%3 = [-2, 3]
? ellisoncurve(E, P)
%4 = 1
? ellchangepointinv(P,v)
%5 = [0, 1]

ellchangepointinv(v)
Changes the coordinates of the point or vector of points 𝑥 using the inverse of the isomorphism attached to v
= [u,r,s,t], i.e. if 𝑥′ and 𝑦′ are the old coordinates, then 𝑥 = 𝑢2𝑥′ + 𝑟, 𝑦 = 𝑢3𝑦′ + 𝑠𝑢2𝑥′ + 𝑡 (inverse of
ellchangepoint).

? E0 = ellinit([1,1]); P0 = [0,1]; v = [1,2,3,4];
? E = ellchangecurve(E0, v);
? P = ellchangepoint(P0,v)
%3 = [-2, 3]
? ellisoncurve(E, P)
%4 = 1
? ellchangepointinv(P,v)
%5 = [0, 1] \\ we get back P0

ellconvertname()

Converts an elliptic curve name, as found in the elldata database, from a string to a triplet
[𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟, 𝑖𝑠𝑜𝑔𝑒𝑛𝑦𝑐𝑙𝑎𝑠𝑠, 𝑖𝑛𝑑𝑒𝑥]. It will also convert a triplet back to a curve name. Examples:

? ellconvertname("123b1")
%1 = [123, 1, 1]
? ellconvertname(%)
%2 = "123b1"
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elldivpol(n, v)
𝑛-division polynomial 𝑓𝑛 for the curve 𝐸 in the variable 𝑣. In standard notation, for any affine point 𝑃 = (𝑋,𝑌 )
on the curve and any integer 𝑛 >= 0, we have

[𝑛]𝑃 = (𝜑𝑛(𝑃 )𝜓𝑛(𝑃 ) : 𝜔𝑛(𝑃 ) : 𝜓𝑛(𝑃 )3)

for some polynomials 𝜑𝑛, 𝜔𝑛, 𝜓𝑛 in Z[𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6][𝑋,𝑌 ]. We have 𝑓𝑛(𝑋) = 𝜓𝑛(𝑋) for 𝑛 odd, and
𝑓𝑛(𝑋) = 𝜓𝑛(𝑋,𝑌 )(2𝑌 + 𝑎1𝑋 + 𝑎3) for 𝑛 even. We have

𝑓0 = 0, 𝑓1 = 1, 𝑓2 = 4𝑋3 + 𝑏2𝑋
2 + 2𝑏4𝑋 + 𝑏6, 𝑓3 = 3𝑋4 + 𝑏2𝑋

3 + 3𝑏4𝑋
2 + 3𝑏6𝑋 + 𝑏8,

𝑓4 = 𝑓2(2𝑋6 + 𝑏2𝑋
5 + 5𝑏4𝑋

4 + 10𝑏6𝑋
3 + 10𝑏8𝑋

2 + (𝑏2𝑏8 − 𝑏4𝑏6)𝑋 + (𝑏8𝑏4 − 𝑏26)), ...

When 𝑛 is odd, the roots of 𝑓𝑛 are the𝑋-coordinates of the affine points in the 𝑛-torsion subgroup 𝐸[𝑛]; when 𝑛
is even, the roots of 𝑓𝑛 are the 𝑋-coordinates of the affine points in 𝐸[𝑛] 𝐸[2] when 𝑛 > 2, resp. in 𝐸[2] when
𝑛 = 2. For 𝑛 < 0, we define 𝑓𝑛 := −𝑓−𝑛.

elleisnum(k, flag, precision)
𝑘 being an even positive integer, computes the numerical value of the Eisenstein series of weight 𝑘 at the lattice
𝑤, as given by ellperiods, namely

(2𝑖𝜋/𝜔2)𝑘(1 + 2/𝜁(1 − 𝑘)
∑︁
𝑛>=1

𝑛𝑘−1𝑞𝑛/(1 − 𝑞𝑛)),

where 𝑞 = exp(2𝑖𝜋𝜏) and 𝜏 := 𝜔1/𝜔2 belongs to the complex upper half-plane. It is also possible to directly
input 𝑤 = [𝜔1, 𝜔2], or an elliptic curve 𝐸 as given by ellinit.

? w = ellperiods([1,I]);
? elleisnum(w, 4)
%2 = 2268.8726415508062275167367584190557607
? elleisnum(w, 6)
%3 = -3.977978632282564763 E-33
? E = ellinit([1, 0]);
? elleisnum(E, 4)
%5 = -48.000000000000000000000000000000000000

When flag is nonzero and 𝑘 = 4 or 6, returns the elliptic invariants 𝑔2 or 𝑔3, such that

𝑦2 = 4𝑥3 − 𝑔2𝑥− 𝑔3

is a Weierstrass equation for 𝐸.

? g2 = elleisnum(E, 4, 1)
%6 = -4.0000000000000000000000000000000000000
? g3 = elleisnum(E, 6, 1) \\ ~ 0
%7 = 0.E-114 - 3.909948178422242682 E-57*I

elleta(precision)
Returns the quasi-periods [𝜂1, 𝜂2] attached to the lattice basis 𝑤 = [𝜔1, 𝜔2]. Alternatively, w can be an el-
liptic curve 𝐸 as output by ellinit, in which case, the quasi periods attached to the period lattice basis
:math:`E.omega` (namely, :math:`E.eta`) are returned.

? elleta([1, I])
%1 = [3.141592653589793238462643383, 9.424777960769379715387930149*I]
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ellformaldifferential(serprec, n)
Let 𝜔 := 𝑑𝑥/(2𝑦 + 𝑎1𝑥 + 𝑎3) be the invariant differential form attached to the model 𝐸 of some elliptic curve
(ellinit form), and 𝜂 := 𝑥(𝑡)𝜔. Return 𝑛 terms (seriesprecision by default) of 𝑓(𝑡), 𝑔(𝑡) two power series
in the formal parameter 𝑡 = −𝑥/𝑦 such that 𝜔 = 𝑓(𝑡)𝑑𝑡, 𝜂 = 𝑔(𝑡)𝑑𝑡:

𝑓(𝑡) = 1 + 𝑎1𝑡+ (𝑎21 + 𝑎2)𝑡2 + ..., 𝑔(𝑡) = 𝑡−2 + ...

? E = ellinit([-1,1/4]); [f,g] = ellformaldifferential(E,7,'t);
? f
%2 = 1 - 2*t^4 + 3/4*t^6 + O(t^7)
? g
%3 = t^-2 - t^2 + 1/2*t^4 + O(t^5)

ellformalexp(serprec, n)
The elliptic formal exponential Exp attached to 𝐸 is the isomorphism from the formal additive law to the formal
group of 𝐸. It is normalized so as to be the inverse of the elliptic logarithm (see ellformallog): 𝐸𝑥𝑝𝑜𝐿 = Id.
Return 𝑛 terms of this power series:

? E=ellinit([-1,1/4]); Exp = ellformalexp(E,10,'z)
%1 = z + 2/5*z^5 - 3/28*z^7 + 2/15*z^9 + O(z^11)
? L = ellformallog(E,10,'t);
? subst(Exp,z,L)
%3 = t + O(t^11)

ellformallog(serprec, n)
The formal elliptic logarithm is a series 𝐿 in 𝑡𝐾[[𝑡]] such that 𝑑𝐿 = 𝜔 = 𝑑𝑥/(2𝑦 + 𝑎1𝑥 + 𝑎3), the canonical
invariant differential attached to the model𝐸. It gives an isomorphism from the formal group of𝐸 to the additive
formal group.

? E = ellinit([-1,1/4]); L = ellformallog(E, 9, 't)
%1 = t - 2/5*t^5 + 3/28*t^7 + 2/3*t^9 + O(t^10)
? [f,g] = ellformaldifferential(E,8,'t);
? L' - f
%3 = O(t^8)

ellformalpoint(serprec, n)
If 𝐸 is an elliptic curve, return the coordinates 𝑥(𝑡), 𝑦(𝑡) in the formal group of the elliptic curve 𝐸 in the formal
parameter 𝑡 = −𝑥/𝑦 at 𝑜𝑜:

𝑥 = 𝑡−2 − 𝑎1𝑡
−1 − 𝑎2 − 𝑎3𝑡+ ...

𝑦 = −𝑡−3 − 𝑎1𝑡
−2 − 𝑎2𝑡

−1 − 𝑎3 + ...

Return 𝑛 terms (seriesprecision by default) of these two power series, whose coefficients are in
Z[𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6].

? E = ellinit([0,0,1,-1,0]); [x,y] = ellformalpoint(E,8,'t);
? x
%2 = t^-2 - t + t^2 - t^4 + 2*t^5 + O(t^6)
? y
%3 = -t^-3 + 1 - t + t^3 - 2*t^4 + O(t^5)
? E = ellinit([0,1/2]); ellformalpoint(E,7)
%4 = [x^-2 - 1/2*x^4 + O(x^5), -x^-3 + 1/2*x^3 + O(x^4)]
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ellformalw(serprec, n)
Return the formal power series 𝑤 attached to the elliptic curve 𝐸, in the variable 𝑡:

𝑤(𝑡) = 𝑡3(1 + 𝑎1𝑡+ (𝑎2 + 𝑎21)𝑡2 + ...+𝑂(𝑡𝑛)),

which is the formal expansion of −1/𝑦 in the formal parameter 𝑡 := −𝑥/𝑦 at 𝑜𝑜 (take 𝑛 = 𝑠𝑒𝑟𝑖𝑒𝑠𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 if 𝑛
is omitted). The coefficients of 𝑤 belong to Z[𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6].

? E=ellinit([3,2,-4,-2,5]); ellformalw(E, 5, 't)
%1 = t^3 + 3*t^4 + 11*t^5 + 35*t^6 + 101*t^7 + O(t^8)

ellfromeqn()

Given a genus 1 plane curve, defined by the affine equation 𝑓(𝑥, 𝑦) = 0, return the coefficients [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6]
of a Weierstrass equation for its Jacobian. This allows to recover a Weierstrass model for an elliptic curve given by
a general plane cubic or by a binary quartic or biquadratic model. The function implements the 𝑓 : −−− > 𝑓*

formulae of Artin, Tate and Villegas (Advances in Math. 198 (2005), pp. 366–382).

In the example below, the function is used to convert between twisted Edwards coordinates and Weierstrass co-
ordinates.

? e = ellfromeqn(a*x^2+y^2 - (1+d*x^2*y^2))
%1 = [0, -a - d, 0, -4*d*a, 4*d*a^2 + 4*d^2*a]
? E = ellinit(ellfromeqn(y^2-x^2 - 1 +(121665/121666*x^2*y^2)),2^255-19);
? isprime(ellcard(E) / 8)
%3 = 1

The elliptic curve attached to the sum of two cubes is given by

? ellfromeqn(x^3+y^3 - a)
%1 = [0, 0, -9*a, 0, -27*a^2]

Congruent number problem. Let 𝑛 be an integer, if 𝑎2 + 𝑏2 = 𝑐2 and 𝑎𝑏 = 2𝑛, then by substituting 𝑏 by 2𝑛/𝑎
in the first equation, we get ((𝑎2 + (2𝑛/𝑎)2) − 𝑐2)𝑎2 = 0. We set 𝑥 = 𝑎, 𝑦 = 𝑎𝑐.

? En = ellfromeqn((x^2 + (2*n/x)^2 - (y/x)^2)*x^2)
%1 = [0, 0, 0, -16*n^2, 0]

For example 23 is congruent since the curve has a point of infinite order, namely:

? ellheegner( ellinit(subst(En, n, 23)) )
%2 = [168100/289, 68053440/4913]

ellfromj()

Returns the coefficients [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6] of a fixed elliptic curve with 𝑗-invariant 𝑗.

ellgenerators()

If 𝐸 is an elliptic curve over the rationals, return a Z-basis of the free part of the Mordell-Weil group attached
to 𝐸. This relies on the elldata database being installed and referencing the curve, and so is only available for
curves over Z of small conductors. If 𝐸 is an elliptic curve over a finite field F𝑞 as output by ellinit, return a
minimal set of generators for the group 𝐸(F𝑞).

Caution. When the group is not cyclic, of shape Z/𝑑1Z𝑥Z/𝑑2Z with 𝑑2‖𝑑1, the points [𝑃,𝑄] returned by
ellgenerators need not have order 𝑑1 and 𝑑2: it is true that 𝑃 has order 𝑑1, but we only know that𝑄 is a generator
of 𝐸(F𝑞)/ < 𝑃 > and that the Weil pairing 𝑤(𝑃,𝑄) has order 𝑑2, see ??ellgroup. If you need generators
[𝑃,𝑅] with 𝑅 of order 𝑑2, find 𝑥 such that 𝑅 = 𝑄− [𝑥]𝑃 has order 𝑑2 by solving the discrete logarithm problem
[𝑑2]𝑄 = [𝑥]([𝑑2]𝑃 ) in a cyclic group of order 𝑑1/𝑑2. This will be very expensive if 𝑑1/𝑑2 has a large prime
factor.
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ellglobalred()

Let 𝐸 be an ell structure as output by ellinit attached to an elliptic curve defined over a number field. This
function calculates the arithmetic conductor and the global Tamagawa number 𝑐. The result [𝑁, 𝑣, 𝑐, 𝐹, 𝐿] is
slightly different if 𝐸 is defined over Q (domain 𝐷 = 1 in ellinit) or over a number field (domain 𝐷 is a
number field structure, including nfinit(x) representing Q !):

• 𝑁 is the arithmetic conductor of the curve,

• 𝑣 is an obsolete field, left in place for backward compatibility. If 𝐸 is defined over Q, 𝑣 gives the coordinate
change for 𝐸 to the standard minimal integral model (ellminimalmodel provides it in a cheaper way); if 𝐸
is defined over another number field, 𝑣 gives a coordinate change to an integral model (ellintegralmodel
provides it in a cheaper way).

• 𝑐 is the product of the local Tamagawa numbers 𝑐𝑝, a quantity which enters in the Birch and Swinnerton-Dyer
conjecture,

• 𝐹 is the factorization of 𝑁 ,

• 𝐿 is a vector, whose 𝑖-th entry contains the local data at the 𝑖-th prime ideal divisor of 𝑁 , i.e. L[i] =
elllocalred(E,F[i,1]). If𝐸 is defined overQ, the local coordinate change has been deleted and replaced
by a 0; if𝐸 is defined over another number field the local coordinate change to a local minimal model is given
relative to the integral model afforded by 𝑣 (so either start from an integral model so that 𝑣 be trivial, or apply
𝑣 first).

ellgroup(p, flag)
Let E be an ell structure as output by ellinit, attached to an elliptic curve𝐸/𝐾. We first describle the function
when the field 𝐾 = F𝑞 is finite, it computes the structure of the finite abelian group 𝐸(F𝑞):

• if 𝑓𝑙𝑎𝑔 = 0, return the structure [] (trivial group) or [𝑑1] (nontrivial cyclic group) or [𝑑1, 𝑑2] (noncyclic
group) of 𝐸(F𝑞) Z/𝑑1Z𝑥Z/𝑑2Z, with 𝑑2‖𝑑1.

• if 𝑓𝑙𝑎𝑔 = 1, return a triple [ℎ, 𝑐𝑦𝑐, 𝑔𝑒𝑛], where ℎ is the curve cardinality, cyc gives the group struc-
ture as a product of cyclic groups (as per 𝑓𝑙𝑎𝑔 = 0). More precisely, if 𝑑2 > 1, the output is
[𝑑1𝑑2, [𝑑1, 𝑑2], [𝑃,𝑄]] where 𝑃 is of order 𝑑1 and [𝑃,𝑄] generates the curve. Caution. It is not guaran-
teed that 𝑄 has order 𝑑2, which in the worst case requires an expensive discrete log computation. Only that
ellweilpairing(𝐸,𝑃,𝑄, 𝑑1) has order 𝑑2.

For other fields of definition and 𝑝 defining a finite residue field F𝑞 , return the structure of the reduction of 𝐸:
the argument 𝑝 is best left omitted if 𝐾 = Qℓ (else we must have 𝑝 = ℓ) and must be a prime number (𝐾 = Q)
or prime ideal (𝐾 a general number field) with residue field F𝑞 otherwise. The curve is allowed to have bad
reduction at 𝑝 and in this case we consider the (cyclic) group of nonsingular points for the reduction of a minimal
model at 𝑝.

If 𝑓𝑙𝑎𝑔 = 0, the equation not be minimal or even integral at 𝑝; of course, a minimal model will be more efficient.

If 𝑓𝑙𝑎𝑔 = 1, the requested generators depend on the model, which must then be minimal at 𝑝, otherwise an
exception is thrown. Use ellintegralmodel and/or ellocalred first to reduce to this case.

? E = ellinit([0,1]); \\ y^2 = x^3 + 0.x + 1, defined over Q
? ellgroup(E, 7)
%2 = [6, 2] \\ Z/6 x Z/2, noncyclic
? E = ellinit([0,1] * Mod(1,11)); \\ defined over F_11
? ellgroup(E) \\ no need to repeat 11
%4 = [12]
? ellgroup(E, 11) \\ ... but it also works
%5 = [12]
? ellgroup(E, 13) \\ ouch, inconsistent input!
*** at top-level: ellgroup(E,13)

(continues on next page)
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(continued from previous page)

*** ^--------------
*** ellgroup: inconsistent moduli in Rg_to_Fp:
11
13
? ellgroup(E, 7, 1)
%6 = [12, [6, 2], [[Mod(2, 7), Mod(4, 7)], [Mod(4, 7), Mod(4, 7)]]]

Let us now consider curves of bad reduction, in this case we return the structure of the (cyclic) group of nonsingular
points, satisfying #𝐸𝑛𝑠(F𝑝) = 𝑝− 𝑎𝑝:

? E = ellinit([0,5]);
? ellgroup(E, 5, 1)
%2 = [5, [5], [[Mod(4, 5), Mod(2, 5)]]]
? ellap(E, 5)
%3 = 0 \\ additive reduction at 5
? E = ellinit([0,-1,0,35,0]);
? ellgroup(E, 5, 1)
%5 = [4, [4], [[Mod(2, 5), Mod(2, 5)]]]
? ellap(E, 5)
%6 = 1 \\ split multiplicative reduction at 5
? ellgroup(E, 7, 1)
%7 = [8, [8], [[Mod(3, 7), Mod(5, 7)]]]
? ellap(E, 7)
%8 = -1 \\ nonsplit multiplicative reduction at 7

ellheegner()

Let𝐸 be an elliptic curve over the rationals, assumed to be of (analytic) rank 1. This returns a nontorsion rational
point on the curve, whose canonical height is equal to the product of the elliptic regulator by the analytic Sha.

This uses the Heegner point method, described in Cohen GTM 239; the complexity is proportional to the product
of the square root of the conductor and the height of the point (thus, it is preferable to apply it to strong Weil
curves).

? E = ellinit([-157^2,0]);
? u = ellheegner(E); print(u[1], "\n", u[2])
69648970982596494254458225/166136231668185267540804
538962435089604615078004307258785218335/67716816556077455999228495435742408
? ellheegner(ellinit([0,1])) \\ E has rank 0 !
*** at top-level: ellheegner(E=ellinit
*** ^--------------------
*** ellheegner: The curve has even analytic rank.

ellheight(P, Q, precision)
Let 𝐸 be an elliptic curve defined over 𝐾 = Q or a number field, as output by ellinit; it needs not be given by
a minimal model although the computation will be faster if it is.

• Without arguments 𝑃,𝑄, returns the Faltings height of the curve 𝐸 using Deligne normalization. For a
rational curve, the normalization is such that the function returns -(1/2)*log(ellminimalmodel(E).
area).

• If the argument 𝑃 ∈ 𝐸(𝐾) is present, returns the global Néron-Tate height ℎ(𝑃 ) of the point, using the
normalization in Cremona’s Algorithms for modular elliptic curves.

• If the argument𝑄 ∈ 𝐸(𝐾) is also present, computes the value of the bilinear form (ℎ(𝑃+𝑄)−ℎ(𝑃−𝑄))/4.
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ellheightmatrix(x, precision)
𝑥 being a vector of points, this function outputs the Gram matrix of 𝑥 with respect to the Néron-Tate height, in
other words, the (𝑖, 𝑗) component of the matrix is equal to ellbil(:math:`E,x[𝑖],x[𝑗])`. The rank of this ma-
trix, at least in some approximate sense, gives the rank of the set of points, and if 𝑥 is a basis of the Mordell-Weil
group of𝐸, its determinant is equal to the regulator of𝐸. Note our height normalization follows Cremona’s Algo-
rithms for modular elliptic curves: this matrix should be divided by 2 to be in accordance with, e.g., Silverman’s
normalizations.

ellidentify()

Look up the elliptic curve 𝐸, defined by an arbitrary model over Q, in the elldata database. Return [[N, M,
G], C] where𝑁 is the curve name in Cremona’s elliptic curve database,𝑀 is the minimal model,𝐺 is a Z-basis
of the free part of the Mordell-Weil group 𝐸(Q) and 𝐶 is the change of coordinates from 𝐸 to 𝑀 , suitable for
ellchangecurve.

ellinit(D, precision)
Initialize an ell structure, attached to the elliptic curve 𝐸. 𝐸 is either

• a 5-component vector [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6] defining the elliptic curve with Weierstrass equation

𝑌 2 + 𝑎1𝑋𝑌 + 𝑎3𝑌 = 𝑋3 + 𝑎2𝑋
2 + 𝑎4𝑋 + 𝑎6,

• a 2-component vector [𝑎4, 𝑎6] defining the elliptic curve with short Weierstrass equation

𝑌 2 = 𝑋3 + 𝑎4𝑋 + 𝑎6,

• a character string in Cremona’s notation, e.g. "11a1", in which case the curve is retrieved from the elldata
database if available.

The optional argument 𝐷 describes the domain over which the curve is defined:

• the t_INT 1 (default): the field of rational numbers Q.

• a t_INT 𝑝, where 𝑝 is a prime number: the prime finite field F𝑝.

• an t_INTMOD Mod(a, p), where 𝑝 is a prime number: the prime finite field F𝑝.

• a t_FFELT, as returned by ffgen: the corresponding finite field F𝑞 .

• a t_PADIC,𝑂(𝑝𝑛): the field Q𝑝, where 𝑝-adic quantities will be computed to a relative accuracy of 𝑛 digits.
We advise to input a model defined over Q for such curves. In any case, if you input an approximate model
with t_PADIC coefficients, it will be replaced by a lift to Q (an exact model “close” to the one that was input)
and all quantities will then be computed in terms of this lifted model, at the given accuracy.

• a t_REAL 𝑥: the field C of complex numbers, where floating point quantities are by default computed to a
relative accuracy of precision(𝑥). If no such argument is given, the value of realprecision at the time
ellinit is called will be used.

• a number field 𝐾, given by a nf or bnf structure; a bnf is required for ellminimalmodel.

• a prime ideal 𝑝, given by a prid structure; valid if 𝑥 is a curve defined over a number field𝐾 and the equation
is integral and minimal at 𝑝.

This argument 𝐷 is indicative: the curve coefficients are checked for compatibility, possibly changing 𝐷; for
instance if 𝐷 = 1 and an t_INTMOD is found. If inconsistencies are detected, an error is raised:

? ellinit([1 + O(5), 1], O(7));
*** at top-level: ellinit([1+O(5),1],O
*** ^--------------------
*** ellinit: inconsistent moduli in ellinit: 7 != 5
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If the curve coefficients are too general to fit any of the above domain categories, only basic operations, such as
point addition, will be supported later.

If the curve (seen over the domain 𝐷) is singular, fail and return an empty vector [].

? E = ellinit([0,0,0,0,1]); \\ y^2 = x^3 + 1, over Q
? E = ellinit([0,1]); \\ the same curve, short form
? E = ellinit("36a1"); \\ sill the same curve, Cremona's notations
? E = ellinit([0,1], 2) \\ over F2: singular curve
%4 = []
? E = ellinit(['a4,'a6] * Mod(1,5)); \\ over F_5[a4,a6], basic support !

The result of ellinit is an ell structure. It contains at least the following information in its components:

𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6, 𝑏2, 𝑏4, 𝑏6, 𝑏8, 𝑐4, 𝑐6,∆, 𝑗.

All are accessible via member functions. In particular, the discriminant is :math:`E.disc`, and the 𝑗-invariant is
:math:`E.j`.

? E = ellinit([a4, a6]);
? E.disc
%2 = -64*a4^3 - 432*a6^2
? E.j
%3 = -6912*a4^3/(-4*a4^3 - 27*a6^2)

Further components contain domain-specific data, which are in general dynamic: only computed when needed,
and then cached in the structure.

? E = ellinit([2,3], 10^60+7); \\ E over F_p, p large
? ellap(E)
time = 4,440 ms.
%2 = -1376268269510579884904540406082
? ellcard(E); \\ now instantaneous !
time = 0 ms.
? ellgenerators(E);
time = 5,965 ms.
? ellgenerators(E); \\ second time instantaneous
time = 0 ms.

See the description of member functions related to elliptic curves at the beginning of this section.

ellintegralmodel(v)
Let 𝐸 be an ell structure over a number field 𝐾 or Q𝑝. This function returns an integral model. If 𝑣 is
present, sets 𝑣 = [𝑢, 0, 0, 0] to the corresponding change of variable: the return value is identical to that of
ellchangecurve(E, v).

? e = ellinit([1/17,1/42]);
? e = ellintegralmodel(e,&v);
? e[1..5]
%3 = [0, 0, 0, 15287762448, 3154568630095008]
? v
%4 = [1/714, 0, 0, 0]

ellisdivisible(P, n, Q)

Given 𝐸/𝐾 a number field and 𝑃 in 𝐸(𝐾) return 1 if 𝑃 = [𝑛]𝑅 for some 𝑅 in 𝐸(𝐾) and set 𝑄 to one such 𝑅;
and return 0 otherwise. The integer 𝑛 >= 0 may be given as ellxn(E,n), if many points need to be tested.
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? K = nfinit(polcyclo(11,t));
? E = ellinit([0,-1,1,0,0], K);
? P = [0,0];
? ellorder(E,P)
%4 = 5
? ellisdivisible(E,P,5, &Q)
%5 = 1
? lift(Q)
%6 = [-t^7-t^6-t^5-t^4+1, -t^9-2*t^8-2*t^7-3*t^6-3*t^5-2*t^4-2*t^3-t^2-1]
? ellorder(E, Q)
%7 = 25

The algebraic complexity of the underlying algorithm is in 𝑂(𝑛4), so it is advisable to first factor 𝑛, then use a
chain of checks attached to the prime divisors of 𝑛: the function will do it itself unless 𝑛 is given in ellxn form.

ellisogeny(G, only_image, x, y)
Given an elliptic curve 𝐸, a finite subgroup 𝐺 of 𝐸 is given either as a generating point 𝑃 (for a cyclic 𝐺) or
as a polynomial whose roots vanish on the 𝑥-coordinates of the nonzero elements of 𝐺 (general case and more
efficient if available). This function returns the [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6] invariants of the quotient elliptic curve 𝐸/𝐺
and (if only_image is zero (the default)) a vector of rational functions [𝑓, 𝑔, ℎ] such that the isogeny 𝐸 → 𝐸/𝐺
is given by (𝑥, 𝑦) : −−− > (𝑓(𝑥)/ℎ(𝑥)2, 𝑔(𝑥, 𝑦)/ℎ(𝑥)3).

? E = ellinit([0,1]);
? elltors(E)
%2 = [6, [6], [[2, 3]]]
? ellisogeny(E, [2,3], 1) \\ Weierstrass model for E/<P>
%3 = [0, 0, 0, -135, -594]
? ellisogeny(E,[-1,0])
%4 = [[0,0,0,-15,22], [x^3+2*x^2+4*x+3, y*x^3+3*y*x^2-2*y, x+1]]

ellisogenyapply(g)
Given an isogeny of elliptic curves 𝑓 : 𝐸′ → 𝐸 (being the result of a call to ellisogeny), apply 𝑓 to 𝑔:

• if 𝑔 is a point 𝑃 in the domain of 𝑓 , return the image 𝑓(𝑃 );

• if 𝑔 : 𝐸” → 𝐸′ is a compatible isogeny, return the composite isogeny 𝑓𝑜𝑔 : 𝐸” → 𝐸.

? one = ffgen(101, 't)^0;
? E = ellinit([6, 53, 85, 32, 34] * one);
? P = [84, 71] * one;
? ellorder(E, P)
%4 = 5
? [F, f] = ellisogeny(E, P); \\ f: E->F = E/<P>
? ellisogenyapply(f, P)
%6 = [0]
? F = ellinit(F);
? Q = [89, 44] * one;
? ellorder(F, Q)
%9 = 2
? [G, g] = ellisogeny(F, Q); \\ g: F->G = F/<Q>
? gof = ellisogenyapply(g, f); \\ gof: E -> G

ellisomat(p, fl)
Given an elliptic curve 𝐸 defined over a number field 𝐾, compute representatives of the isomorphism classes of
elliptic curves defined over 𝐾 and 𝐾-isogenous to 𝐸. We assume that 𝐸 does not have CM over 𝐾 (otherwise
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that set would be infinite). For any such curve 𝐸𝑖, let 𝑓𝑖 : 𝐸 → 𝐸𝑖 be a rational isogeny of minimal degree and
let 𝑔𝑖 : 𝐸𝑖 → 𝐸 be the dual isogeny; and let 𝑀 be the matrix such that 𝑀𝑖,𝑗 is the minimal degree for an isogeny
𝐸𝑖 → 𝐸𝑗 .

The function returns a vector [𝐿,𝑀 ] where 𝐿 is a list of triples [𝐸𝑖, 𝑓𝑖, 𝑔𝑖] (𝑓𝑙𝑎𝑔 = 0), or simply the list of 𝐸𝑖

(𝑓𝑙𝑎𝑔 = 1, which saves time). The curves 𝐸𝑖 are given in [𝑎4, 𝑎6] form and the first curve 𝐸1 is isomorphic to 𝐸
by 𝑓1.

If 𝑝 is set, it must be a prime number; in this which case only isogenies of degree a power of 𝑝 are considered.

Over a number field, the possible isogeny degrees are determined by Billerey algorithm.

? E = ellinit("14a1");
? [L,M] = ellisomat(E);
? LE = apply(x->x[1], L) \\ list of curves
%3 = [[215/48,-5291/864],[-675/16,6831/32],[-8185/48,-742643/864],
[-1705/48,-57707/864],[-13635/16,306207/32],[-131065/48,-47449331/864]]
? L[2][2] \\ isogeny f_2
%4 = [x^3+3/4*x^2+19/2*x-311/12,
1/2*x^4+(y+1)*x^3+(y-4)*x^2+(-9*y+23)*x+(55*y+55/2),x+1/3]
? L[2][3] \\ dual isogeny g_2
%5 = [1/9*x^3-1/4*x^2-141/16*x+5613/64,
-1/18*x^4+(1/27*y-1/3)*x^3+(-1/12*y+87/16)*x^2+(49/16*y-48)*x
+(-3601/64*y+16947/512),x-3/4]
? apply(E->ellidentify(ellinit(E))[1][1], LE)
%6 = ["14a1","14a4","14a3","14a2","14a6","14a5"]
? M
%7 =
[1 3 3 2 6 6]

[3 1 9 6 2 18]

[3 9 1 6 18 2]

[2 6 6 1 3 3]

[6 2 18 3 1 9]

[6 18 2 3 9 1]

ellisoncurve(z)
Gives 1 (i.e. true) if the point 𝑧 is on the elliptic curve 𝐸, 0 otherwise. If 𝐸 or 𝑧 have imprecise coefficients, an
attempt is made to take this into account, i.e. an imprecise equality is checked, not a precise one. It is allowed for
𝑧 to be a vector of points in which case a vector (of the same type) is returned.

ellisotree()

Given an elliptic curve 𝐸 defined over Q or a set of Q-isogenous curves as given by ellisomat, return a pair
[𝐿,𝑀 ] where

• 𝐿 lists the minimal models of the isomorphism classes of elliptic curves Q-isogenous to 𝐸 (or in the set of
isogenous curves),

• 𝑀 is the adjacency matrix of the prime degree isogenies tree: there is an edge from 𝐸𝑖 to 𝐸𝑗 if there is an
isogeny 𝐸𝑖 → 𝐸𝑗 of prime degree such that the Néron differential forms are preserved.
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? E = ellinit("14a1");
? [L,M] = ellisotree(E);
? M
%3 =
[0 0 3 2 0 0]

[3 0 0 0 2 0]

[0 0 0 0 0 2]

[0 0 0 0 0 3]

[0 0 0 3 0 0]

[0 0 0 0 0 0]
? [L2,M2] = ellisotree(ellisomat(E,2,1));
%4 =
[0 2]

[0 0]
? [L3,M3] = ellisotree(ellisomat(E,3,1));
? M3
%6 =
[0 0 3]

[3 0 0]

[0 0 0]

Compare with the result of ellisomat.

? [L,M]=ellisomat(E,,1);
? M
%7 =
[1 3 3 2 6 6]

[3 1 9 6 2 18]

[3 9 1 6 18 2]

[2 6 6 1 3 3]

[6 2 18 3 1 9]

[6 18 2 3 9 1]

ellissupersingular(p)
Return 1 if the elliptic curve 𝐸 defined over a number field, Q𝑝 or a finite field is supersingular at 𝑝, and 0
otherwise. If the curve is defined over a number field, 𝑝 must be explicitly given, and must be a prime number,
resp. a maximal ideal, if the curve is defined over Q, resp. a general number field: we return 1 if and only if 𝐸
has supersingular good reduction at 𝑝.

Alternatively, 𝐸 can be given by its 𝑗-invariant in a finite field. In this case 𝑝 must be omitted.
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? setrand(1); \\ make the choice of g deterministic
? g = ffprimroot(ffgen(7^5))
%1 = 4*x^4 + 5*x^3 + 6*x^2 + 5*x + 6
? [g^n | n <- [1 .. 7^5 - 1], ellissupersingular(g^n)]
%2 = [6]

? K = nfinit(y^3-2); P = idealprimedec(K, 2)[1];
? E = ellinit([y,1], K);
? ellissupersingular(E, P)
%5 = 1
? Q = idealprimedec(K,5)[1];
? ellissupersingular(E, Q)
%6 = 0

ellj(precision)
Elliptic 𝑗-invariant. 𝑥 must be a complex number with positive imaginary part, or convertible into a power series
or a 𝑝-adic number with positive valuation.

elllocalred(p)
Calculates the Kodaira type of the local fiber of the elliptic curve 𝐸 at 𝑝. 𝐸 must be an ell structure as output
by ellinit, over Qℓ (𝑝 better left omitted, else equal to ℓ) over Q (𝑝 a rational prime) or a number field 𝐾
(𝑝 a maximal ideal given by a prid structure). The result is a 4-component vector [𝑓, 𝑘𝑜𝑑, 𝑣, 𝑐]. Here 𝑓 is the
exponent of 𝑝 in the arithmetic conductor of 𝐸, and 𝑘𝑜𝑑 is the Kodaira type which is coded as follows:

1 means good reduction (type I:math:_0), 2, 3 and 4 mean types II, III and IV respectively, 4+𝜈 with 𝜈 > 0 means
type I:math:_nu; finally the opposite values −1, −2, etc. refer to the starred types I:math:_0^*, II:math:^*, etc.
The third component 𝑣 is itself a vector [𝑢, 𝑟, 𝑠, 𝑡] giving the coordinate changes done during the local reduction;
𝑢 = 1 if and only if the given equation was already minimal at 𝑝. Finally, the last component 𝑐 is the local
Tamagawa number 𝑐𝑝.

elllog(P, G, o)
Given two points 𝑃 and 𝐺 on the elliptic curve 𝐸/F𝑞 , returns the discrete logarithm of 𝑃 in base 𝐺, i.e. the
smallest nonnegative integer 𝑛 such that 𝑃 = [𝑛]𝐺. See znlog for the limitations of the underlying discrete log
algorithms. If present, 𝑜 represents the order of 𝐺, see DLfun (in the PARI manual); the preferred format for this
parameter is [N, factor(N)], where 𝑁 is the order of 𝐺.

If no 𝑜 is given, assume that 𝐺 generates the curve. The function also assumes that 𝑃 is a multiple of 𝐺.

? a = ffgen(ffinit(2,8),'a);
? E = ellinit([a,1,0,0,1]); \\ over F_{2^8}
? x = a^3; y = ellordinate(E,x)[1];
? P = [x,y]; G = ellmul(E, P, 113);
? ord = [242, factor(242)]; \\ P generates a group of order 242. Initialize.
? ellorder(E, G, ord)
%4 = 242
? e = elllog(E, P, G, ord)
%5 = 15
? ellmul(E,G,e) == P
%6 = 1

elllseries(s, A, precision)
This function is deprecated, use lfun(E,s) instead.

𝐸 being an elliptic curve, given by an arbitrary model over Q as output by ellinit, this function computes the
value of the 𝐿-series of 𝐸 at the (complex) point 𝑠. This function uses an 𝑂(𝑁1/2) algorithm, where 𝑁 is the
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conductor.

The optional parameter𝐴 fixes a cutoff point for the integral and is best left omitted; the result must be independent
of 𝐴, up to realprecision, so this allows to check the function’s accuracy.

ellminimaldisc()

𝐸 being an elliptic curve defined over a number field output by ellinit, return the minimal discriminant ideal
of E.

ellminimalmodel(v)
Let 𝐸 be an ell structure over a number field 𝐾. This function determines whether 𝐸 admits a global minimal
integral model. If so, it returns it and sets 𝑣 = [𝑢, 𝑟, 𝑠, 𝑡] to the corresponding change of variable: the return value
is identical to that of ellchangecurve(E, v).

Else return the (nonprincipal) Weierstrass class of 𝐸, i.e. the class of
∏︀
𝑝(𝑣𝑝Δ−𝛿𝑝)/12 where ∆ = 𝐸.𝑑𝑖𝑠𝑐 is the

model’s discriminant and 𝑝𝛿𝑝 is the local minimal discriminant. This function requires either that 𝐸 be defined
over the rational field Q (with domain 𝐷 = 1 in ellinit), in which case a global minimal model always exists,
or over a number field given by a bnf structure. The Weierstrass class is given in bnfisprincipal format, i.e.
in terms of the K.gen generators.

The resulting model has integral coefficients and is everywhere minimal, the coefficients 𝑎1 and 𝑎3 are reduced
modulo 2 (in terms of the fixed integral basis K.zk) and 𝑎2 is reduced modulo 3. Over Q, we further require that
𝑎1 and 𝑎3 be 0 or 1, that 𝑎2 be 0 or 1 and that 𝑢 > 0 in the change of variable: both the model and the change of
variable 𝑣 are then unique.

? e = ellinit([6,6,12,55,233]); \\ over Q
? E = ellminimalmodel(e, &v);
? E[1..5]
%3 = [0, 0, 0, 1, 1]
? v
%4 = [2, -5, -3, 9]

? K = bnfinit(a^2-65); \\ over a nonprincipal number field
? K.cyc
%2 = [2]
? u = Mod(8+a, K.pol);
? E = ellinit([1,40*u+1,0,25*u^2,0], K);
? ellminimalmodel(E) \\ no global minimal model exists over Z_K
%6 = [1]~

ellminimaltwist(flag)
Let𝐸 be an elliptic curve defined over Q, return a discriminant𝐷 such that the twist of𝐸 by𝐷 is minimal among
all possible quadratic twists, i.e. if 𝑓𝑙𝑎𝑔 = 0, its minimal model has minimal discriminant, or if 𝑓𝑙𝑎𝑔 = 1, it has
minimal conductor.

In the example below, we find a curve with 𝑗-invariant 3 and minimal conductor.

? E = ellminimalmodel(ellinit(ellfromj(3)));
? ellglobalred(E)[1]
%2 = 357075
? D = ellminimaltwist(E,1)
%3 = -15
? E2 = ellminimalmodel(ellinit(elltwist(E,D)));
? ellglobalred(E2)[1]
%5 = 14283

In the example below, 𝑓𝑙𝑎𝑔 = 0 and 𝑓𝑙𝑎𝑔 = 1 give different results.
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? E = ellinit([1,0]);
? D0 = ellminimaltwist(E,0)
%7 = 1
? D1 = ellminimaltwist(E,1)
%8 = 8
? E0 = ellminimalmodel(ellinit(elltwist(E,D0)));
? [E0.disc, ellglobalred(E0)[1]]
%10 = [-64, 64]
? E1 = ellminimalmodel(ellinit(elltwist(E,D1)));
? [E1.disc, ellglobalred(E1)[1]]
%12 = [-4096, 32]

ellmoddegree()

𝑒 being an elliptic curve defined over Q output by ellinit, compute the modular degree of 𝑒 divided by the
square of the Manin constant 𝑐. It is conjectured that 𝑐 = 1 for the strong Weil curve in the isogeny class (optimal
quotient of 𝐽0(𝑁)) and this can be proven using ellweilcurve when the conductor 𝑁 is moderate.

? E = ellinit("11a1"); \\ from Cremona table: strong Weil curve and c = 1
? [v,smith] = ellweilcurve(E); smith \\ proof of the above
%2 = [[1, 1], [5, 1], [1, 1/5]]
? ellmoddegree(E)
%3 = 1
? [ellidentify(e)[1][1] | e<-v]
%4 = ["11a1", "11a2", "11a3"]
? ellmoddegree(ellinit("11a2"))
%5 = 5
? ellmoddegree(ellinit("11a3"))
%6 = 1/5

The modular degree of 11a1 is 1 (because ellweilcurve or Cremona’s table prove that the Manin constant is
1 for this curve); the output of ellweilcurve also proves that the Manin constants of 11a2 and 11a3 are 1 and
5 respectively, so the actual modular degree of both 11a2 and 11a3 is 5.

ellmul(z, n)
Computes [𝑛]𝑧, where 𝑧 is a point on the elliptic curve 𝐸. The exponent 𝑛 is in Z, or may be a complex quadratic
integer if the curve 𝐸 has complex multiplication by 𝑛 (if not, an error message is issued).

? Ei = ellinit([1,0]); z = [0,0];
? ellmul(Ei, z, 10)
%2 = [0] \\ unsurprising: z has order 2
? ellmul(Ei, z, I)
%3 = [0, 0] \\ Ei has complex multiplication by Z[i]
? ellmul(Ei, z, quadgen(-4))
%4 = [0, 0] \\ an alternative syntax for the same query
? Ej = ellinit([0,1]); z = [-1,0];
? ellmul(Ej, z, I)
*** at top-level: ellmul(Ej,z,I)
*** ^--------------
*** ellmul: not a complex multiplication in ellmul.
? ellmul(Ej, z, 1+quadgen(-3))
%6 = [1 - w, 0]

The simple-minded algorithm for the CM case assumes that we are in characteristic 0, and that the quadratic order
to which 𝑛 belongs has small discriminant.
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ellneg(z)
Opposite of the point 𝑧 on elliptic curve 𝐸.

ellnonsingularmultiple(P)
Given an elliptic curve 𝐸/Q (more precisely, a model defined over Q of a curve) and a rational point 𝑃 ∈ 𝐸(Q),
returns the pair [𝑅,𝑛], where 𝑛 is the least positive integer such that 𝑅 := [𝑛]𝑃 has good reduction at every
prime. More precisely, its image in a minimal model is everywhere nonsingular.

? e = ellinit("57a1"); P = [2,-2];
? ellnonsingularmultiple(e, P)
%2 = [[1, -1], 2]
? e = ellinit("396b2"); P = [35, -198];
? [R,n] = ellnonsingularmultiple(e, P);
? n
%5 = 12

ellorder(z, o)
Gives the order of the point 𝑧 on the elliptic curve 𝐸, defined over a finite field or a number field. Return (the
impossible value) zero if the point has infinite order.

? E = ellinit([-157^2,0]); \\ the "157-is-congruent" curve
? P = [2,2]; ellorder(E, P)
%2 = 2
? P = ellheegner(E); ellorder(E, P) \\ infinite order
%3 = 0
? K = nfinit(polcyclo(11,t)); E=ellinit("11a3", K); T = elltors(E);
? ellorder(E, T.gen[1])
%5 = 25
? E = ellinit(ellfromj(ffgen(5^10)));
? ellcard(E)
%7 = 9762580
? P = random(E); ellorder(E, P)
%8 = 4881290
? p = 2^160+7; E = ellinit([1,2], p);
? N = ellcard(E)
%9 = 1461501637330902918203686560289225285992592471152
? o = [N, factor(N)];
? for(i=1,100, ellorder(E,random(E)))
time = 260 ms.

The parameter 𝑜, is now mostly useless, and kept for backward compatibility. If present, it represents a nonzero
multiple of the order of 𝑧, see DLfun (in the PARI manual); the preferred format for this parameter is [ord,
factor(ord)], where ord is the cardinality of the curve. It is no longer needed since PARI is now able to
compute it over large finite fields (was restricted to small prime fields at the time this feature was introduced),
and caches the result in 𝐸 so that it is computed and factored only once. Modifying the last example, we see that
including this extra parameter provides no improvement:

? o = [N, factor(N)];
? for(i=1,100, ellorder(E,random(E),o))
time = 260 ms.

ellordinate(x, precision)
Gives a 0, 1 or 2-component vector containing the 𝑦-coordinates of the points of the curve 𝐸 having 𝑥 as 𝑥-
coordinate.
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ellpadicL(p, n, s, r, D)

Returns the value (or 𝑟-th derivative) on a character 𝜒𝑠 of Z*
𝑝 of the 𝑝-adic 𝐿-function of the elliptic curve 𝐸/Q,

twisted by 𝐷, given modulo 𝑝𝑛.

Characters. The set of continuous characters of𝐺𝑎𝑙(Q(𝜇𝑝𝑜𝑜)/Q) is identified to Z*
𝑝 via the cyclotomic character

𝜒 with values in Q𝑝
*. Denote by 𝜏 : Z*

𝑝 → Z*
𝑝 the Teichmüller character, with values in the (𝑝 − 1)-th roots of

1 for 𝑝! = 2, and −1, 1 for 𝑝 = 2; finally, let < 𝜒 >= 𝜒𝜏−1, with values in 1 + 2𝑝Z𝑝. In GP, the continuous
character of 𝐺𝑎𝑙(Q(𝜇𝑝𝑜𝑜)/Q) given by < 𝜒 >𝑠1 𝜏𝑠2 is represented by the pair of integers 𝑠 = (𝑠1, 𝑠2), with
𝑠1 ∈ Z𝑝 and 𝑠2𝑚𝑜𝑑𝑝− 1 for 𝑝 > 2, (resp. mod 2 for 𝑝 = 2); 𝑠 may be also an integer, representing (𝑠, 𝑠) or 𝜒𝑠.

The :math:`p-adic 𝐿 function.` The 𝑝-adic 𝐿 function 𝐿𝑝 is defined on the set of continuous characters of
𝐺𝑎𝑙(Q(𝜇𝑝𝑜𝑜)/Q), as

∫︀
Z*
𝑝
𝜒𝑠𝑑𝜇 for a certain 𝑝-adic distribution 𝜇 on Z*

𝑝. The derivative is given by

𝐿(𝑟)
𝑝 (𝐸,𝜒𝑠) =

∫︁
Z*
𝑝

log𝑟
𝑝(𝑎)𝜒𝑠(𝑎)𝑑𝜇(𝑎).

More precisely:

• When 𝐸 has good supersingular reduction, 𝐿𝑝 takes its values in 𝐷 := 𝐻1
𝑑𝑅(𝐸/Q) ⊗Q Q𝑝 and satisfies

(1 − 𝑝−1𝐹 )−2𝐿𝑝(𝐸,𝜒0) = (𝐿(𝐸, 1)/Ω).𝜔

𝑤ℎ𝑒𝑟𝑒 : 𝑚𝑎𝑡ℎ : ‘𝐹 ‘𝑖𝑠𝑡ℎ𝑒𝐹𝑟𝑜𝑏𝑒𝑛𝑖𝑢𝑠, : 𝑚𝑎𝑡ℎ : ‘𝐿(𝐸, 1)‘𝑖𝑠𝑡ℎ𝑒𝑣𝑎𝑙𝑢𝑒𝑜𝑓𝑡ℎ𝑒𝑐𝑜𝑚𝑝𝑙𝑒𝑥 : 𝑚𝑎𝑡ℎ : ‘𝐿‘𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑡 : 𝑚𝑎𝑡ℎ : ‘1‘, : 𝑚𝑎𝑡ℎ : ‘𝜔‘𝑖𝑠𝑡ℎ𝑒𝑁𝑟𝑜𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙𝑎𝑛𝑑 : 𝑚𝑎𝑡ℎ : ‘Ω‘𝑡ℎ𝑒𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑𝑝𝑒𝑟𝑖𝑜𝑑𝑜𝑛 : 𝑚𝑎𝑡ℎ : ‘𝐸(R)‘.𝐻𝑒𝑟𝑒, : 𝑚𝑎𝑡ℎ : ‘𝜒0‘𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠𝑡ℎ𝑒𝑡𝑟𝑖𝑣𝑖𝑎𝑙𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟.

The function returns the components of 𝐿(𝑟)
𝑝 (𝐸,𝜒𝑠) in the basis (𝜔, 𝐹𝜔).

• When 𝐸 has ordinary good reduction, this method only defines the projection of 𝐿𝑝(𝐸,𝜒𝑠) on the 𝛼-
eigenspace, where 𝛼 is the unit eigenvalue for 𝐹 . This is what the function returns. We have

(1 − 𝛼−1)−2𝐿𝑝,𝛼(𝐸,𝜒0) = 𝐿(𝐸, 1)/Ω.

Two supersingular examples:

? cxL(e) = bestappr( ellL1(e) / e.omega[1] );

? e = ellinit("17a1"); p=3; \\ supersingular, a3 = 0
? L = ellpadicL(e,p,4);
? F = [0,-p;1,ellap(e,p)]; \\ Frobenius matrix in the basis (omega,F(omega))
? (1-p^(-1)*F)^-2 * L / cxL(e)
%5 = [1 + O(3^5), O(3^5)]~ \\ [1,0]~

? e = ellinit("116a1"); p=3; \\ supersingular, a3 != 0~
? L = ellpadicL(e,p,4);
? F = [0,-p; 1,ellap(e,p)];
? (1-p^(-1)*F)^-2*L~ / cxL(e)
%9 = [1 + O(3^4), O(3^5)]~

Good ordinary reduction:

? e = ellinit("17a1"); p=5; ap = ellap(e,p)
%1 = -2 \\ ordinary
? L = ellpadicL(e,p,4)
%2 = 4 + 3*5 + 4*5^2 + 2*5^3 + O(5^4)
? al = padicappr(x^2 - ap*x + p, ap + O(p^7))[1];
? (1-al^(-1))^(-2) * L / cxL(e)
%4 = 1 + O(5^4)
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Twist and Teichmüller:

? e = ellinit("17a1"); p=5; \\ ordinary
\\ 2nd derivative at tau^1, twist by -7
? ellpadicL(e, p, 4, [0,1], 2, -7)
%2 = 2*5^2 + 5^3 + O(5^4)

We give an example of non split multiplicative reduction (see ellpadicbsd for more examples).

? e=ellinit("15a1"); p=3; n=5;
? L = ellpadicL(e,p,n)
%2 = 2 + 3 + 3^2 + 3^3 + 3^4 + O(3^5)
? (1 - ellap(e,p))^(-1) * L / cxL(e)
%3 = 1 + O(3^5)

This function is a special case of mspadicL and it also appears as the first term of mspadicseries:

? e = ellinit("17a1"); p=5;
? L = ellpadicL(e,p,4)
%2 = 4 + 3*5 + 4*5^2 + 2*5^3 + O(5^4)
? [M,phi] = msfromell(e, 1);
? Mp = mspadicinit(M, p, 4);
? mu = mspadicmoments(Mp, phi);
? mspadicL(mu)
%6 = 4 + 3*5 + 4*5^2 + 2*5^3 + 2*5^4 + 5^5 + O(5^6)
? mspadicseries(mu)
%7 = (4 + 3*5 + 4*5^2 + 2*5^3 + 2*5^4 + 5^5 + O(5^6))
+ (3 + 3*5 + 5^2 + 5^3 + O(5^4))*x
+ (2 + 3*5 + 5^2 + O(5^3))*x^2
+ (3 + 4*5 + 4*5^2 + O(5^3))*x^3
+ (3 + 2*5 + O(5^2))*x^4 + O(x^5)

These are more cumbersome than ellpadicL but allow to compute at different characters, or successive deriva-
tives, or to twist by a quadratic character essentially for the cost of a single call to ellpadicL due to precompu-
tations.

ellpadicbsd(p, n, D)

Given an elliptic curve 𝐸 over Q, its quadratic twist 𝐸𝐷 and a prime number 𝑝, this function is a 𝑝-adic analog
of the complex functions ellanalyticrank and ellbsd. It calls ellpadicL with initial accuracy 𝑝𝑛 and may
increase it internally; it returns a vector [𝑟, 𝐿𝑝] where

• 𝐿𝑝 is a 𝑝-adic number (resp. a pair of 𝑝-adic numbers if𝐸 has good supersingular reduction) defined modulo
𝑝𝑁 , conjecturally equal to 𝑅𝑝𝑆, where 𝑅𝑝 is the 𝑝-adic regulator as given by ellpadicregulator (in the
basis (𝜔, 𝐹𝜔)) and 𝑆 is the cardinal of the Tate-Shafarevich group for the quadratic twist 𝐸𝐷.

• 𝑟 is an upper bound for the analytic rank of the 𝑝-adic 𝐿-function attached to 𝐸𝐷: we know for sure that
the 𝑖-th derivative of 𝐿𝑝(𝐸𝐷, .) at 𝜒0 is 𝑂(𝑝𝑁 ) for all 𝑖 < 𝑟 and that its 𝑟-th derivative is nonzero; it is
expected that the true analytic rank is equal to the rank of the Mordell-Weil group 𝐸𝐷(Q), plus 1 if the
reduction of 𝐸𝐷 at 𝑝 is split multiplicative; if 𝑟 = 0, then both the analytic rank and the Mordell-Weil rank
are unconditionnally 0.

Recall that the 𝑝-adic BSD conjecture (Mazur, Tate, Teitelbaum, Bernardi, Perrin-Riou) predicts an explicit link
between 𝑅𝑝𝑆 and

(1 − 𝑝−1𝐹 )−2.𝐿(𝑟)
𝑝 (𝐸𝐷, 𝜒

0)/𝑟!
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where 𝑟 is the analytic rank of the 𝑝-adic 𝐿-function attached to 𝐸𝐷 and 𝐹 is the Frobenius on 𝐻1
𝑑𝑅; see

ellpadicL for definitions.

? E = ellinit("11a1"); p = 7; n = 5; \\ good ordinary
? ellpadicbsd(E, 7, 5) \\ rank 0,
%2 = [0, 1 + O(7^5)]

? E = ellinit("91a1"); p = 7; n = 5; \\ non split multiplicative
? [r,Lp] = ellpadicbsd(E, p, n)
%5 = [1, 2*7 + 6*7^2 + 3*7^3 + 7^4 + O(7^5)]
? R = ellpadicregulator(E, p, n, E.gen)
%6 = 2*7 + 6*7^2 + 3*7^3 + 7^4 + 5*7^5 + O(7^6)
? sha = Lp/R
%7 = 1 + O(7^4)

? E = ellinit("91b1"); p = 7; n = 5; \\ split multiplicative
? [r,Lp] = ellpadicbsd(E, p, n)
%9 = [2, 2*7 + 7^2 + 5*7^3 + O(7^4)]
? ellpadicregulator(E, p, n, E.gen)
%10 = 2*7 + 7^2 + 5*7^3 + 6*7^4 + 2*7^5 + O(7^6)
? [rC, LC] = ellanalyticrank(E);
? [r, rC]
%12 = [2, 1] \\ r = rC+1 because of split multiplicative reduction

? E = ellinit("53a1"); p = 5; n = 5; \\ supersingular
? [r, Lp] = ellpadicbsd(E, p, n);
? r
%15 = 1
? Lp
%16 = [3*5 + 2*5^2 + 2*5^5 + O(5^6), \
5 + 3*5^2 + 4*5^3 + 2*5^4 + 5^5 + O(5^6)]
? R = ellpadicregulator(E, p, n, E.gen)
%17 = [3*5 + 2*5^2 + 2*5^5 + O(5^6), 5 + 3*5^2 + 4*5^3 + 2*5^4 + O(5^5)]
\\ expect Lp = R*#Sha, hence (conjecturally) #Sha = 1

? E = ellinit("84a1"); p = 11; n = 6; D = -443;
? [r,Lp] = ellpadicbsd(E, 11, 6, D) \\ Mordell-Weil rank 0, no regulator
%19 = [0, 3 + 2*11 + O(11^6)]
? lift(Lp) \\ expected cardinal for Sha is 5^2
%20 = 25
? ellpadicbsd(E, 3, 12, D) \\ at 3
%21 = [1, 1 + 2*3 + 2*3^2 + O(3^8)]
? ellpadicbsd(E, 7, 8, D) \\ and at 7
%22 = [0, 4 + 3*7 + O(7^8)]

ellpadicfrobenius(p, n)
If 𝑝 > 2 is a prime and 𝐸 is an elliptic curve on Q with good reduction at 𝑝, return the matrix of the Frobenius
endomorphism 𝜙 on the crystalline module 𝐷𝑝(𝐸) = Q𝑝 ⊗ 𝐻1

𝑑𝑅(𝐸/Q) with respect to the basis of the given
model (𝜔, 𝜂 = 𝑥𝜔), where 𝜔 = 𝑑𝑥/(2𝑦 + 𝑎1𝑥+ 𝑎3) is the invariant differential. The characteristic polynomial
of 𝜙 is 𝑥2 − 𝑎𝑝𝑥+ 𝑝. The matrix is computed to absolute 𝑝-adic precision 𝑝𝑛.

? E = ellinit([1,-1,1,0,0]);
? F = ellpadicfrobenius(E,5,3);

(continues on next page)
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? lift(F)
%3 =
[120 29]

[ 55 5]
? charpoly(F)
%4 = x^2 + O(5^3)*x + (5 + O(5^3))
? ellap(E, 5)
%5 = 0

ellpadicheight(p, n, P, Q)

Cyclotomic 𝑝-adic height of the rational point 𝑃 on the elliptic curve𝐸 (defined over Q), given to 𝑛 𝑝-adic digits.
If the argument 𝑄 is present, computes the value of the bilinear form (ℎ(𝑃 +𝑄) − ℎ(𝑃 −𝑄))/4.

Let𝐷 := 𝐻1
𝑑𝑅(𝐸)⊗QQ𝑝 be the Q𝑝 vector space spanned by 𝜔 (invariant differential 𝑑𝑥/(2𝑦+𝑎1𝑥+𝑎3) related

to the given model) and 𝜂 = 𝑥𝜔. Then the cyclotomic 𝑝-adic height ℎ𝐸 associates to 𝑃 ∈ 𝐸(Q) an element
𝑓𝜔 + 𝑔𝜂 in 𝐷. This routine returns the vector [𝑓, 𝑔] to 𝑛 𝑝-adic digits. If 𝑃 ∈ 𝐸(Q) is in the kernel of reduction
mod 𝑝 and if its reduction at all finite places is non singular, then 𝑔 = −(log𝐸 𝑃 )2, where log𝐸 is the logarithm
for the formal group of 𝐸 at 𝑝.

If furthermore the model is of the form 𝑌 2 = 𝑋3 + 𝑎𝑋 + 𝑏 and 𝑃 = (𝑥, 𝑦), then

𝑓 = log𝑝(𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟(𝑥)) − 2 log𝑝(𝜎(𝑃 ))

where 𝜎(𝑃 ) is given by ellsigma(𝐸,𝑃 ).

Recall (Advanced topics in the arithmetic of elliptic curves, Theorem 3.2) that the local height function over the
complex numbers is of the form

𝜆(𝑧) = − log(‖𝐸.𝑑𝑖𝑠𝑐‖)/6 + ℜ(𝑧𝜂(𝑧)) − 2 log(𝜎(𝑧)).

(N.B. our normalization for local and global heights is twice that of Silverman’s).

? E = ellinit([1,-1,1,0,0]); P = [0,0];
? ellpadicheight(E,5,3, P)
%2 = [3*5 + 5^2 + 2*5^3 + O(5^4), 5^2 + 4*5^4 + O(5^5)]
? E = ellinit("11a1"); P = [5,5]; \\ torsion point
? ellpadicheight(E,19,6, P)
%4 = [0, 0]
? E = ellinit([0,0,1,-4,2]); P = [-2,1];
? ellpadicheight(E,3,3, P)
%6 = [2*3^2 + 2*3^3 + 3^4 + O(3^5), 2*3^2 + 3^4 + O(3^5)]
? ellpadicheight(E,3,5, P, elladd(E,P,P))
%7 = [3^2 + 2*3^3 + O(3^7), 3^2 + 3^3 + 2*3^4 + 3^5 + O(3^7)]

• When𝐸 has good ordinary reduction at 𝑝 or non split multiplicative reduction, the “canonical” 𝑝-adic height
is given by

s2 = ellpadics2(E,p,n);
ellpadicheight(E, p, n, P) * [1,-s2]~

Since 𝑠2 does not depend on 𝑃 , it is preferable to compute it only once:
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? E = ellinit("5077a1"); p = 5; n = 7; \\ rank 3
? s2 = ellpadics2(E,p,n);
? M = ellpadicheightmatrix(E,p, n, E.gen) * [1,-s2]~;
? matdet(M) \\ p-adic regulator on the points in E.gen
%4 = 5 + 5^2 + 4*5^3 + 2*5^4 + 2*5^5 + 2*5^6 + O(5^7)

• When 𝐸 has split multiplicative reduction at 𝑝 (Tate curve), the “canonical” 𝑝-adic height is given by

Ep = ellinit(E[1..5], O(p^(n))); \\ E seen as a Tate curve over Qp
[u2,u,q] = Ep.tate;
ellpadicheight(E, p, n, P) * [1,-s2 + 1/log(q)/u2]]~

where 𝑠2 is as above. For example,

? E = ellinit("91b1"); P =[-1, 3]; p = 7; n = 5;
? Ep = ellinit(E[1..5], O(p^(n)));
? s2 = ellpadics2(E,p,n);
? [u2,u,q] = Ep.tate;
? H = ellpadicheight(E,p, n, P) * [1,-s2 + 1/log(q)/u2]~
%5 = 2*7 + 7^2 + 5*7^3 + 6*7^4 + 2*7^5 + O(7^6)

These normalizations are chosen so that 𝑝-adic BSD conjectures are easy to state, see ellpadicbsd.

ellpadicheightmatrix(p, n, Q)

𝑄 being a vector of points, this function returns the “Gram matrix” [𝐹,𝐺] of the cyclotomic 𝑝-adic height
ℎ𝐸 with respect to the basis (𝜔, 𝜂) of 𝐷 = 𝐻1

𝑑𝑅(𝐸) ⊗Q Q𝑝 given to 𝑛 𝑝-adic digits. In other words, if
ellpadicheight(𝐸, 𝑝, 𝑛,𝑄[𝑖], 𝑄[𝑗]) = [𝑓, 𝑔], corresponding to 𝑓𝜔+𝑔𝜂 in𝐷, then 𝐹 [𝑖, 𝑗] = 𝑓 and𝐺[𝑖, 𝑗] = 𝑔.

? E = ellinit([0,0,1,-7,6]); Q = [[-2,3],[-1,3]]; p = 5; n = 5;
? [F,G] = ellpadicheightmatrix(E,p,n,Q);
? lift(F) \\ p-adic entries, integral approximation for readability
%3 =
[2364 3100]

[3100 3119]

? G
%4 =
[25225 46975]

[46975 61850]

? [F,G] * [1,-ellpadics2(E,p,n)]~
%5 =
[4 + 2*5 + 4*5^2 + 3*5^3 + O(5^5) 4*5^2 + 4*5^3 + 5^4 + O(5^5)]

[ 4*5^2 + 4*5^3 + 5^4 + O(5^5) 4 + 3*5 + 4*5^2 + 4*5^3 + 5^4 + O(5^5)]

ellpadiclambdamu(p, D, i)
Let 𝑝 be a prime number and let 𝐸/Q be a rational elliptic curve with good or bad multiplicative reduction at 𝑝.
Return the Iwasawa invariants 𝜆 and 𝜇 for the 𝑝-adic 𝐿 function 𝐿𝑝(𝐸), twisted by (𝐷/.) and the 𝑖-th power of
the Teichmüller character 𝜏 , see ellpadicL for details about 𝐿𝑝(𝐸).
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Let 𝜒 be the cyclotomic character and choose 𝛾 in 𝐺𝑎𝑙(Q𝑝(𝜇𝑝𝑜𝑜)/Q𝑝) such that 𝜒(𝛾) = 1 + 2𝑝. Let 𝐿(𝑖),𝐷 ∈
Q𝑝[[𝑋]] ⊗𝐷𝑐𝑟𝑖𝑠 such that

(< 𝜒 >𝑠 𝜏 𝑖)(𝐿(𝑖),𝐷(𝛾 − 1)) = 𝐿𝑝(𝐸,< 𝜒 >𝑠 𝜏 𝑖(𝐷/.)).

• When 𝐸 has good ordinary or bad multiplicative reduction at 𝑝. By Weierstrass’s preparation theorem the
series 𝐿(𝑖),𝐷 can be written 𝑝𝜇(𝑋𝜆 + 𝑝𝐺(𝑋)) up to a 𝑝-adic unit, where 𝐺(𝑋) ∈ Z𝑝[𝑋]. The function
returns [𝜆, 𝜇].

• When 𝐸 has good supersingular reduction, we define a sequence of polynomials 𝑃𝑛 in Q𝑝[𝑋] of degree
< 𝑝𝑛 (and bounded denominators), such that

𝐿(𝑖),𝐷 = 𝑃𝑛𝜙
𝑛+1𝜔𝐸 − 𝜉𝑛𝑃𝑛−1𝜙

𝑛+2𝜔𝐸𝑚𝑜𝑑((1 +𝑋)𝑝
𝑛

− 1)Q𝑝[𝑋] ⊗𝐷𝑐𝑟𝑖𝑠,

𝑤ℎ𝑒𝑟𝑒 : 𝑚𝑎𝑡ℎ : ‘𝜉𝑛 = 𝑝𝑜𝑙𝑐𝑦𝑐𝑙𝑜(𝑝𝑛, 1 +𝑋)‘.𝐿𝑒𝑡 : 𝑚𝑎𝑡ℎ : ‘𝜆𝑛, 𝜇𝑛‘𝑏𝑒𝑡ℎ𝑒𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠𝑜𝑓 : 𝑚𝑎𝑡ℎ : ‘𝑃𝑛‘.𝑊𝑒𝑓𝑖𝑛𝑑𝑡ℎ𝑎𝑡

• 𝜇𝑛 is nonnegative and decreasing for 𝑛 of given parity hence 𝜇2𝑛 tends to a limit 𝜇+ and 𝜇2𝑛+1 tends to a
limit 𝜇− (both conjecturally 0).

• there exists integers 𝜆+, 𝜆− in Z (denoted with a in the reference below) such that

lim
𝑛→𝑜𝑜

𝜆2𝑛 + 1/(𝑝+ 1) = 𝜆+𝑎𝑛𝑑 lim
𝑛→𝑜𝑜

𝜆2𝑛+1 + 𝑝/(𝑝+ 1) = 𝜆−.

𝑇ℎ𝑒𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑟𝑒𝑡𝑢𝑟𝑛𝑠 : 𝑚𝑎𝑡ℎ : ‘[[𝜆+, 𝜆−], [𝜇+, 𝜇−]]‘.

Reference: B. Perrin-Riou, Arithmétique des courbes elliptiques à réduction supersinguli\`ere en 𝑝, Experimental
Mathematics, 12, 2003, pp. 155-186.

ellpadiclog(p, n, P)
Given𝐸 defined over𝐾 = Q orQ𝑝 and𝑃 = [𝑥, 𝑦] on𝐸(𝐾) in the kernel of reduction mod 𝑝, let 𝑡(𝑃 ) = −𝑥/𝑦 be
the formal group parameter; this function returns𝐿(𝑡), where𝐿 denotes the formal logarithm (mapping the formal
group of𝐸 to the additive formal group) attached to the canonical invariant differential: 𝑑𝐿 = 𝑑𝑥/(2𝑦+𝑎1𝑥+𝑎3).

? E = ellinit([0,0,1,-4,2]); P = [-2,1];
? ellpadiclog(E,2,10,P)
%2 = 2 + 2^3 + 2^8 + 2^9 + 2^10 + O(2^11)
? E = ellinit([17,42]);
? p=3; Ep = ellinit(E,p); \\ E mod p
? P=[114,1218]; ellorder(Ep,P) \\ the order of P on (E mod p) is 2
%5 = 2
? Q = ellmul(E,P,2) \\ we need a point of the form 2*P
%6 = [200257/7056, 90637343/592704]
? ellpadiclog(E,3,10,Q)
%7 = 3 + 2*3^2 + 3^3 + 3^4 + 3^5 + 3^6 + 2*3^8 + 3^9 + 2*3^10 + O(3^11)

ellpadicregulator(p, n, S)
Let 𝐸/Q be an elliptic curve. Return the determinant of the Gram matrix of the vector of points 𝑆 = (𝑆1, ..., 𝑆𝑟)
with respect to the “canonical” cyclotomic 𝑝-adic height on 𝐸, given to 𝑛 (𝑝-adic) digits.

When 𝐸 has ordinary reduction at 𝑝, this is the expected Gram deteterminant in Q𝑝.

In the case of supersingular reduction of 𝐸 at 𝑝, the definition requires care: the regulator 𝑅 is an element of
𝐷 := 𝐻1

𝑑𝑅(𝐸) ⊗Q Q𝑝, which is a two-dimensional Q𝑝-vector space spanned by 𝜔 and 𝜂 = 𝑥𝜔 (which are
defined over Q) or equivalently but now over Q𝑝 by 𝜔 and 𝐹𝜔 where 𝐹 is the Frobenius endomorphism on 𝐷 as
defined in ellpadicfrobenius. On𝐷 we define the cyclotomic height ℎ𝐸 = 𝑓𝜔+ 𝑔𝜂 (see ellpadicheight)
and a canonical alternating bilinear form [., .]𝐷 such that [𝜔, 𝜂]𝐷 = 1.
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For any 𝜈 ∈ 𝐷, we can define a height ℎ𝜈 := [ℎ𝐸 , 𝜈]𝐷 from𝐸(Q) to Q𝑝 and< ., . >𝜈 the attached bilinear form.
In particular, if ℎ𝐸 = 𝑓𝜔 + 𝑔𝜂, then ℎ𝜂 = [ℎ𝐸 , 𝜂]𝐷 = f and ℎ𝜔 = [ℎ𝐸 , 𝜔]𝐷 = −𝑔 hence ℎ𝐸 = ℎ𝜂𝜔 − ℎ𝜔𝜂.
Then, 𝑅 is the unique element of 𝐷 such that

[𝜔, 𝜈]𝑟−1
𝐷 [𝑅, 𝜈]𝐷 = det(< 𝑆𝑖, 𝑆𝑗 >𝜈)

for all 𝜈 ∈ 𝐷 not in Q𝑝𝜔. The ellpadicregulator function returns 𝑅 in the basis (𝜔, 𝐹𝜔), which was chosen
so that 𝑝-adic BSD conjectures are easy to state, see ellpadicbsd.

Note that by definition

[𝑅, 𝜂]𝐷 = det(< 𝑆𝑖, 𝑆𝑗 >𝜂)

and

[𝑅,𝜔 + 𝜂]𝐷 = det(< 𝑆𝑖, 𝑆𝑗 >𝜔+𝜂).

ellpadics2(p, n)
If 𝑝 > 2 is a prime and 𝐸/Q is an elliptic curve with ordinary good reduction at 𝑝, returns the slope of the
unit eigenvector of ellpadicfrobenius(E,p,n), i.e., the action of Frobenius 𝜙 on the crystalline module
𝐷𝑝(𝐸) = Q𝑝 ⊗ 𝐻1

𝑑𝑅(𝐸/Q) in the basis of the given model (𝜔, 𝜂 = 𝑥𝜔), where 𝜔 is the invariant differential
𝑑𝑥/(2𝑦 + 𝑎1𝑥+ 𝑎3). In other words, 𝜂 + 𝑠2𝜔 is an eigenvector for the unit eigenvalue of 𝜙.

? e=ellinit([17,42]);
? ellpadics2(e,13,4)
%2 = 10 + 2*13 + 6*13^3 + O(13^4)

This slope is the unique 𝑐 ∈ 3−1Z𝑝 such that the odd solution 𝜎(𝑡) = 𝑡+𝑂(𝑡2) of

−𝑑((1)/(𝜎)(𝑑𝜎)/(𝜔)) = (𝑥(𝑡) + 𝑐)𝜔

is in 𝑡Z𝑝[[𝑡]].

It is equal to 𝑏2/12 − 𝐸2/12 where 𝐸2 is the value of the Katz 𝑝-adic Eisenstein series of weight 2 on (𝐸,𝜔).
This is used to construct a canonical 𝑝-adic height when 𝐸 has good ordinary reduction at 𝑝 as follows

s2 = ellpadics2(E,p,n);
h(E,p,n, P, s2) = ellpadicheight(E, [p,[1,-s2]],n, P);

Since 𝑠2 does not depend on the point 𝑃 , we compute it only once.

ellperiods(flag, precision)
Let 𝑤 describe a complex period lattice (𝑤 = [𝑤1, 𝑤2] or an ellinit structure). Returns normalized periods
[𝑊1,𝑊2] generating the same lattice such that 𝜏 := 𝑊1/𝑊2 has positive imaginary part and lies in the standard
fundamental domain for 𝑆𝐿2(Z).

If 𝑓𝑙𝑎𝑔 = 1, the function returns [[𝑊1,𝑊2], [𝜂1, 𝜂2]], where 𝜂1 and 𝜂2 are the quasi-periods attached to [𝑊1,𝑊2],
satisfying 𝜂2𝑊1 − 𝜂1𝑊2 = 2𝑖𝜋.

The output of this function is meant to be used as the first argument given to ellwp, ellzeta, ellsigma or elleisnum.
Quasi-periods are needed by ellzeta and ellsigma only.

? L = ellperiods([1,I],1);
? [w1,w2] = L[1]; [e1,e2] = L[2];
? e2*w1 - e1*w2
%3 = 6.2831853071795864769252867665590057684*I

(continues on next page)
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? ellzeta(L, 1/2 + 2*I)
%4 = 1.5707963... - 6.283185307...*I
? ellzeta([1,I], 1/2 + 2*I) \\ same but less efficient
%4 = 1.5707963... - 6.283185307...*I

ellpointtoz(P, precision)
If 𝐸/C C/Λ is a complex elliptic curve (Λ = 𝐸.𝑜𝑚𝑒𝑔𝑎), computes a complex number 𝑧, well-defined modulo
the lattice Λ, corresponding to the point 𝑃 ; i.e. such that 𝑃 = [℘Λ(𝑧), ℘′

Λ(𝑧)] satisfies the equation

𝑦2 = 4𝑥3 − 𝑔2𝑥− 𝑔3,

where 𝑔2, 𝑔3 are the elliptic invariants.

If 𝐸 is defined over R and 𝑃 ∈ 𝐸(R), we have more precisely, 0 ≤ ℜ(𝑡) < 𝑤1 and 0 <= ℑ(𝑡) < ℑ(𝑤2), where
(𝑤1, 𝑤2) are the real and complex periods of 𝐸.

? E = ellinit([0,1]); P = [2,3];
? z = ellpointtoz(E, P)
%2 = 3.5054552633136356529375476976257353387
? ellwp(E, z)
%3 = 2.0000000000000000000000000000000000000
? ellztopoint(E, z) - P
%4 = [2.548947057811923643 E-57, 7.646841173435770930 E-57]
? ellpointtoz(E, [0]) \\ the point at infinity
%5 = 0

If 𝐸 is defined over a general number field, the function returns the values corresponding to the various complex
embeddings of the curve and of the point, in the same order as E.nf.roots:

? E=ellinit([-22032-15552*x,0], nfinit(x^2-2));
? P=[-72*x-108,0];
? ellisoncurve(E,P)
%3 = 1
? ellpointtoz(E,P)
%4 = [-0.52751724240790530394437835702346995884*I,
-0.090507650025885335533571758708283389896*I]
? E.nf.roots
%5 = [-1.4142135623730950488016887242096980786, \\ x-> -sqrt(2)
1.4142135623730950488016887242096980786] \\ x-> sqrt(2)

If 𝐸/Q𝑝 has multiplicative reduction, then 𝐸/Q̄𝑝 is analytically isomorphic to Q̄*
𝑝/𝑞

Z (Tate curve) for some
𝑝-adic integer 𝑞. The behavior is then as follows:

• If the reduction is split (𝐸.𝑡𝑎𝑡𝑒[2] is a t_PADIC), we have an isomorphism 𝜑 : 𝐸(Q𝑝)Q*
𝑝/𝑞

Z and the function
returns 𝜑(𝑃 ) ∈ Q𝑝.

• If the reduction is not split (𝐸.𝑡𝑎𝑡𝑒[2] is a t_POLMOD), we only have an isomorphism 𝜑 : 𝐸(𝐾) 𝐾*/𝑞Z over
the unramified quadratic extension 𝐾/Q𝑝. In this case, the output 𝜑(𝑃 ) ∈ 𝐾 is a t_POLMOD.

? E = ellinit([0,-1,1,0,0], O(11^5)); P = [0,0];
? [u2,u,q] = E.tate; type(u) \\ split multiplicative reduction
%2 = "t_PADIC"
? ellmul(E, P, 5) \\ P has order 5
%3 = [0]

(continues on next page)
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? z = ellpointtoz(E, [0,0])
%4 = 3 + 11^2 + 2*11^3 + 3*11^4 + 6*11^5 + 10*11^6 + 8*11^7 + O(11^8)
? z^5
%5 = 1 + O(11^9)
? E = ellinit(ellfromj(1/4), O(2^6)); x=1/2; y=ellordinate(E,x)[1];
? z = ellpointtoz(E,[x,y]); \\ t_POLMOD of t_POL with t_PADIC coeffs
? liftint(z) \\ lift all p-adics
%8 = Mod(8*u + 7, u^2 + 437)

ellpow(z, n)
Deprecated alias for ellmul.

ellratpoints(h, flag)
𝐸 being an integral model of elliptic curve , return a vector containing the affine rational points on the curve of
naive height less than ℎ. If 𝑓𝑙𝑎𝑔 = 1, stop as soon as a point is found; return either an empty vector or a vector
containing a single point. See hyperellratpoints for how ℎ can be specified.

? E=ellinit([-25,1]);
? ellratpoints(E,10)
%2 = [[-5,1],[-5,-1],[-3,7],[-3,-7],[-1,5],[-1,-5],
[0,1],[0,-1],[5,1],[5,-1],[7,13],[7,-13]]
? ellratpoints(E,10,1)
%3 = [[-5,1]]

ellrootno(p)
𝐸 being an ell structure over Q as output by ellinit, this function computes the local root number of its 𝐿-
series at the place 𝑝 (at the infinite place if 𝑝 = 0). If 𝑝 is omitted, return the global root number and in this case
the curve can also be defined over a number field.

Note that the global root number is the sign of the functional equation and conjecturally is the parity of the rank
of the Mordell-Weil group. The equation for 𝐸 needs not be minimal at 𝑝, but if the model is already minimal
the function will run faster.

ellsea(tors)
Let 𝐸 be an ell structure as output by ellinit, defined over a finite field F𝑞 . This low-level function computes
the order of the group 𝐸(F𝑞) using the SEA algorithm; compared to the high-level function ellcard, which
includes SEA among its choice of algorithms, the tors argument allows to speed up a search for curves having
almost prime order and whose quadratic twist may also have almost prime order. When tors is set to a nonzero
value, the function returns 0 as soon as it detects that the order has a small prime factor not dividing tors; SEA
considers modular polynomials of increasing prime degree ℓ and we return 0 as soon as we hit an ℓ (coprime to
tors) dividing #𝐸(F𝑞):

? ellsea(ellinit([1,1], 2^56+3477), 1)
%1 = 72057594135613381
? forprime(p=2^128,oo, q = ellcard(ellinit([1,1],p)); if(isprime(q),break))
time = 6,571 ms.
? forprime(p=2^128,oo, q = ellsea(ellinit([1,1],p),1);if(isprime(q),break))
time = 522 ms.

In particular, set tors to 1 if you want a curve with prime order, to 2 if you want to allow a cofactor which is a
power of two (e.g. for Edwards’s curves), etc. The early exit on bad curves yields a massive speedup compared
to running the cardinal algorithm to completion.

When tors is negative, similar checks are performed for the quadratic twist of the curve.

523



CyPari2 Documentation, Release 2.1.3

The following function returns a curve of prime order over F𝑝.

cryptocurve(p) =
{
while(1,
my(E, N, j = Mod(random(p), p));
E = ellinit(ellfromj(j));
N = ellsea(E, 1); if (!N, continue);
if (isprime(N), return(E));
\\ try the quadratic twist for free
if (isprime(2*p+2 - N), return(ellinit(elltwist(E))));
);
}
? p = randomprime([2^255, 2^256]);
? E = cryptocurve(p); \\ insist on prime order
%2 = 47,447ms

The same example without early abort (using ellcard(E) instead of ellsea(E, 1)) runs for about 5 minutes
before finding a suitable curve.

The availability of the seadata package will speed up the computation, and is strongly recommended. The
generic function ellcard should be preferred when you only want to compute the cardinal of a given curve
without caring about it having almost prime order:

• If the characteristic is too small (𝑝 <= 7) or the field cardinality is tiny (𝑞 <= 523) the generic algo-
rithm ellcard is used instead and the tors argument is ignored. (The reason for this is that SEA is not
implemented for 𝑝 <= 7 and that if 𝑞 <= 523 it is likely to run into an infinite loop.)

• If the field cardinality is smaller than about 250, the generic algorithm will be faster.

• Contrary to ellcard, ellsea does not store the computed cardinality in 𝐸.

ellsearch()

This function finds all curves in the elldata database satisfying the constraint defined by the argument 𝑁 :

• if 𝑁 is a character string, it selects a given curve, e.g. "11a1", or curves in the given isogeny class, e.g.
"11a", or curves with given conductor, e.g. "11";

• if 𝑁 is a vector of integers, it encodes the same constraints as the character string above, according to the
ellconvertname correspondance, e.g. [11,0,1] for "11a1", [11,0] for "11a" and [11] for "11";

• if 𝑁 is an integer, curves with conductor 𝑁 are selected.

If 𝑁 codes a full curve name, for instance "11a1" or [11,0,1], the output format is [𝑁, [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6], 𝐺]
where [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6] are the coefficients of the Weierstrass equation of the curve and 𝐺 is a Z-basis of the
free part of the Mordell-Weil group attached to the curve.

? ellsearch("11a3")
%1 = ["11a3", [0, -1, 1, 0, 0], []]
? ellsearch([11,0,3])
%2 = ["11a3", [0, -1, 1, 0, 0], []]

If 𝑁 is not a full curve name, then the output is a vector of all matching curves in the above format:

? ellsearch("11a")
%1 = [["11a1", [0, -1, 1, -10, -20], []],
["11a2", [0, -1, 1, -7820, -263580], []],
["11a3", [0, -1, 1, 0, 0], []]]

(continues on next page)
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? ellsearch("11b")
%2 = []

ellsigma(z, flag, precision)
Computes the value at 𝑧 of the Weierstrass 𝜎 function attached to the lattice 𝐿 as given by ellperiods(, 1):
including quasi-periods is useful, otherwise there are recomputed from scratch for each new 𝑧.

𝜎(𝑧, 𝐿) = 𝑧
∏︁

𝜔∈𝐿*

(1 − (𝑧)/(𝜔))𝑒(𝑧)/(𝜔)+(𝑧2)/(2𝜔2).

It is also possible to directly input 𝐿 = [𝜔1, 𝜔2], or an elliptic curve 𝐸 as given by ellinit (𝐿 = 𝐸.𝑜𝑚𝑒𝑔𝑎).

? w = ellperiods([1,I], 1);
? ellsigma(w, 1/2)
%2 = 0.47494937998792065033250463632798296855
? E = ellinit([1,0]);
? ellsigma(E) \\ at 'x, implicitly at default seriesprecision
%4 = x + 1/60*x^5 - 1/10080*x^9 - 23/259459200*x^13 + O(x^17)

If 𝑓𝑙𝑎𝑔 = 1, computes an arbitrary determination of log(𝜎(𝑧)).

ellsub(z1, z2)
Difference of the points 𝑧1 and 𝑧2 on the elliptic curve corresponding to 𝐸.

elltamagawa()

The object 𝐸 being an elliptic curve over a number field, returns the global Tamagawa number of the curve
(including the factor at infinite places).

? e = ellinit([1, -1, 1, -3002, 63929]); \\ curve "90c6" from elldata
? elltamagawa(e)
%2 = 288
? [elllocalred(e,p)[4] | p<-[2,3,5]]
%3 = [6, 4, 6]
? vecprod(%) \\ since e.disc > 0 the factor at infinity is 2
%4 = 144

elltaniyama(serprec)
Computes the modular parametrization of the elliptic curve 𝐸/Q, where 𝐸 is an ell structure as out-
put by ellinit. This returns a two-component vector [𝑢, 𝑣] of power series, given to 𝑛 significant terms
(seriesprecision by default), characterized by the following two properties. First the point (𝑢, 𝑣) satisfies
the equation of the elliptic curve. Second, let 𝑁 be the conductor of 𝐸 and Φ : 𝑋0(𝑁) → 𝐸 be a modular
parametrization; the pullback by Φ of the Néron differential 𝑑𝑢/(2𝑣 + 𝑎1𝑢+ 𝑎3) is equal to 2𝑖𝜋𝑓(𝑧)𝑑𝑧, a holo-
morphic differential form. The variable used in the power series for 𝑢 and 𝑣 is 𝑥, which is implicitly understood
to be equal to exp(2𝑖𝜋𝑧).

The algorithm assumes that 𝐸 is a strong Weil curve and that the Manin constant is equal to 1: in fact, 𝑓(𝑥) =∑︀
𝑛>0 𝑒𝑙𝑙𝑎𝑘(𝐸,𝑛)𝑥𝑛.

elltatepairing(P, Q, m)

Let 𝐸 be an elliptic curve defined over a finite field 𝑘 and 𝑚 >= 1 be an integer. This function computes the
(nonreduced) Tate pairing of the points 𝑃 and 𝑄 on 𝐸, where 𝑃 is an 𝑚-torsion point. More precisely, let 𝑓𝑚,𝑃

denote a Miller function with divisor 𝑚[𝑃 ] −𝑚[𝑂𝐸 ]; the algorithm returns 𝑓𝑚,𝑃 (𝑄) ∈ 𝑘*/(𝑘*)𝑚.
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elltors()

If 𝐸 is an elliptic curve defined over a number field or a finite field, outputs the torsion subgroup of 𝐸 as a 3-
component vector [t,v1,v2], where t is the order of the torsion group, v1 gives the structure of the torsion
group as a product of cyclic groups (sorted by decreasing order), and v2 gives generators for these cyclic groups.
𝐸 must be an ell structure as output by ellinit.

? E = ellinit([-1,0]);
? elltors(E)
%1 = [4, [2, 2], [[0, 0], [1, 0]]]

Here, the torsion subgroup is isomorphic to Z/2Z𝑥Z/2Z, with generators [0, 0] and [1, 0].

elltwist(P)
Returns the coefficients [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6] of the twist of the elliptic curve 𝐸 by the quadratic extension of the
coefficient ring defined by 𝑃 (when 𝑃 is a polynomial) or quadpoly(P) when 𝑃 is an integer. If 𝐸 is defined
over a finite field, then 𝑃 can be omitted, in which case a random model of the unique nontrivial twist is returned.
If 𝐸 is defined over a number field, the model should be replaced by a minimal model (if one exists).

Example: Twist by discriminant −3:

? elltwist(ellinit([0,a2,0,a4,a6]),-3)
%1 = [0,-3*a2,0,9*a4,-27*a6]

Twist by the Artin-Schreier extension given by 𝑥2 + 𝑥+ 𝑇 in characteristic 2:

? lift(elltwist(ellinit([a1,a2,a3,a4,a6]*Mod(1,2)),x^2+x+T))
%1 = [a1,a2+a1^2*T,a3,a4,a6+a3^2*T]

Twist of an elliptic curve defined over a finite field:

? E=ellinit([1,7]*Mod(1,19));lift(elltwist(E))
%1 = [0,0,0,11,12]

ellweilcurve(ms)
If 𝐸′ is an elliptic curve over Q, let 𝐿𝐸′ be the sub-Z-module of HomΓ0(𝑁)(∆0,Q) attached to 𝐸′ (It is given by
𝑥[3] if [𝑀,𝑥] = 𝑚𝑠𝑓𝑟𝑜𝑚𝑒𝑙𝑙(𝐸′).)

On the other hand, if 𝑁 is the conductor of 𝐸 and 𝑓 is the modular form for Γ0(𝑁) attached to 𝐸, let 𝐿𝑓 be
the lattice of the 𝑓 -component of HomΓ0(𝑁)(∆0,Q) given by the elements 𝜑 such that 𝜑(0, 𝛾−10) ∈ Z for all
𝛾 ∈ Γ0(𝑁) (see mslattice).

Let 𝐸′ run through the isomorphism classes of elliptic curves isogenous to 𝐸 as given by ellisomat (and in the
same order). This function returns a pair [vE,vS] where vE contains minimal models for the𝐸′ and vS contains
the list of Smith invariants for the lattices 𝐿𝐸′ in 𝐿𝑓 . The function also accepts the output of ellisomat, i.e. the
isogeny class. If the optional argument ms is present, it contains the output of msfromell(vE, 0), i.e. the new
modular symbol space 𝑀 of level 𝑁 and a vector of triples [𝑥+, 𝑥−, 𝐿] attached to each curve 𝐸′.

In particular, the strong Weil curve amongst the curves isogenous to𝐸 is the one whose Smith invariants are [𝑐, 𝑐],
where 𝑐 is the Manin constant, conjecturally equal to 1.

? E = ellinit("11a3");
? [vE, vS] = ellweilcurve(E);
? [n] = [ i | i<-[1..#vS], vS[i]==[1,1] ] \\ lattice with invariant [1,1]
%3 = [2]
? ellidentify(vE[n]) \\ ... corresponds to strong Weil curve
%4 = [["11a1", [0, -1, 1, -10, -20], []], [1, 0, 0, 0]]

(continues on next page)
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? [vE, vS] = ellweilcurve(E, &ms); \\ vE,vS are as above
? [M, vx] = ms; msdim(M) \\ ... but ms contains more information
%6 = 3
? #vx
%7 = 3
? vx[1]
%8 = [[1/25, -1/10, -1/10]~, [0, 1/2, -1/2]~, [1/25,0; -3/5,1; 2/5,-1]]
? forell(E, 11,11, print(msfromell(ellinit(E[1]), 1)[2]))
[1/5, -1/2, -1/2]~
[1, -5/2, -5/2]~
[1/25, -1/10, -1/10]~

The last example prints the modular symbols 𝑥+ in 𝑀+ attached to the curves 11a1, 11a2 and 11a3.

ellweilpairing(P, Q, m)

Let 𝐸 be an elliptic curve defined over a finite field and 𝑚 >= 1 be an integer. This function computes the Weil
pairing of the two𝑚-torsion points 𝑃 and𝑄 on𝐸, which is an alternating bilinear map. More precisely, let 𝑓𝑚,𝑅

denote a Miller function with divisor 𝑚[𝑅] −𝑚[𝑂𝐸 ]; the algorithm returns the 𝑚-th root of unity

𝜀(𝑃,𝑄)𝑚.𝑓𝑚,𝑃 (𝑄)/𝑓𝑚,𝑄(𝑃 ),

where 𝑓(𝑅) is the extended evaluation of 𝑓 at the divisor [𝑅]− [𝑂𝐸 ] and 𝜀(𝑃,𝑄) ∈ 1 is given by Weil reciprocity:
𝜀(𝑃,𝑄) = 1 if and only if 𝑃,𝑄,𝑂𝐸 are not pairwise distinct.

ellwp(z, flag, precision)
Computes the value at 𝑧 of the Weierstrass ℘ function attached to the lattice 𝑤 as given by ellperiods. It is also
possible to directly input 𝑤 = [𝜔1, 𝜔2], or an elliptic curve 𝐸 as given by ellinit (𝑤 = 𝐸.𝑜𝑚𝑒𝑔𝑎).

? w = ellperiods([1,I]);
? ellwp(w, 1/2)
%2 = 6.8751858180203728274900957798105571978
? E = ellinit([1,1]);
? ellwp(E, 1/2)
%4 = 3.9413112427016474646048282462709151389

One can also compute the series expansion around 𝑧 = 0:

? E = ellinit([1,0]);
? ellwp(E) \\ 'x implicitly at default seriesprecision
%5 = x^-2 - 1/5*x^2 + 1/75*x^6 - 2/4875*x^10 + O(x^14)
? ellwp(E, x + O(x^12)) \\ explicit precision
%6 = x^-2 - 1/5*x^2 + 1/75*x^6 + O(x^9)

Optional flag means 0 (default): compute only ℘(𝑧), 1: compute [℘(𝑧), ℘′(𝑧)].

For instance, the Dickson elliptic functions sm and sn can be implemented as follows

smcm(z) =
{ my(a, b, E = ellinit([0,-1/(4*27)])); \\ ell. invariants (g2,g3)=(0,1/27)
[a,b] = ellwp(E, z, 1);
[6*a / (1-3*b), (3*b+1)/(3*b-1)];
}
? [s,c] = smcm(0.5);

(continues on next page)
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? s
%2 = 0.4898258757782682170733218609
? c
%3 = 0.9591820206453842491187464098
? s^3+c^3
%4 = 1.000000000000000000000000000
? smcm('x + O('x^11))
%5 = [x - 1/6*x^4 + 2/63*x^7 - 13/2268*x^10 + O(x^11),
1 - 1/3*x^3 + 1/18*x^6 - 23/2268*x^9 + O(x^10)]

ellxn(n, v)
For any affine point 𝑃 = (𝑡, 𝑢) on the curve 𝐸, we have

[𝑛]𝑃 = (𝜑𝑛(𝑃 )𝜓𝑛(𝑃 ) : 𝜔𝑛(𝑃 ) : 𝜓𝑛(𝑃 )3)

for some 𝜑𝑛, 𝜔𝑛, 𝜓𝑛 in Z[𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6][𝑡, 𝑢] modulo the curve equation. This function returns a pair [𝐴,𝐵]
of polynomials in Z[𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6][𝑣] such that [𝐴(𝑡), 𝐵(𝑡)] = [𝜑𝑛(𝑃 ), 𝜓𝑛(𝑃 )2] in the function field of 𝐸,
whose quotient give the abscissa of [𝑛]𝑃 . If 𝑃 is an 𝑛-torsion point, then 𝐵(𝑡) = 0.

? E = ellinit([17,42]); [t,u] = [114,1218];
? T = ellxn(E, 2, 'X)
%2 = [X^4 - 34*X^2 - 336*X + 289, 4*X^3 + 68*X + 168]
? [a,b] = subst(T,'X,t);
%3 = [168416137, 5934096]
? a / b == ellmul(E, [t,u], 2)[1]
%4 = 1

ellzeta(z, precision)
Computes the value at 𝑧 of the Weierstrass 𝜁 function attached to the lattice 𝑤 as given by ellperiods(, 1):
including quasi-periods is useful, otherwise there are recomputed from scratch for each new 𝑧.

𝜁(𝑧, 𝐿) = (1)/(𝑧) + 𝑧2
∑︁
𝜔∈𝐿*

(1)/(𝜔2(𝑧 − 𝜔)).

It is also possible to directly input 𝑤 = [𝜔1, 𝜔2], or an elliptic curve 𝐸 as given by ellinit (𝑤 = 𝐸.𝑜𝑚𝑒𝑔𝑎).
The quasi-periods of 𝜁, such that

𝜁(𝑧 + 𝑎𝜔1 + 𝑏𝜔2) = 𝜁(𝑧) + 𝑎𝜂1 + 𝑏𝜂2

for integers 𝑎 and 𝑏 are obtained as 𝜂𝑖 = 2𝜁(𝜔𝑖/2). Or using directly elleta.

? w = ellperiods([1,I],1);
? ellzeta(w, 1/2)
%2 = 1.5707963267948966192313216916397514421
? E = ellinit([1,0]);
? ellzeta(E, E.omega[1]/2)
%4 = 0.84721308479397908660649912348219163647

One can also compute the series expansion around 𝑧 = 0 (the quasi-periods are useless in this case):

? E = ellinit([0,1]);
? ellzeta(E) \\ at 'x, implicitly at default seriesprecision
%4 = x^-1 + 1/35*x^5 - 1/7007*x^11 + O(x^15)
? ellzeta(E, x + O(x^20)) \\ explicit precision
%5 = x^-1 + 1/35*x^5 - 1/7007*x^11 + 1/1440257*x^17 + O(x^18)
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ellztopoint(z, precision)
𝐸 being an ell as output by ellinit, computes the coordinates [𝑥, 𝑦] on the curve𝐸 corresponding to the complex
or 𝑝-adic parameter 𝑧. Hence this is the inverse function of ellpointtoz.

• If 𝐸 is defined over a 𝑝-adic field and has multiplicative reduction, then 𝑧 is understood as an element on the
Tate curve �̄�*

𝑝/𝑞
Z.

? E = ellinit([0,-1,1,0,0], O(11^5));
? [u2,u,q] = E.tate; type(u)
%2 = "t_PADIC" \\ split multiplicative reduction
? z = ellpointtoz(E, [0,0])
%3 = 3 + 11^2 + 2*11^3 + 3*11^4 + 6*11^5 + 10*11^6 + 8*11^7 + O(11^8)
? ellztopoint(E,z)
%4 = [O(11^9), O(11^9)]

? E = ellinit(ellfromj(1/4), O(2^6)); x=1/2; y=ellordinate(E,x)[1];
? z = ellpointtoz(E,[x,y]); \\ nonsplit: t_POLMOD with t_PADIC coefficients
? P = ellztopoint(E, z);
? P[1] \\ y coordinate is analogous, more complicated
%8 = Mod(O(2^4)*x + (2^-1 + O(2^5)), x^2 + (1 + 2^2 + 2^4 + 2^5 + O(2^7)))

• If 𝐸 is defined over the complex numbers (for instance over Q), 𝑧 is understood as a complex number in
C/Λ𝐸 . If the short Weierstrass equation is 𝑦2 = 4𝑥3 − 𝑔2𝑥 − 𝑔3, then [𝑥, 𝑦] represents the Weierstrass
℘-function and its derivative. For a general Weierstrass equation we have

𝑥 = ℘(𝑧) − 𝑏2/12, 𝑦 = ℘′(𝑧)/2 − (𝑎1𝑥+ 𝑎3)/2.

𝐼𝑓 : 𝑚𝑎𝑡ℎ : ‘𝑧‘𝑖𝑠𝑖𝑛𝑡ℎ𝑒𝑙𝑎𝑡𝑡𝑖𝑐𝑒𝑑𝑒𝑓𝑖𝑛𝑖𝑛𝑔 : 𝑚𝑎𝑡ℎ : ‘𝐸‘𝑜𝑣𝑒𝑟 : 𝑚𝑎𝑡ℎ : ‘C‘, 𝑡ℎ𝑒𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑠𝑡ℎ𝑒𝑝𝑜𝑖𝑛𝑡𝑎𝑡𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 : 𝑚𝑎𝑡ℎ : ‘[0]‘.

? E = ellinit([0,1]); P = [2,3];
? z = ellpointtoz(E, P)
%2 = 3.5054552633136356529375476976257353387
? ellwp(E, z)
%3 = 2.0000000000000000000000000000000000000
? ellztopoint(E, z) - P
%4 = [2.548947057811923643 E-57, 7.646841173435770930 E-57]
? ellztopoint(E, 0)
%5 = [0] \\ point at infinity

erfc(precision)

Complementary error function, analytic continuation of (2/
√
𝜋)

∫︀ 𝑜

𝑥
𝑜𝑒−𝑡2𝑑𝑡 = 𝑠𝑖𝑔𝑛(𝑥)𝑖𝑛𝑐𝑔𝑎𝑚(1/2, 𝑥2)/

√
𝜋

for real 𝑥! = 0. The latter expression extends the function definition from real 𝑥 to complex 𝑥 with positive real
part (or zero real part and positive imaginary part). This is extended to the whole complex plane by the functional
equation 𝑒𝑟𝑓𝑐(−𝑥) = 2 − 𝑒𝑟𝑓𝑐(𝑥).

? erfc(0)
%1 = 1.0000000000000000000000000000000000000
? erfc(1)
%2 = 0.15729920705028513065877936491739074071
? erfc(1+I)
%3 = -0.31615128169794764488027108024367036903
- 0.19045346923783468628410886196916244244*I
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errname()

Returns the type of the error message E as a string.

? iferr(1 / 0, E, print(errname(E)))
e_INV
? ?? e_INV
[...]
* "e_INV". Tried to invert a noninvertible object x in function s.
[...]

eta(flag, precision)
Variants of Dedekind’s 𝜂 function. If 𝑓𝑙𝑎𝑔 = 0, return

∏︀𝑜
𝑛=1 𝑜(1 − 𝑞𝑛), where 𝑞 depends on 𝑥 in the following

way:

• 𝑞 = 𝑒2𝑖𝜋𝑥 if 𝑥 is a complex number (which must then have positive imaginary part); notice that the factor
𝑞1/24 is missing!

• 𝑞 = 𝑥 if 𝑥 is a t_PADIC, or can be converted to a power series (which must then have positive valuation).

If 𝑓𝑙𝑎𝑔 is nonzero, 𝑥 is converted to a complex number and we return the true 𝜂 function, 𝑞1/24
∏︀𝑜

𝑛=1 𝑜(1− 𝑞𝑛),
where 𝑞 = 𝑒2𝑖𝜋𝑥.

eulerphi()

Euler’s 𝜑 (totient) function of the integer ‖𝑥‖, in other words ‖(Z/𝑥Z)*‖.

? eulerphi(40)
%1 = 16

According to this definition we let 𝜑(0) := 2, since Z* = −1, 1; this is consistent with znstar(0): we have
znstar:math:`(n).no = eulerphi(n)` for all 𝑛 ∈ Z.

exp(precision)
Exponential of 𝑥. 𝑝-adic arguments with positive valuation are accepted.

expm1(precision)
Return exp(𝑥) − 1, computed in a way that is also accurate when the real part of 𝑥 is near 0. A naive direct
computation would suffer from catastrophic cancellation; PARI’s direct computation of exp(𝑥) alleviates this
well known problem at the expense of computing exp(𝑥) to a higher accuracy when 𝑥 is small. Using expm1 is
recommended instead:

? default(realprecision, 10000); x = 1e-100;
? a = expm1(x);
time = 4 ms.
? b = exp(x)-1;
time = 4 ms.
? default(realprecision, 10040); x = 1e-100;
? c = expm1(x); \\ reference point
? abs(a-c)/c \\ relative error in expm1(x)
%7 = 1.4027986153764843997 E-10019
? abs(b-c)/c \\ relative error in exp(x)-1
%8 = 1.7907031188259675794 E-9919

As the example above shows, when 𝑥 is near 0, expm1 is more accurate than exp(x)-1.

exponent()

When 𝑥 is a t_REAL, the result is the binary exponent 𝑒 of 𝑥. For a nonzero 𝑥, this is the unique integer 𝑒 such
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that 2𝑒 <= ‖𝑥‖ < 2𝑒+1. For a real 0, this returns the PARI exponent 𝑒 attached to 𝑥 (which may represent any
floating-point number less than 2𝑒 in absolute value).

? exponent(Pi)
%1 = 1
? exponent(4.0)
%2 = 2
? exponent(0.0)
%3 = -128
? default(realbitprecision)
%4 = 128

This definition extends naturally to nonzero integers, and the exponent of an exact 0 is −𝑜𝑜 by convention.

For convenience, we define the exponent of a t_FRAC 𝑎/𝑏 as the difference of exponent(𝑎) and exponent(𝑏);
note that, if 𝑒′ denotes the exponent of :math:`a/b * 1.0`, then the exponent 𝑒 we return is either 𝑒′ or 𝑒′ + 1,
thus 2𝑒+1 is an upper bound for ‖𝑎/𝑏‖.

? [ exponent(9), exponent(10), exponent(9/10), exponent(9/10*1.) ]
%5 = [3, 3, 0, -1]

For a PARI object of type t_COMPLEX, t_POL, t_SER, t_VEC, t_COL, t_MAT this returns the largest exponent
found among the components of 𝑥. Hence 2𝑒+1 is a quick upper bound for the sup norm of real matrices or
polynomials; and 2𝑒+(3/2) for complex ones.

? exponent(3*x^2 + 15*x - 100)
%5 = 6
? exponent(0)
%6 = -oo

factor(D)

Factor 𝑥 over domain 𝐷; if 𝐷 is omitted, it is determined from 𝑥. For instance, if 𝑥 is an integer, it is factored
in Z, if it is a polynomial with rational coefficients, it is factored in Q[𝑥], etc., see below for details. The result
is a two-column matrix: the first contains the irreducibles dividing 𝑥 (rational or Gaussian primes, irreducible
polynomials), and the second the exponents. By convention, 0 is factored as 01.

:math:`x in mathbb{Q}.` See factorint for the algorithms used. The factorization includes the unit −1 when
𝑥 < 0 and all other factors are positive; a denominator is factored with negative exponents. The factors are sorted
in increasing order.

? factor(-7/106)
%1 =
[-1 1]

[ 2 -1]

[ 7 1]

[53 -1]

By convention, 1 is factored as matrix(0,2) (the empty factorization, printed as [;]).

Large rational “primes” > 264 in the factorization are in fact pseudoprimes (see ispseudoprime), a priori not
rigorously proven primes. Use isprime to prove primality of these factors, as in
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? fa = factor(2^2^7 + 1)
%2 =
[59649589127497217 1]

[5704689200685129054721 1]

? isprime( fa[,1] )
%3 = [1, 1]~ \\ both entries are proven primes

Another possibility is to globally set the default factor_proven, which will perform a rigorous primality proof
for each pseudoprime factor but will slow down PARI.

A t_INT argument 𝐷 can be added, meaning that we only trial divide by all primes 𝑝 < 𝐷 and the addprimes
entries, then skip all expensive factorization methods. The limit 𝐷 must be nonnegative. In this case, one entry
in the factorization may be a composite number: all factors less than 𝐷2 and primes from the addprimes table
are actual primes. But (at most) one entry may not verify this criterion, and it may be prime or composite: it is
only known to be coprime to all other entries and not a pure power..

? factor(2^2^7 +1, 10^5)
%4 =
[340282366920938463463374607431768211457 1]

Deprecated feature. Setting 𝐷 = 0 is the same as setting it to 𝑝𝑟𝑖𝑚𝑒𝑙𝑖𝑚𝑖𝑡+ 1.

This routine uses trial division and perfect power tests, and should not be used for huge values of𝐷 (at most 109,
say): factorint(, 1 + 8) will in general be faster. The latter does not guarantee that all small prime factors
are found, but it also finds larger factors and in a more efficient way.

? F = (2^2^7 + 1) * 1009 * (10^5+3); factor(F, 10^5) \\ fast, incomplete
time = 0 ms.
%5 =
[1009 1]

[34029257539194609161727850866999116450334371 1]

? factor(F, 10^9) \\ slow
time = 3,260 ms.
%6 =
[1009 1]

[100003 1]

[340282366920938463463374607431768211457 1]

? factorint(F, 1+8) \\ much faster and all small primes were found
time = 8 ms.
%7 =
[1009 1]

[100003 1]

[340282366920938463463374607431768211457 1]

? factor(F) \\ complete factorization
(continues on next page)
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time = 60 ms.
%8 =
[1009 1]

[100003 1]

[59649589127497217 1]

[5704689200685129054721 1]

Setting 𝐷 = 𝐼 will factor in the Gaussian integers Z[𝑖]:

:math:`x in mathbb{Q} (i).` The factorization is performed with Gaussian primes in Z[𝑖] and includes Gaussian
units in 1, 𝑖; factors are sorted by increasing norm. Except for a possible leading unit, the Gaussian factors are
normalized: rational factors are positive and irrational factors have positive imaginary part (a canonical represneta.

Unless factor_proven is set, large factors are actually pseudoprimes, not proven primes; a rational factor is
prime if less than 264 and an irrational one if its norm is less than 264.

? factor(5*I)
%9 =
[ 2 + I 1]

[1 + 2*I 1]

One can force the factorization of a rational number by setting the domain 𝐷 = 𝐼:

? factor(-5, I)
%10 =
[ I 1]

[ 2 + I 1]

[1 + 2*I 1]
? factorback(%)
%11 = -5

Univariate polynomials and rational functions. PARI can factor univariate polynomials in𝐾[𝑡]. The following
base fields𝐾 are currently supported: Q,R,C,Q𝑝, finite fields and number fields. See factormod and factorff
for the algorithms used over finite fields and nffactor for the algorithms over number fields. The irreducible
factors are sorted by increasing degree and normalized: they are monic except when 𝐾 = Q where they are
primitive in Z[𝑡].

The content is not included in the factorization, in particular factorback will in general recover the original
𝑥 only up to multiplication by an element of 𝐾*: when 𝐾! = Q, this scalar is pollead(𝑥) (since irreducible
factors are monic); and when 𝐾 = Q you can either ask for the Q-content explicitly of use factorback:

? P = t^2 + 5*t/2 + 1; F = factor(P)
%12 =
[t + 2 1]

[2*t + 1 1]

? content(P, 1) \\ Q-content
(continues on next page)
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%13 = 1/2

? pollead(factorback(F)) / pollead(P)
%14 = 2

You can specify 𝐾 using the optional “domain” argument 𝐷 as follows

• 𝐾 = Q : 𝐷 a rational number (t_INT or t_FRAC),

• 𝐾 = Z/𝑝Z with 𝑝 prime : 𝐷 a t_INTMOD modulo 𝑝; factoring modulo a composite number is not supported.

• 𝐾 = F𝑞 : 𝐷 a t_FFELT encoding the finite field; you can also use a t_POLMOD of t_INTMOD modulo a
prime 𝑝 but this is usualy less convenient;

• 𝐾 = Q[𝑋]/(𝑇 ) a number field : 𝐷 a t_POLMOD modulo 𝑇 ,

• 𝐾 = Q(𝑖) (alternate syntax for special case): 𝐷 = 𝐼 ,

• 𝐾 = Q(𝑤) a quadratic number field (alternate syntax for special case): 𝐷 a t_QUAD,

• 𝐾 = R : 𝐷 a real number (t_REAL); truncate the factorization at accuracy precision(𝐷). If 𝑥 is inexact
and precision(𝑥) is less than precision(𝐷), then the precision of 𝑥 is used instead.

• 𝐾 = C : 𝐷 a complex number with a t_REAL component, e.g. I * 1.; truncate the factorization as for
𝐾 = R,

• 𝐾 = Q𝑝 : 𝐷 a t_PADIC; truncate the factorization at 𝑝-adic accuracy padicprec(𝐷), possibly less if 𝑥 is
inexact with insufficient 𝑝-adic accuracy;

? T = x^2+1;
? factor(T, 1); \\ over Q
? factor(T, Mod(1,3)) \\ over F_3
? factor(T, ffgen(ffinit(3,2,'t))^0) \\ over F_{3^2}
? factor(T, Mod(Mod(1,3), t^2+t+2)) \\ over F_{3^2}, again
? factor(T, O(3^6)) \\ over Q_3, precision 6
? factor(T, 1.) \\ over R, current precision
? factor(T, I*1.) \\ over C
? factor(T, Mod(1, y^3-2)) \\ over Q(2^{1/3})

In most cases, it is possible and simpler to call a specialized variant rather than use the above scheme:

? factormod(T, 3) \\ over F_3
? factormod(T, [t^2+t+2, 3]) \\ over F_{3^2}
? factormod(T, ffgen(3^2, 't)) \\ over F_{3^2}
? factorpadic(T, 3,6) \\ over Q_3, precision 6
? nffactor(y^3-2, T) \\ over Q(2^{1/3})
? polroots(T) \\ over C
? polrootsreal(T) \\ over R (real polynomial)

It is also possible to let the routine use the smallest field containing all coefficients, taking into account quotient
structures induced by t_INTMOD s and t_POLMOD s (e.g. if a coefficient in Z/𝑛Z is known, all rational numbers
encountered are first mapped to Z/𝑛Z; different moduli will produce an error):

? T = x^2+1;
? factor(T); \\ over Q
? factor(T*Mod(1,3)) \\ over F_3
? factor(T*ffgen(ffinit(3,2,'t))^0) \\ over F_{3^2}

(continues on next page)
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? factor(T*Mod(Mod(1,3), t^2+t+2)) \\ over F_{3^2}, again
? factor(T*(1 + O(3^6)) \\ over Q_3, precision 6
? factor(T*1.) \\ over R, current precision
? factor(T*(1.+0.*I)) \\ over C
? factor(T*Mod(1, y^3-2)) \\ over Q(2^{1/3})

Multiplying by a suitable field element equal to 1 ∈ 𝐾 in this way is error-prone and is not recommanded.
Factoring existing polynomials with obvious fields of coefficients is fine, the domain argument 𝐷 should be used
instead ad hoc conversions.

Note on inexact polynomials. Polynomials with inexact coefficients (e.g. floating point or 𝑝-adic numbers) are
first rounded to an exact representation, then factored to (potentially) infinite accuracy and we return a truncated
approximation of that virtual factorization. To avoid pitfalls, we advise to only factor exact polynomials:

? factor(x^2-1+O(2^2)) \\ rounded to x^2 + 3, irreducible in Q_2
%1 =
[(1 + O(2^2))*x^2 + O(2^2)*x + (1 + 2 + O(2^2)) 1]

? factor(x^2-1+O(2^3)) \\ rounded to x^2 + 7, reducible !
%2 =
[ (1 + O(2^3))*x + (1 + 2 + O(2^3)) 1]

[(1 + O(2^3))*x + (1 + 2^2 + O(2^3)) 1]

? factor(x^2-1, O(2^2)) \\ no ambiguity now
%3 =
[ (1 + O(2^2))*x + (1 + O(2^2)) 1]

[(1 + O(2^2))*x + (1 + 2 + O(2^2)) 1]

Note about inseparable polynomials. Polynomials with inexact coefficients are considered to be squarefree:
indeed, there exist a squarefree polynomial arbitrarily close to the input, and they cannot be distinguished at the
input accuracy. This means that irreducible factors are repeated according to their apparent multiplicity. On
the contrary, using a specialized function such as factorpadic with an exact rational input yields the correct
multiplicity when the (now exact) input is not separable. Compare:

? factor(z^2 + O(5^2)))
%1 =
[(1 + O(5^2))*z + O(5^2) 1]

[(1 + O(5^2))*z + O(5^2) 1]
? factor(z^2, O(5^2))
%2 =
[1 + O(5^2))*z + O(5^2) 2]

Multivariate polynomials and rational functions. PARI recursively factors multivariate polynomials in
𝐾[𝑡1, ..., 𝑡𝑑] for the same fields 𝐾 as above and the argument 𝐷 is used in the same way to specify 𝐾. The
irreducible factors are sorted by their main variable (least priority first) then by increasing degree.

? factor(x^2 + y^2, Mod(1,5))
%1 =
[ x + Mod(2, 5)*y 1]

(continues on next page)
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[Mod(1, 5)*x + Mod(3, 5)*y 1]

? factor(x^2 + y^2, O(5^2))
%2 =
[ (1 + O(5^2))*x + (O(5^2)*y^2 + (2 + 5 + O(5^2))*y + O(5^2)) 1]

[(1 + O(5^2))*x + (O(5^2)*y^2 + (3 + 3*5 + O(5^2))*y + O(5^2)) 1]

? lift(%)
%3 =
[ x + 7*y 1]

[x + 18*y 1]

Note that the implementation does not really support inexact real fields (R or C) and usually misses factors even
if the input is exact:

? factor(x^2 + y^2, I) \\ over Q(i)
%4 =
[x - I*y 1]

[x + I*y 1]

? factor(x^2 + y^2, I*1.) \\ over C
%5 =
[x^2 + y^2 1]

factorback(e)
Gives back the factored object corresponding to a factorization. The integer 1 corresponds to the empty factor-
ization.

If 𝑒 is present, 𝑒 and 𝑓 must be vectors of the same length (𝑒 being integral), and the corresponding factorization
is the product of the 𝑓 [𝑖]𝑒[𝑖].

If not, and 𝑓 is vector, it is understood as in the preceding case with 𝑒 a vector of 1s: we return the product of the
𝑓 [𝑖]. Finally, 𝑓 can be a regular factorization, as produced with any factor command. A few examples:

? factor(12)
%1 =
[2 2]

[3 1]

? factorback(%)
%2 = 12
? factorback([2,3], [2,1]) \\ 2^3 * 3^1
%3 = 12
? factorback([5,2,3])
%4 = 30

factorcantor(p)
This function is obsolete, use factormod.
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factorff(p, a)
Obsolete, kept for backward compatibility: use factormod.

factorint(flag)
Factors the integer 𝑛 into a product of pseudoprimes (see ispseudoprime), using a combination of the Shanks
SQUFOF and Pollard Rho method (with modifications due to Brent), Lenstra’s ECM (with modifications by
Montgomery), and MPQS (the latter adapted from the LiDIA code with the kind permission of the LiDIA main-
tainers), as well as a search for pure powers. The output is a two-column matrix as for factor: the first column
contains the “prime” divisors of 𝑛, the second one contains the (positive) exponents.

By convention 0 is factored as 01, and 1 as the empty factorization; also the divisors are by default not proven
primes if they are larger than 264, they only failed the BPSW compositeness test (see ispseudoprime). Use
isprime on the result if you want to guarantee primality or set the factor_proven default to 1. Entries of the
private prime tables (see addprimes) are also included as is.

This gives direct access to the integer factoring engine called by most arithmetical functions. flag is optional; its
binary digits mean 1: avoid MPQS, 2: skip first stage ECM (we may still fall back to it later), 4: avoid Rho and
SQUFOF, 8: don’t run final ECM (as a result, a huge composite may be declared to be prime). Note that a (strong)
probabilistic primality test is used; thus composites might not be detected, although no example is known.

You are invited to play with the flag settings and watch the internals at work by using gp’s debug default parameter
(level 3 shows just the outline, 4 turns on time keeping, 5 and above show an increasing amount of internal details).

factormod(D, flag)
Factors the polynomial 𝑓 over the finite field defined by the domain 𝐷 as follows:

• 𝐷 = 𝑝 a prime: factor over F𝑝;

• 𝐷 = [𝑇, 𝑝] for a prime 𝑝 and 𝑇 (𝑦) an irreducible polynomial over F𝑝: factor over F𝑝[𝑦]/(𝑇 ) (as usual the
main variable of 𝑇 must have lower priority than the main variable of 𝑓 );

• 𝐷 a t_FFELT: factor over the attached field;

• 𝐷 omitted: factor over the field of definition of 𝑓 , which must be a finite field.

The coefficients of 𝑓 must be operation-compatible with the corresponding finite field. The result is a two-
column matrix, the first column being the irreducible polynomials dividing 𝑓 , and the second the exponents. By
convention, the 0 polynomial factors as 01; a nonzero constant polynomial has empty factorization, a 0𝑥2 matrix.
The irreducible factors are ordered by increasing degree and the result is canonical: it will not change across
multiple calls or sessions.

? factormod(x^2 + 1, 3) \\ over F_3
%1 =
[Mod(1, 3)*x^2 + Mod(1, 3) 1]
? liftall( factormod(x^2 + 1, [t^2+1, 3]) ) \\ over F_9
%2 =
[ x + t 1]

[x + 2*t 1]

\\ same, now letting GP choose a model
? T = ffinit(3,2,'t)
%3 = Mod(1, 3)*t^2 + Mod(1, 3)*t + Mod(2, 3)
? liftall( factormod(x^2 + 1, [T, 3]) )
%4 = \\ t is a root of T !
[ x + (t + 2) 1]

[x + (2*t + 1) 1]
(continues on next page)
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? t = ffgen(t^2+Mod(1,3)); factormod(x^2 + t^0) \\ same using t_FFELT
%5 =
[ x + t 1]

[x + 2*t 1]
? factormod(x^2+Mod(1,3))
%6 =
[Mod(1, 3)*x^2 + Mod(1, 3) 1]
? liftall( factormod(x^2 + Mod(Mod(1,3), y^2+1)) )
%7 =
[ x + y 1]

[x + 2*y 1]

If 𝑓𝑙𝑎𝑔 is nonzero, outputs only the degrees of the irreducible polynomials (for example to compute an 𝐿-
function). By convention, a constant polynomial (including the 0 polynomial) has empty factorization. The
degrees appear in increasing order but need not correspond to the ordering with 𝑓𝑙𝑎𝑔 = 0 when multiplicities are
present.

? f = x^3 + 2*x^2 + x + 2;
? factormod(f, 5) \\ (x+2)^2 * (x+3)
%1 =
[Mod(1, 5)*x + Mod(2, 5) 2]

[Mod(1, 5)*x + Mod(3, 5) 1]
? factormod(f, 5, 1) \\ (deg 1) * (deg 1)^2
%2 =
[1 1]

[1 2]

factormodDDF(D)

Distinct-degree factorization of the squarefree polynomial 𝑓 over the finite field defined by the domain 𝐷 as
follows:

• 𝐷 = 𝑝 a prime: factor over F𝑝;

• 𝐷 = [𝑇, 𝑝] for a prime 𝑝 and 𝑇 an irreducible polynomial over F𝑝: factor over F𝑝[𝑥]/(𝑇 );

• 𝐷 a t_FFELT: factor over the attached field;

• 𝐷 omitted: factor over the field of definition of 𝑓 , which must be a finite field.

This is somewhat faster than full factorization. The coefficients of 𝑓 must be operation-compatible with the
corresponding finite field. The result is a two-column matrix:

• the first column contains monic (squarefree) pairwise coprime polynomials dividing 𝑓 , all of whose irre-
ducible factors have degree 𝑑;

• the second column contains the degrees of the irreducible factors.

The factors are ordered by increasing degree and the result is canonical: it will not change across multiple calls
or sessions.

? f = (x^2 + 1) * (x^2-1);
? factormodSQF(f,3) \\ squarefree over F_3

(continues on next page)
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%2 =
[Mod(1, 3)*x^4 + Mod(2, 3) 1]

? factormodDDF(f, 3)
%3 =
[Mod(1, 3)*x^2 + Mod(2, 3) 1] \\ two degree 1 factors

[Mod(1, 3)*x^2 + Mod(1, 3) 2] \\ irred of degree 2

? for(i=1,10^5,factormodDDF(f,3))
time = 424 ms.
? for(i=1,10^5,factormod(f,3)) \\ full factorization is slower
time = 464 ms.

? liftall( factormodDDF(x^2 + 1, [3, t^2+1]) ) \\ over F_9
%6 =
[x^2 + 1 1] \\ product of two degree 1 factors

? t = ffgen(t^2+Mod(1,3)); factormodDDF(x^2 + t^0) \\ same using t_FFELT
%7 =
[x^2 + 1 1]

? factormodDDF(x^2-Mod(1,3))
%8 =
[Mod(1, 3)*x^2 + Mod(2, 3) 1]

factormodSQF(D)

Squarefree factorization of the polynomial 𝑓 over the finite field defined by the domain 𝐷 as follows:

• 𝐷 = 𝑝 a prime: factor over F𝑝;

• 𝐷 = [𝑇, 𝑝] for a prime 𝑝 and 𝑇 an irreducible polynomial over F𝑝: factor over F𝑝[𝑥]/(𝑇 );

• 𝐷 a t_FFELT: factor over the attached field;

• 𝐷 omitted: factor over the field of definition of 𝑓 , which must be a finite field.

This is somewhat faster than full factorization. The coefficients of 𝑓 must be operation-compatible with the
corresponding finite field. The result is a two-column matrix:

• the first column contains monic squarefree pairwise coprime polynomials dividing 𝑓 ;

• the second column contains the power to which the polynomial in column 1 divides 𝑓 ;

The factors are ordered by increasing degree and the result is canonical: it will not change across multiple calls
or sessions.

? f = (x^2 + 1)^3 * (x^2-1)^2;
? factormodSQF(f, 3) \\ over F_3
%1 =
[Mod(1, 3)*x^2 + Mod(2, 3) 2]

[Mod(1, 3)*x^2 + Mod(1, 3) 3]

? for(i=1,10^5,factormodSQF(f,3))
time = 192 ms.

(continues on next page)
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? for(i=1,10^5,factormod(f,3)) \\ full factorization is slower
time = 409 ms.

? liftall( factormodSQF((x^2 + 1)^3, [3, t^2+1]) ) \\ over F_9
%4 =
[x^2 + 1 3]

? t = ffgen(t^2+Mod(1,3)); factormodSQF((x^2 + t^0)^3) \\ same using t_FFELT
%5 =
[x^2 + 1 3]

? factormodSQF(x^8 + x^7 + x^6 + x^2 + x + Mod(1,2))
%6 =
[ Mod(1, 2)*x + Mod(1, 2) 2]

[Mod(1, 2)*x^2 + Mod(1, 2)*x + Mod(1, 2) 3]

factornf(t)
This function is obsolete, use nffactor.

factorization of the univariate polynomial 𝑥 over the number field defined by the (univariate) polynomial 𝑡. 𝑥may
have coefficients in Q or in the number field. The algorithm reduces to factorization over Q (Trager’s trick). The
direct approach of nffactor, which uses van Hoeij’s method in a relative setting, is in general faster.

The main variable of 𝑡 must be of lower priority than that of 𝑥 (see priority (in the PARI manual)). However
if nonrational number field elements occur (as polmods or polynomials) as coefficients of 𝑥, the variable of these
polmods must be the same as the main variable of 𝑡. For example

? factornf(x^2 + Mod(y, y^2+1), y^2+1);
? factornf(x^2 + y, y^2+1); \\ these two are OK
? factornf(x^2 + Mod(z,z^2+1), y^2+1)
*** at top-level: factornf(x^2+Mod(z,z
*** ^--------------------
*** factornf: inconsistent data in rnf function.
? factornf(x^2 + z, y^2+1)
*** at top-level: factornf(x^2+z,y^2+1
*** ^--------------------
*** factornf: incorrect variable in rnf function.

factorpadic(p, r)
𝑝-adic factorization of the polynomial pol to precision 𝑟, the result being a two-column matrix as in factor.
Note that this is not the same as a factorization over Z/𝑝𝑟Z (polynomials over that ring do not form a unique
factorization domain, anyway), but approximations in Q/𝑝𝑟Z of the true factorization in Q𝑝[𝑋].

? factorpadic(x^2 + 9, 3,5)
%1 =
[(1 + O(3^5))*x^2 + O(3^5)*x + (3^2 + O(3^5)) 1]
? factorpadic(x^2 + 1, 5,3)
%2 =
[ (1 + O(5^3))*x + (2 + 5 + 2*5^2 + O(5^3)) 1]

[(1 + O(5^3))*x + (3 + 3*5 + 2*5^2 + O(5^3)) 1]
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The factors are normalized so that their leading coefficient is a power of 𝑝. The method used is a modified version
of the round 4 algorithm of Zassenhaus.

If pol has inexact t_PADIC coefficients, this is not always well-defined; in this case, the polynomial is first made
integral by dividing out the 𝑝-adic content, then lifted to Z using truncate coefficientwise. Hence we actually
factor exactly a polynomial which is only 𝑝-adically close to the input. To avoid pitfalls, we advise to only factor
polynomials with exact rational coefficients.

ffcompomap(g)
Let 𝑘, 𝑙, 𝑚 be three finite fields and 𝑓 a (partial) map from 𝑙 to 𝑚 and 𝑔 a (partial) map from 𝑘 to 𝑙, return the
(partial) map 𝑓𝑜𝑔 from 𝑘 to 𝑚.

a = ffgen([3,5],'a); b = ffgen([3,10],'b); c = ffgen([3,20],'c);
m = ffembed(a, b); n = ffembed(b, c);
rm = ffinvmap(m); rn = ffinvmap(n);
nm = ffcompomap(n,m);
ffmap(n,ffmap(m,a)) == ffmap(nm, a)
%5 = 1
ffcompomap(rm, rn) == ffinvmap(nm)
%6 = 1

ffembed(b)
Given two finite fields elements 𝑎 and 𝑏, return a map embedding the definition field of 𝑎 to the definition field of
𝑏. Assume that the latter contains the former.

? a = ffgen([3,5],'a);
? b = ffgen([3,10],'b);
? m = ffembed(a, b);
? A = ffmap(m, a);
? minpoly(A) == minpoly(a)
%5 = 1

ffextend(P, v)
Extend the field 𝐾 of definition of 𝑎 by a root of the polynomial 𝑃 ∈ 𝐾[𝑋] assumed to be irreducible over 𝐾.
Return [𝑟,𝑚] where 𝑟 is a root of 𝑃 in the extension field 𝐿 and𝑚 is a map from𝐾 to 𝐿, see ffmap. If 𝑣 is given,
the variable name is used to display the generator of 𝐿, else the name of the variable of 𝑃 is used. A generator of
𝐿 can be recovered using 𝑏 = 𝑓𝑓𝑔𝑒𝑛(𝑟). The image of 𝑃 in 𝐿[𝑋] can be recovered using 𝑃𝐿 = 𝑓𝑓𝑚𝑎𝑝(𝑚,𝑃 ).

? a = ffgen([3,5],'a);
? P = x^2-a; polisirreducible(P)
%2 = 1
? [r,m] = ffextend(a, P, 'b);
? r
%3 = b^9+2*b^8+b^7+2*b^6+b^4+1
? subst(ffmap(m, P), x, r)
%4 = 0
? ffgen(r)
%5 = b

fffrobenius(n)
Return the 𝑛-th power of the Frobenius map over the field of definition of 𝑚.

? a = ffgen([3,5],'a);
? f = fffrobenius(a);

(continues on next page)
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? ffmap(f,a) == a^3
%3 = 1
? g = fffrobenius(a, 5);
? ffmap(g,a) == a
%5 = 1
? h = fffrobenius(a, 2);
? h == ffcompomap(f,f)
%7 = 1

ffgen(v)
Return a generator for the finite field 𝑘 as a t_FFELT. The field 𝑘 can be given by

• its order 𝑞

• the pair [𝑝, 𝑓 ] where 𝑞 = 𝑝𝑓

• a monic irreducible polynomial with t_INTMOD coefficients modulo a prime.

• a t_FFELT belonging to 𝑘.

If v is given, the variable name is used to display 𝑔, else the variable of the polynomial or the t_FFELT is used,
else 𝑥 is used.

When only the order is specified, the function uses the polynomial generated by ffinit and is deterministic: two
calls to the function with the same parameters will always give the same generator.

For efficiency, the characteristic is not checked to be prime; similarly if a polynomial is given, we do not check
whether it is irreducible.

To obtain a multiplicative generator, call ffprimroot on the result.

? g = ffgen(16, 't);
? g.mod \\ recover the underlying polynomial.
%2 = t^4+t^3+t^2+t+1
? g.pol \\ lift g as a t_POL
%3 = t
? g.p \\ recover the characteristic
%4 = 2
? fforder(g) \\ g is not a multiplicative generator
%5 = 5
? a = ffprimroot(g) \\ recover a multiplicative generator
%6 = t^3+t^2+t
? fforder(a)
%7 = 15

ffinit(n, v)
Computes a monic polynomial of degree 𝑛 which is irreducible over F𝑝, where 𝑝 is assumed to be prime. This
function uses a fast variant of Adleman and Lenstra’s algorithm.

It is useful in conjunction with ffgen; for instance if P = ffinit(3,2), you can represent elements in F32 in
term of g = ffgen(P,'t). This can be abbreviated as g = ffgen(3^2, 't), where the defining polynomial
𝑃 can be later recovered as g.mod.

ffinvmap()

𝑚 being a map from 𝐾 to 𝐿 two finite fields, return the partial map 𝑝 from 𝐿 to 𝐾 such that for all 𝑘 ∈ 𝐾,
𝑝(𝑚(𝑘)) = 𝑘.
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? a = ffgen([3,5],'a);
? b = ffgen([3,10],'b);
? m = ffembed(a, b);
? p = ffinvmap(m);
? u = random(a);
? v = ffmap(m, u);
? ffmap(p, v^2+v+2) == u^2+u+2
%7 = 1
? ffmap(p, b)
%8 = []

fflog(g, o)
Discrete logarithm of the finite field element 𝑥 in base 𝑔, i.e. an 𝑒 in Z such that 𝑔𝑒 = 𝑜. If present, 𝑜 represents
the multiplicative order of 𝑔, see DLfun (in the PARI manual); the preferred format for this parameter is [ord,
factor(ord)], where ord is the order of 𝑔. It may be set as a side effect of calling ffprimroot. The result is
undefined if 𝑒 does not exist. This function uses

• a combination of generic discrete log algorithms (see znlog)

• a cubic sieve index calculus algorithm for large fields of degree at least 5.

• Coppersmith’s algorithm for fields of characteristic at most 5.

? t = ffgen(ffinit(7,5));
? o = fforder(t)
%2 = 5602 \\ not a primitive root.
? fflog(t^10,t)
%3 = 10
? fflog(t^10,t, o)
%4 = 10
? g = ffprimroot(t, &o);
? o \\ order is 16806, bundled with its factorization matrix
%6 = [16806, [2, 1; 3, 1; 2801, 1]]
? fforder(g, o)
%7 = 16806
? fflog(g^10000, g, o)
%8 = 10000

ffmap(x)
Given a (partial) map𝑚 between two finite fields, return the image of 𝑥 by𝑚. The function is applied recursively
to the component of vectors, matrices and polynomials. If 𝑚 is a partial map that is not defined at 𝑥, return [].

? a = ffgen([3,5],'a);
? b = ffgen([3,10],'b);
? m = ffembed(a, b);
? P = x^2+a*x+1;
? Q = ffmap(m,P);
? ffmap(m,poldisc(P)) == poldisc(Q)
%6 = 1

ffmaprel(x)
Given a (partial) map 𝑚 between two finite fields, express 𝑥 as an algebraic element over the codomain of 𝑚 in a
way which is compatible with 𝑚. The function is applied recursively to the component of vectors, matrices and
polynomials.
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? a = ffgen([3,5],'a);
? b = ffgen([3,10],'b);
? m = ffembed(a, b);
? mi= ffinvmap(m);
? R = ffmaprel(mi,b)
%5 = Mod(b,b^2+(a+1)*b+(a^2+2*a+2))

In particular, this function can be used to compute the relative minimal polynomial, norm and trace:

? minpoly(R)
%6 = x^2+(a+1)*x+(a^2+2*a+2)
? trace(R)
%7 = 2*a+2
? norm(R)
%8 = a^2+2*a+2

ffnbirred(n, fl)
Computes the number of monic irreducible polynomials over F𝑞 of degree exactly 𝑛, (𝑓𝑙𝑎𝑔 = 0 or omitted) or at
most 𝑛 (𝑓𝑙𝑎𝑔 = 1).

fforder(o)
Multiplicative order of the finite field element 𝑥. If 𝑜 is present, it represents a multiple of the order of the
element, see DLfun (in the PARI manual); the preferred format for this parameter is [N, factor(N)], where N
is the cardinality of the multiplicative group of the underlying finite field.

? t = ffgen(ffinit(nextprime(10^8), 5));
? g = ffprimroot(t, &o); \\ o will be useful!
? fforder(g^1000000, o)
time = 0 ms.
%5 = 5000001750000245000017150000600250008403
? fforder(g^1000000)
time = 16 ms. \\ noticeably slower, same result of course
%6 = 5000001750000245000017150000600250008403

ffprimroot(o)
Return a primitive root of the multiplicative group of the definition field of the finite field element 𝑥 (not neces-
sarily the same as the field generated by 𝑥). If present, 𝑜 is set to a vector [ord, fa], where ord is the order of
the group and fa its factorization factor(ord). This last parameter is useful in fflog and fforder, see DLfun
(in the PARI manual).

? t = ffgen(ffinit(nextprime(10^7), 5));
? g = ffprimroot(t, &o);
? o[1]
%3 = 100000950003610006859006516052476098
? o[2]
%4 =
[2 1]

[7 2]

[31 1]

[41 1]
(continues on next page)
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[67 1]

[1523 1]

[10498781 1]

[15992881 1]

[46858913131 1]

? fflog(g^1000000, g, o)
time = 1,312 ms.
%5 = 1000000

fft(P)
Let 𝑤 = [1, 𝑧, ..., 𝑧𝑁−1] from some primitive𝑁 -roots of unity 𝑧 where𝑁 is a power of 2, and 𝑃 be a polynomial
< 𝑁 , return the unnormalized discrete Fourier transform of 𝑃 , 𝑃 (𝑤[𝑖]), 1 <= 𝑖 <= 𝑁 . Also allow 𝑃 to be a
vector [𝑝0, ..., 𝑝𝑛] representing the polynomial

∑︀
𝑝𝑖𝑋

𝑖. Composing fft and fftinv returns𝑁 times the original
input coefficients.

? w = rootsof1(4); fft(w, x^3+x+1)
%1 = [3, 1, -1, 1]
? fftinv(w, %)
%2 = [4, 4, 0, 4]
? Polrev(%) / 4
%3 = x^3 + x + 1
? w = powers(znprimroot(5),3); fft(w, x^3+x+1)
%4 = [Mod(3,5),Mod(1,5),Mod(4,5),Mod(1,5)]
? fftinv(w, %)
%5 = [Mod(4,5),Mod(4,5),Mod(0,5),Mod(4,5)]

fftinv(P)
Let 𝑤 = [1, 𝑧, ..., 𝑧𝑁−1] from some primitive𝑁 -roots of unity 𝑧 where𝑁 is a power of 2, and 𝑃 be a polynomial
< 𝑁 , return the unnormalized discrete Fourier transform of 𝑃 , 𝑃 (1/𝑤[𝑖]), 1 <= 𝑖 <= 𝑁 . Also allow 𝑃 to be a
vector [𝑝0, ..., 𝑝𝑛] representing the polynomial

∑︀
𝑝𝑖𝑋

𝑖. Composing fft and fftinv returns𝑁 times the original
input coefficients.

? w = rootsof1(4); fft(w, x^3+x+1)
%1 = [3, 1, -1, 1]
? fftinv(w, %)
%2 = [4, 4, 0, 4]
? Polrev(%) / 4
%3 = x^3 + x + 1

? N = 512; w = rootsof1(N); T = random(1000 * x^(N-1));
? U = fft(w, T);
time = 3 ms.
? V = vector(N, i, subst(T, 'x, w[i]));
time = 65 ms.
? exponent(V - U)
%7 = -97

(continues on next page)
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? round(Polrev(fftinv(w,U) / N)) == T
%8 = 1

fileflush()

Flushes the file descriptor 𝑛, created via fileopen or fileextern. On files opened for writing, this function
forces a write of all buffered data to the file system and completes all pending write operations. This function is
implicitly called by fileclose but you may want to call it explicitly at synchronization points, for instance after
writing a large result to file and before printing diagnostics on screen. (In order to be sure that the file contains
the expected content on inspection.)

If 𝑛 is omitted, flush all descriptors to output streams.

? n = fileopen("./here", "w");
? for (i = 1, 10^5, \
filewrite(n, i^2+1); \
if (i % 10000 == 0, fileflush(n)))

Until a fileflush or fileclose, there is no guarantee that the file contains all the expected data from previous
filewrite s.

floor()

Floor of 𝑥. When 𝑥 is in R, the result is the largest integer smaller than or equal to 𝑥. Applied to a rational
function, 𝑓𝑙𝑜𝑜𝑟(𝑥) returns the Euclidean quotient of the numerator by the denominator.

fold(A)
Apply the t_CLOSURE f of arity 2 to the entries of A, in order to return f(...f(f(A[1],A[2]),A[3])...,
A[#A]).

? fold((x,y)->x*y, [1,2,3,4])
%1 = 24
? fold((x,y)->[x,y], [1,2,3,4])
%2 = [[[1, 2], 3], 4]
? fold((x,f)->f(x), [2,sqr,sqr,sqr])
%3 = 256
? fold((x,y)->(x+y)/(1-x*y),[1..5])
%4 = -9/19
? bestappr(tan(sum(i=1,5,atan(i))))
%5 = -9/19

frac()

Fractional part of 𝑥. Identical to 𝑥− 𝑓𝑙𝑜𝑜𝑟(𝑥). If 𝑥 is real, the result is in [0, 1[.

fromdigits(b)
Gives the integer formed by the elements of 𝑥 seen as the digits of a number in base 𝑏 (𝑏 = 10 by default). This
is the reverse of digits:

? digits(1234,5)
%1 = [1,4,4,1,4]
? fromdigits([1,4,4,1,4],5)
%2 = 1234

By convention, 0 has no digits:
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? fromdigits([])
%3 = 0

galoischardet(chi, o)
Let 𝐺 be the group attached to the galoisinit structure gal, and let 𝜒 be the character of some representation
𝜌 of the group 𝐺, where a polynomial variable is to be interpreted as an 𝑜-th root of 1. For instance, if [T,o] =
galoischartable(gal) the characters 𝜒 are input as the columns of T.

Return the degree-1 character det 𝜌 as the list of det 𝜌(𝑔), where 𝑔 runs through representatives of the conjugacy
classes in galoisconjclasses(gal), with the same ordering.

? P = x^5 - x^4 - 5*x^3 + 4*x^2 + 3*x - 1;
? polgalois(P)
%2 = [10, 1, 1, "D(5) = 5:2"]
? K = nfsplitting(P);
? gal = galoisinit(K); \\ dihedral of order 10
? [T,o] = galoischartable(gal);
? chi = T[,1]; \\ trivial character
? galoischardet(gal, chi, o)
%7 = [1, 1, 1, 1]~
? [galoischardet(gal, T[,i], o) | i <- [1..#T]] \\ all characters
%8 = [[1, 1, 1, 1]~, [1, 1, -1, 1]~, [1, 1, -1, 1]~, [1, 1, -1, 1]~]

galoischarpoly(chi, o)
Let 𝐺 be the group attached to the galoisinit structure gal, and let 𝜒 be the character of some representa-
tion 𝜌 of the group 𝐺, where a polynomial variable is to be interpreted as an 𝑜-th root of 1, e.g., if [T,o] =
galoischartable(gal) and 𝜒 is a column of T. Return the list of characteristic polynomials det(1 − 𝜌(𝑔)𝑇 ),
where 𝑔 runs through representatives of the conjugacy classes in galoisconjclasses(gal), with the same
ordering.

? T = x^5 - x^4 - 5*x^3 + 4*x^2 + 3*x - 1;
? polgalois(T)
%2 = [10, 1, 1, "D(5) = 5:2"]
? K = nfsplitting(T);
? gal = galoisinit(K); \\ dihedral of order 10
? [T,o] = galoischartable(gal);
? o
%5 = 5
? galoischarpoly(gal, T[,1], o) \\ T[,1] is the trivial character
%6 = [-x + 1, -x + 1, -x + 1, -x + 1]~
? galoischarpoly(gal, T[,3], o)
%7 = [x^2 - 2*x + 1,
x^2 + (y^3 + y^2 + 1)*x + 1,
-x^2 + 1,
x^2 + (-y^3 - y^2)*x + 1]~

galoischartable()

Compute the character table of𝐺, where𝐺 is the underlying group of the galoisinit structure gal. The input gal
is also allowed to be a t_VEC of permutations that is closed under products. Let 𝑁 be the number of conjugacy
classes of 𝐺. Return a t_VEC [𝑀, 𝑒] where 𝑒 >= 1 is an integer and 𝑀 is a square t_MAT of size 𝑁 giving the
character table of 𝐺.

• Each column corresponds to an irreducible character; the characters are ordered by increasing dimension and
the first column is the trivial character (hence contains only 1’s).
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• Each row corresponds to a conjugacy class; the conjugacy classes are ordered as specified by
galoisconjclasses(gal), in particular the first row corresponds to the identity and gives the dimension
𝜒(1) of the irreducible representation attached to the successive characters 𝜒.

The value 𝑀 [𝑖, 𝑗] of the character 𝑗 at the conjugacy class 𝑖 is represented by a polynomial in y whose variable
should be interpreted as an 𝑒-th root of unity, i.e. as the lift of

Mod(y, polcyclo(e,'y))

(Note that 𝑀 is the transpose of the usual orientation for character tables.)

The integer 𝑒 divides the exponent of the group 𝐺 and is chosen as small as posible; for instance 𝑒 = 1 when the
characters are all defined over Q, as is the case for 𝑆𝑛. Examples:

? K = nfsplitting(x^4+x+1);
? gal = galoisinit(K);
? [M,e] = galoischartable(gal);
? M~ \\ take the transpose to get the usual orientation
%4 =
[1 1 1 1 1]

[1 -1 -1 1 1]

[2 0 0 -1 2]

[3 -1 1 0 -1]

[3 1 -1 0 -1]
? e
%5 = 1
? {G = [Vecsmall([1, 2, 3, 4, 5]), Vecsmall([1, 5, 4, 3, 2]),
Vecsmall([2, 1, 5, 4, 3]), Vecsmall([2, 3, 4, 5, 1]),
Vecsmall([3, 2, 1, 5, 4]), Vecsmall([3, 4, 5, 1, 2]),
Vecsmall([4, 3, 2, 1, 5]), Vecsmall([4, 5, 1, 2, 3]),
Vecsmall([5, 1, 2, 3, 4]), Vecsmall([5, 4, 3, 2, 1])];}
\\G = D10
? [M,e] = galoischartable(G);
? M~
%8 =
[1 1 1 1]

[1 -1 1 1]

[2 0 -y^3 - y^2 - 1 y^3 + y^2]

[2 0 y^3 + y^2 -y^3 - y^2 - 1]
? e
%9 = 5

galoisconjclasses()

gal being output by galoisinit, return the list of conjugacy classes of the underlying group. The ordering of
the classes is consistent with galoischartable and the trivial class comes first.

? G = galoisinit(x^6+108);
? galoisidentify(G)

(continues on next page)
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(continued from previous page)

%2 = [6, 1] \\ S_3
? S = galoisconjclasses(G)
%3 = [[Vecsmall([1,2,3,4,5,6])],
[Vecsmall([3,1,2,6,4,5]),Vecsmall([2,3,1,5,6,4])],
[Vecsmall([6,5,4,3,2,1]),Vecsmall([5,4,6,2,1,3]),
Vecsmall([4,6,5,1,3,2])]]
? [[permorder(c[1]),#c] | c <- S ]
%4 = [[1,1], [3,2], [2,3]]

This command also accepts subgroups returned by galoissubgroups:

? subs = galoissubgroups(G); H = subs[5];
? galoisidentify(H)
%2 = [2, 1] \\ Z/2
? S = galoisconjclasses(subgroups_of_G[5]);
? [[permorder(c[1]),#c] | c <- S ]
%4 = [[1,1], [2,1]]

galoisexport(flag)
gal being be a Galois group as output by galoisinit, export the underlying permutation group as a string
suitable for (no flags or 𝑓𝑙𝑎𝑔 = 0) GAP or (𝑓𝑙𝑎𝑔 = 1) Magma. The following example compute the index of the
underlying abstract group in the GAP library:

? G = galoisinit(x^6+108);
? s = galoisexport(G)
%2 = "Group((1, 2, 3)(4, 5, 6), (1, 4)(2, 6)(3, 5))"
? extern("echo \"IdGroup("s");\" | gap -q")
%3 = [6, 1]
? galoisidentify(G)
%4 = [6, 1]

This command also accepts subgroups returned by galoissubgroups.

To import a GAP permutation into gp (for galoissubfields for instance), the following GAP function may be
useful:

PermToGP := function(p, n)
return Permuted([1..n],p);
end;

gap> p:= (1,26)(2,5)(3,17)(4,32)(6,9)(7,11)(8,24)(10,13)(12,15)(14,27)
(16,22)(18,28)(19,20)(21,29)(23,31)(25,30)
gap> PermToGP(p,32);
[ 26, 5, 17, 32, 2, 9, 11, 24, 6, 13, 7, 15, 10, 27, 12, 22, 3, 28, 20, 19,
29, 16, 31, 8, 30, 1, 14, 18, 21, 25, 23, 4 ]

galoisfixedfield(perm, flag, v)
gal being be a Galois group as output by galoisinit and perm an element of 𝑔𝑎𝑙.𝑔𝑟𝑜𝑢𝑝, a vector of such
elements or a subgroup of gal as returned by galoissubgroups, computes the fixed field of gal by the automorphism
defined by the permutations perm of the roots 𝑔𝑎𝑙.𝑟𝑜𝑜𝑡𝑠. 𝑃 is guaranteed to be squarefree modulo 𝑔𝑎𝑙.𝑝.

If no flags or 𝑓𝑙𝑎𝑔 = 0, output format is the same as for nfsubfield, returning [𝑃, 𝑥] such that 𝑃 is a polynomial
defining the fixed field, and 𝑥 is a root of 𝑃 expressed as a polmod in 𝑔𝑎𝑙.𝑝𝑜𝑙.

If 𝑓𝑙𝑎𝑔 = 1 return only the polynomial 𝑃 .
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If 𝑓𝑙𝑎𝑔 = 2 return [𝑃, 𝑥, 𝐹 ] where 𝑃 and 𝑥 are as above and 𝐹 is the factorization of 𝑔𝑎𝑙.𝑝𝑜𝑙 over the field defined
by 𝑃 , where variable 𝑣 (𝑦 by default) stands for a root of 𝑃 . The priority of 𝑣 must be less than the priority of the
variable of 𝑔𝑎𝑙.𝑝𝑜𝑙 (see priority (in the PARI manual)). In this case, 𝑃 is also expressed in the variable 𝑣 for
compatibility with 𝐹 . Example:

? G = galoisinit(x^4+1);
? galoisfixedfield(G,G.group[2],2)
%2 = [y^2 - 2, Mod(- x^3 + x, x^4 + 1), [x^2 - y*x + 1, x^2 + y*x + 1]]

computes the factorization 𝑥4 + 1 = (𝑥2 −
√

2𝑥+ 1)(𝑥2 +
√

2𝑥+ 1)

galoisidentify()

gal being be a Galois group as output by galoisinit, output the isomorphism class of the underlying abstract
group as a two-components vector [𝑜, 𝑖], where 𝑜 is the group order, and 𝑖 is the group index in the GAP4 Small
Group library, by Hans Ulrich Besche, Bettina Eick and Eamonn O’Brien.

This command also accepts subgroups returned by galoissubgroups.

The current implementation is limited to degree less or equal to 127. Some larger “easy” orders are also supported.

The output is similar to the output of the function IdGroup in GAP4. Note that GAP4 IdGroup handles all groups
of order less than 2000 except 1024, so you can use galoisexport and GAP4 to identify large Galois groups.

galoisinit(den)
Computes the Galois group and all necessary information for computing the fixed fields of the Galois extension
𝐾/Q where 𝐾 is the number field defined by 𝑝𝑜𝑙 (monic irreducible polynomial in Z[𝑋] or a number field as
output by nfinit). The extension 𝐾/Q must be Galois with Galois group “weakly” super-solvable, see below;
returns 0 otherwise. Hence this permits to quickly check whether a polynomial of order strictly less than 48 is
Galois or not.

The algorithm used is an improved version of the paper “An efficient algorithm for the computation of Galois
automorphisms”, Bill Allombert, Math. Comp, vol. 73, 245, 2001, pp. 359–375.

A group 𝐺 is said to be “weakly” super-solvable if there exists a normal series

1 = 𝐻0 ▷ 𝐻1 ▷ ... ▷ 𝐻𝑛−1 ▷ 𝐻𝑛

such that each 𝐻𝑖 is normal in 𝐺 and for 𝑖 < 𝑛, each quotient group 𝐻𝑖+1/𝐻𝑖 is cyclic, and either 𝐻𝑛 = 𝐺
(then 𝐺 is super-solvable) or 𝐺/𝐻𝑛 is isomorphic to either 𝐴4, 𝑆4 or the group (3𝑥3) : 4 (GAP4(36,9)) then
[𝑜1, ..., 𝑜𝑔] ends by [3, 3, 4].

In practice, almost all small groups are WKSS, the exceptions having order 48(2), 56(1), 60(1), 72(3), 75(1),
80(1), 96(10), 112(1), 120(3) and >= 144.

This function is a prerequisite for most of the galois𝑥𝑥𝑥 routines. For instance:

P = x^6 + 108;
G = galoisinit(P);
L = galoissubgroups(G);
vector(#L, i, galoisisabelian(L[i],1))
vector(#L, i, galoisidentify(L[i]))

The output is an 8-component vector gal.

𝑔𝑎𝑙[1] contains the polynomial pol (:emphasis:`gal.pol`).

𝑔𝑎𝑙[2] is a three-components vector [𝑝, 𝑒, 𝑞] where 𝑝 is a prime number (:emphasis:`gal.p`) such that pol
totally split modulo 𝑝 , 𝑒 is an integer and 𝑞 = 𝑝𝑒 (:emphasis:`gal.mod`) is the modulus of the roots in
:emphasis:`gal.roots`.
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𝑔𝑎𝑙[3] is a vector 𝐿 containing the 𝑝-adic roots of pol as integers implicitly modulo :emphasis:`gal.mod`.
(:emphasis:`gal.roots`).

𝑔𝑎𝑙[4] is the inverse of the Vandermonde matrix of the 𝑝-adic roots of pol, multiplied by 𝑔𝑎𝑙[5].

𝑔𝑎𝑙[5] is a multiple of the least common denominator of the automorphisms expressed as polynomial in a root of
pol.

𝑔𝑎𝑙[6] is the Galois group 𝐺 expressed as a vector of permutations of 𝐿 (:emphasis:`gal.group`).

𝑔𝑎𝑙[7] is a generating subset 𝑆 = [𝑠1, ..., 𝑠𝑔] of 𝐺 expressed as a vector of permutations of 𝐿
(:emphasis:`gal.gen`).

𝑔𝑎𝑙[8] contains the relative orders [𝑜1, ..., 𝑜𝑔] of the generators of 𝑆 (:emphasis:`gal.orders`).

Let 𝐻𝑛 be as above, we have the following properties:

* if 𝐺/𝐻𝑛 𝐴4 then [𝑜1, ..., 𝑜𝑔] ends by [2, 2, 3].

* if 𝐺/𝐻𝑛 𝑆4 then [𝑜1, ..., 𝑜𝑔] ends by [2, 2, 3, 2].

* if 𝐺/𝐻𝑛 (3𝑥3) : 4 (GAP4(36,9)) then [𝑜1, ..., 𝑜𝑔] ends by [3, 3, 4].

* for 1 <= 𝑖 <= 𝑔 the subgroup of 𝐺 generated by [𝑠1, ..., 𝑠𝑖] is normal, with the exception of 𝑖 = 𝑔 − 2 in the
𝐴4 case and of 𝑖 = 𝑔 − 3 in the 𝑆4 case.

* the relative order 𝑜𝑖 of 𝑠𝑖 is its order in the quotient group 𝐺/ < 𝑠1, ..., 𝑠𝑖−1 >, with the same exceptions.

* for any 𝑥 ∈ 𝐺 there exists a unique family [𝑒1, ..., 𝑒𝑔] such that (no exceptions):

– for 1 <= 𝑖 <= 𝑔 we have 0 <= 𝑒𝑖 < 𝑜𝑖

– 𝑥 = 𝑔𝑒11 𝑔
𝑒2
2 ...𝑔

𝑒𝑛
𝑛

If present 𝑑𝑒𝑛 must be a suitable value for 𝑔𝑎𝑙[5].

galoisisabelian(flag)
gal being as output by galoisinit, return 0 if gal is not an abelian group, and the HNF matrix of gal over
gal.gen if 𝑓𝑙𝑎𝑔 = 0, 1 if 𝑓𝑙𝑎𝑔 = 1, and the SNF matrix of gal if 𝑓𝑙𝑎𝑔 = 2.

This command also accepts subgroups returned by galoissubgroups.

galoisisnormal(subgrp)
gal being as output by galoisinit, and subgrp a subgroup of gal as output by galoissubgroups,return 1 if
subgrp is a normal subgroup of gal, else return 0.

This command also accepts subgroups returned by galoissubgroups.

galoispermtopol(perm)

gal being a Galois group as output by galoisinit and perm a element of 𝑔𝑎𝑙.𝑔𝑟𝑜𝑢𝑝, return the polynomial
defining the Galois automorphism, as output by nfgaloisconj, attached to the permutation perm of the roots
𝑔𝑎𝑙.𝑟𝑜𝑜𝑡𝑠. perm can also be a vector or matrix, in this case, galoispermtopol is applied to all components
recursively.

Note that

G = galoisinit(pol);
galoispermtopol(G, G[6])~

is equivalent to nfgaloisconj(pol), if degree of pol is greater or equal to 2.
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galoissubcyclo(H, fl, v)
Computes the subextension of Q(𝜁𝑛) fixed by the subgroup 𝐻 ⊂ (Z/𝑛Z)*. By the Kronecker-Weber theorem,
all abelian number fields can be generated in this way (uniquely if 𝑛 is taken to be minimal).

The pair (𝑛,𝐻) is deduced from the parameters (𝑁,𝐻) as follows

• 𝑁 an integer: then 𝑛 = 𝑁 ;𝐻 is a generator, i.e. an integer or an integer modulo 𝑛; or a vector of generators.

• 𝑁 the output of znstar(𝑛) or znstar(𝑛, 1). 𝐻 as in the first case above, or a matrix, taken to be a HNF left
divisor of the SNF for (Z/𝑛Z)* (:math:`N.cyc`), giving the generators of 𝐻 in terms of :math:`N.gen`.

• 𝑁 the output of bnrinit(bnfinit(y), :math:`m)` where 𝑚 is a module. 𝐻 as in the first case, or a
matrix taken to be a HNF left divisor of the SNF for the ray class group modulo𝑚 (of type :math:`N.cyc`),
giving the generators of 𝐻 in terms of :math:`N.bid.gen` ( = :math:`N`.gen if 𝑁 includes generators).

In this last case, beware that𝐻 is understood relatively to𝑁 ; in particular, if the infinite place does not divide the
module, e.g if 𝑚 is an integer, then it is not a subgroup of (Z/𝑛Z)*, but of its quotient by 1.

If 𝑓𝑙 = 0, compute a polynomial (in the variable v) defining the subfield of Q(𝜁𝑛) fixed by the subgroup H of
(Z/𝑛Z)*.

If 𝑓𝑙 = 1, compute only the conductor of the abelian extension, as a module.

If 𝑓𝑙 = 2, output [𝑝𝑜𝑙,𝑁 ], where 𝑝𝑜𝑙 is the polynomial as output when 𝑓𝑙 = 0 and 𝑁 the conductor as output
when 𝑓𝑙 = 1.

The following function can be used to compute all subfields of Q(𝜁𝑛) (of exact degree d, if d is set):

subcyclo(n, d = -1)=
{ my(bnr,L,IndexBound);
IndexBound = if (d < 0, n, [d]);
bnr = bnrinit(bnfinit(y), [n,[1]]);
L = subgrouplist(bnr, IndexBound, 1);
vector(#L,i, galoissubcyclo(bnr,L[i]));
}

Setting L = subgrouplist(bnr, IndexBound) would produce subfields of exact conductor 𝑛𝑜𝑜.

galoissubfields(flag, v)
Outputs all the subfields of the Galois group G, as a vector. This works by applying galoisfixedfield to all
subgroups. The meaning of flag is the same as for galoisfixedfield.

galoissubgroups()

Outputs all the subgroups of the Galois group gal. A subgroup is a vector [gen, orders], with the same meaning
as for 𝑔𝑎𝑙.𝑔𝑒𝑛 and 𝑔𝑎𝑙.𝑜𝑟𝑑𝑒𝑟𝑠. Hence gen is a vector of permutations generating the subgroup, and orders is the
relatives orders of the generators. The cardinality of a subgroup is the product of the relative orders. Such sub-
group can be used instead of a Galois group in the following command: galoisisabelian, galoissubgroups,
galoisexport and galoisidentify.

To get the subfield fixed by a subgroup sub of gal, use

galoisfixedfield(gal,sub[1])

gamma(precision)
For 𝑠 a complex number, evaluates Euler’s gamma function

Γ(𝑠) =

∫︁ 𝑜

0

𝑜𝑡𝑠−1 exp(−𝑡)𝑑𝑡.

Error if 𝑠 is a nonpositive integer, where Γ has a pole.
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For 𝑠 a t_PADIC, evaluates the Morita gamma function at 𝑠, that is the unique continuous 𝑝-adic function on the
𝑝-adic integers extending Γ𝑝(𝑘) = (−1)𝑘

∏︀′
𝑗<𝑘 𝑗, where the prime means that 𝑝 does not divide 𝑗.

? gamma(1/4 + O(5^10))
%1= 1 + 4*5 + 3*5^4 + 5^6 + 5^7 + 4*5^9 + O(5^10)
? algdep(%,4)
%2 = x^4 + 4*x^2 + 5

gammah(precision)
Gamma function evaluated at the argument 𝑥+ 1/2.

gammamellininv(t, m, precision)
Returns the value at 𝑡 of the inverse Mellin transform 𝐺 initialized by gammamellininvinit. If the optional
parameter 𝑚 is present, return the 𝑚-th derivative 𝐺(𝑚)(𝑡).

? G = gammamellininvinit([0]);
? gammamellininv(G, 2) - 2*exp(-Pi*2^2)
%2 = -4.484155085839414627 E-44

The shortcut

gammamellininv(A,t,m)

for

gammamellininv(gammamellininvinit(A,m), t)

is available.

gammamellininvasymp(serprec, n)
Return the first 𝑛 terms of the asymptotic expansion at infinity of the 𝑚-th derivative 𝐾(𝑚)(𝑡) of the inverse
Mellin transform of the function

𝑓(𝑠) = ΓR(𝑠+ 𝑎1)...ΓR(𝑠+ 𝑎𝑑),

where A is the vector [𝑎1, ..., 𝑎𝑑] and ΓR(𝑠) = 𝜋−𝑠/2Γ(𝑠/2) (Euler’s gamma). The result is a vector [𝑀 [1]...𝑀 [𝑛]]
with M[1] = 1, such that

𝐾(𝑚)(𝑡) =
√︁

2𝑑+1/𝑑𝑡𝑎+𝑚(2/𝑑−1)𝑒−𝑑𝜋𝑡2/𝑑
∑︁
𝑛>=0

𝑀 [𝑛+ 1](𝜋𝑡2/𝑑)−𝑛

with 𝑎 = (1 − 𝑑+
∑︀

1<=𝑗<=𝑑 𝑎𝑗)/𝑑. We also allow 𝐴 to be the output of gammamellininvinit.

gammamellininvinit(m, precision)
Initialize data for the computation by gammamellininv of the𝑚-th derivative of the inverse Mellin transform of
the function

𝑓(𝑠) = ΓR(𝑠+ 𝑎1)...ΓR(𝑠+ 𝑎𝑑)

where A is the vector [𝑎1, ..., 𝑎𝑑] and ΓR(𝑠) = 𝜋−𝑠/2Γ(𝑠/2) (Euler’s gamma). This is the special case of Meijer’s
𝐺 functions used to compute 𝐿-values via the approximate functional equation. By extension, 𝐴 is allowed to be
an Ldata or an Linit, understood as the inverse Mellin transform of the 𝐿-function gamma factor.

Caveat. Contrary to the PARI convention, this function guarantees an absolute (rather than relative) error bound.

For instance, the inverse Mellin transform of ΓR(𝑠) is 2 exp(−𝜋𝑧2):
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? G = gammamellininvinit([0]);
? gammamellininv(G, 2) - 2*exp(-Pi*2^2)
%2 = -4.484155085839414627 E-44

The inverse Mellin transform of ΓR(𝑠+1) is 2𝑧 exp(−𝜋𝑧2), and its second derivative is 4𝜋𝑧 exp(−𝜋𝑧2)(2𝜋𝑧2−
3):

? G = gammamellininvinit([1], 2);
? a(z) = 4*Pi*z*exp(-Pi*z^2)*(2*Pi*z^2-3);
? b(z) = gammamellininv(G,z);
? t(z) = b(z) - a(z);
? t(3/2)
%3 = -1.4693679385278593850 E-39

gcd(y)
Creates the greatest common divisor of 𝑥 and 𝑦. If you also need the 𝑢 and 𝑣 such that 𝑥 *𝑢+ 𝑦 * 𝑣 = gcd(𝑥, 𝑦),
use the gcdext function. 𝑥 and 𝑦 can have rather quite general types, for instance both rational numbers. If 𝑦 is
omitted and 𝑥 is a vector, returns the 𝑔𝑐𝑑 of all components of 𝑥, i.e. this is equivalent to content(x).

When 𝑥 and 𝑦 are both given and one of them is a vector/matrix type, the GCD is again taken recursively on
each component, but in a different way. If 𝑦 is a vector, resp. matrix, then the result has the same type as 𝑦, and
components equal to gcd(x, y[i]), resp. gcd(x, y[,i]). Else if 𝑥 is a vector/matrix the result has the same
type as 𝑥 and an analogous definition. Note that for these types, gcd is not commutative.

The algorithm used is a naive Euclid except for the following inputs:

• integers: use modified right-shift binary (“plus-minus” variant).

• univariate polynomials with coefficients in the same number field (in particular rational): use modular gcd
algorithm.

• general polynomials: use the subresultant algorithm if coefficient explosion is likely (non modular coeffi-
cients).

If 𝑢 and 𝑣 are polynomials in the same variable with inexact coefficients, their gcd is defined to be scalar, so that

? a = x + 0.0; gcd(a,a)
%1 = 1
? b = y*x + O(y); gcd(b,b)
%2 = y
? c = 4*x + O(2^3); gcd(c,c)
%3 = 4

A good quantitative check to decide whether such a gcd “should be” nontrivial, is to use polresultant: a value
close to 0 means that a small deformation of the inputs has nontrivial gcd. You may also use gcdext, which does
try to compute an approximate gcd 𝑑 and provides 𝑢, 𝑣 to check whether 𝑢𝑥+ 𝑣𝑦 is close to 𝑑.

gcdext(y)
Returns [𝑢, 𝑣, 𝑑] such that 𝑑 is the gcd of 𝑥, 𝑦, 𝑥 * 𝑢+ 𝑦 * 𝑣 = gcd(𝑥, 𝑦), and 𝑢 and 𝑣 minimal in a natural sense.
The arguments must be integers or polynomials.

? [u, v, d] = gcdext(32,102)
%1 = [16, -5, 2]
? d
%2 = 2
? gcdext(x^2-x, x^2+x-2)
%3 = [-1/2, 1/2, x - 1]
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If 𝑥, 𝑦 are polynomials in the same variable and inexact coefficients, then compute 𝑢, 𝑣, 𝑑 such that 𝑥*𝑢+𝑦*𝑣 = 𝑑,
where 𝑑 approximately divides both and 𝑥 and 𝑦; in particular, we do not obtain gcd(x,y) which is defined to
be a scalar in this case:

? a = x + 0.0; gcd(a,a)
%1 = 1

? gcdext(a,a)
%2 = [0, 1, x + 0.E-28]

? gcdext(x-Pi, 6*x^2-zeta(2))
%3 = [-6*x - 18.8495559, 1, 57.5726923]

For inexact inputs, the output is thus not well defined mathematically, but you obtain explicit polynomials to check
whether the approximation is close enough for your needs.

genus2red(p)
Let 𝑃𝑄 be a polynomial 𝑃 , resp. a vector [𝑃,𝑄] of polynomials, with rational coefficients. Determines the
reduction at 𝑝 > 2 of the (proper, smooth) genus 2 curve 𝐶/Q, defined by the hyperelliptic equation 𝑦2 = 𝑃 (𝑥),
resp. 𝑦2 +𝑄(𝑥) * 𝑦 = 𝑃 (𝑥). (The special fiber 𝑋𝑝 of the minimal regular model 𝑋 of 𝐶 over Z.)

If 𝑝 is omitted, determines the reduction type for all (odd) prime divisors of the discriminant.

This function was rewritten from an implementation of Liu’s algorithm by Cohen and Liu (1994),
genus2reduction-0.3, see http://www.math.u-bordeaux.fr/~liu/G2R/.

CAVEAT. The function interface may change: for the time being, it returns [𝑁,𝐹𝑎𝑁, 𝑇, 𝑉 ] where 𝑁 is either
the local conductor at 𝑝 or the global conductor, FaN is its factorization, 𝑦2 = 𝑇 defines a minimal model over
Z[1/2] and 𝑉 describes the reduction type at the various considered 𝑝. Unfortunately, the program is not complete
for 𝑝 = 2, and we may return the odd part of the conductor only: this is the case if the factorization includes the
(impossible) term 2−1; if the factorization contains another power of 2, then this is the exact local conductor at 2
and 𝑁 is the global conductor.

? default(debuglevel, 1);
? genus2red(x^6 + 3*x^3 + 63, 3)
(potential) stable reduction: [1, []]
reduction at p: [III{9}] page 184, [3, 3], f = 10
%1 = [59049, Mat([3, 10]), x^6 + 3*x^3 + 63, [3, [1, []],
["[III{9}] page 184", [3, 3]]]]
? [N, FaN, T, V] = genus2red(x^3-x^2-1, x^2-x); \\ X_1(13), global reduction
p = 13
(potential) stable reduction: [5, [Mod(0, 13), Mod(0, 13)]]
reduction at p: [I{0}-II-0] page 159, [], f = 2
? N
%3 = 169
? FaN
%4 = Mat([13, 2]) \\ in particular, good reduction at 2 !
? T
%5 = x^6 + 58*x^5 + 1401*x^4 + 18038*x^3 + 130546*x^2 + 503516*x + 808561
? V
%6 = [[13, [5, [Mod(0, 13), Mod(0, 13)]], ["[I{0}-II-0] page 159", []]]]

We now first describe the format of the vector 𝑉 = 𝑉𝑝 in the case where 𝑝 was specified (local reduction at 𝑝): it
is a triple [𝑝, 𝑠𝑡𝑎𝑏𝑙𝑒, 𝑟𝑒𝑑]. The component 𝑠𝑡𝑎𝑏𝑙𝑒 = [𝑡𝑦𝑝𝑒, 𝑣𝑒𝑐𝑗] contains information about the stable reduction
after a field extension; depending on type s, the stable reduction is

• 1: smooth (i.e. the curve has potentially good reduction). The Jacobian 𝐽(𝐶) has potentially good reduction.
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• 2: an elliptic curve 𝐸 with an ordinary double point; vecj contains 𝑗 mod 𝑝, the modular invariant of 𝐸.
The (potential) semi-abelian reduction of 𝐽(𝐶) is the extension of an elliptic curve (with modular invariant
𝑗 mod 𝑝) by a torus.

• 3: a projective line with two ordinary double points. The Jacobian 𝐽(𝐶) has potentially multiplicative
reduction.

• 4: the union of two projective lines crossing transversally at three points. The Jacobian 𝐽(𝐶) has potentially
multiplicative reduction.

• 5: the union of two elliptic curves 𝐸1 and 𝐸2 intersecting transversally at one point; vecj contains their
modular invariants 𝑗1 and 𝑗2, which may live in a quadratic extension of F𝑝 and need not be distinct. The
Jacobian 𝐽(𝐶) has potentially good reduction, isomorphic to the product of the reductions of 𝐸1 and 𝐸2.

• 6: the union of an elliptic curve 𝐸 and a projective line which has an ordinary double point, and these two
components intersect transversally at one point; vecj contains 𝑗 mod 𝑝, the modular invariant of 𝐸. The
(potential) semi-abelian reduction of 𝐽(𝐶) is the extension of an elliptic curve (with modular invariant 𝑗
mod 𝑝) by a torus.

• 7: as in type 6, but the two components are both singular. The Jacobian 𝐽(𝐶) has potentially multiplicative
reduction.

The component 𝑟𝑒𝑑 = [𝑁𝑈𝑡𝑦𝑝𝑒, 𝑛𝑒𝑟𝑜𝑛] contains two data concerning the reduction at 𝑝 without any ramified
field extension.

The NUtype is a t_STR describing the reduction at 𝑝 of𝐶, following Namikawa-Ueno, The complete classification
of fibers in pencils of curves of genus two, Manuscripta Math., vol. 9, (1973), pages 143-186. The reduction
symbol is followed by the corresponding page number or page range in this article.

The second datum neron is the group of connected components (over an algebraic closure of F𝑝) of the Néron
model of 𝐽(𝐶), given as a finite abelian group (vector of elementary divisors).

If 𝑝 = 2, the red component may be omitted altogether (and replaced by [], in the case where the program could
not compute it. When 𝑝 was not specified, 𝑉 is the vector of all 𝑉𝑝, for all considered 𝑝.

Notes about Namikawa-Ueno types.
• A lower index is denoted between braces: for instance, [I{2}-II-5] means [I_2-II-5].

• If 𝐾 and 𝐾 ′ are Kodaira symbols for singular fibers of elliptic curves, then [:math:`K-𝐾 ′-m]` and
[:math:`K'-𝐾-m]` are the same.

We define a total ordering on Kodaira symbol by fixing 𝐼 < 𝐼* < 𝐼𝐼 < 𝐼𝐼*, .... If the reduction type is the same,
we order by the number of components, e.g. 𝐼2 < 𝐼4, etc. Then we normalize our output so that 𝐾 <= 𝐾 ′.

• [:math:`K-𝐾 ′-−1]` is [:math:`K-𝐾 ′-𝛼]` in the notation of Namikawa-Ueno.

• The figure [2I_0-m] in Namikawa-Ueno, page 159, must be denoted by [2I_0-(m+1)].

halfgcd(y)
Let inputs 𝑥 and 𝑦 be both integers, or both polynomials in the same variable. Return a vector [M, [a,b]~],
where 𝑀 is an invertible 2𝑥2 matrix such that M*[x,y]~ = [a,b]~, where 𝑏 is small. More precisely,

• polynomial case: det𝑀 has degree 0 and we have

deg 𝑎 >= 𝑐𝑒𝑖𝑙max(deg 𝑥, deg 𝑦))/2 > deg 𝑏.

• integer case: det𝑀 = 1 and we have

𝑎 >= 𝑐𝑒𝑖𝑙
√︀

max(‖𝑥‖, ‖𝑦‖) > 𝑏.

𝐴𝑠𝑠𝑢𝑚𝑖𝑛𝑔 : 𝑚𝑎𝑡ℎ : ‘𝑥‘𝑎𝑛𝑑 : 𝑚𝑎𝑡ℎ : ‘𝑦‘𝑎𝑟𝑒𝑛𝑜𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒, 𝑡ℎ𝑒𝑛 : 𝑚𝑎𝑡ℎ : ‘𝑀−1‘ℎ𝑎𝑠𝑛𝑜𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠, 𝑎𝑛𝑑 : 𝑚𝑎𝑡ℎ : ‘ det𝑀 ‘𝑖𝑠𝑒𝑞𝑢𝑎𝑙𝑡𝑜𝑡ℎ𝑒𝑠𝑖𝑔𝑛𝑜𝑓𝑏𝑜𝑡ℎ𝑚𝑎𝑖𝑛𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑡𝑒𝑟𝑚𝑠 : 𝑚𝑎𝑡ℎ : ‘𝑀 [1, 1]‘𝑎𝑛𝑑 : 𝑚𝑎𝑡ℎ : ‘𝑀 [2, 2]‘.
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hammingweight()

If 𝑥 is a t_INT, return the binary Hamming weight of ‖𝑥‖. Otherwise 𝑥 must be of type t_POL, t_VEC, t_COL,
t_VECSMALL, or t_MAT and the function returns the number of nonzero coefficients of 𝑥.

? hammingweight(15)
%1 = 4
? hammingweight(x^100 + 2*x + 1)
%2 = 3
? hammingweight([Mod(1,2), 2, Mod(0,3)])
%3 = 2
? hammingweight(matid(100))
%4 = 100

hilbert(y, p)
Hilbert symbol of 𝑥 and 𝑦 modulo the prime 𝑝, 𝑝 = 0 meaning the place at infinity (the result is undefined if
𝑝! = 0 is not prime).

It is possible to omit 𝑝, in which case we take 𝑝 = 0 if both 𝑥 and 𝑦 are rational, or one of them is a real number.
And take 𝑝 = 𝑞 if one of 𝑥, 𝑦 is a t_INTMOD modulo 𝑞 or a 𝑞-adic. (Incompatible types will raise an error.)

hyperellcharpoly()

𝑋 being a nonsingular hyperelliptic curve defined over a finite field, return the characteristic polynomial of the
Frobenius automorphism. 𝑋 can be given either by a squarefree polynomial 𝑃 such that 𝑋 : 𝑦2 = 𝑃 (𝑥) or by a
vector [𝑃,𝑄] such that 𝑋 : 𝑦2 +𝑄(𝑥)𝑦 = 𝑃 (𝑥) and 𝑄2 + 4𝑃 is squarefree.

hyperellpadicfrobenius(q, n)
Let𝑋 be the curve defined by 𝑦2 = 𝑄(𝑥), where𝑄 is a polynomial of degree 𝑑 overQ and 𝑞 >= 𝑑 is a prime such
that 𝑋 has good reduction at 𝑞. Return the matrix of the Frobenius endomorphism 𝜙 on the crystalline module
𝐷𝑝(𝑋) = Q𝑝⊗𝐻1

𝑑𝑅(𝑋/Q) with respect to the basis of the given model (𝜔, 𝑥𝜔, ..., 𝑥𝑔−1𝜔), where 𝜔 = 𝑑𝑥/(2𝑦)
is the invariant differential, where 𝑔 is the genus of 𝑋 (either 𝑑 = 2𝑔 + 1 or 𝑑 = 2𝑔 + 2). The characteristic
polynomial of 𝜙 is the numerator of the zeta-function of the reduction of the curve 𝑋 modulo 𝑞. The matrix is
computed to absolute 𝑞-adic precision 𝑞𝑛.

Alternatively, 𝑞 may be of the form [𝑇, 𝑝] where 𝑝 is a prime, 𝑇 is a polynomial with integral coefficients whose
projection to F𝑝[𝑡] is irreducible, 𝑋 is defined over 𝐾 = Q[𝑡]/(𝑇 ) and has good reduction to the finite field
F𝑞 = F𝑝[𝑡]/(𝑇 ). The matrix of 𝜙 on 𝐷𝑞(𝑋) = Q𝑞 ⊗𝐻1

𝑑𝑅(𝑋/𝐾) is computed to absolute 𝑝-adic precision 𝑝𝑛.

? M=hyperellpadicfrobenius(x^5+'a*x+1,['a^2+1,3],10);
? liftall(M)
[48107*a + 38874 9222*a + 54290 41941*a + 8931 39672*a + 28651]

[ 21458*a + 4763 3652*a + 22205 31111*a + 42559 39834*a + 40207]

[ 13329*a + 4140 45270*a + 25803 1377*a + 32931 55980*a + 21267]

[15086*a + 26714 33424*a + 4898 41830*a + 48013 5913*a + 24088]
? centerlift(simplify(liftpol(charpoly(M))))
%8 = x^4+4*x^2+81
? hyperellcharpoly((x^5+Mod(a,a^2+1)*x+1)*Mod(1,3))
%9 = x^4+4*x^2+81

hyperellratpoints(h, flag)
𝑋 being a nonsingular hyperelliptic curve given by an rational model, return a vector containing the affine rational
points on the curve of naive height less than ℎ.a If 𝑓𝑙𝑎𝑔 = 1, stop as soon as a point is found; return either an
empty vector or a vector containing a single point.
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𝑋 is given either by a squarefree polynomial 𝑃 such that 𝑋 : 𝑦2 = 𝑃 (𝑥) or by a vector [𝑃,𝑄] such that
𝑋 : 𝑦2 +𝑄(𝑥)𝑦 = 𝑃 (𝑥) and 𝑄2 + 4𝑃 is squarefree.

The parameter ℎ can be

• an integer𝐻: find the points [𝑛/𝑑, 𝑦] whose abscissas 𝑥 = 𝑛/𝑑 have naive height ( = max(‖𝑛‖, 𝑑)) less than
𝐻;

• a vector [𝑁,𝐷] with 𝐷 <= 𝑁 : find the points [𝑛/𝑑, 𝑦] with ‖𝑛‖ <= 𝑁 , 𝑑 <= 𝐷.

• a vector [𝑁, [𝐷1, 𝐷2]] with𝐷1 < 𝐷2 <= 𝑁 find the points [𝑛/𝑑, 𝑦] with ‖𝑛‖ <= 𝑁 and𝐷1 <= 𝑑 <= 𝐷2.

hypergeom(D, z, precision)
General hypergeometric function, where N and D are the vector of parameters in the numerator and denominator
respectively, evaluated at the complex argument 𝑧.

This function implements hypergeometric functions

𝑝𝐹𝑞((𝑎𝑖)1<=𝑖<=𝑝, (𝑏𝑗)1<=𝑗<=𝑞; 𝑧) =
∑︁
𝑛>=0

(
∏︁

1<=𝑖<=𝑝

(𝑎𝑖)𝑛)/(
∏︁

1<=𝑗<=𝑞

(𝑏𝑗)𝑛)(𝑧𝑛)/(𝑛!),

where (𝑎)𝑛 = 𝑎(𝑎 + 1)...(𝑎 + 𝑛 − 1) is the rising Pochammer symbol. For this to make sense, none of the 𝑏𝑗
must be a negative or zero integer. The corresponding general GP command is

hypergeom([a1,a2,...,ap], [b1,b2,...,bq], z)

Whenever 𝑝 = 1 or 𝑞 = 1, a one-element vector can be replaced by the element it contains. Whenever 𝑝 = 0 or
𝑞 = 0, an empty vector can be omitted. For instance hypergeom(,b,z) computes 0𝐹1(; 𝑏; 𝑧).

We distinguish three kinds of such functions according to their radius of convergence 𝑅:

• 𝑞 >= 𝑝: 𝑅 = 𝑜𝑜.

• 𝑞 = 𝑝 − 1: 𝑅 = 1. Nonetheless, by integral representations, 𝑝𝐹𝑞 can be analytically continued outside the
disc of convergence.

• 𝑞 <= 𝑝− 2: 𝑅 = 0. By integral representations, one can make sense of the function in a suitable domain.

The list of implemented functions and their domain of validity in our implementation is as follows:

F01: hypergeom(,a,z) (or [a]). This is essentially a Bessel function and computed as such. 𝑅 = 𝑜𝑜.

F10: hypergeom(a,,z) This is (1 − 𝑧)−𝑎.

F11: hypergeom(a,b,z) is the Kummer confluent hypergeometric function, computed by summing the series.
𝑅 = 𝑜𝑜

F20: hypergeom([a,b],,z). 𝑅 = 0, computed as

(1)/(Γ(𝑎))

∫︁ 𝑜

0

𝑜𝑡𝑎−1(1 − 𝑧𝑡)−𝑏𝑒−𝑡𝑑𝑡.

F21: hypergeom([a,b],c,z) (or [c]). 𝑅 = 1, extended by

(Γ(𝑐))/(Γ(𝑏)Γ(𝑐− 𝑏))

∫︁ 1

0

𝑡𝑏−1(1 − 𝑡)𝑐−𝑏−1(1 − 𝑧𝑡)𝑎𝑑𝑡.

This is Gauss’s Hypergeometric function, and almost all of the implementation work is done for this function.

F31: hypergeom([a,b,c],d,z) (or [d]). 𝑅 = 0, computed as

(1)/(Γ(𝑎))

∫︁ 𝑜

0

𝑜𝑡𝑎−1𝑒−𝑡
2 𝐹1(𝑏, 𝑐; 𝑑; 𝑡𝑧)𝑑𝑡.
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F32: hypergeom([a,b,c],[d,e],z). 𝑅 = 1, extended by

(Γ(𝑒))/(Γ(𝑐)Γ(𝑒− 𝑐))

∫︁ 1

0

𝑡𝑐−1(1 − 𝑡)𝑒−𝑐−1
2 𝐹1(𝑎, 𝑏; 𝑑; 𝑡𝑧)𝑑𝑡.

For other inputs: if 𝑅 = 𝑜𝑜 or 𝑅 = 1 and ‖𝑧‖ < 1 − 𝜀 is not too close to the circle of convergence, we simply
sum the series.

? hypergeom([3,2], 3.4, 0.7) \\ 2F1(3,2; 3.4; 0.7)
%1 = 7.9999999999999999999999999999999999999
? a=5/3; T1=hypergeom([1,1,1],[a,a],1) \\ 3F2(1,1,1; a,a; 1)
%2 = 3.1958592952314032651578713968927593818
? T2=hypergeom([2,1,1],[a+1,a+1],1)
%3 = 1.6752931349345765309211012564734179541
? T3=hypergeom([2*a-1,1,1],[a+1,a+1],1)
%4 = 1.9721037126267142061807688820853354440
? T1 + (a-1)^2/(a^2*(2*a-3)) * (T2-2*(a-1)*T3) \\
- gamma(a)^2/((2*a-3)*gamma(2*a-2))
%5 = -1.880790961315660013 E-37 \\ ~ 0

This identity is due to Bercu.

hyperu(b, z, precision)
𝑈 -confluent hypergeometric function with complex parameters 𝑎, 𝑏, 𝑧. Note that 2𝐹0(𝑎, 𝑏, 𝑧) = (−𝑧)−𝑎𝑈(𝑎, 𝑎+
1 − 𝑏,−1/𝑧),

? hyperu(1, 3/2, I)
%1 = 0.23219... - 0.80952...*I
? -I * hypergeom([1, 1+1-3/2], [], -1/I)
%2 = 0.23219... - 0.80952...*I

idealadd(x, y)
Sum of the two ideals 𝑥 and 𝑦 in the number field 𝑛𝑓 . The result is given in HNF.

? K = nfinit(x^2 + 1);
? a = idealadd(K, 2, x + 1) \\ ideal generated by 2 and 1+I
%2 =
[2 1]

[0 1]
? pr = idealprimedec(K, 5)[1]; \\ a prime ideal above 5
? idealadd(K, a, pr) \\ coprime, as expected
%4 =
[1 0]

[0 1]

This function cannot be used to add arbitrary Z-modules, since it assumes that its arguments are ideals:

? b = Mat([1,0]~);
? idealadd(K, b, b) \\ only square t_MATs represent ideals
*** idealadd: nonsquare t_MAT in idealtyp.
? c = [2, 0; 2, 0]; idealadd(K, c, c) \\ nonsense
%6 =
[2 0]

(continues on next page)
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(continued from previous page)

[0 2]
? d = [1, 0; 0, 2]; idealadd(K, d, d) \\ nonsense
%7 =
[1 0]

[0 1]

In the last two examples, we get wrong results since the matrices 𝑐 and 𝑑 do not correspond to an ideal: the Z-span
of their columns (as usual interpreted as coordinates with respect to the integer basis K.zk) is not an𝑂𝐾-module.
To add arbitrary Z-modules generated by the columns of matrices 𝐴 and 𝐵, use mathnf(concat(A,B)).

idealaddtoone(x, y)
𝑥 and 𝑦 being two co-prime integral ideals (given in any form), this gives a two-component row vector [𝑎, 𝑏] such
that 𝑎 ∈ 𝑥, 𝑏 ∈ 𝑦 and 𝑎+ 𝑏 = 1.

The alternative syntax 𝑖𝑑𝑒𝑎𝑙𝑎𝑑𝑑𝑡𝑜𝑜𝑛𝑒(𝑛𝑓, 𝑣), is supported, where 𝑣 is a 𝑘-component vector of ideals (given in
any form) which sum to Z𝐾 . This outputs a 𝑘-component vector 𝑒 such that 𝑒[𝑖] ∈ 𝑥[𝑖] for 1 <= 𝑖 <= 𝑘 and∑︀

1<=𝑖<=𝑘 𝑒[𝑖] = 1.

idealappr(x, flag)
If 𝑥 is a fractional ideal (given in any form), gives an element 𝛼 in 𝑛𝑓 such that for all prime ideals 𝑝 such that
the valuation of 𝑥 at 𝑝 is nonzero, we have 𝑣𝑝(𝛼) = 𝑣𝑝(𝑥), and 𝑣𝑝(𝛼) >= 0 for all other 𝑝.

The argument 𝑥 may also be given as a prime ideal factorization, as output by idealfactor, but allowing zero
exponents. This yields an element 𝛼 such that for all prime ideals 𝑝 occurring in 𝑥, 𝑣𝑝(𝛼) = 𝑣𝑝(𝑥); for all other
prime ideals, 𝑣𝑝(𝛼) >= 0.

flag is deprecated (ignored), kept for backward compatibility.

idealchinese(x, y)
𝑥 being a prime ideal factorization (i.e. a 2-columns matrix whose first column contains prime ideals and the
second column contains integral exponents), 𝑦 a vector of elements in 𝑛𝑓 indexed by the ideals in 𝑥, computes
an element 𝑏 such that

𝑣𝑝(𝑏− 𝑦𝑝) >= 𝑣𝑝(𝑥) for all prime ideals in 𝑥 and 𝑣𝑝(𝑏) >= 0 for all other 𝑝.

? K = nfinit(t^2-2);
? x = idealfactor(K, 2^2*3)
%2 =
[[2, [0, 1]~, 2, 1, [0, 2; 1, 0]] 4]

[ [3, [3, 0]~, 1, 2, 1] 1]
? y = [t,1];
? idealchinese(K, x, y)
%4 = [4, -3]~

The argument 𝑥may also be of the form [𝑥, 𝑠] where the first component is as above and 𝑠 is a vector of signs, with
𝑟1 components 𝑠𝑖 in −1, 0, 1: if 𝜎𝑖 denotes the 𝑖-th real embedding of the number field, the element 𝑏 returned
satisfies further 𝑠𝑖𝑔𝑛(𝜎𝑖(𝑏)) = 𝑠𝑖 for all 𝑖 such that 𝑠𝑖 = 1. In other words, the sign is fixed to 𝑠𝑖 at the 𝑖-th
embedding whenever 𝑠𝑖 is nonzero.

? idealchinese(K, [x, [1,1]], y)
%5 = [16, -3]~
? idealchinese(K, [x, [-1,-1]], y)

(continues on next page)
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(continued from previous page)

%6 = [-20, -3]~
? idealchinese(K, [x, [1,-1]], y)
%7 = [4, -3]~

If 𝑦 is omitted, return a data structure which can be used in place of 𝑥 in later calls and allows to solve many
chinese remainder problems for a given 𝑥 more efficiently.

? C = idealchinese(K, [x, [1,1]]);
? idealchinese(K, C, y) \\ as above
%9 = [16, -3]~
? for(i=1,10^4, idealchinese(K,C,y)) \\ ... but faster !
time = 80 ms.
? for(i=1,10^4, idealchinese(K,[x,[1,1]],y))
time = 224 ms.

Finally, this structure is itself allowed in place of 𝑥, the new 𝑠 overriding the one already present in the structure.
This allows to initialize for different sign conditions more efficiently when the underlying ideal factorization
remains the same.

? D = idealchinese(K, [C, [1,-1]]); \\ replaces [1,1]
? idealchinese(K, D, y)
%13 = [4, -3]~
? for(i=1,10^4,idealchinese(K,[C,[1,-1]]))
time = 40 ms. \\ faster than starting from scratch
? for(i=1,10^4,idealchinese(K,[x,[1,-1]]))
time = 128 ms.

idealcoprime(x, y)
Given two integral ideals 𝑥 and 𝑦 in the number field 𝑛𝑓 , returns a 𝛽 in the field, such that 𝛽.𝑥 is an integral ideal
coprime to 𝑦.

idealdiv(x, y, flag)
Quotient 𝑥.𝑦−1 of the two ideals 𝑥 and 𝑦 in the number field 𝑛𝑓 . The result is given in HNF.

If 𝑓𝑙𝑎𝑔 is nonzero, the quotient 𝑥.𝑦−1 is assumed to be an integral ideal. This can be much faster when the norm
of the quotient is small even though the norms of 𝑥 and 𝑦 are large. More precisely, the algorithm cheaply removes
all maximal ideals above rational primes such that 𝑣𝑝(𝑁𝑥) = 𝑣𝑝(𝑁𝑦).

idealdown(x)
Let 𝑛𝑓 be a number field as output by nfinit, and 𝑥 a fractional ideal. This function returns the nonnegative
rational generator of 𝑥 ∩Q. If 𝑥 is an extended ideal, the extended part is ignored.

? nf = nfinit(y^2+1);
? idealdown(nf, -1/2)
%2 = 1/2
? idealdown(nf, (y+1)/3)
%3 = 2/3
? idealdown(nf, [2, 11]~)
%4 = 125
? x = idealprimedec(nf, 2)[1]; idealdown(nf, x)
%5 = 2
? idealdown(nf, [130, 94; 0, 2])
%6 = 130
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idealfactor(x, lim)

Factors into prime ideal powers the ideal 𝑥 in the number field 𝑛𝑓 . The output format is similar to the factor
function, and the prime ideals are represented in the form output by the idealprimedec function. If lim is set,
return partial factorization, including only prime ideals above rational primes < 𝑙𝑖𝑚.

? nf = nfinit(x^3-2);
? idealfactor(nf, x) \\ a prime ideal above 2
%2 =
[[2, [0, 1, 0]~, 3, 1, ...] 1]

? A = idealhnf(nf, 6*x, 4+2*x+x^2)
%3 =
[6 0 4]

[0 6 2]

[0 0 1]

? idealfactor(nf, A)
%4 =
[[2, [0, 1, 0]~, 3, 1, ...] 2]

[[3, [1, 1, 0]~, 3, 1, ...] 2]

? idealfactor(nf, A, 3) \\ restrict to primes above p < 3
%5 =
[[2, [0, 1, 0]~, 3, 1, ...] 2]

idealfactorback(f, e, flag)
Gives back the ideal corresponding to a factorization. The integer 1 corresponds to the empty factorization. If 𝑒
is present, 𝑒 and 𝑓 must be vectors of the same length (𝑒 being integral), and the corresponding factorization is
the product of the 𝑓 [𝑖]𝑒[𝑖].

If not, and 𝑓 is vector, it is understood as in the preceding case with 𝑒 a vector of 1s: we return the product of the
𝑓 [𝑖]. Finally, 𝑓 can be a regular factorization, as produced by idealfactor.

? nf = nfinit(y^2+1); idealfactor(nf, 4 + 2*y)
%1 =
[[2, [1, 1]~, 2, 1, [1, 1]~] 2]

[[5, [2, 1]~, 1, 1, [-2, 1]~] 1]

? idealfactorback(nf, %)
%2 =
[10 4]

[0 2]

? f = %1[,1]; e = %1[,2]; idealfactorback(nf, f, e)
%3 =
[10 4]

[0 2]

(continues on next page)
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? % == idealhnf(nf, 4 + 2*y)
%4 = 1

If flag is nonzero, perform ideal reductions (idealred) along the way. This is most useful if the ideals involved
are all extended ideals (for instance with trivial principal part), so that the principal parts extracted by idealred
are not lost. Here is an example:

? f = vector(#f, i, [f[i], [;]]); \\ transform to extended ideals
? idealfactorback(nf, f, e, 1)
%6 = [[1, 0; 0, 1], [2, 1; [2, 1]~, 1]]
? nffactorback(nf, %[2])
%7 = [4, 2]~

The extended ideal returned in %6 is the trivial ideal 1, extended with a principal generator given in factored form.
We use nffactorback to recover it in standard form.

idealfrobenius(gal, pr)
Let𝐾 be the number field defined by 𝑛𝑓 and assume𝐾/Q be a Galois extension with Galois group given gal =
galoisinit(nf), and that pr is an unramified prime ideal 𝑝 in prid format. This function returns a permutation
of gal.group which defines the Frobenius element Frob𝑝 attached to 𝑝. If 𝑝 is the unique prime number in 𝑝,
then Frob(𝑥) = 𝑥𝑝𝑚𝑜𝑑𝑝 for all 𝑥 ∈ Z𝐾 .

? nf = nfinit(polcyclo(31));
? gal = galoisinit(nf);
? pr = idealprimedec(nf,101)[1];
? g = idealfrobenius(nf,gal,pr);
? galoispermtopol(gal,g)
%5 = x^8

This is correct since 101 = 8𝑚𝑜𝑑31.

idealhnf(u, v)
Gives the Hermite normal form of the ideal 𝑢Z𝐾 + 𝑣Z𝐾 , where 𝑢 and 𝑣 are elements of the number field 𝐾
defined by nf.

? nf = nfinit(y^3 - 2);
? idealhnf(nf, 2, y+1)
%2 =
[1 0 0]

[0 1 0]

[0 0 1]
? idealhnf(nf, y/2, [0,0,1/3]~)
%3 =
[1/3 0 0]

[0 1/6 0]

[0 0 1/6]

If 𝑏 is omitted, returns the HNF of the ideal defined by 𝑢: 𝑢may be an algebraic number (defining a principal ideal),
a maximal ideal (as given by idealprimedec or idealfactor), or a matrix whose columns give generators for
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the ideal. This last format is a little complicated, but useful to reduce general modules to the canonical form once
in a while:

• if strictly less than 𝑁 = [𝐾 : Q] generators are given, 𝑢 is the Z𝐾-module they generate,

• if 𝑁 or more are given, it is assumed that they form a Z-basis of the ideal, in particular that the matrix has
maximal rank 𝑁 . This acts as mathnf since the Z𝐾-module structure is (taken for granted hence) not taken
into account in this case.

? idealhnf(nf, idealprimedec(nf,2)[1])
%4 =
[2 0 0]

[0 1 0]

[0 0 1]
? idealhnf(nf, [1,2;2,3;3,4])
%5 =
[1 0 0]

[0 1 0]

[0 0 1]

Finally, when 𝐾 is quadratic with discriminant 𝐷𝐾 , we allow 𝑢 = Qfb(a,b,c), provided 𝑏2 − 4𝑎𝑐 = 𝐷𝐾 . As
usual, this represents the ideal 𝑎Z + (1/2)(−𝑏+

√
𝐷𝐾)Z.

? K = nfinit(x^2 - 60); K.disc
%1 = 60
? idealhnf(K, qfbprimeform(60,2))
%2 =
[2 1]

[0 1]
? idealhnf(K, Qfb(1,2,3))
*** at top-level: idealhnf(K,Qfb(1,2,3
*** ^--------------------
*** idealhnf: Qfb(1, 2, 3) has discriminant != 60 in idealhnf.

idealintersect(A, B)
Intersection of the two ideals 𝐴 and 𝐵 in the number field 𝑛𝑓 . The result is given in HNF.

? nf = nfinit(x^2+1);
? idealintersect(nf, 2, x+1)
%2 =
[2 0]

[0 2]

This function does not apply to general Z-modules, e.g. orders, since its arguments are replaced by the ideals they
generate. The following script intersects Z-modules 𝐴 and 𝐵 given by matrices of compatible dimensions with
integer coefficients:

ZM_intersect(A,B) =
{ my(Ker = matkerint(concat(A,B)));

(continues on next page)
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mathnf( A * Ker[1..#A,] )
}

idealinv(x)
Inverse of the ideal 𝑥 in the number field 𝑛𝑓 , given in HNF. If 𝑥 is an extended ideal, its principal part is suitably
updated: i.e. inverting [𝐼, 𝑡], yields [𝐼−1, 1/𝑡].

idealismaximal(x)
Given nf a number field as output by nfinit and an ideal 𝑥, return 0 if 𝑥 is not a maximal ideal. Otherwise return
a prid structure nf attached to the ideal. This function uses ispseudoprime and may return a wrong result in
case the underlying rational pseudoprime is not an actual prime number: apply isprime(pr.p) to guarantee
correctness. If 𝑥 is an extended ideal, the extended part is ignored.

? K = nfinit(y^2 + 1);
? idealismaximal(K, 3) \\ 3 is inert
%2 = [3, [3, 0]~, 1, 2, 1]
? idealismaximal(K, 5) \\ 5 is not
%3 = 0
? pr = idealprimedec(K,5)[1] \\ already a prid
%4 = [5, [-2, 1]~, 1, 1, [2, -1; 1, 2]]
? idealismaximal(K, pr) \\ trivial check
%5 = [5, [-2, 1]~, 1, 1, [2, -1; 1, 2]]
? x = idealhnf(K, pr)
%6 =
[5 3]

[0 1]
? idealismaximal(K, x) \\ converts from matrix form to prid
%7 = [5, [-2, 1]~, 1, 1, [2, -1; 1, 2]]

This function is noticeably faster than idealfactor since it never involves an actually factorization, in particular
when 𝑥 ∩ Z is not a prime number.

idealispower(A, n, B)
Let nf be a number field and 𝑛 > 0 be a positive integer. Return 1 if the fractional ideal𝐴 = 𝐵𝑛 is an 𝑛-th power
and 0 otherwise. If the argument 𝐵 is present, set it to the 𝑛-th root of 𝐴, in HNF.

? K = nfinit(x^3 - 2);
? A = [46875, 30966, 9573; 0, 3, 0; 0, 0, 3];
? idealispower(K, A, 3, &B)
%3 = 1
? B
%4 =
[75 22 41]

[ 0 1 0]

[ 0 0 1]

? A = [9375, 2841, 198; 0, 3, 0; 0, 0, 3];
? idealispower(K, A, 3)
%5 = 0
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ideallist(bound, flag)
Computes the list of all ideals of norm less or equal to bound in the number field nf. The result is a row vector
with exactly bound components. Each component is itself a row vector containing the information about ideals
of a given norm, in no specific order, depending on the value of 𝑓𝑙𝑎𝑔:

The possible values of 𝑓𝑙𝑎𝑔 are:

0: give the bid attached to the ideals, without generators.

1: as 0, but include the generators in the bid.

2: in this case, nf must be a bnf with units. Each component is of the form [𝑏𝑖𝑑, 𝑈 ], where bid is as case 0 and
𝑈 is a vector of discrete logarithms of the units. More precisely, it gives the ideallog s with respect to bid of
(𝜁, 𝑢1, ..., 𝑢𝑟) where 𝜁 is the torsion unit generator bnf.tu[2] and (𝑢𝑖) are the fundamental units in bnf.fu.
This structure is technical, and only meant to be used in conjunction with bnrclassnolist or bnrdisclist.

3: as 2, but include the generators in the bid.

4: give only the HNF of the ideal.

? nf = nfinit(x^2+1);
? L = ideallist(nf, 100);
? L[1]
%3 = [[1, 0; 0, 1]] \\ A single ideal of norm 1
? #L[65]
%4 = 4 \\ There are 4 ideals of norm 4 in Z[i]

If one wants more information, one could do instead:

? nf = nfinit(x^2+1);
? L = ideallist(nf, 100, 0);
? l = L[25]; vector(#l, i, l[i].clgp)
%3 = [[20, [20]], [16, [4, 4]], [20, [20]]]
? l[1].mod
%4 = [[25, 18; 0, 1], []]
? l[2].mod
%5 = [[5, 0; 0, 5], []]
? l[3].mod
%6 = [[25, 7; 0, 1], []]

where we ask for the structures of the (Z[𝑖]/𝐼)* for all three ideals of norm 25. In fact, for all moduli with finite
part of norm 25 and trivial Archimedean part, as the last 3 commands show. See ideallistarch to treat general
moduli.

ideallistarch(list, arch)
list is a vector of vectors of bid’s, as output by ideallist with flag 0 to 3. Return a vector of vectors with the
same number of components as the original list. The leaves give information about moduli whose finite part is as
in original list, in the same order, and Archimedean part is now arch (it was originally trivial). The information
contained is of the same kind as was present in the input; see ideallist, in particular the meaning of flag.

? bnf = bnfinit(x^2-2);
? bnf.sign
%2 = [2, 0] \\ two places at infinity
? L = ideallist(bnf, 100, 0);
? l = L[98]; vector(#l, i, l[i].clgp)
%4 = [[42, [42]], [36, [6, 6]], [42, [42]]]
? La = ideallistarch(bnf, L, [1,1]); \\ add them to the modulus

(continues on next page)
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? l = La[98]; vector(#l, i, l[i].clgp)
%6 = [[168, [42, 2, 2]], [144, [6, 6, 2, 2]], [168, [42, 2, 2]]]

Of course, the results above are obvious: adding 𝑡 places at infinity will add 𝑡 copies of Z/2Z to (Z𝐾/𝑓)*. The
following application is more typical:

? L = ideallist(bnf, 100, 2); \\ units are required now
? La = ideallistarch(bnf, L, [1,1]);
? H = bnrclassnolist(bnf, La);
? H[98];
%4 = [2, 12, 2]

ideallog(x, bid)
𝑛𝑓 is a number field, bid is as output by idealstar(nf, D,...) and 𝑥 an element of nf which must have
valuation equal to 0 at all prime ideals in the support of 𝐷 and need not be integral. This function computes
the discrete logarithm of 𝑥 on the generators given in :emphasis:`bid.gen`. In other words, if 𝑔𝑖 are these
generators, of orders 𝑑𝑖 respectively, the result is a column vector of integers (𝑥𝑖) such that 0 <= 𝑥𝑖 < 𝑑𝑖 and

𝑥 =
∏︁
𝑖

𝑔𝑥𝑖
𝑖 (𝑚𝑜𝑑*𝐷).

Note that when the support of D contains places at infinity, this congruence implies also sign conditions on the
attached real embeddings. See znlog for the limitations of the underlying discrete log algorithms.

When nf is omitted, take it to be the rational number field. In that case, 𝑥 must be a t_INT and bid must have
been initialized by znstar(N,1).

idealmin(ix, vdir)
This function is useless and kept for backward compatibility only, use :literal:`idealred`. Computes a pseudo-
minimum of the ideal 𝑥 in the direction vdir in the number field nf.

idealmul(x, y, flag)
Ideal multiplication of the ideals 𝑥 and 𝑦 in the number field nf ; the result is the ideal product in HNF. If either
𝑥 or 𝑦 are extended ideals, their principal part is suitably updated: i.e. multiplying [𝐼, 𝑡], [𝐽, 𝑢] yields [𝐼𝐽, 𝑡𝑢];
multiplying 𝐼 and [𝐽, 𝑢] yields [𝐼𝐽, 𝑢].

? nf = nfinit(x^2 + 1);
? idealmul(nf, 2, x+1)
%2 =
[4 2]

[0 2]
? idealmul(nf, [2, x], x+1) \\ extended ideal * ideal
%3 = [[4, 2; 0, 2], x]
? idealmul(nf, [2, x], [x+1, x]) \\ two extended ideals
%4 = [[4, 2; 0, 2], [-1, 0]~]

If 𝑓𝑙𝑎𝑔 is nonzero, reduce the result using idealred.

idealnorm(x)
Computes the norm of the ideal 𝑥 in the number field 𝑛𝑓 .

idealnumden(x)
Returns [𝐴,𝐵], where 𝐴,𝐵 are coprime integer ideals such that 𝑥 = 𝐴/𝐵, in the number field 𝑛𝑓 .
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? nf = nfinit(x^2+1);
? idealnumden(nf, (x+1)/2)
%2 = [[1, 0; 0, 1], [2, 1; 0, 1]]

idealpow(x, k, flag)
Computes the 𝑘-th power of the ideal 𝑥 in the number field 𝑛𝑓 ; 𝑘 ∈ Z. If 𝑥 is an extended ideal, its principal part
is suitably updated: i.e. raising [𝐼, 𝑡] to the 𝑘-th power, yields [𝐼𝑘, 𝑡𝑘].

If 𝑓𝑙𝑎𝑔 is nonzero, reduce the result using idealred, throughout the (binary) powering process; in particular,
this is not the same as 𝑖𝑑𝑒𝑎𝑙𝑝𝑜𝑤(𝑛𝑓, 𝑥, 𝑘) followed by reduction.

idealprimedec(p, f )
Computes the prime ideal decomposition of the (positive) prime number 𝑝 in the number field 𝐾 represented by
nf. If a nonprime 𝑝 is given the result is undefined. If 𝑓 is present and nonzero, restrict the result to primes of
residue degree <= 𝑓 .

The result is a vector of prid structures, each representing one of the prime ideals above 𝑝 in the number field
𝑛𝑓 . The representation 𝑝𝑟 = [𝑝, 𝑎, 𝑒, 𝑓,𝑚𝑏] of a prime ideal means the following: 𝑎 is an algebraic integer in the
maximal order Z𝐾 and the prime ideal is equal to 𝑝 = 𝑝Z𝐾 + 𝑎Z𝐾 ; 𝑒 is the ramification index; 𝑓 is the residual
index; finally, mb is the multiplication table attached to the algebraic integer 𝑏 is such that 𝑝−1 = Z𝐾 + 𝑏/𝑝Z𝐾 ,
which is used internally to compute valuations. In other words if 𝑝 is inert, then mb is the integer 1, and otherwise
it is a square t_MAT whose 𝑗-th column is 𝑏.𝑛𝑓.𝑧𝑘[𝑗].

The algebraic number 𝑎 is guaranteed to have a valuation equal to 1 at the prime ideal (this is automatic if 𝑒 > 1).

The components of pr should be accessed by member functions: pr.p, pr.e, pr.f, and pr.gen (returns the
vector [𝑝, 𝑎]):

? K = nfinit(x^3-2);
? P = idealprimedec(K, 5);
? #P \\ 2 primes above 5 in Q(2^(1/3))
%3 = 2
? [p1,p2] = P;
? [p1.e, p1.f] \\ the first is unramified of degree 1
%5 = [1, 1]
? [p2.e, p2.f] \\ the second is unramified of degree 2
%6 = [1, 2]
? p1.gen
%7 = [5, [2, 1, 0]~]
? nfbasistoalg(K, %[2]) \\ a uniformizer for p1
%8 = Mod(x + 2, x^3 - 2)
? #idealprimedec(K, 5, 1) \\ restrict to f = 1
%9 = 1 \\ now only p1

idealprincipalunits(pr, k)
Given a prime ideal in idealprimedec format, returns the multiplicative group (1+𝑝𝑟)/(1+𝑝𝑟𝑘) as an abelian
group. This function is much faster than idealstar when the norm of pr is large, since it avoids (useless) work
in the multiplicative group of the residue field.

? K = nfinit(y^2+1);
? P = idealprimedec(K,2)[1];
? G = idealprincipalunits(K, P, 20);
? G.cyc
%4 = [512, 256, 4] \\ Z/512 x Z/256 x Z/4

(continues on next page)
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? G.gen
%5 = [[-1, -2]~, 1021, [0, -1]~] \\ minimal generators of given order

idealramgroups(gal, pr)
Let 𝐾 be the number field defined by nf and assume that 𝐾/Q is Galois with Galois group 𝐺 given by gal =
galoisinit(nf). Let pr be the prime ideal 𝑃 in prid format. This function returns a vector 𝑔 of subgroups of
gal as follows:

• g[1] is the decomposition group of 𝑃 ,

• g[2] is 𝐺0(𝑃 ), the inertia group of 𝑃 ,

and for 𝑖 >= 2,

• g[i] is 𝐺𝑖−2(𝑃 ), the 𝑖− 2-th ramification group of 𝑃 .

The length of 𝑔 is the number of nontrivial groups in the sequence, thus is 0 if 𝑒 = 1 and 𝑓 = 1, and 1 if 𝑓 > 1
and 𝑒 = 1. The following function computes the cardinality of a subgroup of 𝐺, as given by the components of
𝑔:

card(H) =my(o=H[2]); prod(i=1,#o,o[i]);

? nf=nfinit(x^6+3); gal=galoisinit(nf); pr=idealprimedec(nf,3)[1];
? g = idealramgroups(nf, gal, pr);
? apply(card,g)
%3 = [6, 6, 3, 3, 3] \\ cardinalities of the G_i

? nf=nfinit(x^6+108); gal=galoisinit(nf); pr=idealprimedec(nf,2)[1];
? iso=idealramgroups(nf,gal,pr)[2]
%5 = [[Vecsmall([2, 3, 1, 5, 6, 4])], Vecsmall([3])]
? nfdisc(galoisfixedfield(gal,iso,1))
%6 = -3

The field fixed by the inertia group of 2 is not ramified at 2.

idealred(I, v)
LLL reduction of the ideal 𝐼 in the number field 𝐾 attached to nf, along the direction 𝑣. The 𝑣 parameter is best
left omitted, but if it is present, it must be an 𝑛𝑓.𝑟1 + 𝑛𝑓.𝑟2-component vector of nonnegative integers. (What
counts is the relative magnitude of the entries: if all entries are equal, the effect is the same as if the vector had
been omitted.)

This function finds an 𝑎 ∈ 𝐾* such that 𝐽 = (𝑎)𝐼 is “small” and integral (see the end for technical details). The
result is the Hermite normal form of the “reduced” ideal 𝐽 .

? K = nfinit(y^2+1);
? P = idealprimedec(K,5)[1];
? idealred(K, P)
%3 =
[1 0]

[0 1]

More often than not, a principal ideal yields the unit ideal as above. This is a quick and dirty way to check if ideals
are principal, but it is not a necessary condition: a nontrivial result does not prove that the ideal is nonprincipal.
For guaranteed results, see bnfisprincipal, which requires the computation of a full bnf structure.
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If the input is an extended ideal [𝐼, 𝑠], the output is [𝐽, 𝑠𝑎]; in this way, one keeps track of the principal ideal part:

? idealred(K, [P, 1])
%5 = [[1, 0; 0, 1], [2, -1]~]

meaning that 𝑃 is generated by [2,−1]. The number field element in the extended part is an algebraic number in
any form or a factorization matrix (in terms of number field elements, not ideals!). In the latter case, elements
stay in factored form, which is a convenient way to avoid coefficient explosion; see also idealpow.

Technical note. The routine computes an LLL-reduced basis for the lattice 𝐼−1 equipped with the quadratic form

‖‖𝑥‖‖2𝑣 =

𝑟1+𝑟2∑︁
𝑖=1

2𝑣𝑖𝜀𝑖‖𝜎𝑖(𝑥)‖2,

where as usual the 𝜎𝑖 are the (real and) complex embeddings and 𝜀𝑖 = 1, resp. 2, for a real, resp. complex place.
The element 𝑎 is simply the first vector in the LLL basis. The only reason you may want to try to change some
directions and set some 𝑣𝑖! = 0 is to randomize the elements found for a fixed ideal, which is heuristically useful
in index calculus algorithms like bnfinit and bnfisprincipal.

Even more technical note. In fact, the above is a white lie. We do not use ‖‖.‖‖𝑣 exactly but a rescaled rounded
variant which gets us faster and simpler LLLs. There’s no harm since we are not using any theoretical property
of 𝑎 after all, except that it belongs to 𝐼−1 and that 𝑎𝐼 is “expected to be small”.

idealredmodpower(x, n, B)
Let nf be a number field, 𝑥 an ideal in nf and 𝑛 > 0 be a positive integer. Return a number field element 𝑏 such
that 𝑥𝑏𝑛 = 𝑣 is small. If 𝑥 is integral, then 𝑣 is also integral.

More precisely, idealnumden reduces the problem to 𝑥 integral. Then, factoring out the prime ideals dividing a
rational prime 𝑝 <= 𝐵, we rewrite 𝑥 = 𝐼𝐽𝑛 where the ideals 𝐼 and 𝐽 are both integral and 𝐼 is𝐵-smooth. Then
we return a small element 𝑏 in 𝐽−1.

The bound 𝐵 avoids a costly complete factorization of 𝑥; as soon as the 𝑛-core of 𝑥 is 𝐵-smooth (i.e., as soon as
𝐼 is 𝑛-power free), then 𝐽 is as large as possible and so is the expected reduction.

? T = x^6+108; nf = nfinit(T); a = Mod(x,T);
? setrand(1); u = (2*a^2+a+3)*random(2^1000*x^6)^6;
? sizebyte(u)
%3 = 4864
? b = idealredmodpower(nf,u,2);
? v2 = nfeltmul(nf,u, nfeltpow(nf,b,2))
%5 = [34, 47, 15, 35, 9, 3]~
? b = idealredmodpower(nf,u,6);
? v6 = nfeltmul(nf,u, nfeltpow(nf,b,6))
%7 = [3, 0, 2, 6, -7, 1]~

The last element v6, obtained by reducing modulo 6-th powers instead of squares, looks smaller than v2 but its
norm is actually a little larger:

? idealnorm(nf,v2)
%8 = 81309
? idealnorm(nf,v6)
%9 = 731781

idealstar(N, flag, cycmod)
Outputs a bid structure, necessary for computing in the finite abelian group𝐺 = (Z𝐾/𝑁)*. Here, nf is a number
field and𝑁 is a modulus: either an ideal in any form, or a row vector whose first component is an ideal and whose
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second component is a row vector of 𝑟1 0 or 1. Ideals can also be given by a factorization into prime ideals, as
produced by idealfactor.

If the positive integer cycmod is present, only compute the group modulo cycmod-th powers, which may save
a lot of time when some maximal ideals in the modulus have a huge residue field. Whereas you might only be
interested in quadratic or cubic residuosity; see also bnrinit for applications in class field theory.

This bid is used in ideallog to compute discrete logarithms. It also contains useful information which
can be conveniently retrieved as :emphasis:`bid.mod` (the modulus), :emphasis:`bid.clgp` (𝐺 as a finite
abelian group), :emphasis:`bid.no` (the cardinality of 𝐺), :emphasis:`bid.cyc` (elementary divisors) and
:emphasis:`bid.gen` (generators).

If 𝑓𝑙𝑎𝑔 = 1 (default), the result is a bid structure without generators: they are well defined but not explicitly
computed, which saves time.

If 𝑓𝑙𝑎𝑔 = 2, as 𝑓𝑙𝑎𝑔 = 1, but including generators.

If 𝑓𝑙𝑎𝑔 = 0, only outputs (Z𝐾/𝑁)* as an abelian group, i.e as a 3-component vector [ℎ, 𝑑, 𝑔]: ℎ is the order, 𝑑 is
the vector of SNF cyclic components and 𝑔 the corresponding generators.

If nf is omitted, we take it to be the rational number fields, 𝑁 must be an integer and we return the structure of
(Z/𝑁Z)*. In other words idealstar(, N, flag) is short for

idealstar(nfinit(x), N, flag)

but faster. The alternative syntax znstar(N, flag) is also available for an analogous effect but, due to an
unfortunate historical oversight, the default value of flag is different in the two functions (znstar does not
initialize by default, you probably want znstar(N,1)).

idealtwoelt(x, a)
Computes a two-element representation of the ideal 𝑥 in the number field 𝑛𝑓 , combining a random search and an
approximation theorem; 𝑥 is an ideal in any form (possibly an extended ideal, whose principal part is ignored)

• When called as idealtwoelt(nf,x), the result is a row vector [𝑎, 𝛼] with two components such that 𝑥 =
𝑎Z𝐾 + 𝛼Z𝐾 and 𝑎 is chosen to be the positive generator of 𝑥 ∩ Z, unless 𝑥 was given as a principal ideal
in which case we may choose 𝑎 = 0. The algorithm uses a fast lazy factorization of 𝑥 ∩ Z and runs in
randomized polynomial time.

? K = nfinit(t^5-23);
? x = idealhnf(K, t^2*(t+1), t^3*(t+1))
%2 = \\ some random ideal of norm 552*23
[552 23 23 529 23]

[ 0 23 0 0 0]

[ 0 0 1 0 0]

[ 0 0 0 1 0]

[ 0 0 0 0 1]

? [a,alpha] = idealtwoelt(K, x)
%3 = [552, [23, 0, 1, 0, 0]~]
? nfbasistoalg(K, alpha)
%4 = Mod(t^2 + 23, t^5 - 23)

• When called as idealtwoelt(nf,x,a) with an explicit nonzero 𝑎 supplied as third argument, the function
assumes that 𝑎 ∈ 𝑥 and returns 𝛼 ∈ 𝑥 such that 𝑥 = 𝑎Z𝐾 + 𝛼Z𝐾 . Note that we must factor 𝑎 in this case,
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and the algorithm is generally slower than the default variant and gives larger generators:

? alpha2 = idealtwoelt(K, x, 552)
%5 = [-161, -161, -183, -207, 0]~
? idealhnf(K, 552, alpha2) == x
%6 = 1

Note that, in both cases, the return value is not recognized as an ideal by GP functions; one must use idealhnf
as above to recover a valid ideal structure from the two-element representation.

idealval(x, pr)
Gives the valuation of the ideal 𝑥 at the prime ideal pr in the number field 𝑛𝑓 , where pr is in idealprimedec
format. The valuation of the 0 ideal is +oo.

imag()

Imaginary part of 𝑥. When 𝑥 is a quadratic number, this is the coefficient of 𝜔 in the “canonical” integral basis
(1, 𝜔).

? imag(3 + I)
%1 = 1
? x = 3 + quadgen(-23);
? imag(x) \\ as a quadratic number
%3 = 1
? imag(x * 1.) \\ as a complex number
%4 = 2.3979157616563597707987190320813469600

incgam(x, g, precision)
Incomplete gamma function

∫︀ 𝑜

𝑥
𝑜𝑒−𝑡𝑡𝑠−1𝑑𝑡, extended by analytic continuation to all complex 𝑥, 𝑠 not both 0. The

relative error is bounded in terms of the precision of 𝑠 (the accuracy of 𝑥 is ignored when determining the output
precision). When 𝑔 is given, assume that 𝑔 = Γ(𝑠). For small ‖𝑥‖, this will speed up the computation.

incgamc(x, precision)
Complementary incomplete gamma function. The arguments 𝑥 and 𝑠 are complex numbers such that 𝑠 is not
a pole of Γ and ‖𝑥‖/(‖𝑠‖ + 1) is not much larger than 1 (otherwise the convergence is very slow). The result
returned is

∫︀ 𝑥

0
𝑒−𝑡𝑡𝑠−1𝑑𝑡.

intformal(v)
formal integration of 𝑥 with respect to the variable 𝑣 (wrt. the main variable if 𝑣 is omitted). Since PARI cannot
represent logarithmic or arctangent terms, any such term in the result will yield an error:

? intformal(x^2)
%1 = 1/3*x^3
? intformal(x^2, y)
%2 = y*x^2
? intformal(1/x)
*** at top-level: intformal(1/x)
*** ^--------------
*** intformal: domain error in intformal: residue(series, pole) != 0

The argument 𝑥 can be of any type. When 𝑥 is a rational function, we assume that the base ring is an integral
domain of characteristic zero.

By definition, the main variable of a t_POLMOD is the main variable among the coefficients from its two poly-
nomial components (representative and modulus); in other words, assuming a polmod represents an element of
𝑅[𝑋]/(𝑇 (𝑋)), the variable 𝑋 is a mute variable and the integral is taken with respect to the main variable used
in the base ring 𝑅. In particular, it is meaningless to integrate with respect to the main variable of x.mod:
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? intformal(Mod(1,x^2+1), 'x)
*** intformal: incorrect priority in intformal: variable x = x

intnuminit(b, m, precision)
Initialize tables for integration from 𝑎 to 𝑏, where 𝑎 and 𝑏 are coded as in intnum. Only the compact-
ness, the possible existence of singularities, the speed of decrease or the oscillations at infinity are taken
into account, and not the values. For instance intnuminit(-1,1) is equivalent to intnuminit(0,Pi), and
intnuminit([0,-1/2],oo) is equivalent to intnuminit([-1,-1/2], -oo); on the other hand, the order
matters and intnuminit([0,-1/2], [1,-1/3]) is not equivalent to intnuminit([0,-1/3], [1,-1/2])
!

If 𝑚 is present, it must be nonnegative and we multiply the default number of sampling points by 2𝑚 (increasing
the running time by a similar factor).

The result is technical and liable to change in the future, but we document it here for completeness. Let 𝑥 = 𝜑(𝑡),
𝑡 ∈]− 𝑜𝑜, 𝑜𝑜[ be an internally chosen change of variable, achieving double exponential decrease of the integrand
at infinity. The integrator intnum will compute

ℎ
∑︁

‖𝑛‖<𝑁

𝜑′(𝑛ℎ)𝐹 (𝜑(𝑛ℎ))

for some integration step ℎ and truncation parameter 𝑁 . In basic use, let

[h, x0, w0, xp, wp, xm, wm] = intnuminit(a,b);

• ℎ is the integration step

• 𝑥0 = 𝜑(0) and 𝑤0 = 𝜑′(0),

• xp contains the 𝜑(𝑛ℎ), 0 < 𝑛 < 𝑁 ,

• xm contains the 𝜑(𝑛ℎ), 0 < −𝑛 < 𝑁 , or is empty.

• wp contains the 𝜑′(𝑛ℎ), 0 < 𝑛 < 𝑁 ,

• wm contains the 𝜑′(𝑛ℎ), 0 < −𝑛 < 𝑁 , or is empty.

The arrays xm and wm are left empty when 𝜑 is an odd function. In complicated situations, intnuminit may
return up to 3 such arrays, corresponding to a splitting of up to 3 integrals of basic type.

If the functions to be integrated later are of the form 𝐹 = 𝑓(𝑡)𝑘(𝑡, 𝑧) for some kernel 𝑘 (e.g. Fourier, Laplace,
Mellin,. . . ), it is useful to also precompute the values of 𝑓(𝜑(𝑛ℎ)), which is accomplished by intfuncinit. The
hard part is to determine the behavior of 𝐹 at endpoints, depending on 𝑧.

isfundamental()

True (1) if𝐷 is equal to 1 or to the discriminant of a quadratic field, false (0) otherwise. 𝐷 can be input in factored
form as for arithmetic functions:

? isfundamental(factor(-8))
%1 = 1
\\ count fundamental discriminants up to 10^8
? c = 0; forfactored(d = 1, 10^8, if (isfundamental(d), c++)); c
time = 40,840 ms.
%2 = 30396325
? c = 0; for(d = 1, 10^8, if (isfundamental(d), c++)); c
time = 1min, 33,593 ms. \\ slower !
%3 = 30396325
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ispolygonal(s, N)

True (1) if the integer 𝑥 is an s-gonal number, false (0) if not. The parameter 𝑠 > 2 must be a t_INT. If 𝑁 is
given, set it to 𝑛 if 𝑥 is the 𝑛-th 𝑠-gonal number.

? ispolygonal(36, 3, &N)
%1 = 1
? N

ispower(k, n)
If 𝑘 is given, returns true (1) if 𝑥 is a 𝑘-th power, false (0) if not. What it means to be a 𝑘-th power depends on
the type of 𝑥; see issquare for details.

If 𝑘 is omitted, only integers and fractions are allowed for 𝑥 and the function returns the maximal 𝑘 >= 2 such
that 𝑥 = 𝑛𝑘 is a perfect power, or 0 if no such 𝑘 exist; in particular ispower(-1), ispower(0), and ispower(1)
all return 0.

If a third argument 𝑛 is given and 𝑥 is indeed a 𝑘-th power, sets 𝑛 to a 𝑘-th root of 𝑥.

For a t_FFELT x, instead of omitting k (which is not allowed for this type), it may be natural to set

k = (x.p ^ x.f - 1) / fforder(x)

ispowerful()

True (1) if 𝑥 is a powerful integer, false (0) if not; an integer is powerful if and only if its valuation at all primes
dividing 𝑥 is greater than 1.

? ispowerful(50)
%1 = 0
? ispowerful(100)
%2 = 1
? ispowerful(5^3*(10^1000+1)^2)
%3 = 1

isprime(flag)
True (1) if 𝑥 is a prime number, false (0) otherwise. A prime number is a positive integer having exactly two
distinct divisors among the natural numbers, namely 1 and itself.

This routine proves or disproves rigorously that a number is prime, which can be very slow when 𝑥 is indeed a
large prime integer. For instance a 1000 digits prime should require 15 to 30 minutes with default algorithms.
Use ispseudoprime to quickly check for compositeness. Use primecert in order to obtain a primality proof
instead of a yes/no answer; see also factor.

The function accepts vector/matrices arguments, and is then applied componentwise.

If 𝑓𝑙𝑎𝑔 = 0, use a combination of

• Baillie-Pomerance-Selfridge-Wagstaff compositeness test (see ispseudoprime),

• Selfridge “𝑝− 1” test if 𝑥− 1 is smooth enough,

• Adleman-Pomerance-Rumely-Cohen-Lenstra (APRCL) for general medium-sized 𝑥 (less than 1500 bits),

• Atkin-Morain’s Elliptic Curve Primality Prover (ECPP) for general large 𝑥.

If 𝑓𝑙𝑎𝑔 = 1, use Selfridge-Pocklington-Lehmer “𝑝 − 1” test; this requires partially factoring various auxilliary
integers and is likely to be very slow.

If 𝑓𝑙𝑎𝑔 = 2, use APRCL only.

If 𝑓𝑙𝑎𝑔 = 3, use ECPP only.
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isprimepower(n)
If 𝑥 = 𝑝𝑘 is a prime power (𝑝 prime, 𝑘 > 0), return 𝑘, else return 0. If a second argument 𝑛 is given and 𝑥 is
indeed the 𝑘-th power of a prime 𝑝, sets 𝑛 to 𝑝.

ispseudoprime(flag)
True (1) if 𝑥 is a strong pseudo prime (see below), false (0) otherwise. If this function returns false, 𝑥 is not
prime; if, on the other hand it returns true, it is only highly likely that 𝑥 is a prime number. Use isprime (which
is of course much slower) to prove that 𝑥 is indeed prime. The function accepts vector/matrices arguments, and
is then applied componentwise.

If 𝑓𝑙𝑎𝑔 = 0, checks whether 𝑥 has no small prime divisors (up to 101 included) and is a Baillie-Pomerance-
Selfridge-Wagstaff pseudo prime. Such a pseudo prime passes a Rabin-Miller test for base 2, followed by a Lucas
test for the sequence (𝑃, 1), where 𝑃 >= 3 is the smallest odd integer such that 𝑃 2 − 4 is not a square mod 𝑥.
(Technically, we are using an “almost extra strong Lucas test” that checks whether 𝑉𝑛 is 2, without computing
𝑈𝑛.)

There are no known composite numbers passing the above test, although it is expected that infinitely many such
numbers exist. In particular, all composites <= 264 are correctly detected (checked using http://www.cecm.
sfu.ca/Pseudoprimes/index-2-to-64.html).

If 𝑓𝑙𝑎𝑔 > 0, checks whether 𝑥 is a strong Miller-Rabin pseudo prime for 𝑓𝑙𝑎𝑔 randomly chosen bases (with
end-matching to catch square roots of −1).

ispseudoprimepower(n)
If 𝑥 = 𝑝𝑘 is a pseudo-prime power (𝑝 pseudo-prime as per ispseudoprime, 𝑘 > 0), return 𝑘, else return 0. If a
second argument 𝑛 is given and 𝑥 is indeed the 𝑘-th power of a prime 𝑝, sets 𝑛 to 𝑝.

More precisely, 𝑘 is always the largest integer such that 𝑥 = 𝑛𝑘 for some integer 𝑛 and, when 𝑛 <= 264 the
function returns 𝑘 > 0 if and only if 𝑛 is indeed prime. When 𝑛 > 264 is larger than the threshold, the function
may return 1 even though 𝑛 is composite: it only passed an ispseudoprime(n) test.

issquare(n)
True (1) if 𝑥 is a square, false (0) if not. What “being a square” means depends on the type of 𝑥: all t_COMPLEX
are squares, as well as all nonnegative t_REAL; for exact types such as t_INT, t_FRAC and t_INTMOD, squares
are numbers of the form 𝑠2 with 𝑠 in Z, Q and Z/𝑁Z respectively.

? issquare(3) \\ as an integer
%1 = 0
? issquare(3.) \\ as a real number
%2 = 1
? issquare(Mod(7, 8)) \\ in Z/8Z
%3 = 0
? issquare( 5 + O(13^4) ) \\ in Q_13
%4 = 0

If 𝑛 is given, a square root of 𝑥 is put into 𝑛.

? issquare(4, &n)
%1 = 1
? n
%2 = 2

For polynomials, either we detect that the characteristic is 2 (and check directly odd and even-power monomials)
or we assume that 2 is invertible and check whether squaring the truncated power series for the square root yields
the original input.

For t_POLMOD 𝑥, we only support t_POLMOD s of t_INTMOD s encoding finite fields, assuming without checking
that the intmod modulus 𝑝 is prime and that the polmod modulus is irreducible modulo 𝑝.
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? issquare(Mod(Mod(2,3), x^2+1), &n)
%1 = 1
? n
%2 = Mod(Mod(2, 3)*x, Mod(1, 3)*x^2 + Mod(1, 3))

issquarefree()

True (1) if 𝑥 is squarefree, false (0) if not. Here 𝑥 can be an integer or a polynomial with coefficients in an integral
domain.

? issquarefree(12)
%1 = 0
? issquarefree(6)
%2 = 1
? issquarefree(x^3+x^2)
%3 = 0
? issquarefree(Mod(1,4)*(x^2+x+1)) \\ Z/4Z is not a domain !
*** at top-level: issquarefree(Mod(1,4)*(x^2+x+1))
*** ^--------------------------------
*** issquarefree: impossible inverse in Fp_inv: Mod(2, 4).

A polynomial is declared squarefree if gcd(𝑥, 𝑥′) is 1. In particular a nonzero polynomial with inexact coefficients
is considered to be squarefree. Note that this may be inconsistent with factor, which first rounds the input to
some exact approximation before factoring in the apropriate domain; this is correct when the input is not close to
an inseparable polynomial (the resultant of 𝑥 and 𝑥′ is not close to 0).

An integer can be input in factored form as in arithmetic functions.

? issquarefree(factor(6))
%1 = 1
\\ count squarefree integers up to 10^8
? c = 0; for(d = 1, 10^8, if (issquarefree(d), c++)); c
time = 3min, 2,590 ms.
%2 = 60792694
? c = 0; forfactored(d = 1, 10^8, if (issquarefree(d), c++)); c
time = 45,348 ms. \\ faster !
%3 = 60792694

istotient(N)

True (1) if 𝑥 = 𝜑(𝑛) for some integer 𝑛, false (0) if not.

? istotient(14)
%1 = 0
? istotient(100)
%2 = 0

If 𝑁 is given, set 𝑁 = 𝑛 as well.

? istotient(4, &n)
%1 = 1
? n
%2 = 10

kronecker(y)
Kronecker symbol (𝑥‖𝑦), where 𝑥 and 𝑦 must be of type integer. By definition, this is the extension of Legendre
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symbol to Z𝑥Z by total multiplicativity in both arguments with the following special rules for 𝑦 = 0,−1 or 2:

• (𝑥‖0) = 1 if ‖𝑥‖ = 1 and 0 otherwise.

• (𝑥‖ − 1) = 1 if 𝑥 >= 0 and −1 otherwise.

• (𝑥‖2) = 0 if 𝑥 is even and 1 if 𝑥 = 1,−1𝑚𝑜𝑑8 and −1 if 𝑥 = 3,−3𝑚𝑜𝑑8.

lambertw(precision)
Lambert𝑊 function, solution of the implicit equation 𝑥𝑒𝑥 = 𝑦, for a positive real number 𝑦. This is the restriction
to the positive reals of the complex principal branch𝑊0, which is not implemented outside ofR*

+. Other branches
𝑊𝑘 for 𝑘! = 0 are not implemented either.

laurentseries(serprec, M, precision)
Expand 𝑓 as a Laurent series around 𝑥 = 0 to order 𝑀 . This function computes 𝑓(𝑥 + 𝑂(𝑥𝑛)) until 𝑛 is large
enough: it must be possible to evaluate 𝑓 on a power series with 0 constant term.

? laurentseries(t->sin(t)/(1-cos(t)), 5)
%1 = 2*x^-1 - 1/6*x - 1/360*x^3 - 1/15120*x^5 + O(x^6)
? laurentseries(log)
*** at top-level: laurentseries(log)
*** ^------------------
*** in function laurentseries: log
*** ^---
*** log: domain error in log: series valuation != 0

Note that individual Laurent coefficients of order <= 𝑀 can be retrieved from 𝑠 = 𝑙𝑎𝑢𝑟𝑒𝑛𝑡𝑠𝑒𝑟𝑖𝑒𝑠(𝑓,𝑀) via
polcoef(s,i) for any 𝑖 <= 𝑀 . The series 𝑠 may occasionally be more precise that the required 𝑂(𝑥𝑀+1).

With respect to successive calls to derivnum, laurentseries is both faster and more precise:

? laurentseries(t->log(3+t),1)
%1 = 1.0986122886681096913952452369225257047 + 1/3*x - 1/18*x^2 + O(x^3)
? derivnum(t=0,log(3+t),1)
%2 = 0.33333333333333333333333333333333333333
? derivnum(t=0,log(3+t),2)
%3 = -0.11111111111111111111111111111111111111

? f = x->sin(exp(x));
? polcoef(laurentseries(x->f(x+2), 1), 1)
%5 = 3.3129294231043339804683687620360224365
? exp(2) * cos(exp(2));
%6 = 3.3129294231043339804683687620360224365
? derivnum(x = 2, f(x))
%7 = 3.3129294231043339804683687620360224364 \\ 1 ulp off

? default(realprecision,115);
? for(i=1,10^4, laurentseries(x->f(x+2),1))
time = 279 ms.
? for(i=1,10^4, derivnum(x=2,f(x))) \\ ... and slower
time = 1,134 ms.

lcm(y)
Least common multiple of 𝑥 and 𝑦, i.e. such that lcm(𝑥, 𝑦) * gcd(𝑥, 𝑦) = 𝑥 * 𝑦, up to units. If 𝑦 is omitted and 𝑥
is a vector, returns the 𝑙𝑐𝑚 of all components of 𝑥. For integer arguments, return the nonnegative lcm.
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When 𝑥 and 𝑦 are both given and one of them is a vector/matrix type, the LCM is again taken recursively on
each component, but in a different way. If 𝑦 is a vector, resp. matrix, then the result has the same type as 𝑦, and
components equal to lcm(x, y[i]), resp. lcm(x, y[,i]). Else if 𝑥 is a vector/matrix the result has the same
type as 𝑥 and an analogous definition. Note that for these types, lcm is not commutative.

Note that lcm(v) is quite different from

l = v[1]; for (i = 1, #v, l = lcm(l, v[i]))

Indeed, lcm(v) is a scalar, but l may not be (if one of the v[i] is a vector/matrix). The computation uses a
divide-conquer tree and should be much more efficient, especially when using the GMP multiprecision kernel
(and more subquadratic algorithms become available):

? v = vector(10^5, i, random);
? lcm(v);
time = 546 ms.
? l = v[1]; for (i = 1, #v, l = lcm(l, v[i]))
time = 4,561 ms.

length()

Length of 𝑥; #𝑥 is a shortcut for length(𝑥). This is mostly useful for

• vectors: dimension (0 for empty vectors),

• lists: number of entries (0 for empty lists),

• maps: number of entries (0 for empty maps),

• matrices: number of columns,

• character strings: number of actual characters (without trailing \0, should you expect it from 𝐶 char*).

? #"a string"
%1 = 8
? #[3,2,1]
%2 = 3
? #[]
%3 = 0
? #matrix(2,5)
%4 = 5
? L = List([1,2,3,4]); #L
%5 = 4
? M = Map([a,b; c,d; e,f]); #M
%6 = 3

The routine is in fact defined for arbitrary GP types, but is awkward and useless in other cases: it returns the
number of non-code words in 𝑥, e.g. the effective length minus 2 for integers since the t_INT type has two code
words.

lex(y)
Gives the result of a lexicographic comparison between 𝑥 and 𝑦 (as −1, 0 or 1). This is to be interpreted in quite a
wide sense: it is admissible to compare objects of different types (scalars, vectors, matrices), provided the scalars
can be compared, as well as vectors/matrices of different lengths; finally, when comparing two scalars, a complex
number 𝑎+ 𝐼 * 𝑏 is interpreted as a vector [𝑎, 𝑏] and a real number 𝑎 as [𝑎, 0]. The comparison is recursive.

In case all components are equal up to the smallest length of the operands, the more complex is considered to be
larger. More precisely, the longest is the largest; when lengths are equal, we have matrix > vector > scalar. For
example:
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? lex([1,3], [1,2,5])
%1 = 1
? lex([1,3], [1,3,-1])
%2 = -1
? lex([1], [[1]])
%3 = -1
? lex([1], [1]~)
%4 = 0
? lex(2 - I, 1)
%5 = 1
? lex(2 - I, 2)
%6 = 2

lfun(s, D, precision)
Compute the L-function value 𝐿(𝑠), or if D is set, the derivative of order D at 𝑠. The parameter L is either an
Lmath, an Ldata (created by lfuncreate, or an Linit (created by lfuninit), preferrably the latter if many values
are to be computed.

The argument 𝑠 is also allowed to be a power series; for instance, if 𝑠 = 𝛼 + 𝑥 + 𝑂(𝑥𝑛), the function returns
the Taylor expansion of order 𝑛 around 𝛼. The result is given with absolute error less than 2−𝐵 , where 𝐵 =
𝑟𝑒𝑎𝑙𝑏𝑖𝑡𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.

Caveat. The requested precision has a major impact on runtimes. It is advised to manipulate precision
via realbitprecision as explained above instead of realprecision as the latter allows less granularity:
realprecision increases by increments of 64 bits, i.e. 19 decimal digits at a time.

? lfun(x^2+1, 2) \\ Lmath: Dedekind zeta for Q(i) at 2
%1 = 1.5067030099229850308865650481820713960

? L = lfuncreate(ellinit("5077a1")); \\ Ldata: Hasse-Weil zeta function
? lfun(L, 1+x+O(x^4)) \\ zero of order 3 at the central point
%3 = 0.E-58 - 5.[...] E-40*x + 9.[...] E-40*x^2 + 1.7318[...]*x^3 + O(x^4)

\\ Linit: zeta(1/2+it), |t| < 100, and derivative
? L = lfuninit(1, [100], 1);
? T = lfunzeros(L, [1,25]);
%5 = [14.134725[...], 21.022039[...]]
? z = 1/2 + I*T[1];
? abs( lfun(L, z) )
%7 = 8.7066865533412207420780392991125136196 E-39
? abs( lfun(L, z, 1) )
%8 = 0.79316043335650611601389756527435211412 \\ simple zero

lfunabelianrelinit(bnfK, polrel, sdom, der, precision)
Returns the Linit structure attached to the Dedekind zeta function of the number field 𝐿 (see lfuninit), given
a subfield 𝐾 such that 𝐿/𝐾 is abelian. Here polrel defines 𝐿 over 𝐾, as usual with the priority of the variable
of bnfK lower than that of polrel. sdom and der are as in lfuninit.

? D = -47; K = bnfinit(y^2-D);
? rel = quadhilbert(D); T = rnfequation(K.pol, rel); \\ degree 10
? L = lfunabelianrelinit(T,K,rel, [2,0,0]); \\ at 2
time = 84 ms.
? lfun(L, 2)
%4 = 1.0154213394402443929880666894468182650

(continues on next page)
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? lfun(T, 2) \\ using parisize > 300MB
time = 652 ms.
%5 = 1.0154213394402443929880666894468182656

As the example shows, using the (abelian) relative structure is more efficient than a direct computation. The
difference becomes drastic as the absolute degree increases while the subfield degree remains constant.

lfunan(n, precision)
Compute the first 𝑛 terms of the Dirichlet series attached to the 𝐿-function given by L (Lmath, Ldata or Linit).

? lfunan(1, 10) \\ Riemann zeta
%1 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
? lfunan(5, 10) \\ Dirichlet L-function for kronecker(5,.)
%2 = [1, -1, -1, 1, 0, 1, -1, -1, 1, 0]

lfunartin(gal, rho, n, precision)
Returns the Ldata structure attached to the Artin 𝐿-function provided by the representation 𝜌 of the Galois group
of the extension𝐾/Q, defined over the cyclotomic field Q(𝜁𝑛), where nf is the nfinit structure attached to𝐾, gal
is the galoisinit structure attached to 𝐾/Q, and rho is given either

• by the values of its character on the conjugacy classes (see galoisconjclasses and galoischartable)

• or by the matrices that are the images of the generators :emphasis:`gal.gen`.

Cyclotomic numbers in rho are represented by polynomials, whose variable is understood as the complex number
exp(2𝑖𝜋/𝑛).

In the following example we build the Artin𝐿-functions attached to the two irreducible degree 2 representations of
the dihedral group𝐷10 defined overQ(𝜁5), for the extension𝐻/Qwhere𝐻 is the Hilbert class field ofQ(

√
−47).

We show numerically some identities involving Dedekind 𝜁 functions and Hecke 𝐿 series.

? P = quadhilbert(-47)
%1 = x^5 + 2*x^4 + 2*x^3 + x^2 - 1
? N = nfinit(nfsplitting(P));
? G = galoisinit(N); \\ D_10
? [T,n] = galoischartable(G);
? T \\ columns give the irreducible characters
%5 =
[1 1 2 2]

[1 -1 0 0]

[1 1 -y^3 - y^2 - 1 y^3 + y^2]

[1 1 y^3 + y^2 -y^3 - y^2 - 1]
? n
%6 = 5
? L2 = lfunartin(N,G, T[,2], n);
? L3 = lfunartin(N,G, T[,3], n);
? L4 = lfunartin(N,G, T[,4], n);
? s = 1 + x + O(x^4);
? lfun(-47,s) - lfun(L2,s)
%11 ~ 0
? lfun(1,s)*lfun(-47,s)*lfun(L3,s)^2*lfun(L4,s)^2 - lfun(N,s)

(continues on next page)
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%12 ~ 0
? lfun(1,s)*lfun(L3,s)*lfun(L4,s) - lfun(P,s)
%13 ~ 0
? bnr = bnrinit(bnfinit(x^2+47),1,1);
? bnr.cyc
%15 = [5] \\ Z/5Z: 4 nontrivial ray class characters
? lfun([bnr,[1]], s) - lfun(L3, s)
%16 ~ 0
? lfun([bnr,[2]], s) - lfun(L4, s)
%17 ~ 0
? lfun([bnr,[3]], s) - lfun(L3, s)
%18 ~ 0
? lfun([bnr,[4]], s) - lfun(L4, s)
%19 ~ 0

The first identity identifies the nontrivial abelian character with (−47, .); the second is the factorization of the
regular representation of 𝐷10; the third is the factorization of the natural representation of 𝐷10 ⊂ 𝑆5; and the
final four are the expressions of the degree 2 representations as induced from degree 1 representations.

lfuncheckfeq(t, precision)
Given the data attached to an 𝐿-function (Lmath, Ldata or Linit), check whether the functional equation is
satisfied. This is most useful for an Ldata constructed “by hand”, via lfuncreate, to detect mistakes.

If the function has poles, the polar part must be specified. The routine returns a bit accuracy 𝑏 such that ‖𝑤−𝑤‖ <
2𝑏, where 𝑤 is the root number contained in data, and

𝑤 = 𝜃(1/𝑡)𝑡−𝑘/𝜃(𝑡)

is a computed value derived from the assumed functional equation. If the parameter 𝑡 is omitted, we try
random samples on the real line in the segment [1, 1.25]. Of course, a large negative value of the order of
realbitprecision is expected but if 𝜃 is very small all over the sampled segment, you should first increase
realbitprecision by − log2 ‖𝜃(𝑡)‖ (which is positive if 𝜃 is small) to get a meaningful result.

If 𝑡 is given, it should be close to the unit disc for efficiency and such that 𝜃(𝑡)! = 0. We then check the functional
equation at that 𝑡. Again, if 𝜃(𝑡) is very small, you should first increase realbitprecision to get a useful result.

? \pb 128 \\ 128 bits of accuracy
? default(realbitprecision)
%1 = 128
? L = lfuncreate(1); \\ Riemann zeta
? lfuncheckfeq(L)
%3 = -124

i.e. the given data is consistent to within 4 bits for the particular check consisting of estimating the root number
from all other given quantities. Checking away from the unit disc will either fail with a precision error, or give
disappointing results (if 𝜃(1/𝑡) is large it will be computed with a large absolute error)

? lfuncheckfeq(L, 2+I)
%4 = -115
? lfuncheckfeq(L,10)
*** at top-level: lfuncheckfeq(L,10)
*** ^------------------
*** lfuncheckfeq: precision too low in lfuncheckfeq.
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lfunconductor(setN, flag, precision)
Compute the conductor of the given 𝐿-function (if the structure contains a conductor, it is ignored). Two methods
are available, depending on what we know about the conductor, encoded in the setN parameter:

• setN is a scalar: we know nothing but expect that the conductor lies in the interval [1, 𝑠𝑒𝑡𝑁 ].

If flag is 0 (default), give either the conductor found as an integer, or a vector (possibly empty) of conductors
found. If flag is 1, same but give the computed floating point approximations to the conductors found, without
rounding to integers. It flag is 2, give all the conductors found, even those far from integers.

Caveat. This is a heuristic program and the result is not proven in any way:

? L = lfuncreate(857); \\ Dirichlet L function for kronecker(857,.)
? \p19
realprecision = 19 significant digits
? lfunconductor(L)
%2 = [17, 857]
? lfunconductor(L,,1) \\ don't round
%3 = [16.99999999999999999, 857.0000000000000000]

? \p38
realprecision = 38 significant digits
? lfunconductor(L)
%4 = 857

Increasing setN or increasing realbitprecision slows down the program but gives better accuracy for the
result. This algorithm should only be used if the primes dividing the conductor are unknown, which is uncommon.

• setN is a vector of possible conductors; for instance of the form D1 * divisors(D2), where 𝐷1 is the
known part of the conductor and 𝐷2 is a multiple of the contribution of the bad primes.

In that case, flag is ignored and the routine uses lfuncheckfeq. It returns [𝑁, 𝑒] where𝑁 is the best conductor
in the list and 𝑒 is the value of lfuncheckfeq for that 𝑁 . When no suitable conductor exist or there is a tie
among best potential conductors, return the empty vector [].

? E = ellinit([0,0,0,4,0]); /* Elliptic curve y^2 = x^3+4x */
? E.disc \\ |disc E| = 2^12
%2 = -4096
\\ create Ldata by hand. Guess that root number is 1 and conductor N
? L(N) = lfuncreate([n->ellan(E,n), 0, [0,1], 2, N, 1]);
\\ lfunconductor ignores conductor = 1 in Ldata !
? lfunconductor(L(1), divisors(E.disc))
%5 = [32, -127]
? fordiv(E.disc, d, print(d,": ",lfuncheckfeq(L(d)))) \\ direct check
1: 0
2: 0
4: -1
8: -2
16: -3
32: -127
64: -3
128: -2
256: -2
512: -1
1024: -1

(continues on next page)
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2048: 0
4096: 0

The above code assumed that root number was 1; had we set it to −1, none of the lfuncheckfeq values would
have been acceptable:

? L2 = lfuncreate([n->ellan(E,n), 0, [0,1], 2, 0, -1]);
? lfunconductor(L2, divisors(E.disc))
%7 = []

lfuncost(sdom, der, precision)
Estimate the cost of running lfuninit(L,sdom,der) at current bit precision. Returns [𝑡, 𝑏], to indicate that 𝑡
coefficients 𝑎𝑛 will be computed, as well as 𝑡 values of gammamellininv, all at bit accuracy 𝑏. A subsequent call
to lfun at 𝑠 evaluates a polynomial of degree 𝑡 at exp(ℎ𝑠) for some real parameter ℎ, at the same bit accuracy 𝑏.
If 𝐿 is already an Linit, then sdom and der are ignored and are best left omitted; the bit accuracy is also inferred
from 𝐿: in short we get an estimate of the cost of using that particular Linit.

? \pb 128
? lfuncost(1, [100]) \\ for zeta(1/2+I*t), |t| < 100
%1 = [7, 242] \\ 7 coefficients, 242 bits
? lfuncost(1, [1/2, 100]) \\ for zeta(s) in the critical strip, |Im s| < 100
%2 = [7, 246] \\ now 246 bits
? lfuncost(1, [100], 10) \\ for zeta(1/2+I*t), |t| < 100
%3 = [8, 263] \\ 10th derivative increases the cost by a small amount
? lfuncost(1, [10^5])
%3 = [158, 113438] \\ larger imaginary part: huge accuracy increase

? L = lfuncreate(polcyclo(5)); \\ Dedekind zeta for Q(zeta_5)
? lfuncost(L, [100]) \\ at s = 1/2+I*t), |t| < 100
%5 = [11457, 582]
? lfuncost(L, [200]) \\ twice higher
%6 = [36294, 1035]
? lfuncost(L, [10^4]) \\ much higher: very costly !
%7 = [70256473, 45452]
? \pb 256
? lfuncost(L, [100]); \\ doubling bit accuracy
%8 = [17080, 710]

In fact, some 𝐿 functions can be factorized algebraically by the lfuninit call, e.g. the Dedekind zeta function of
abelian fields, leading to much faster evaluations than the above upper bounds. In that case, the function returns
a vector of costs as above for each individual function in the product actually evaluated:

? L = lfuncreate(polcyclo(5)); \\ Dedekind zeta for Q(zeta_5)
? lfuncost(L, [100]) \\ a priori cost
%2 = [11457, 582]
? L = lfuninit(L, [100]); \\ actually perform all initializations
? lfuncost(L)
%4 = [[16, 242], [16, 242], [7, 242]]

The Dedekind function of this abelian quartic field is the product of four Dirichlet 𝐿-functions attached to the
trivial character, a nontrivial real character and two complex conjugate characters. The nontrivial characters
happen to have the same conductor (hence same evaluation costs), and correspond to two evaluations only since
the two conjugate characters are evaluated simultaneously. For a total of three 𝐿-functions evaluations, which
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explains the three components above. Note that the actual cost is much lower than the a priori cost in this case.

lfuncreate()

This low-level routine creates Ldata structures, needed by lfun functions, describing an 𝐿-function and its func-
tional equation. We advise using a high-level constructor when one is available, see ??lfun, and this function
accepts them:

? L = lfuncreate(1); \\ Riemann zeta
? L = lfuncreate(5); \\ Dirichlet L-function for quadratic character (5/.)
? L = lfuncreate(x^2+1); \\ Dedekind zeta for Q(i)
? L = lfuncreate(ellinit([0,1])); \\ L-function of E/Q: y^2=x^3+1

One can then use, e.g., lfun(L,s) to directly evaluate the respective𝐿-functions at 𝑠, or lfuninit(L, [c,w,h]
to initialize computations in the rectangular box ℜ(𝑠− 𝑐) <= 𝑤, ℑ(𝑠) <= ℎ.

We now describe the low-level interface, used to input nonbuiltin𝐿-functions. The input is now a 6 or 7 component
vector 𝑉 = [𝑎, 𝑎𝑠𝑡𝑎𝑟, 𝑉 𝑔𝑎, 𝑘,𝑁, 𝑒𝑝𝑠, 𝑝𝑜𝑙𝑒𝑠], whose components are as follows:

• V[1] = a encodes the Dirichlet series coefficients (𝑎𝑛). The preferred format is a closure of arity 1: n- >
vector(n,i,a(i)) giving the vector of the first 𝑛 coefficients. The closure is allowed to return a vector
of more than 𝑛 coefficients (only the first 𝑛 will be considered) or even less than 𝑛, in which case loss of
accuracy will occur and a warning that #an is less than expected is issued. This allows to precompute and
store a fixed large number of Dirichlet coefficients in a vector 𝑣 and use the closure n- > v, which does not
depend on 𝑛. As a shorthand for this latter case, you can input the vector 𝑣 itself instead of the closure.

? z = lfuncreate([n->vector(n,i,1), 1, [0], 1, 1, 1, 1]); \\ Riemann zeta
? lfun(z,2) - Pi^2/6
%2 = -5.877471754111437540 E-39

A second format is limited to 𝐿-functions affording an Euler product. It is a closure of arity 2 (p,d)- > F(p)
giving the local factor 𝐿𝑝(𝑋) at 𝑝 as a rational function, to be evaluated at 𝑝−𝑠 as in direuler; 𝑑 is set to
logint(𝑛, 𝑝) + 1, where 𝑛 is the total number of Dirichlet coefficients (𝑎1, ..., 𝑎𝑛) that will be computed. In
other words, the smallest integer 𝑑 such that 𝑝𝑑 > 𝑛. This parameter 𝑑 allows to compute only part of 𝐿𝑝 when
𝑝 is large and 𝐿𝑝 expensive to compute: any polynomial (or t_SER) congruent to 𝐿𝑝 modulo 𝑋𝑑 is acceptable
since only the coefficients of 𝑋0, ..., 𝑋𝑑−1 are needed to expand the Dirichlet series. The closure can of course
ignore this parameter:

? z = lfuncreate([(p,d)->1/(1-x), 1, [0], 1, 1, 1, 1]); \\ Riemann zeta
? lfun(z,2) - Pi^2/6
%4 = -5.877471754111437540 E-39

One can describe separately the generic local factors coefficients and the bad local factors by setting 𝑑𝑖𝑟 =
[𝐹,𝐿𝑏𝑎𝑑], were 𝐿𝑏𝑎𝑑 = [[𝑝1, 𝐿𝑝1

], ..., [𝑝𝑘, 𝐿𝑝𝑘
]], where 𝐹 describes the generic local factors as above, except that

when 𝑝 = 𝑝𝑖 for some 𝑖 <= 𝑘, the coefficient 𝑎𝑝 is directly set to 𝐿𝑝𝑖 instead of calling 𝐹 .

N = 15;
E = ellinit([1, 1, 1, -10, -10]); \\ = "15a1"
F(p,d) = 1 / (1 - ellap(E,p)*'x + p*'x^2);
Lbad = [[3, 1/(1+'x)], [5, 1/(1-'x)]];
L = lfuncreate([[F,Lbad], 0, [0,1], 2, N, ellrootno(E)]);

Of course, in this case, lfuncreate(E) is preferable!

• V[2] = astar is the Dirichlet series coefficients of the dual function, encoded as a above. The sentinel
values 0 and 1 may be used for the special cases where 𝑎 = 𝑎* and 𝑎 = 𝑎*, respectively.

• V[3] = Vga is the vector of 𝛼𝑗 such that the gamma factor of the 𝐿-function is equal to
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𝛾𝐴(𝑠) =
∏︁

1<=𝑗<=𝑑

ΓR(𝑠+ 𝛼𝑗),

𝑤ℎ𝑒𝑟𝑒 : 𝑚𝑎𝑡ℎ : ‘ΓR(𝑠) = 𝜋−𝑠/2Γ(𝑠/2)‘.𝑇ℎ𝑖𝑠𝑠𝑎𝑚𝑒𝑠𝑦𝑛𝑡𝑎𝑥𝑖𝑠𝑢𝑠𝑒𝑑𝑖𝑛𝑡ℎ𝑒 : 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 : ‘𝑔𝑎𝑚𝑚𝑎𝑚𝑒𝑙𝑙𝑖𝑛𝑖𝑛𝑣‘𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠.𝐼𝑛𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟𝑡ℎ𝑒𝑙𝑒𝑛𝑔𝑡ℎ : 𝑚𝑎𝑡ℎ : ‘𝑑‘𝑜𝑓 : 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 : ‘𝑉 𝑔𝑎‘𝑖𝑠𝑡ℎ𝑒𝑑𝑒𝑔𝑟𝑒𝑒𝑜𝑓𝑡ℎ𝑒 : 𝑚𝑎𝑡ℎ : ‘𝐿‘ − 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛.𝐼𝑛𝑡ℎ𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝑡ℎ𝑒 : 𝑚𝑎𝑡ℎ : ‘𝛼𝑗 ‘𝑎𝑟𝑒𝑎𝑠𝑠𝑢𝑚𝑒𝑑𝑡𝑜𝑏𝑒𝑒𝑥𝑎𝑐𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑠.𝐻𝑜𝑤𝑒𝑣𝑒𝑟𝑤ℎ𝑒𝑛𝑐𝑎𝑙𝑙𝑖𝑛𝑔𝑡ℎ𝑒𝑡𝑎𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠𝑤𝑖𝑡ℎ : 𝑒𝑚𝑝ℎ𝑎𝑠𝑖𝑠 : ‘𝑐𝑜𝑚𝑝𝑙𝑒𝑥‘(𝑎𝑠𝑜𝑝𝑝𝑜𝑠𝑒𝑑𝑡𝑜𝑟𝑒𝑎𝑙)𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡𝑠, 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠𝑜𝑐𝑐𝑢𝑟𝑤ℎ𝑖𝑐ℎ𝑚𝑎𝑦𝑔𝑖𝑣𝑒𝑤𝑟𝑜𝑛𝑔𝑟𝑒𝑠𝑢𝑙𝑡𝑠𝑤ℎ𝑒𝑛𝑡ℎ𝑒 : 𝑚𝑎𝑡ℎ : ‘𝛼𝑗 ‘𝑎𝑟𝑒𝑛𝑜𝑡𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙.

• V[4] = k is a positive integer 𝑘. The functional equation relates values at 𝑠 and 𝑘 − 𝑠. For instance, for
an Artin 𝐿-series such as a Dedekind zeta function we have 𝑘 = 1, for an elliptic curve 𝑘 = 2, and for a
modular form, 𝑘 is its weight. For motivic 𝐿-functions, the motivic weight 𝑤 is 𝑤 = 𝑘 − 1.

By default we assume that 𝑎𝑛 = 𝑂𝜖(𝑛
𝑘1+𝜖), where 𝑘1 = 𝑤 and even 𝑘1 = 𝑤/2 when the 𝐿 function has no pole

(Ramanujan-Petersson). If this is not the case, you can replace the 𝑘 argument by a vector [𝑘, 𝑘1], where 𝑘1 is the
upper bound you can assume.

• V[5] = N is the conductor, an integer 𝑁 >= 1, such that Λ(𝑠) = 𝑁𝑠/2𝛾𝐴(𝑠)𝐿(𝑠) with 𝛾𝐴(𝑠) as above.

• V[6] = eps is the root number 𝜀, i.e., the complex number (usually of modulus 1) such that Λ(𝑎, 𝑘 − 𝑠) =
𝜀Λ(𝑎*, 𝑠).

• The last optional component V[7] = poles encodes the poles of the 𝐿 or Λ-functions, and is omitted if
they have no poles. A polar part is given by a list of 2-component vectors [𝛽, 𝑃𝛽(𝑥)], where 𝛽 is a pole and
the power series 𝑃𝛽(𝑥) describes the attached polar part, such that 𝐿(𝑠) − 𝑃𝛽(𝑠 − 𝛽) is holomorphic in a
neighbourhood of 𝛽. For instance 𝑃𝛽 = 𝑟/𝑥 + 𝑂(1) for a simple pole at 𝛽 or 𝑟1/𝑥2 + 𝑟2/𝑥 + 𝑂(1) for a
double pole. The type of the list describing the polar part allows to distinguish between 𝐿 and Λ: a t_VEC is
attached to 𝐿, and a t_COL is attached to Λ. Unless 𝑎 = 𝑎* (coded by astar equal to 0 or 1), it is mandatory
to specify the polar part of Λ rather than those of 𝐿 since the poles of 𝐿* cannot be infered from the latter !
Whereas the functional equation allows to deduce the polar part of Λ* from the polar part of Λ.

Finally, if 𝑎 = 𝑎*, we allow a shortcut to describe the frequent situation where 𝐿 has at most simple pole, at
𝑠 = 𝑘, with residue 𝑟 a complex scalar: you may then input 𝑝𝑜𝑙𝑒𝑠 = 𝑟. This value 𝑟 can be set to 0 if unknown
and it will be computed.

When one component is not exact. Alternatively, obj can be a closure of arity 0 returning the above vector to the
current real precision. This is needed if some components are not available exactly but only through floating point
approximations. The closure allows algorithms to recompute them to higher accuracy when needed. Compare

? Ld1() = [n->lfunan(Mod(2,7),n),1,[0],1,7,((-13-3*sqrt(-3))/14)^(1/6)];
? Ld2 = [n->lfunan(Mod(2,7),n),1,[0],1,7,((-13-3*sqrt(-3))/14)^(1/6)];
? L1 = lfuncreate(Ld1);
? L2 = lfuncreate(Ld2);
? lfun(L1,1/2+I*200) \\ OK
%5 = 0.55943925130316677665287870224047183265 -
0.42492662223174071305478563967365980756*I
? lfun(L2,1/2+I*200) \\ all accuracy lost
%6 = 0.E-38 + 0.E-38*I

The accuracy lost in Ld2 is due to the root number being given to an insufficient precision. To see what happens
try

? Ld3() = printf("prec needed: %ld bits",getlocalbitprec());Ld1()
? L3 = lfuncreate(Ld3);
prec needed: 64 bits
? z3 = lfun(L3,1/2+I*200)
prec needed: 384 bits
%16 = 0.55943925130316677665287870224047183265 -
0.42492662223174071305478563967365980756*I

lfundiv(L2, precision)
Creates the Ldata structure (without initialization) corresponding to the quotient of the Dirichlet series 𝐿1 and
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𝐿2 given by L1 and L2. Assume that 𝑣𝑧(𝐿1) >= 𝑣𝑧(𝐿2) at all complex numbers 𝑧: the construction may not
create new poles, nor increase the order of existing ones.

lfundual(precision)
Creates the Ldata structure (without initialization) corresponding to the dual L-function 𝐿 of 𝐿. If 𝑘 and 𝜀 are
respectively the weight and root number of 𝐿, then the following formula holds outside poles, up to numerical
errors:

Λ(𝐿, 𝑠) = 𝜀Λ(𝐿, 𝑘 − 𝑠).

? L = lfunqf(matdiagonal([1,2,3,4]));
? eps = lfunrootres(L)[3]; k = L[4];
? M = lfundual(L); lfuncheckfeq(M)
%3 = -127
? s= 1+Pi*I;
? a = lfunlambda(L,s);
? b = eps * lfunlambda(M,k-s);
? exponent(a - b)
%7 = -130

lfunetaquo()

Returns the Ldata structure attached to the 𝐿 function attached to the modular form 𝑧 : − − − >∏︀𝑛
𝑖=1 𝜂(𝑀𝑖,1𝑧)

𝑀𝑖,2 It is currently assumed that 𝑓 is a self-dual cuspidal form on Γ0(𝑁) for some 𝑁 . For in-
stance, the 𝐿-function

∑︀
𝜏(𝑛)𝑛−𝑠 attached to Ramanujan’s ∆ function is encoded as follows

? L = lfunetaquo(Mat([1,24]));
? lfunan(L, 100) \\ first 100 values of tau(n)

For convenience, a t_VEC is also accepted instead of a factorization matrix with a single row:

? L = lfunetaquo([1,24]); \\ same as above

lfungenus2()

Returns the Ldata structure attached to the 𝐿 function attached to the genus-2 curve defined by 𝑦2 = 𝐹 (𝑥) or
𝑦2 +𝑄(𝑥)𝑦 = 𝑃 (𝑥) if 𝐹 = [𝑃,𝑄]. Currently, the model needs to be minimal at 2, and if the conductor is even,
its valuation at 2 might be incorrect (a warning is issued).

lfunhardy(t, precision)
Variant of the Hardy 𝑍-function given by L, used for plotting or locating zeros of 𝐿(𝑘/2 + 𝑖𝑡) on the critical line.
The precise definition is as follows: let 𝑘/2 be the center of the critical strip, 𝑑 be the degree, 𝑉 𝑔𝑎 = (𝛼𝑗)𝑗<=𝑑

given the gamma factors, and 𝜀 be the root number; we set 𝑠 = 𝑘/2 + 𝑖𝑡 = 𝜌𝑒𝑖𝜃 and 2𝐸 = 𝑑(𝑘/2 − 1) +
ℜ(

∑︀
1<=𝑗<=𝑑 𝛼𝑗). Assume first that Λ is self-dual, then the computed function at 𝑡 is equal to

𝑍(𝑡) = 𝜀−1/2Λ(𝑠).𝜌−𝐸𝑒𝑑𝑡𝜃/2,

which is a real function of 𝑡 vanishing exactly when 𝐿(𝑘/2 + 𝑖𝑡) does on the critical line. The normalizing factor
‖𝑠‖−𝐸𝑒𝑑𝑡𝜃/2 compensates the exponential decrease of 𝛾𝐴(𝑠) as 𝑡 → 𝑜𝑜 so that 𝑍(𝑡) 1. For non-self-dual Λ, the
definition is the same except we drop the 𝜀−1/2 term (which is not well defined since it depends on the chosen
dual sequence 𝑎*(𝑛)): 𝑍(𝑡) is still of the order of 1 and still vanishes where 𝐿(𝑘/2 + 𝑖𝑡) does, but it needs no
longer be real-valued.

? T = 100; \\ maximal height
? L = lfuninit(1, [T]); \\ initialize for zeta(1/2+it), |t|<T
? \p19 \\ no need for large accuracy
? ploth(t = 0, T, lfunhardy(L,t))
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Using lfuninit is critical for this particular applications since thousands of values are computed. Make sure to
initialize up to the maximal 𝑡 needed: otherwise expect to see many warnings for unsufficient initialization and
suffer major slowdowns.

lfuninit(sdom, der, precision)
Initalization function for all functions linked to the computation of the 𝐿-function 𝐿(𝑠) encoded by L, where 𝑠
belongs to the rectangular domain 𝑠𝑑𝑜𝑚 = [𝑐𝑒𝑛𝑡𝑒𝑟, 𝑤, ℎ] centered on the real axis, ‖ℜ(𝑠) − 𝑐𝑒𝑛𝑡𝑒𝑟‖ <= 𝑤,
‖ℑ(𝑠)‖ <= ℎ, where all three components of sdom are real and𝑤, ℎ are nonnegative. der is the maximum order
of derivation that will be used. The subdomain [𝑘/2, 0, ℎ] on the critical line (up to height ℎ) can be encoded as
[ℎ] for brevity. The subdomain [𝑘/2, 𝑤, ℎ] centered on the critical line can be encoded as [𝑤, ℎ] for brevity.

The argument L is an Lmath, an Ldata or an Linit. See ??Ldata and ??lfuncreate for how to create it.

The height ℎ of the domain is a crucial parameter: if you only need 𝐿(𝑠) for real 𝑠, set ℎ to 0. The running time
is roughly proportional to

(𝐵/𝑑+ 𝜋ℎ/4)𝑑/2+3𝑁1/2,

where𝐵 is the default bit accuracy, 𝑑 is the degree of the𝐿-function, and𝑁 is the conductor (the exponent 𝑑/2+3
is reduced to 𝑑/2 + 2 when 𝑑 = 1 and 𝑑 = 2). There is also a dependency on 𝑤, which is less crucial, but make
sure to use the smallest rectangular domain that you need.

? L0 = lfuncreate(1); \\ Riemann zeta
? L = lfuninit(L0, [1/2, 0, 100]); \\ for zeta(1/2+it), |t| < 100
? lfun(L, 1/2 + I)
? L = lfuninit(L0, [100]); \\ same as above !

lfunlambda(s, D, precision)
Compute the completed 𝐿-function Λ(𝑠) = 𝑁𝑠/2𝛾(𝑠)𝐿(𝑠), or if D is set, the derivative of order D at 𝑠. The pa-
rameter L is either an Lmath, an Ldata (created by lfuncreate, or an Linit (created by lfuninit), preferrably
the latter if many values are to be computed.

The result is given with absolute error less than 2−𝐵‖𝛾(𝑠)𝑁𝑠/2‖, where 𝐵 = 𝑟𝑒𝑎𝑙𝑏𝑖𝑡𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.

lfunmf(F, precision)
If 𝐹 is a modular form in mf, output the L-functions corresponding to its [Q(𝐹 ) : Q(𝜒)] complex embeddings,
ready for use with the lfun package. If 𝐹 is omitted, output the 𝐿-functions attached to all eigenforms in the
new space; the result is a vector whose length is the number of Galois orbits of newforms. Each entry contains
the vector of 𝐿-functions corresponding to the 𝑑 complex embeddings of an orbit of dimension 𝑑 over Q(𝜒).

? mf = mfinit([35,2],0);mffields(mf)
%1 = [y, y^2 - y - 4]
? f = mfeigenbasis(mf)[2]; mfparams(f) \\ orbit of dimension two
%2 = [35, 2, 1, y^2 - y - 4, t - 1]
? [L1,L2] = lfunmf(mf, f); \\ Two L-functions
? lfun(L1,1)
%4 = 0.81018461849460161754947375433874745585
? lfun(L2,1)
%5 = 0.46007635204895314548435893464149369804
? [ lfun(L,1) | L <- concat(lfunmf(mf)) ]
%6 = [0.70291..., 0.81018..., 0.46007...]

The concat instruction concatenates the vectors corresponding to the various (here two) orbits, so that we obtain
the vector of all the 𝐿-functions attached to eigenforms.
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lfunmfspec(precision)
Let 𝐿 be the 𝐿-function attached to a modular eigenform 𝑓 of weight 𝑘, as given by lfunmf. In even weight,
returns [ve,vo,om,op], where ve (resp., vo) is the vector of even (resp., odd) periods of 𝑓 and om and op the
corresponding real numbers 𝜔− and 𝜔+ normalized in a noncanonical way. In odd weight ominus is the same
as op and we return [v,op] where 𝑣 is the vector of all periods.

? D = mfDelta(); mf = mfinit(D); L = lfunmf(mf, D);
? [ve, vo, om, op] = lfunmfspec(L)
%2 = [[1, 25/48, 5/12, 25/48, 1], [1620/691, 1, 9/14, 9/14, 1, 1620/691],\
0.0074154209298961305890064277459002287248,\
0.0050835121083932868604942901374387473226]
? DS = mfsymbol(mf, D); bestappr(om*op / mfpetersson(DS), 10^8)
%3 = 8192/225
? mf = mfinit([4, 9, -4], 0);
? F = mfeigenbasis(mf)[1]; L = lfunmf(mf, F);
? [v, om] = lfunmfspec(L)
%6 = [[1, 10/21, 5/18, 5/24, 5/24, 5/18, 10/21, 1],\
1.1302643192034974852387822584241400608]
? FS = mfsymbol(mf, F); bestappr(om^2 / mfpetersson(FS), 10^8)
%7 = 113246208/325

lfunmul(L2, precision)
Creates the Ldata structure (without initialization) corresponding to the product of the Dirichlet series given by
L1 and L2.

lfunorderzero(m, precision)
Computes the order of the possible zero of the 𝐿-function at the center 𝑘/2 of the critical strip; return 0 if 𝐿(𝑘/2)
does not vanish.

If 𝑚 is given and has a nonnegative value, assumes the order is at most 𝑚. Otherwise, the algorithm chooses a
sensible default:

• if the 𝐿 argument is an Linit, assume that a multiple zero at 𝑠 = 𝑘/2 has order less than or equal to the
maximal allowed derivation order.

• else assume the order is less than 4.

You may explicitly increase this value using optional argument𝑚; this overrides the default value above. (Possibly
forcing a recomputation of the Linit.)

lfunqf(precision)
Returns the Ldata structure attached to the Θ function of the lattice attached to the primitive form proportional
to the definite positive quadratic form 𝑄.

? L = lfunqf(matid(2));
? lfunqf(L,2)
%2 = 6.0268120396919401235462601927282855839
? lfun(x^2+1,2)*4
%3 = 6.0268120396919401235462601927282855839

The following computes the Madelung constant:

? L1=lfunqf(matdiagonal([1,1,1]));
? L2=lfunqf(matdiagonal([4,1,1]));
? L3=lfunqf(matdiagonal([4,4,1]));
? F(s)=6*lfun(L2,s)-12*lfun(L3,s)-lfun(L1,s)*(1-8/4^s);

(continues on next page)
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(continued from previous page)

? F(1/2)
%5 = -1.7475645946331821906362120355443974035

lfunrootres(precision)
Given the Ldata attached to an 𝐿-function (or the output of lfunthetainit), compute the root number and the
residues.

The output is a 3-component vector [[[𝑎1, 𝑟1], ..., [𝑎𝑛, 𝑟𝑛], [[𝑏1, 𝑅1], ..., [𝑏𝑚, 𝑅𝑚]] , 𝑤], where 𝑟𝑖 is the polar part
of 𝐿(𝑠) at 𝑎𝑖, 𝑅𝑖 is is the polar part of Λ(𝑠) at 𝑏𝑖 or [0, 0, 𝑟] if there is no pole, and 𝑤 is the root number. In the
present implementation,

• either the polar part must be completely known (and is then arbitrary): the function determines the root
number,

? L = lfunmul(1,1); \\ zeta^2
? [r,R,w] = lfunrootres(L);
? r \\ single pole at 1, double
%3 = [[1, 1.[...]*x^-2 + 1.1544[...]*x^-1 + O(x^0)]]
? w
%4 = 1
? R \\ double pole at 0 and 1
%5 = [[1,[...]], [0,[...]]]~

• or at most a single pole is allowed: the function computes both the root number and the residue (0 if no pole).

lfunshift(d, flag, precision)
Creates the Ldata structure (without initialization) corresponding to the shift of 𝐿 by 𝑑, that is to the function 𝐿𝑑

such that 𝐿𝑑(𝑠) = 𝐿(𝑠− 𝑑). If 𝑓𝑙𝑎𝑔 = 1, return the product 𝐿𝑥𝐿𝑑 instead.

? Z = lfuncreate(1); \\ zeta(s)
? L = lfunshift(Z,1); \\ zeta(s-1)
? normlp(Vec(lfunlambda(L,s)-lfunlambda(L,3-s)))
%3 = 0.E-38 \\ the expansions coincide to 'seriesprecision'
? lfun(L,1)
%4 = -0.50000000000000000000000000000000000000 \\ = zeta(0)
? M = lfunshift(Z,1,1); \\ zeta(s)*zeta(s-1)
? normlp(Vec(lfunlambda(M,s)-lfunlambda(M,2-s)))
%6 = 2.350988701644575016 E-38
? lfun(M,2) \\ simple pole at 2, residue zeta(2)
%7 = 1.6449340668482264364724151666460251892*x^-1+O(x^0)

lfunsympow(m)

Returns the Ldata structure attached to the 𝐿 function attached to the𝑚-th symmetric power of the elliptic curve
𝐸 defined over the rationals.

lfuntheta(t, m, precision)
Compute the value of the𝑚-th derivative at 𝑡 of the theta function attached to the𝐿-function given by data. data
can be either the standard 𝐿-function data, or the output of lfunthetainit. The result is given with absolute
error less than 2−𝐵 , where 𝐵 = 𝑟𝑒𝑎𝑙𝑏𝑖𝑡𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.

The theta function is defined by the formula Θ(𝑡) =
∑︀

𝑛>=1 𝑎(𝑛)𝐾(𝑛𝑡/
√︀

(𝑁)), where 𝑎(𝑛) are the coefficients
of the Dirichlet series, 𝑁 is the conductor, and 𝐾 is the inverse Mellin transform of the gamma product defined
by the Vga component. Its Mellin transform is equal to Λ(𝑠) − 𝑃 (𝑠), where Λ(𝑠) is the completed 𝐿-function
and the rational function 𝑃 (𝑠) its polar part. In particular, if the 𝐿-function is the 𝐿-function of a modular form
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𝑓(𝜏) =
∑︀

𝑛>=0 𝑎(𝑛)𝑞𝑛 with 𝑞 = exp(2𝜋𝑖𝜏), we have Θ(𝑡) = 2(𝑓(𝑖𝑡/
√
𝑁)−𝑎(0)). Note that 𝑎(0) = −𝐿(𝑓, 0)

in this case.

lfunthetacost(tdom, m, precision)
This function estimates the cost of running lfunthetainit(L,tdom,m) at current bit precision. Returns the
number of coefficients 𝑎𝑛 that would be computed. This also estimates the cost of a subsequent evaluation
lfuntheta, which must compute that many values of gammamellininv at the current bit precision. If 𝐿 is
already an Linit, then tdom and 𝑚 are ignored and are best left omitted: we get an estimate of the cost of using
that particular Linit.

? \pb 1000
? L = lfuncreate(1); \\ Riemann zeta
? lfunthetacost(L); \\ cost for theta(t), t real >= 1
%1 = 15
? lfunthetacost(L, 1 + I); \\ cost for theta(1+I). Domain error !
*** at top-level: lfunthetacost(1,1+I)
*** ^--------------------
*** lfunthetacost: domain error in lfunthetaneed: arg t > 0.785
? lfunthetacost(L, 1 + I/2) \\ for theta(1+I/2).
%2 = 23
? lfunthetacost(L, 1 + I/2, 10) \\ for theta^((10))(1+I/2).
%3 = 24
? lfunthetacost(L, [2, 1/10]) \\ cost for theta(t), |t| >= 2, |arg(t)| < 1/10
%4 = 8

? L = lfuncreate( ellinit([1,1]) );
? lfunthetacost(L) \\ for t >= 1
%6 = 2471

lfunthetainit(tdom, m, precision)
Initalization function for evaluating the 𝑚-th derivative of theta functions with argument 𝑡 in domain tdom. By
default (tdom omitted), 𝑡 is real, 𝑡 >= 1. Otherwise, tdom may be

• a positive real scalar 𝜌: 𝑡 is real, 𝑡 >= 𝜌.

• a nonreal complex number: compute at this particular 𝑡; this allows to compute 𝜃(𝑧) for any complex 𝑧
satisfying ‖𝑧‖ >= ‖𝑡‖ and ‖ arg 𝑧‖ <= ‖ arg 𝑡‖; we must have ‖2 arg 𝑧/𝑑‖ < 𝜋/2, where 𝑑 is the degree
of the Γ factor.

• a pair [𝜌, 𝛼]: assume that ‖𝑡‖ >= 𝜌 and ‖ arg 𝑡‖ ≤ 𝛼; we must have ‖2𝛼/𝑑‖ < 𝜋/2, where 𝑑 is the degree
of the Γ factor.

? \p500
? L = lfuncreate(1); \\ Riemann zeta
? t = 1+I/2;
? lfuntheta(L, t); \\ direct computation
time = 30 ms.
? T = lfunthetainit(L, 1+I/2);
time = 30 ms.
? lfuntheta(T, t); \\ instantaneous

The 𝑇 structure would allow to quickly compute 𝜃(𝑧) for any 𝑧 in the cone delimited by 𝑡 as explained above. On
the other hand
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? lfuntheta(T,I)
*** at top-level: lfuntheta(T,I)
*** ^--------------
*** lfuntheta: domain error in lfunthetaneed: arg t > 0.785398163397448

The initialization is equivalent to

? lfunthetainit(L, [abs(t), arg(t)])

lfuntwist(chi, precision)
Creates the Ldata structure (without initialization) corresponding to the twist of L by the primitive character
attached to the Dirichlet character chi. The conductor of the character must be coprime to the conductor of the
L-function 𝐿.

lfunzeros(lim, divz, precision)
lim being either a positive upper limit or a nonempty real interval, computes an ordered list of zeros of 𝐿(𝑠) on
the critical line up to the given upper limit or in the given interval. Use a naive algorithm which may miss some
zeros: it assumes that two consecutive zeros at height 𝑇 >= 1 differ at least by 2𝜋/𝜔, where

𝜔 := 𝑑𝑖𝑣𝑧.(𝑑 log(𝑇/2𝜋) + 𝑑+ 2 log(𝑁/(𝜋/2)𝑑)).

To use a finer search mesh, set divz to some integral value larger than the default ( = 8).

? lfunzeros(1, 30) \\ zeros of Rieman zeta up to height 30
%1 = [14.134[...], 21.022[...], 25.010[...]]
? #lfunzeros(1, [100,110]) \\ count zeros with 100 <= Im(s) <= 110
%2 = 4

The algorithm also assumes that all zeros are simple except possibly on the real axis at 𝑠 = 𝑘/2 and that there
are no poles in the search interval. (The possible zero at 𝑠 = 𝑘/2 is repeated according to its multiplicity.)

If you pass an Linit to the function, the algorithm assumes that a multiple zero at 𝑠 = 𝑘/2 has order less than or
equal to the maximal derivation order allowed by the Linit. You may increase that value in the Linit but this
is costly: only do it for zeros of low height or in lfunorderzero instead.

lift(v)
If 𝑣 is omitted, lifts intmods from Z/𝑛Z in Z, 𝑝-adics from Q𝑝 to Q (as truncate), and polmods to polynomials.
Otherwise, lifts only polmods whose modulus has main variable 𝑣. t_FFELT are not lifted, nor are List elements:
you may convert the latter to vectors first, or use apply(lift,L). More generally, components for which such
lifts are meaningless (e.g. character strings) are copied verbatim.

? lift(Mod(5,3))
%1 = 2
? lift(3 + O(3^9))
%2 = 3
? lift(Mod(x,x^2+1))
%3 = x
? lift(Mod(x,x^2+1))
%4 = x

Lifts are performed recursively on an object components, but only by one level: once a t_POLMOD is lifted, the
components of the result are not lifted further.
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? lift(x * Mod(1,3) + Mod(2,3))
%4 = x + 2
? lift(x * Mod(y,y^2+1) + Mod(2,3))
%5 = y*x + Mod(2, 3) \\ do you understand this one?
? lift(x * Mod(y,y^2+1) + Mod(2,3), 'x)
%6 = Mod(y, y^2 + 1)*x + Mod(Mod(2, 3), y^2 + 1)
? lift(%, y)
%7 = y*x + Mod(2, 3)

To recursively lift all components not only by one level, but as long as possible, use liftall. To lift only
t_INTMOD s and t_PADIC s components, use liftint. To lift only t_POLMOD s components, use liftpol.
Finally, centerlift allows to lift t_INTMOD s and t_PADIC s using centered residues (lift of smallest absolute
value).

liftall()

Recursively lift all components of 𝑥 from Z/𝑛Z to Z, from Q𝑝 to Q (as truncate), and polmods to polynomials.
t_FFELT are not lifted, nor are List elements: you may convert the latter to vectors first, or use apply(liftall,
L). More generally, components for which such lifts are meaningless (e.g. character strings) are copied verbatim.

? liftall(x * (1 + O(3)) + Mod(2,3))
%1 = x + 2
? liftall(x * Mod(y,y^2+1) + Mod(2,3)*Mod(z,z^2))
%2 = y*x + 2*z

liftint()

Recursively lift all components of 𝑥 from Z/𝑛Z to Z and from Q𝑝 to Q (as truncate). t_FFELT are not lifted,
nor are List elements: you may convert the latter to vectors first, or use apply(liftint,L). More generally,
components for which such lifts are meaningless (e.g. character strings) are copied verbatim.

? liftint(x * (1 + O(3)) + Mod(2,3))
%1 = x + 2
? liftint(x * Mod(y,y^2+1) + Mod(2,3)*Mod(z,z^2))
%2 = Mod(y, y^2 + 1)*x + Mod(Mod(2*z, z^2), y^2 + 1)

liftpol()

Recursively lift all components of 𝑥 which are polmods to polynomials. t_FFELT are not lifted, nor are List
elements: you may convert the latter to vectors first, or use apply(liftpol,L). More generally, components for
which such lifts are meaningless (e.g. character strings) are copied verbatim.

? liftpol(x * (1 + O(3)) + Mod(2,3))
%1 = (1 + O(3))*x + Mod(2, 3)
? liftpol(x * Mod(y,y^2+1) + Mod(2,3)*Mod(z,z^2))
%2 = y*x + Mod(2, 3)*z

limitnum(alpha, precision)
Lagrange-Zagier numerical extrapolation of expr, corresponding to a sequence 𝑢𝑛, either given by a closure n-
> u(n). I.e., assuming that 𝑢𝑛 tends to a finite limit ℓ, try to determine ℓ.

The routine assume that 𝑢𝑛 has an asymptotic expansion in 𝑛−𝛼 :

𝑢𝑛 = ℓ+
∑︁
𝑖>=1

𝑎𝑖𝑛
−𝑖𝛼

for some 𝑎𝑖. It is purely numerical and heuristic, thus may or may not work on your examples. The expression
will be evaluated for 𝑛 = 1, 2, ..., 𝑁 for an 𝑁 = 𝑂(𝐵) at a bit accuracy bounded by 1.612𝐵.
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? limitnum(n -> n*sin(1/n))
%1 = 1.0000000000000000000000000000000000000

? limitnum(n -> (1+1/n)^n) - exp(1)
%2 = 0.E-37

? limitnum(n -> 2^(4*n+1)*(n!)^4 / (2*n)! /(2*n+1)! ) - Pi
%3 = 0.E -37

It is not mandatory to specify 𝛼 when the 𝑢𝑛 have an asymptotic expansion in 𝑛−1. However, if the series in 𝑛−1

is lacunary, specifying 𝛼 allows faster computation:

? \p1000
? limitnum(n->(1+1/n^2)^(n^2)) - exp(1)
time = 1min, 44,681 ms.
%4 = 0.E-1001
? limitnum(n->(1+1/n^2)^(n^2), 2) - exp(1)
time = 27,271 ms.
%5 = 0.E-1001 \\ still perfect, 4 times faster

When 𝑢𝑛 has an asymptotic expansion in 𝑛−𝛼 with 𝛼 not an integer, leaving 𝛼 unspecified will bring an inex-
act limit. Giving a satisfying optional argument improves precision; the program runs faster when the optional
argument gives non lacunary series.

? \p50
? limitnum(n->(1+1/n^(7/2))^(n^(7/2))) - exp(1)
time = 982 ms.
%6 = 4.13[...] E-12
? limitnum(n->(1+1/n^(7/2))^(n^(7/2)), 1/2) - exp(1)
time = 16,745 ms.
%7 = 0.E-57
? limitnum(n->(1+1/n^(7/2))^(n^(7/2)), 7/2) - exp(1)
time = 105 ms.
%8 = 0.E-57

Alternatively, 𝑢𝑛 may be given by a closure𝑁 : −−− > [𝑢1, ..., 𝑢𝑁 ] which can often be programmed in a more
efficient way, for instance when 𝑢𝑛+1 is a simple function of the preceding terms:

? \p2000
? limitnum(n -> 2^(4*n+1)*(n!)^4 / (2*n)! /(2*n+1)! ) - Pi
time = 1,755 ms.
%9 = 0.E-2003
? vu(N) = \\ exploit hypergeometric property
{ my(v = vector(N)); v[1] = 8./3;\
for (n=2, N, my(q = 4*n^2); v[n] = v[n-1]*q/(q-1));\
return(v);
}
? limitnum(vu) - Pi \\ much faster
time = 106 ms.
%11 = 0.E-2003

All sums and recursions can be handled in the same way. In the above it is essential that 𝑢𝑛 be defined as a
closure because it must be evaluated at a higher precision than the one expected for the limit. Make sure that the
closure does not depend on a global variable which would be computed at a priori fixed accuracy. For instance,
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precomputing v1 = 8.0/3 first and using v1 in vu above would be wrong because the resulting vector of values
will use the accuracy of v1 instead of the ambient accuracy at which limitnum will call it.

Alternatively, and more clumsily, 𝑢𝑛 may be given by a vector of values: it must be long and precise enough for
the extrapolation to make sense. Let 𝐵 be the current realbitprecision, the vector length must be at least
1.102𝐵 and the values computed with bit accuracy 1.612𝐵.

? limitnum(vector(10,n,(1+1/n)^n))
*** ^--------------------
*** limitnum: nonexistent component in limitnum: index < 43
\\ at this accuracy, we must have at least 43 values
? limitnum(vector(43,n,(1+1/n)^n)) - exp(1)
%12 = 0.E-37

? v = vector(43);
? s = 0; for(i=1,#v, s += 1/i; v[i]= s - log(i));
? limitnum(v) - Euler
%15 = -1.57[...] E-16

? v = vector(43);
\\ ~ 128 bit * 1.612
? localbitprec(207);\
s = 0; for(i=1,#v, s += 1/i; v[i]= s - log(i));
? limitnum(v) - Euler
%18 = 0.E-38

Because of the above problems, the preferred format is thus a closure, given either a single value or the vector of
values [𝑢1, ..., 𝑢𝑁 ]. The function distinguishes between the two formats by evaluating the closure at 𝑁 ! = 1 and
1 and checking whether it yields vectors of respective length 𝑁 and 1 or not.

Warning. The expression is evaluated for 𝑛 = 1, 2, ..., 𝑁 for an 𝑁 = 𝑂(𝐵) if the current bit accuracy is 𝐵. If it
is not defined for one of these values, translate or rescale accordingly:

? limitnum(n->log(1-1/n)) \\ can't evaluate at n = 1 !
*** at top-level: limitnum(n->log(1-1/n))
*** ^-----------------------
*** in function limitnum: log(1-1/n)
*** ^----------
*** log: domain error in log: argument = 0
? limitnum(n->-log(1-1/(2*n)))
%19 = -6.11[...] E-58

We conclude with a complicated example. Since the function is heuristic, it is advisable to check whether it
produces the same limit for 𝑢𝑛, 𝑢2𝑛, ...𝑢𝑘𝑚 for a suitable small multiplier 𝑘. The following function implements
the recursion for the Motzkin numbers 𝑀𝑛 which count the number of ways to draw non intersecting chords
between 𝑛 points on a circle:

𝑀𝑛 = 𝑀𝑛−1 +
∑︁

𝑖<𝑛−1

𝑀𝑖𝑀𝑛−2−𝑖 = ((𝑛+ 1)𝑀𝑛−1 + (3𝑛− 3)𝑀𝑛−2)/(𝑛+ 2).

It is known that 𝑀𝑛 (3𝑛+1)/(
√

12𝜋𝑛3).

\\ [M_k, M_{k*2}, ..., M_{k*N}] / (3^n / n^(3/2))
vM(N, k = 1) =
{ my(q = k*N, V);

(continues on next page)
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(continued from previous page)

if (q == 1, return ([1/3]));
V = vector(q); V[1] = V[2] = 1;
for(n = 2, q - 1,
V[n+1] = ((2*n + 1)*V[n] + 3*(n - 1)*V[n-1]) / (n + 2));
f = (n -> 3^n / n^(3/2));
return (vector(N, n, V[n*k] / f(n*k)));
}
? limitnum(vM) - 3/sqrt(12*Pi) \\ complete junk
%1 = 35540390.753542730306762369615276452646
? limitnum(N->vM(N,5)) - 3/sqrt(12*Pi) \\ M_{5n}: better
%2 = 4.130710262178469860 E-25
? limitnum(N->vM(N,10)) - 3/sqrt(12*Pi) \\ M_{10n}: perfect
%3 = 0.E-38
? \p2000
? limitnum(N->vM(N,10)) - 3/sqrt(12*Pi) \\ also at high accuracy
time = 409 ms.
%4 = 1.1048895470044788191 E-2004

In difficult cases such as the above a multiplier of 5 to 10 is usually sufficient. The above example is typical: a
good multiplier usually remains sufficient when the requested precision increases!

lindep(flag)
finds a small nontrivial integral linear combination between components of 𝑣. If none can be found return an
empty vector.

If 𝑣 is a vector with real/complex entries we use a floating point (variable precision) LLL algorithm. If 𝑓𝑙𝑎𝑔 = 0
the accuracy is chosen internally using a crude heuristic. If 𝑓𝑙𝑎𝑔 > 0 the computation is done with an accuracy
of 𝑓𝑙𝑎𝑔 decimal digits. To get meaningful results in the latter case, the parameter 𝑓𝑙𝑎𝑔 should be smaller than
the number of correct decimal digits in the input.

? lindep([sqrt(2), sqrt(3), sqrt(2)+sqrt(3)])
%1 = [-1, -1, 1]~

If 𝑣 is 𝑝-adic, 𝑓𝑙𝑎𝑔 is ignored and the algorithm LLL-reduces a suitable (dual) lattice.

? lindep([1, 2 + 3 + 3^2 + 3^3 + 3^4 + O(3^5)])
%2 = [1, -2]~

If 𝑣 is a matrix (or a vector of column vectors, or a vector of row vectors), 𝑓𝑙𝑎𝑔 is ignored and the function returns
a non trivial kernel vector if one exists, else an empty vector.

? lindep([1,2,3;4,5,6;7,8,9])
%3 = [1, -2, 1]~
? lindep([[1,0], [2,0]])
%4 = [2, -1]~
? lindep([[1,0], [0,1]])
%5 = []~

If 𝑣 contains polynomials or power series over some base field, finds a linear relation with coefficients in the field.

? lindep([x*y, x^2 + y, x^2*y + x*y^2, 1])
%4 = [y, y, -1, -y^2]~

For better control, it is preferable to use t_POL rather than t_SER in the input, otherwise one gets a linear com-
bination which is 𝑡-adically small, but not necessarily 0. Indeed, power series are first converted to the minimal
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absolute accuracy occurring among the entries of 𝑣 (which can cause some coefficients to be ignored), then trun-
cated to polynomials:

? v = [t^2+O(t^4), 1+O(t^2)]; L=lindep(v)
%1 = [1, 0]~
? v*L
%2 = t^2+O(t^4) \\ small but not 0

listinsert(n, _arg2)
Inserts the object 𝑥 at position 𝑛 in 𝐿 (which must be of type t_LIST). This has complexity 𝑂(#𝐿− 𝑛+ 1): all
the remaining elements of list (from position 𝑛 + 1 onwards) are shifted to the right. If 𝑛 is greater than the list
length, appends 𝑥.

? L = List([1,2,3]);
? listput(~L, 4); L \\ listput inserts at end
%4 = List([1, 2, 3, 4])
? listinsert(~L, 5, 1); L \\insert at position 1
%5 = List([5, 1, 2, 3, 4])
? listinsert(~L, 6, 1000); L \\ trying to insert beyond position #L
%6 = List([5, 1, 2, 3, 4, 6]) \\ ... inserts at the end

Note the ~ L: this means that the function is called with a reference to L and changes L in place.

listkill()

Obsolete, retained for backward compatibility. Just use L = List() instead of listkill(L). In most cases,
you won’t even need that, e.g. local variables are automatically cleared when a user function returns.

listpop(_arg1)
Removes the 𝑛-th element of the list list (which must be of type t_LIST). If 𝑛 is omitted, or greater than the list
current length, removes the last element. If the list is already empty, do nothing. This runs in time𝑂(#𝐿−𝑛+1).

? L = List([1,2,3,4]);
? listpop(~L); L \\ remove last entry
%2 = List([1, 2, 3])
? listpop(~L, 1); L \\ remove first entry
%3 = List([2, 3])

Note the ~ L: this means that the function is called with a reference to L and changes L in place.

listput(n, _arg2)
Sets the 𝑛-th element of the list list (which must be of type t_LIST) equal to 𝑥. If 𝑛 is omitted, or greater than
the list length, appends 𝑥. The function returns the inserted element.

? L = List();
? listput(~L, 1)
%2 = 1
? listput(~L, 2)
%3 = 2
? L
%4 = List([1, 2])

Note the ~ L: this means that the function is called with a reference to L and changes L in place.

You may put an element into an occupied cell (not changing the list length), but it is easier to use the standard
list[n] = x construct.
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? listput(~L, 3, 1) \\ insert at position 1
%5 = 3
? L
%6 = List([3, 2])
? L[2] = 4 \\ simpler
%7 = List([3, 4])
? L[10] = 1 \\ can't insert beyond the end of the list
*** at top-level: L[10]=1
*** ^------
*** nonexistent component: index > 2
? listput(L, 1, 10) \\ but listput can
%8 = 1
? L
%9 = List([3, 2, 1])

This function runs in time 𝑂(#𝐿) in the worst case (when the list must be reallocated), but in time 𝑂(1) on
average: any number of successive listput s run in time 𝑂(#𝐿), where #𝐿 denotes the list final length.

listsort(_arg1)
Sorts the t_LIST list in place, with respect to the (somewhat arbitrary) universal comparison function cmp. In
particular, the ordering is the same as for sets and setsearch can be used on a sorted list. No value is returned.
If 𝑓𝑙𝑎𝑔 is nonzero, suppresses all repeated coefficients.

? L = List([1,2,4,1,3,-1]); listsort(~L); L
%1 = List([-1, 1, 1, 2, 3, 4])
? setsearch(L, 4)
%2 = 6
? setsearch(L, -2)
%3 = 0
? listsort(~L, 1); L \\ remove duplicates
%4 = List([-1, 1, 2, 3, 4])

Note the ~ L: this means that the function is called with a reference to L and changes L in place: this is faster than
the vecsort command since the list is sorted in place and we avoid unnecessary copies.

? v = vector(100,i,random); L = List(v);
? for(i=1,10^4, vecsort(v))
time = 162 ms.
? for(i=1,10^4, vecsort(L))
time = 162 ms.
? for(i=1,10^4, listsort(~L))
time = 63 ms.

lngamma(precision)
Principal branch of the logarithm of the gamma function of 𝑥. This function is analytic on the complex plane
with nonpositive integers removed, and can have much larger arguments than gamma itself.

For 𝑥 a power series such that 𝑥(0) is not a pole of gamma, compute the Taylor expansion. (PARI only knows
about regular power series and can’t include logarithmic terms.)

? lngamma(1+x+O(x^2))
%1 = -0.57721566490153286060651209008240243104*x + O(x^2)
? lngamma(x+O(x^2))
*** at top-level: lngamma(x+O(x^2))

(continues on next page)
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*** ^-----------------
*** lngamma: domain error in lngamma: valuation != 0
? lngamma(-1+x+O(x^2))
*** lngamma: Warning: normalizing a series with 0 leading term.
*** at top-level: lngamma(-1+x+O(x^2))
*** ^--------------------
*** lngamma: domain error in intformal: residue(series, pole) != 0

localbitprec()

Set the real precision to 𝑝 bits in the dynamic scope. All computations are performed as if realbitprecision
was 𝑝: transcendental constants (e.g. Pi) and conversions from exact to floating point inexact data use 𝑝 bits,
as well as iterative routines implicitly using a floating point accuracy as a termination criterion (e.g. solve or
intnum). But realbitprecision itself is unaffected and is “unmasked” when we exit the dynamic (not lexical)
scope. In effect, this is similar to

my(bit = default(realbitprecision));
default(realbitprecision,p);
...
default(realbitprecision, bit);

but is both less cumbersome, cleaner (no need to manipulate a global variable, which in fact never changes and
is only temporarily masked) and more robust: if the above computation is interrupted or an exception occurs,
realbitprecision will not be restored as intended.

Such localbitprec statements can be nested, the innermost one taking precedence as expected. Beware that
localbitprec follows the semantic of local, not my: a subroutine called from localbitprec scope uses the
local accuracy:

? f()=bitprecision(1.0);
? f()
%2 = 128
? localbitprec(1000); f()
%3 = 1024

Note that the bit precision of data (1.0 in the above example) increases by steps of 64 (32 on a 32-bit machine)
so we get 1024 instead of the expected 1000; localbitprec bounds the relative error exactly as specified in
functions that support that granularity (e.g. lfun), and rounded to the next multiple of 64 (resp. 32) everywhere
else.

Warning. Changing realbitprecision or realprecision in programs is deprecated in favor of
localbitprec and localprec. Think about the realprecision and realbitprecision defaults as inter-
active commands for the gp interpreter, best left out of GP programs. Indeed, the above rules imply that mixing
both constructs yields surprising results:

? \p38
? localprec(19); default(realprecision,1000); Pi
%1 = 3.141592653589793239
? \p
realprecision = 1001 significant digits (1000 digits displayed)

Indeed, realprecision itself is ignored within localprec scope, so Pi is computed to a low accuracy. And
when we leave the localprec scope, realprecision only regains precedence, it is not “restored” to the original
value.
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localprec()

Set the real precision to 𝑝 in the dynamic scope and return 𝑝. All computations are performed as if
realprecision was 𝑝: transcendental constants (e.g. Pi) and conversions from exact to floating point inexact
data use 𝑝 decimal digits, as well as iterative routines implicitly using a floating point accuracy as a termination
criterion (e.g. solve or intnum). But realprecision itself is unaffected and is “unmasked” when we exit the
dynamic (not lexical) scope. In effect, this is similar to

my(prec = default(realprecision));
default(realprecision,p);
...
default(realprecision, prec);

but is both less cumbersome, cleaner (no need to manipulate a global variable, which in fact never changes and
is only temporarily masked) and more robust: if the above computation is interrupted or an exception occurs,
realprecision will not be restored as intended.

Such localprec statements can be nested, the innermost one taking precedence as expected. Beware that
localprec follows the semantic of local, not my: a subroutine called from localprec scope uses the local
accuracy:

? f()=precision(1.);
? f()
%2 = 38
? localprec(19); f()
%3 = 19

Warning. Changing realprecision itself in programs is now deprecated in favor of localprec. Think about
the realprecision default as an interactive command for the gp interpreter, best left out of GP programs.
Indeed, the above rules imply that mixing both constructs yields surprising results:

? \p38
? localprec(19); default(realprecision,100); Pi
%1 = 3.141592653589793239
? \p
realprecision = 115 significant digits (100 digits displayed)

Indeed, realprecision itself is ignored within localprec scope, so Pi is computed to a low accuracy. And
when we leave localprec scope, realprecision only regains precedence, it is not “restored” to the original
value.

log(precision)
Principal branch of the natural logarithm of 𝑥 ∈ C*, i.e. such that ℑ(log(𝑥)) ∈]−𝜋, 𝜋]. The branch cut lies along
the negative real axis, continuous with quadrant 2, i.e. such that lim𝑏→0+ log(𝑎 + 𝑏𝑖) = log 𝑎 for 𝑎 ∈ R*. The
result is complex (with imaginary part equal to 𝜋) if 𝑥 ∈ R and 𝑥 < 0. In general, the algorithm uses the formula

log(𝑥) (𝜋)/(2𝑎𝑔𝑚(1, 4/𝑠)) −𝑚 log 2,

if 𝑠 = 𝑥2𝑚 is large enough. (The result is exact to 𝐵 bits provided 𝑠 > 2𝐵/2.) At low accuracies, the series
expansion near 1 is used.

𝑝-adic arguments are also accepted for 𝑥, with the convention that log(𝑝) = 0. Hence in particular exp(log(𝑥))/𝑥
is not in general equal to 1 but to a (𝑝− 1)-th root of unity (or 1 if 𝑝 = 2) times a power of 𝑝.

log1p(precision)
Return log(1 +𝑥), computed in a way that is also accurate when the real part of 𝑥 is near 0. This is the reciprocal
function of expm1(𝑥) = exp(𝑥) − 1.
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? default(realprecision, 10000); x = Pi*1e-100;
? (expm1(log1p(x)) - x) / x
%2 = -7.668242895059371866 E-10019
? (log1p(expm1(x)) - x) / x
%3 = -7.668242895059371866 E-10019

When 𝑥 is small, this function is both faster and more accurate than log(1 + 𝑥):

? \p38
? x = 1e-20;
? localprec(100); c = log1p(x); \\ reference point
? a = log1p(x); abs((a - c)/c)
%6 = 0.E-38
? b = log(1+x); abs((b - c)/c) \\ slightly less accurate
%7 = 1.5930919111324522770 E-38
? for (i=1,10^5,log1p(x))
time = 81 ms.
? for (i=1,10^5,log(1+x))
time = 100 ms. \\ slower, too

logint(b, z)
Return the largest integer 𝑒 so that 𝑏𝑒 <= 𝑥, where the parameters 𝑏 > 1 and 𝑥 > 0 are both integers. If the
parameter 𝑧 is present, set it to 𝑏𝑒.

? logint(1000, 2)
%1 = 9
? 2^9
%2 = 512
? logint(1000, 2, &z)
%3 = 9
? z
%4 = 512

The number of digits used to write 𝑏 in base 𝑥 is 1 + logint(x,b):

? #digits(1000!, 10)
%5 = 2568
? logint(1000!, 10)
%6 = 2567

This function may conveniently replace

floor( log(x) / log(b) )

which may not give the correct answer since PARI does not guarantee exact rounding.

mapdelete(_arg1)
Removes 𝑥 from the domain of the map 𝑀 .

? M = Map(["a",1; "b",3; "c",7]);
? mapdelete(M,"b");
? Mat(M)
["a" 1]

(continues on next page)
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["c" 7]

mapget(x)
Returns the image of 𝑥 by the map 𝑀 .

? M=Map(["a",23;"b",43]);
? mapget(M,"a")
%2 = 23
? mapget(M,"b")
%3 = 43

Raises an exception when the key 𝑥 is not present in 𝑀 .

? mapget(M,"c")
*** at top-level: mapget(M,"c")
*** ^-------------
*** mapget: nonexistent component in mapget: index not in map

mapisdefined(x, z)
Returns true (1) if x has an image by the map 𝑀 , false (0) otherwise. If z is present, set z to the image of 𝑥, if it
exists.

? M1 = Map([1, 10; 2, 20]);
? mapisdefined(M1,3)
%1 = 0
? mapisdefined(M1, 1, &z)
%2 = 1
? z
%3 = 10

? M2 = Map(); N = 19;
? for (a=0, N-1, mapput(M2, a^3%N, a));
? {for (a=0, N-1,
if (mapisdefined(M2, a, &b),
printf("%d is the cube of %d mod %d\n",a,b,N)));}
0 is the cube of 0 mod 19
1 is the cube of 11 mod 19
7 is the cube of 9 mod 19
8 is the cube of 14 mod 19
11 is the cube of 17 mod 19
12 is the cube of 15 mod 19
18 is the cube of 18 mod 19

mapput(y, _arg2)
Associates 𝑥 to 𝑦 in the map 𝑀 . The value 𝑦 can be retrieved with mapget.

? M = Map();
? mapput(~M, "foo", 23);
? mapput(~M, 7718, "bill");
? mapget(M, "foo")
%4 = 23

(continues on next page)
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? mapget(M, 7718)
%5 = "bill"
? Vec(M) \\ keys
%6 = [7718, "foo"]
? Mat(M)
%7 =
[ 7718 "bill"]

["foo" 23]

matadjoint(flag)
adjoint matrix of 𝑀 , i.e. a matrix 𝑁 of cofactors of 𝑀 , satisfying 𝑀 * 𝑁 = det(𝑀) * Id. 𝑀 must be a (not
necessarily invertible) square matrix of dimension 𝑛. If 𝑓𝑙𝑎𝑔 is 0 or omitted, we try to use Leverrier-Faddeev’s
algorithm, which assumes that 𝑛! invertible. If it fails or 𝑓𝑙𝑎𝑔 = 1, compute 𝑇 = 𝑐ℎ𝑎𝑟𝑝𝑜𝑙𝑦(𝑀) independently
first and return (−1)𝑛−1(𝑇 (𝑥) − 𝑇 (0))/𝑥 evaluated at 𝑀 .

? a = [1,2,3;3,4,5;6,7,8] * Mod(1,4);
? matadjoint(a)
%2 =
[Mod(1, 4) Mod(1, 4) Mod(2, 4)]

[Mod(2, 4) Mod(2, 4) Mod(0, 4)]

[Mod(1, 4) Mod(1, 4) Mod(2, 4)]

Both algorithms use 𝑂(𝑛4) operations in the base ring. Over a field, they are usually slower than computing the
characteristic polynomial or the inverse of 𝑀 directly.

matalgtobasis(x)
This function is deprecated, use apply.

𝑛𝑓 being a number field in nfinit format, and 𝑥 a (row or column) vector or matrix, apply nfalgtobasis to
each entry of 𝑥.

matbasistoalg(x)
This function is deprecated, use apply.

𝑛𝑓 being a number field in nfinit format, and 𝑥 a (row or column) vector or matrix, apply nfbasistoalg to
each entry of 𝑥.

matcompanion()

The left companion matrix to the nonzero polynomial 𝑥.

matconcat()

Returns a t_MAT built from the entries of 𝑣, which may be a t_VEC (concatenate horizontally), a t_COL (con-
catenate vertically), or a t_MAT (concatenate vertically each column, and concatenate vertically the resulting
matrices). The entries of 𝑣 are always considered as matrices: they can themselves be t_VEC (seen as a row
matrix), a t_COL seen as a column matrix), a t_MAT, or a scalar (seen as an 1𝑥1 matrix).

? A=[1,2;3,4]; B=[5,6]~; C=[7,8]; D=9;
? matconcat([A, B]) \\ horizontal
%1 =
[1 2 5]

(continues on next page)
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[3 4 6]
? matconcat([A, C]~) \\ vertical
%2 =
[1 2]

[3 4]

[7 8]
? matconcat([A, B; C, D]) \\ block matrix
%3 =
[1 2 5]

[3 4 6]

[7 8 9]

If the dimensions of the entries to concatenate do not match up, the above rules are extended as follows:

• each entry 𝑣𝑖,𝑗 of 𝑣 has a natural length and height: 1𝑥1 for a scalar, 1𝑥𝑛 for a t_VEC of length 𝑛, 𝑛𝑥1 for a
t_COL, 𝑚𝑥𝑛 for an 𝑚𝑥𝑛 t_MAT

• let 𝐻𝑖 be the maximum over 𝑗 of the lengths of the 𝑣𝑖,𝑗 , let 𝐿𝑗 be the maximum over 𝑖 of the heights of the
𝑣𝑖,𝑗 . The dimensions of the (𝑖, 𝑗)-th block in the concatenated matrix are 𝐻𝑖𝑥𝐿𝑗 .

• a scalar 𝑠 = 𝑣𝑖,𝑗 is considered as 𝑠 times an identity matrix of the block dimension min(𝐻𝑖, 𝐿𝑗)

• blocks are extended by 0 columns on the right and 0 rows at the bottom, as needed.

? matconcat([1, [2,3]~, [4,5,6]~]) \\ horizontal
%4 =
[1 2 4]

[0 3 5]

[0 0 6]
? matconcat([1, [2,3], [4,5,6]]~) \\ vertical
%5 =
[1 0 0]

[2 3 0]

[4 5 6]
? matconcat([B, C; A, D]) \\ block matrix
%6 =
[5 0 7 8]

[6 0 0 0]

[1 2 9 0]

[3 4 0 9]
? U=[1,2;3,4]; V=[1,2,3;4,5,6;7,8,9];
? matconcat(matdiagonal([U, V])) \\ block diagonal
%7 =

(continues on next page)
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[1 2 0 0 0]

[3 4 0 0 0]

[0 0 1 2 3]

[0 0 4 5 6]

[0 0 7 8 9]

matdet(flag)
Determinant of the square matrix 𝑥.

If 𝑓𝑙𝑎𝑔 = 0, uses an appropriate algorithm depending on the coefficients:

• integer entries: modular method due to Dixon, Pernet and Stein.

• real or 𝑝-adic entries: classical Gaussian elimination using maximal pivot.

• intmod entries: classical Gaussian elimination using first nonzero pivot.

• other cases: Gauss-Bareiss.

If 𝑓𝑙𝑎𝑔 = 1, uses classical Gaussian elimination with appropriate pivoting strategy (maximal pivot for real or
𝑝-adic coefficients). This is usually worse than the default.

matdetint()

Let 𝐵 be an 𝑚𝑥𝑛 matrix with integer coefficients. The determinant 𝐷 of the lattice generated by the columns of
𝐵 is the square root of det(𝐵𝑇𝐵) if 𝐵 has maximal rank 𝑚, and 0 otherwise.

This function uses the Gauss-Bareiss algorithm to compute a positive multiple of 𝐷. When 𝐵 is square, the
function actually returns 𝐷 = ‖ det𝐵‖.

This function is useful in conjunction with mathnfmod, which needs to know such a multiple. If the rank is
maximal but the matrix is nonsquare, you can obtain 𝐷 exactly using

matdet( mathnfmod(B, matdetint(B)) )

Note that as soon as one of the dimensions gets large (𝑚 or 𝑛 is larger than 20, say), it will often be much faster
to use mathnf(B, 1) or mathnf(B, 4) directly.

matdetmod(d)
Given a matrix 𝑥 with t_INT entries and 𝑑 an arbitrary positive integer, return the determinant of 𝑥 modulo 𝑑.

? A = [4,2,3; 4,5,6; 7,8,9]

? matdetmod(A,27)
%2 = 9

Note that using the generic function matdet on a matrix with t_INTMOD entries uses Gaussian reduction and will
fail in general when the modulus is not prime.

? matdet(A * Mod(1,27))
*** at top-level: matdet(A*Mod(1,27))
*** ^------------------
*** matdet: impossible inverse in Fl_inv: Mod(3, 27).
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matdiagonal()

𝑥 being a vector, creates the diagonal matrix whose diagonal entries are those of 𝑥.

? matdiagonal([1,2,3]);
%1 =
[1 0 0]

[0 2 0]

[0 0 3]

Block diagonal matrices are easily created using matconcat:

? U=[1,2;3,4]; V=[1,2,3;4,5,6;7,8,9];
? matconcat(matdiagonal([U, V]))
%1 =
[1 2 0 0 0]

[3 4 0 0 0]

[0 0 1 2 3]

[0 0 4 5 6]

[0 0 7 8 9]

mateigen(flag, precision)
Returns the (complex) eigenvectors of 𝑥 as columns of a matrix. If 𝑓𝑙𝑎𝑔 = 1, return [𝐿,𝐻], where 𝐿 contains the
eigenvalues and𝐻 the corresponding eigenvectors; multiple eigenvalues are repeated according to the eigenspace
dimension (which may be less than the eigenvalue multiplicity in the characteristic polynomial).

This function first computes the characteristic polynomial of 𝑥 and approximates its complex roots (𝜆𝑖), then tries
to compute the eigenspaces as kernels of the 𝑥−𝜆𝑖. This algorithm is ill-conditioned and is likely to miss kernel
vectors if some roots of the characteristic polynomial are close, in particular if it has multiple roots.

? A = [13,2; 10,14]; mateigen(A)
%1 =
[-1/2 2/5]

[ 1 1]
? [L,H] = mateigen(A, 1);
? L
%3 = [9, 18]
? H
%4 =
[-1/2 2/5]

[ 1 1]
? A * H == H * matdiagonal(L)
%5 = 1

For symmetric matrices, use qfjacobi instead; for Hermitian matrices, compute
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A = real(x);
B = imag(x);
y = matconcat([A, -B; B, A]);

and apply qfjacobi to 𝑦.

matfrobenius(flag, v)
Returns the Frobenius form of the square matrix M. If 𝑓𝑙𝑎𝑔 = 1, returns only the elementary divisors as a vector
of polynomials in the variable v. If 𝑓𝑙𝑎𝑔 = 2, returns a two-components vector [F,B] where F is the Frobenius
form and B is the basis change so that 𝑀 = 𝐵−1𝐹𝐵.

mathess()

Returns a matrix similar to the square matrix 𝑥, which is in upper Hessenberg form (zero entries below the first
subdiagonal).

mathnf(flag)
Let 𝑅 be a Euclidean ring, equal to Z or to 𝐾[𝑋] for some field 𝐾. If 𝑀 is a (not necessarily square) matrix
with entries in 𝑅, this routine finds the upper triangular Hermite normal form of 𝑀 . If the rank of 𝑀 is equal
to its number of rows, this is a square matrix. In general, the columns of the result form a basis of the 𝑅-module
spanned by the columns of 𝑀 .

The values of 𝑓𝑙𝑎𝑔 are:

• 0 (default): only return the Hermite normal form 𝐻

• 1 (complete output): return [𝐻,𝑈 ], where 𝐻 is the Hermite normal form of 𝑀 , and 𝑈 is a transformation
matrix such that 𝑀𝑈 = [0‖𝐻]. The matrix 𝑈 belongs to 𝐺𝐿(𝑅). When 𝑀 has a large kernel, the entries
of 𝑈 are in general huge.

For these two values, we use a naive algorithm, which behaves well in small dimension only. Larger values
correspond to different algorithms, are restricted to integer matrices, and all output the unimodular matrix 𝑈 .
From now on all matrices have integral entries.

• 𝑓𝑙𝑎𝑔 = 4, returns [𝐻,𝑈 ] as in “complete output” above, using a variant of LLL reduction along the way.
The matrix 𝑈 is provably small in the 𝐿2 sense, and often close to optimal; but the reduction is in general
slow, although provably polynomial-time.

If 𝑓𝑙𝑎𝑔 = 5, uses Batut’s algorithm and output [𝐻,𝑈, 𝑃 ], such that𝐻 and 𝑈 are as before and 𝑃 is a permutation
of the rows such that 𝑃 applied to 𝑀𝑈 gives 𝐻 . This is in general faster than 𝑓𝑙𝑎𝑔 = 4 but the matrix 𝑈 is
usually worse; it is heuristically smaller than with the default algorithm.

When the matrix is dense and the dimension is large (bigger than 100, say), 𝑓𝑙𝑎𝑔 = 4 will be fastest. When 𝑀
has maximal rank, then

H = mathnfmod(M, matdetint(M))

will be even faster. You can then recover 𝑈 as 𝑀−1𝐻 .

? M = matrix(3,4,i,j,random([-5,5]))
%1 =
[ 0 2 3 0]

[-5 3 -5 -5]

[ 4 3 -5 4]

? [H,U] = mathnf(M, 1);
(continues on next page)
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? U
%3 =
[-1 0 -1 0]

[ 0 5 3 2]

[ 0 3 1 1]

[ 1 0 0 0]

? H
%5 =
[19 9 7]

[ 0 9 1]

[ 0 0 1]

? M*U
%6 =
[0 19 9 7]

[0 0 9 1]

[0 0 0 1]

For convenience, 𝑀 is allowed to be a t_VEC, which is then automatically converted to a t_MAT, as per the Mat
function. For instance to solve the generalized extended gcd problem, one may use

? v = [116085838, 181081878, 314252913,10346840];
? [H,U] = mathnf(v, 1);
? U
%2 =
[ 103 -603 15 -88]

[-146 13 -1208 352]

[ 58 220 678 -167]

[-362 -144 381 -101]
? v*U
%3 = [0, 0, 0, 1]

This also allows to input a matrix as a t_VEC of t_COL s of the same length (which Mat would concatenate to the
t_MAT having those columns):

? v = [[1,0,4]~, [3,3,4]~, [0,-4,-5]~]; mathnf(v)
%1 =
[47 32 12]

[ 0 1 0]

[ 0 0 1]
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mathnfmod(d)
If 𝑥 is a (not necessarily square) matrix of maximal rank with integer entries, and 𝑑 is a multiple of the (nonzero)
determinant of the lattice spanned by the columns of 𝑥, finds the upper triangular Hermite normal form of 𝑥.

If the rank of 𝑥 is equal to its number of rows, the result is a square matrix. In general, the columns of the result
form a basis of the lattice spanned by the columns of 𝑥. Even when 𝑑 is known, this is in general slower than
mathnf but uses much less memory.

mathnfmodid(d)
Outputs the (upper triangular) Hermite normal form of 𝑥 concatenated with the diagonal matrix with diagonal 𝑑.
Assumes that 𝑥 has integer entries. Variant: if 𝑑 is an integer instead of a vector, concatenate 𝑑 times the identity
matrix.

? m=[0,7;-1,0;-1,-1]
%1 =
[ 0 7]

[-1 0]

[-1 -1]
? mathnfmodid(m, [6,2,2])
%2 =
[2 1 1]

[0 1 0]

[0 0 1]
? mathnfmodid(m, 10)
%3 =
[10 7 3]

[ 0 1 0]

[ 0 0 1]

mathouseholder(v)
applies a sequence 𝑄 of Householder transforms, as returned by matqr(𝑀, 1) to the vector or matrix 𝑣.

? m = [2,1; 3,2]; \\ some random matrix
? [Q,R] = matqr(m);
? Q
%3 =
[-0.554... -0.832...]

[-0.832... 0.554...]

? R
%4 =
[-3.605... -2.218...]

[0 0.277...]

? v = [1, 2]~; \\ some random vector
? Q * v

(continues on next page)
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%6 = [-2.218..., 0.277...]~

? [q,r] = matqr(m, 1);
? exponent(r - R) \\ r is the same as R
%8 = -128
? q \\ but q has a different structure
%9 = [[0.0494..., [5.605..., 3]]]]
? mathouseholder(q, v) \\ applied to v
%10 = [-2.218..., 0.277...]~

The point of the Householder structure is that it efficiently represents the linear operator 𝑣 : − − − > 𝑄𝑣 in a
more stable way than expanding the matrix 𝑄:

? m = mathilbert(20); v = vectorv(20,i,i^2+1);
? [Q,R] = matqr(m);
? [q,r] = matqr(m, 1);
? \p100
? [q2,r2] = matqr(m, 1); \\ recompute at higher accuracy
? exponent(R - r)
%5 = -127
? exponent(R - r2)
%6 = -127
? exponent(mathouseholder(q,v) - mathouseholder(q2,v))
%7 = -119
? exponent(Q*v - mathouseholder(q2,v))
%8 = 9

We see that 𝑅 is OK with or without a flag to matqr but that multiplying by 𝑄 is considerably less precise than
applying the sequence of Householder transforms encoded by 𝑞.

matimage(flag)
Gives a basis for the image of the matrix 𝑥 as columns of a matrix. A priori the matrix can have entries of any
type. If 𝑓𝑙𝑎𝑔 = 0, use standard Gauss pivot. If 𝑓𝑙𝑎𝑔 = 1, use matsupplement (much slower: keep the default
flag!).

matimagecompl()

Gives the vector of the column indices which are not extracted by the function matimage, as a permuta-
tion (t_VECSMALL). Hence the number of components of matimagecompl(x) plus the number of columns of
matimage(x) is equal to the number of columns of the matrix 𝑥.

matimagemod(d, U)

Gives a Howell basis (unique representation for submodules of (Z/𝑑Z)𝑛) for the image of the matrix 𝑥 modulo
𝑑 as columns of a matrix 𝐻 . The matrix 𝑥 must have t_INT entries, and 𝑑 can be an arbitrary positive integer. If
𝑈 is present, set it to a matrix such that 𝐴𝑈 = 𝐻 .

? A = [2,1;0,2];
? matimagemod(A,6,&U)
%2 =
[1 0]

[0 2]

? U
(continues on next page)
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%3 =
[5 1]

[3 4]

? (A*U)%6
%4 =
[1 0]

[0 2]

Caveat. In general the number of columns of the Howell form is not the minimal number of generators of the
submodule. Example:

? matimagemod([1;2],4)
%5 =
[2 1]

[0 2]

Caveat 2. In general the matrix 𝑈 is not invertible, even if 𝐴 and 𝐻 have the same size. Example:

? matimagemod([4,1;0,4],8,&U)
%6 =
[2 1]

[0 4]

? U
%7 =
[0 0]

[2 1]

matindexrank()

𝑀 being a matrix of rank 𝑟, returns a vector with two t_VECSMALL components 𝑦 and 𝑧 of length 𝑟 giving a list
of rows and columns respectively (starting from 1) such that the extracted matrix obtained from these two vectors
using 𝑣𝑒𝑐𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑀,𝑦, 𝑧) is invertible. The vectors 𝑦 and 𝑧 are sorted in increasing order.

matintersect(y)
𝑥 and 𝑦 being two matrices with the same number of rows each of whose columns are independent, finds a basis
of the vector space equal to the intersection of the spaces spanned by the columns of 𝑥 and 𝑦 respectively. The
faster function idealintersect can be used to intersect fractional ideals (projective Z𝐾 modules of rank 1);
the slower but more general function nfhnf can be used to intersect general Z𝐾-modules.

matinverseimage(y)
Given a matrix 𝑥 and a column vector or matrix 𝑦, returns a preimage 𝑧 of 𝑦 by 𝑥 if one exists (i.e such that
𝑥𝑧 = 𝑦), an empty vector or matrix otherwise. The complete inverse image is 𝑧 + 𝐾𝑒𝑟𝑥, where a basis of the
kernel of 𝑥 may be obtained by matker.

? M = [1,2;2,4];
? matinverseimage(M, [1,2]~)
%2 = [1, 0]~

(continues on next page)
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? matinverseimage(M, [3,4]~)
%3 = []~ \\ no solution
? matinverseimage(M, [1,3,6;2,6,12])
%4 =
[1 3 6]

[0 0 0]
? matinverseimage(M, [1,2;3,4])
%5 = [;] \\ no solution
? K = matker(M)
%6 =
[-2]

[1]

matinvmod(d)
Computes a left inverse of the matrix 𝑥modulo 𝑑. The matrix 𝑥must have t_INT entries, and 𝑑 can be an arbitrary
positive integer.

? A = [3,1,2;1,2,1;3,1,1];
? U = matinvmod(A,6)
%2 =
[1 1 3]

[2 3 5]

[1 0 5]

? (U*A)%6
%3 =
[1 0 0]

[0 1 0]

[0 0 1]
? matinvmod(A,5)
*** at top-level: matinvmod(A,5)
*** ^--------------
*** matinvmod: impossible inverse in gen_inv: 0.

matisdiagonal()

Returns true (1) if 𝑥 is a diagonal matrix, false (0) if not.

matker(flag)
Gives a basis for the kernel of the matrix 𝑥 as columns of a matrix. The matrix can have entries of any type,
provided they are compatible with the generic arithmetic operations (+, 𝑥 and /).

If 𝑥 is known to have integral entries, set 𝑓𝑙𝑎𝑔 = 1.

matkerint(flag)
Gives an LLL-reduced Z-basis for the lattice equal to the kernel of the matrix 𝑥 with rational entries. flag is
deprecated, kept for backward compatibility.
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matkermod(d, im)

Gives a Howell basis (unique representation for submodules of (Z/𝑑Z)𝑛, cf. matimagemod) for the kernel of
the matrix 𝑥 modulo 𝑑 as columns of a matrix. The matrix 𝑥 must have t_INT entries, and 𝑑 can be an arbitrary
positive integer. If 𝑖𝑚 is present, set it to a basis of the image of 𝑥 (which is computed on the way).

? A = [1,2,3;5,1,4]
%1 =
[1 2 3]

[5 1 4]

? K = matkermod(A,6)
%2 =
[2 1]

[2 1]

[0 3]

? (A*K)%6
%3 =
[0 0]

[0 0]

matmuldiagonal(d)
Product of the matrix 𝑥 by the diagonal matrix whose diagonal entries are those of the vector 𝑑. Equivalent to,
but much faster than 𝑥 *𝑚𝑎𝑡𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙(𝑑).

matmultodiagonal(y)
Product of the matrices 𝑥 and 𝑦 assuming that the result is a diagonal matrix. Much faster than 𝑥 * 𝑦 in that case.
The result is undefined if 𝑥 * 𝑦 is not diagonal.

matpermanent()

Permanent of the square matrix 𝑥 using Ryser’s formula in Gray code order.

? n = 20; m = matrix(n,n,i,j, i!=j);
? matpermanent(m)
%2 = 895014631192902121
? n! * sum(i=0,n, (-1)^i/i!)
%3 = 895014631192902121

This function runs in time 𝑂(2𝑛𝑛) for a matrix of size 𝑛 and is not implemented for 𝑛 large.

matqr(flag, precision)
Returns [𝑄,𝑅], the QR-decomposition of the square invertible matrix 𝑀 with real entries: 𝑄 is orthogonal and
𝑅 upper triangular. If 𝑓𝑙𝑎𝑔 = 1, the orthogonal matrix is returned as a sequence of Householder transforms:
applying such a sequence is stabler and faster than multiplication by the corresponding𝑄matrix. More precisely,
if

[Q,R] = matqr(M);
[q,r] = matqr(M, 1);

then 𝑟 = 𝑅 and mathouseholder(𝑞,𝑀) is (close to) 𝑅; furthermore
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mathouseholder(q, matid(#M)) == Q~

the inverse of 𝑄. This function raises an error if the precision is too low or 𝑥 is singular.

matrank()

Rank of the matrix 𝑥.

matreduce()

Let𝑚 be a factorization matrix, i.e., a 2-column matrix whose columns contains arbitrary “generators” and integer
“exponents” respectively. Returns the canonical form of 𝑚: the first column is sorted with unique elements and
the second one contains the merged “exponents” (exponents of identical entries in the first column of𝑚 are added,
rows attached to 0 exponents are deleted). The generators are sorted with respect to the universal cmp routine; in
particular, this function is the identity on true integer factorization matrices, but not on other factorizations (in
products of polynomials or maximal ideals, say). It is idempotent.

For convenience, this function also allows a vector𝑚, which is handled as a factorization with all exponents equal
to 1, as in factorback.

? A=[x,2;y,4]; B=[x,-2; y,3; 3, 4]; C=matconcat([A,B]~)
%1 =
[x 2]

[y 4]

[x -2]

[y 3]

[3 4]

? matreduce(C)
%2 =
[3 4]

[y 7]

? matreduce([x,x,y,x,z,x,y]) \\ vector argument
%3 =
[x 4]

[y 2]

[z 1]

matrixqz(p)
𝐴 being an 𝑚𝑥𝑛 matrix in 𝑀𝑚,𝑛(Q), let 𝐼𝑚Q𝐴 (resp. 𝐼𝑚Z𝐴) the Q-vector space (resp. the Z-module) spanned
by the columns of 𝐴. This function has varying behavior depending on the sign of 𝑝:

If 𝑝 >= 0, 𝐴 is assumed to have maximal rank 𝑛 <= 𝑚. The function returns a matrix 𝐵 ∈ 𝑀𝑚,𝑛(Z), with
𝐼𝑚Q𝐵 = 𝐼𝑚Q𝐴, such that the GCD of all its 𝑛𝑥𝑛 minors is coprime to 𝑝; in particular, if 𝑝 = 0 (default), this
GCD is 1.

If 𝑝 = −1, returns a basis of the lattice Z𝑛 ∩ 𝐼𝑚Z𝐴.

If 𝑝 = −2, returns a basis of the lattice Z𝑛 ∩ 𝐼𝑚Q𝐴.

Caveat. (𝑝 = −1 or −2) For efficiency reason, we do not compute the HNF of the resulting basis.
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? minors(x) = vector(#x[,1], i, matdet(x[^i,]));
? A = [3,1/7; 5,3/7; 7,5/7]; minors(A)
%1 = [4/7, 8/7, 4/7] \\ determinants of all 2x2 minors
? B = matrixqz(A)
%2 =
[3 1]

[5 2]

[7 3]
? minors(%)
%3 = [1, 2, 1] \\ B integral with coprime minors
? matrixqz(A,-1)
%4 =
[3 1]

[5 3]

[7 5]

? matrixqz(A,-2)
%5 =
[3 1]

[5 2]

[7 3]

matsize()

𝑥 being a vector or matrix, returns a row vector with two components, the first being the number of rows (1 for a
row vector), the second the number of columns (1 for a column vector).

matsnf(flag)
If 𝑋 is a (singular or nonsingular) matrix outputs the vector of elementary divisors of 𝑋 , i.e. the diagonal of the
Smith normal form of 𝑋 , normalized so that 𝑑𝑛‖𝑑𝑛−1‖...‖𝑑1. 𝑋 must have integer or polynomial entries; in the
latter case, 𝑋 must be a square matrix.

The binary digits of flag mean:

1 (complete output): if set, outputs [𝑈, 𝑉,𝐷], where 𝑈 and 𝑉 are two unimodular matrices such that 𝑈𝑋𝑉 is the
diagonal matrix𝐷. Otherwise output only the diagonal of𝐷. If𝑋 is not a square matrix, then𝐷 will be a square
diagonal matrix padded with zeros on the left or the top.

4 (cleanup): if set, cleans up the output. This means that elementary divisors equal to 1 will be deleted, i.e. outputs
a shortened vector 𝐷′ instead of 𝐷. If complete output was required, returns [𝑈 ′, 𝑉 ′, 𝐷′] so that 𝑈 ′𝑋𝑉 ′ = 𝐷′

holds. If this flag is set,𝑋 is allowed to be of the form vector of elementary divisors’ or :math:`[U,V,D] as would
normally be output with the cleanup flag unset.

matsolve(B)
Let𝑀 be a left-invertible matrix and𝐵 a column vector such that there exists a solution𝑋 to the system of linear
equations 𝑀𝑋 = 𝐵; return the (unique) solution 𝑋 . This has the same effect as, but is faster, than 𝑀−1 * 𝐵.
Uses Dixon 𝑝-adic lifting method if 𝑀 and 𝐵 are integral and Gaussian elimination otherwise. When there is no
solution, the function returns an 𝑋 such that 𝑀𝑋 −𝐵 is nonzero although it has at least #𝑀 zero entries:
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? M = [1,2;3,4;5,6];
? B = [4,6,8]~; X = matsolve(M, B)
%2 = [-2, 3]~
? M*X == B
%3 = 1
? B = [1,2,4]~; X = matsolve(M, [1,2,4]~)
%4 = [0, 1/2]~
? M*X - B
%5 = [0, 0, -1]~

Raises an exception if 𝑀 is not left-invertible, even if there is a solution:

? M = [1,1;1,1]; matsolve(M, [1,1]~)
*** at top-level: matsolve(M,[1,1]~)
*** ^------------------
*** matsolve: impossible inverse in gauss: [1, 1; 1, 1].

The function also works when 𝐵 is a matrix and we return the unique matrix solution 𝑋 provided it exists.

matsolvemod(D, B, flag)
𝑀 being any integral matrix,𝐷 a column vector of nonnegative integer moduli, and𝐵 an integral column vector,
gives an integer solution to the system of congruences

∑︀
𝑖𝑚𝑖,𝑗𝑥𝑗 = 𝑏𝑖(𝑚𝑜𝑑𝑑𝑖) if one exists, otherwise returns

zero. Shorthand notation: 𝐵 (resp. 𝐷) can be given as a single integer, in which case all the 𝑏𝑖 (resp. 𝑑𝑖) above
are taken to be equal to 𝐵 (resp. 𝐷).

? M = [1,2;3,4];
? matsolvemod(M, [3,4]~, [1,2]~)
%2 = [10, 0]~
? matsolvemod(M, 3, 1) \\ M X = [1,1]~ over F_3
%3 = [2, 1]~
? matsolvemod(M, [3,0]~, [1,2]~) \\ x + 2y = 1 (mod 3), 3x + 4y = 2 (in Z)
%4 = [6, -4]~

If 𝑓𝑙𝑎𝑔 = 1, all solutions are returned in the form of a two-component row vector [𝑥, 𝑢], where 𝑥 is an integer
solution to the system of congruences and 𝑢 is a matrix whose columns give a basis of the homogeneous system
(so that all solutions can be obtained by adding 𝑥 to any linear combination of columns of 𝑢). If no solution exists,
returns zero.

matsupplement()

Assuming that the columns of the matrix 𝑥 are linearly independent (if they are not, an error message is issued),
finds a square invertible matrix whose first columns are the columns of 𝑥, i.e. supplement the columns of 𝑥 to a
basis of the whole space.

? matsupplement([1;2])
%1 =
[1 0]

[2 1]

Raises an error if 𝑥 has 0 columns, since (due to a long standing design bug), the dimension of the ambient space
(the number of rows) is unknown in this case:

? matsupplement(matrix(2,0))
*** at top-level: matsupplement(matrix

(continues on next page)
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(continued from previous page)

*** ^--------------------
*** matsupplement: sorry, suppl [empty matrix] is not yet implemented.

mattranspose()

Transpose of 𝑥 (also 𝑥 ). This has an effect only on vectors and matrices.

max(y)
Creates the maximum of 𝑥 and 𝑦 when they can be compared.

mfEH()

𝑘 being in 1/2 + Z>=0, return the mf structure corresponding to the Cohen-Eisenstein series 𝐻𝑘 of weight 𝑘 on
Γ0(4).

? H = mfEH(13/2); mfcoefs(H,4)
%1 = [691/32760, -1/252, 0, 0, -2017/252]

The coefficients of𝐻 are given by the Cohen-Hurwitz function𝐻(𝑘−1/2, 𝑁) and can be obtained for moderately
large values of 𝑁 (the algorithm uses 𝑂(𝑁) time):

? mfcoef(H,10^5+1)
time = 55 ms.
%2 = -12514802881532791504208348
? mfcoef(H,10^7+1)
time = 6,044 ms.
%3 = -1251433416009877455212672599325104476

mfTheta()

The unary theta function corresponding to the primitive Dirichlet character 𝜓. Its level is 4𝐹 (𝜓)2 and its weight
is 1 − 𝜓(−1)/2.

? Ser(mfcoefs(mfTheta(),30))
%1 = 1 + 2*x + 2*x^4 + 2*x^9 + 2*x^16 + 2*x^25 + O(x^31)

? f = mfTheta(8); Ser(mfcoefs(f,30))
%2 = 2*x - 2*x^9 - 2*x^25 + O(x^31)
? mfparams(f)
%3 = [256, 1/2, 8, y, t + 1]

? g = mfTheta(-8); Ser(mfcoefs(g,30))
%4 = 2*x + 6*x^9 - 10*x^25 + O(x^31)
? mfparams(g)
%5 = [256, 3/2, 8, y, t + 1]

? h = mfTheta(Mod(2,5)); mfparams(h)
%6 = [100, 3/2, Mod(7, 20), y, t^2 + 1]

mfatkin(f )
Given a mfatk output by mfatk = mfatkininit(mf,Q) and a modular form 𝑓 belonging to the pace mf, returns
the modular form 𝑔 = 𝐶𝑥𝑓‖𝑊𝑄, where 𝐶 = 𝑚𝑓𝑎𝑡𝑘[3] is a normalizing constant such that 𝑔 has the same field
of coefficients as 𝑓 ; mfatk[3] gives the constant 𝐶, and mfatk[1] gives the modular form space to which 𝑔
belongs (or is set to 0 if it is mf).
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? mf = mfinit([35,2],0); [f] = mfbasis(mf);
? mfcoefs(f, 4)
%2 = [0, 3, -1, 0, 3]
? mfatk = mfatkininit(mf,7);
? g = mfatkin(mfatk, f); mfcoefs(g, 4)
%4 = [0, 1, -1, -2, 7]
? mfatk = mfatkininit(mf,35);
? g = mfatkin(mfatk, f); mfcoefs(g, 4)
%6 = [0, -3, 1, 0, -3]

mfatkineigenvalues(Q, precision)
Given a modular form space mf of integral weight 𝑘 and a primitive divisor 𝑄 of the level 𝑁 of mf, outputs the
Atkin-Lehner eigenvalues of 𝑤𝑄 on the new space, grouped by orbit. If the Nebentypus 𝜒 of mf is a (trivial or)
quadratic character defined modulo 𝑁/𝑄, the result is rounded and the eigenvalues are 𝑖𝑘.

? mf = mfinit([35,2],0); mffields(mf)
%1 = [y, y^2 - y - 4] \\ two orbits, dimension 1 and 2
? mfatkineigenvalues(mf,5)
%2 = [[1], [-1, -1]]
? mf = mfinit([12,7,Mod(3,4)],0);
? mfatkineigenvalues(mf,3)
%4 = [[I, -I, -I, I, I, -I]] \\ one orbit

To obtain the eigenvalues on a larger space than the new space, e.g., the full space, you can directly call [mfB,
M,C] = mfatkininit and compute the eigenvalues as the roots of the characteristic polynomial of 𝑀/𝐶, by
dividing the roots of charpoly(M) by 𝐶. Note that the characteristic polynomial is computed exactly since 𝑀
has coefficients in Q(𝜒), whereas 𝐶 may be given by a complex number. If the coefficients of the characteristic
polynomial are polmods modulo 𝑇 they must be embedded to C first using subst(lift(), t, exp(2*I*Pi/
n)), when 𝑇 is poliscyclo(n); note that 𝑇 = 𝑚𝑓.𝑚𝑜𝑑.

mfatkininit(Q, precision)
Given a modular form space with parameters 𝑁, 𝑘, 𝜒 and a primitive divisor 𝑄 of the level 𝑁 , initializes data
necessary for working with the Atkin-Lehner operator 𝑊𝑄, for now only the function mfatkin. We write
𝜒 𝜒𝑄𝜒𝑁/𝑄 where the two characters are primitive with (coprime) conductors dividing 𝑄 and 𝑁/𝑄 respectively.
For 𝐹 ∈𝑀𝑘(Γ0(𝑁), 𝜒), the form 𝐹‖𝑊𝑄 still has level 𝑁 and weight 𝑘 but its Nebentypus may no longer be 𝜒:
it becomes 𝜒𝑄𝜒𝑁/𝑄) if 𝑘 is integral and 𝜒𝑄𝜒𝑁/𝑄)(4𝑄/.) if not.

The result is a technical 4-component vector [mfB, MC, C, mf], where

• mfB encodes the modular form space to which 𝐹‖𝑊𝑄 belongs when 𝐹 ∈ 𝑀𝑘(Γ0(𝑁), 𝜒): an mfinit
corresponding to a new Nebentypus or the integer 0 when the character does not change. This does not
depend on 𝐹 .

• MC is the matrix of 𝑊𝑄 on the bases of mf and mfB multiplied by a normalizing constant 𝐶(𝑘, 𝜒,𝑄). This
matrix has polmod coefficients in Q(𝜒).

• C is the complex constant 𝐶(𝑘, 𝜒,𝑄). For 𝑘 integral, let 𝐴(𝑘, 𝜒,𝑄) = 𝑄𝜀/𝑔(𝜒𝑄), where 𝜀 = 0 for 𝑘
even and 1/2 for 𝑘 odd and where 𝑔(𝜒𝑄) is the Gauss sum attached to 𝜒𝑄). (A similar, more complicated,
definition holds in half-integral weight depending on the parity of 𝑘 − 1/2.) Then if 𝑀 denotes the matrix
of𝑊𝑄 on the bases of mf and mfB, 𝐴.𝑀 has coefficients in Q(𝜒). If 𝐴 is rational, we let 𝐶 = 1 and 𝐶 = 𝐴
as a floating point complex number otherwise, and finally 𝑀𝐶 := 𝑀.𝐶.

? mf=mfinit([32,4],0); [mfB,MC,C]=mfatkininit(mf,32); MC
%1 =
[5/16 11/2 55/8]

(continues on next page)
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[ 1/8 0 -5/4]

[1/32 -1/4 11/16]

? C
%2 = 1
? mf=mfinit([32,4,8],0); [mfB,MC,C]=mfatkininit(mf,32); MC
%3 =
[ 1/8 -7/4]

[-1/16 -1/8]
? C
%4 = 0.35355339059327376220042218105242451964
? algdep(C,2) \\ C = 1/sqrt(8)
%5 = 8*x^2 - 1

mfbasis(space)
If 𝑁𝐾 = [𝑁, 𝑘,𝐶𝐻𝐼] as in mfinit, gives a basis of the corresponding subspace of 𝑀𝑘(Γ0(𝑁), 𝜒). 𝑁𝐾 can
also be the output of mfinit, in which case space can be omitted. To obtain the eigenforms, use mfeigenbasis.

If space is a full space 𝑀𝑘, the output is the union of first, a basis of the space of Eisenstein series, and second,
a basis of the cuspidal space.

? see(L) = apply(f->mfcoefs(f,3), L);
? mf = mfinit([35,2],0);
? see( mfbasis(mf) )
%2 = [[0, 3, -1, 0], [0, -1, 9, -8], [0, 0, -8, 10]]
? see( mfeigenbasis(mf) )
%3 = [[0, 1, 0, 1], [Mod(0, z^2 - z - 4), Mod(1, z^2 - z - 4), \
Mod(-z, z^2 - z - 4), Mod(z - 1, z^2 - z - 4)]]
? mf = mfinit([35,2]);
? see( mfbasis(mf) )
%5 = [[1/6, 1, 3, 4], [1/4, 1, 3, 4], [17/12, 1, 3, 4], \
[0, 3, -1, 0], [0, -1, 9, -8], [0, 0, -8, 10]]
? see( mfbasis([48,4],0) )
%6 = [[0, 3, 0, -3], [0, -3, 0, 27], [0, 2, 0, 30]]

mfbd(d)
𝐹 being a generalized modular form, return 𝐵(𝑑)(𝐹 ), where 𝐵(𝑑) is the expanding operator 𝜏 : −−− > 𝑑𝜏 .

? D2=mfbd(mfDelta(),2); mfcoefs(D2, 6)
%1 = [0, 0, 1, 0, -24, 0, 252]

mfbracket(G, m)

Compute the 𝑚-th Rankin-Cohen bracket of the generalized modular forms 𝐹 and 𝐺.

? E4 = mfEk(4); E6 = mfEk(6);
? D1 = mfbracket(E4,E4,2); mfcoefs(D1,5)/4800
%2 = [0, 1, -24, 252, -1472, 4830]
? D2 = mfbracket(E4,E6,1); mfcoefs(D2,10)/(-3456)
%3 = [0, 1, -24, 252, -1472, 4830]
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mfcoef(n)
Compute the 𝑛-th Fourier coefficient 𝑎(𝑛) of the generalized modular form 𝐹 . Note that this is the 𝑛 + 1-st
component of the vector mfcoefs(F,n) as well as the second component of mfcoefs(F,1,n).

? mfcoef(mfDelta(),10)
%1 = -115920

mfcoefs(n, d)
Compute the vector of Fourier coefficients [𝑎[0], 𝑎[𝑑], ..., 𝑎[𝑛𝑑]] of the generalized modular form 𝐹 ; 𝑑 must be
positive and 𝑑 = 1 by default.

? D = mfDelta();
? mfcoefs(D,10)
%2 = [0, 1, -24, 252, -1472, 4830, -6048, -16744, 84480, -113643, -115920]
? mfcoefs(D,5,2)
%3 = [0, -24, -1472, -6048, 84480, -115920]
? mfcoef(D,10)
%4 = -115920

This function also applies when 𝐹 is a modular form space as output by mfinit; it then returns the matrix whose
columns give the Fourier expansions of the elements of mfbasis(𝐹 ):

? mf = mfinit([1,12]);
? mfcoefs(mf,5)
%2 =
[691/65520 0]

[ 1 1]

[ 2049 -24]

[ 177148 252]

[ 4196353 -1472]

[ 48828126 4830]

mfconductor(F)
mf being output by mfinit for the cuspidal space and 𝐹 a modular form, gives the smallest level at which 𝐹
is defined. In particular, if 𝐹 is cuspidal and we write 𝐹 =

∑︀
𝑗 𝐵(𝑑𝑗)𝑓𝑗 for new forms 𝑓𝑗 of level 𝑁𝑗 (see

mftonew), then its conductor is the least common multiple of the 𝑑𝑗𝑁𝑗 .

? mf=mfinit([96,6],1); vF = mfbasis(mf); mfdim(mf)
%1 = 72
? vector(10,i, mfconductor(mf, vF[i]))
%2 = [3, 6, 12, 24, 48, 96, 4, 8, 12, 16]

mfcosets()

Let 𝑁 be a positive integer. Return the list of right cosets of Γ0(𝑁)
𝐺𝑎𝑚𝑚𝑎, i.e., matrices 𝛾𝑗 ∈ Γ such that Γ =

⨆︀
𝑗 Γ0(𝑁)𝛾𝑗 . The 𝛾𝑗 are chosen in the form [𝑎, 𝑏; 𝑐, 𝑑] with 𝑐‖𝑁 .

? mfcosets(4)
%1 = [[0, -1; 1, 0], [1, 0; 1, 1], [0, -1; 1, 2], [0, -1; 1, 3],\
[1, 0; 2, 1], [1, 0; 4, 1]]
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We also allow the argument 𝑁 to be a modular form space, in which case it is replaced by the level of the space:

? M = mfinit([4, 12, 1], 0); mfcosets(M)
%2 = [[0, -1; 1, 0], [1, 0; 1, 1], [0, -1; 1, 2], [0, -1; 1, 3],\
[1, 0; 2, 1], [1, 0; 4, 1]]

Warning. In the present implementation, the trivial coset is represented by [1, 0;𝑁, 1] and is the last in the list.

mfcuspisregular(cusp)
In the space defined by NK = [N,k,CHI] or NK = mf, determine if cusp in canonical format (oo or denominator
dividing 𝑁 ) is regular or not.

? mfcuspisregular([4,3,-4],1/2)
%1 = 0

mfcusps()

Let 𝑁 be a positive integer. Return the list of cusps of Γ0(𝑁) in the form 𝑎/𝑏 with 𝑏‖𝑁 .

? mfcusps(24)
%1 = [0, 1/2, 1/3, 1/4, 1/6, 1/8, 1/12, 1/24]

We also allow the argument 𝑁 to be a modular form space, in which case it is replaced by the level of the space:

? M = mfinit([4, 12, 1], 0); mfcusps(M)
%2 = [0, 1/2, 1/4]

mfcuspval(F, cusp, precision)
Valuation of modular form 𝐹 in the space mf at cusp, which can be either 𝑜𝑜 or any rational number. The result
is either a rational number or 𝑜𝑜 if 𝐹 is zero. Let 𝜒 be the Nebentypus of the space mf; if Q(𝐹 )! = Q(𝜒), return
the vector of valuations attached to the [Q(𝐹 ) : Q(𝑐ℎ𝑖)] complex embeddings of 𝐹 .

? T=mfTheta(); mf=mfinit([12,1/2]); mfcusps(12)
%1 = [0, 1/2, 1/3, 1/4, 1/6, 1/12]
? apply(x->mfcuspval(mf,T,x), %1)
%2 = [0, 1/4, 0, 0, 1/4, 0]
? mf=mfinit([12,6,12],1); F=mfbasis(mf)[5];
? apply(x->mfcuspval(mf,F,x),%1)
%4 = [1/12, 1/6, 1/2, 2/3, 1/2, 2]
? mf=mfinit([12,3,-4],1); F=mfbasis(mf)[1];
? apply(x->mfcuspval(mf,F,x),%1)
%6 = [1/12, 1/6, 1/4, 2/3, 1/2, 1]

? mf = mfinit([625,2],0); [F] = mfeigenbasis(mf); mfparams(F)
%7 = [625, 2, 1, y^2 - y - 1, t - 1] \\ [Q(F):Q(chi)] = 2
? mfcuspval(mf, F, 1/25)
%8 = [1, 2] \\ one conjugate has valuation 1, and the other is 2
? mfcuspval(mf, F, 1/5)
%9 = [1/25, 1/25]

mfcuspwidth(cusp)
Width of cusp in Γ0(𝑁).

? mfcusps(12)
%1 = [0, 1/2, 1/3, 1/4, 1/6, 1/12]

(continues on next page)
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? [mfcuspwidth(12,c) | c <- mfcusps(12)]
%2 = [12, 3, 4, 3, 1, 1]
? mfcuspwidth(12, oo)
%3 = 1

We also allow the argument 𝑁 to be a modular form space, in which case it is replaced by the level of the space:

? M = mfinit([4, 12, 1], 0); mfcuspwidth(M, 1/2)
%4 = 1

mfderiv(m)

𝑚-th formal derivative of the power series corresponding to the generalized modular form 𝐹 , with respect to the
differential operator 𝑞𝑑/𝑑𝑞 (default 𝑚 = 1).

? D=mfDelta();
? mfcoefs(D, 4)
%2 = [0, 1, -24, 252, -1472]
? mfcoefs(mfderiv(D), 4)
%3 = [0, 1, -48, 756, -5888]

mfderivE2(m)

Compute the Serre derivative (𝑞.𝑑/𝑑𝑞)𝐹−𝑘𝐸2𝐹/12 of the generalized modular form 𝐹 , which has weight 𝑘+2;
if 𝐹 is a true modular form, then its Serre derivative is also modular. If 𝑚 > 1, compute the 𝑚-th iterate, of
weight 𝑘 + 2𝑚.

? mfcoefs(mfderivE2(mfEk(4)),5)*(-3)
%1 = [1, -504, -16632, -122976, -532728]
? mfcoefs(mfEk(6),5)
%2 = [1, -504, -16632, -122976, -532728]

mfdescribe(G)

Gives a human-readable description of 𝐹 , which is either a modular form space or a generalized modular form.
If the address of𝐺 is given, puts into𝐺 the vector of parameters of the outermost operator defining 𝐹 ; this vector
is empty if 𝐹 is a leaf (an atomic object such as mfDelta(), not defined in terms of other forms) or a modular
form space.

? E1 = mfeisenstein(4,-3,-4); mfdescribe(E1)
%1 = "F_4(-3, -4)"
? E2 = mfeisenstein(3,5,-7); mfdescribe(E2)
%2 = "F_3(5, -7)"
? E3 = mfderivE2(mfmul(E1,E2), 3); mfdescribe(E3,&G)
%3 = "DERE2^3(MUL(F_4(-3, -4), F_3(5, -7)))"
? mfdescribe(G[1][1])
%4 = "MUL(F_4(-3, -4), F_3(5, -7))"
? G[2]
%5 = 3
? for (i = 0, 4, mf = mfinit([37,4],i); print(mfdescribe(mf)));
S_4^new(G_0(37, 1))
S_4(G_0(37, 1))
S_4^old(G_0(37, 1))
E_4(G_0(37, 1))
M_4(G_0(37, 1))
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mfdim(space)
If𝑁𝐾 = [𝑁, 𝑘,𝐶𝐻𝐼] as in mfinit, gives the dimension of the corresponding subspace of𝑀𝑘(Γ0(𝑁), 𝜒). 𝑁𝐾
can also be the output of mfinit, in which case space must be omitted.

The subspace is described by the small integer space: 0 for the newspace 𝑆𝑛𝑒𝑤
𝑘 (Γ0(𝑁), 𝜒), 1 for the cuspidal

space 𝑆𝑘, 2 for the oldspace 𝑆𝑜𝑙𝑑
𝑘 , 3 for the space of Eisenstein series 𝐸𝑘 and 4 for the full space 𝑀𝑘.

Wildcards. As in mfinit, CHI may be the wildcard 0 (all Galois orbits of characters); in this case, the output is
a vector of [𝑜𝑟𝑑𝑒𝑟, 𝑐𝑜𝑛𝑟𝑒𝑦, 𝑑𝑖𝑚, 𝑑𝑖𝑚𝑑𝑖ℎ] corresponding to the nontrivial spaces, where

• order is the order of the character,

• conrey its Conrey label from which the character may be recovered via znchar(𝑐𝑜𝑛𝑟𝑒𝑦),

• dim the dimension of the corresponding space,

• dimdih the dimension of the subspace of dihedral forms corresponding to Hecke characters if 𝑘 = 1 (this is
not implemented for the old space and set to −1 for the time being) and 0 otherwise.

The spaces are sorted by increasing order of the character; the characters are taken up to Galois conjugation and
the Conrey number is the minimal one among Galois conjugates. In weight 1, this is only implemented when the
space is 0 (newspace), 1 (cusp space), 2(old space) or 3(Eisenstein series).

Wildcards for sets of characters. CHI may be a set of characters, and we return the set of [𝑑𝑖𝑚, 𝑑𝑖𝑚𝑑𝑖ℎ].

Wildcard for :math:`M_k(Gamma_1(N)).` Additionally, the wildcard 𝐶𝐻𝐼 = −1 is available in which case
we output the total dimension of the corresponding subspace of𝑀𝑘(Γ1(𝑁)). In weight 1, this is not implemented
when the space is 4 (fullspace).

? mfdim([23,2], 0) \\ new space
%1 = 2
? mfdim([96,6], 0)
%2 = 10
? mfdim([10^9,4], 3) \\ Eisenstein space
%1 = 40000
? mfdim([10^9+7,4], 3)
%2 = 2
? mfdim([68,1,-1],0)
%3 = 3
? mfdim([68,1,0],0)
%4 = [[2, Mod(67, 68), 1, 1], [4, Mod(47, 68), 1, 1]]
? mfdim([124,1,0],0)
%5 = [[6, Mod(67, 124), 2, 0]]

This last example shows that there exists a nondihedral form of weight 1 in level 124.

mfdiv(G)

Given two generalized modular forms 𝐹 and 𝐺, compute 𝐹/𝐺 assuming that the quotient will not have poles at
infinity. If this is the case, use mfshift before doing the division.

? D = mfDelta(); \\ Delta
? H = mfpow(mfEk(4), 3);
? J = mfdiv(H, D)
*** at top-level: J=mfdiv(H,mfdeltac
*** ^--------------------
*** mfdiv: domain error in mfdiv: ord(G) > ord(F)
? J = mfdiv(H, mfshift(D,1));
? mfcoefs(J, 4)
%4 = [1, 744, 196884, 21493760, 864299970]
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mfeigenbasis()

Vector of the eigenforms for the space mf. The initial basis of forms computed by mfinit before splitting is also
available via mfbasis.

? mf = mfinit([26,2],0);
? see(L) = for(i=1,#L,print(mfcoefs(L[i],6)));
? see( mfeigenbasis(mf) )
[0, 1, -1, 1, 1, -3, -1]
[0, 1, 1, -3, 1, -1, -3]
? see( mfbasis(mf) )
[0, 2, 0, -2, 2, -4, -4]
[0, -2, -4, 10, -2, 0, 8]

The eigenforms are internally expressed as (algebraic) linear combinations of mfbasis(mf) and it is very inef-
ficient to compute many coefficients of those forms individually: you should rather use mfcoefs(mf) to expand
the basis once and for all, then multiply by mftobasis(mf,f) for the forms you’re interested in:

? mf = mfinit([96,6],0); B = mfeigenbasis(mf); #B
%1 = 8;
? vector(#B, i, mfcoefs(B[i],1000)); \\ expanded individually: slow
time = 7,881 ms.
? M = mfcoefs(mf, 1000); \\ initialize once
time = 982 ms.
? vector(#B, i, M * mftobasis(mf,B[i])); \\ then expand: much faster
time = 623 ms.

When the eigenforms are defined over an extension field of Q(𝜒) for a nonrational character, their coefficients are
hard to read and you may want to lift them or to express them in an absolute number field. In the construction
below 𝑇 defines Q(𝑓) over Q, 𝑎 is the image of the generator Mod(𝑡, 𝑡2 + 𝑡+ 1) of Q(𝜒) in Q(𝑓) and 𝑦 − 𝑘𝑎 is
the image of the root 𝑦 of f.mod:

? mf = mfinit([31, 2, Mod(25,31)], 0); [f] = mfeigenbasis(mf);
? f.mod
%2 = Mod(1, t^2 + t + 1)*y^2 + Mod(2*t + 2, t^2 + t + 1)
? v = liftpol(mfcoefs(f,5))
%3 = [0, 1, (-t - 1)*y - 1, t*y + (t + 1), (2*t + 2)*y + 1, t]
? [T,a,k] = rnfequation(mf.mod, f.mod, 1)
%4 = [y^4 + 2*y^2 + 4, Mod(-1/2*y^2 - 1, y^4 + 2*y^2 + 4), 0]
? liftpol(substvec(v, [t,y], [a, y-k*a]))
%5 = [0, 1, 1/2*y^3 - 1, -1/2*y^3 - 1/2*y^2 - y, -y^3 + 1, -1/2*y^2 - 1]

Beware that the meaning of 𝑦 has changed in the last line is different: it now represents of root of 𝑇 , no longer
of f.mod (the notions coincide if 𝑘 = 0 as here but it will not always be the case). This can be avoided with an
extra variable substitution, for instance

? [T,a,k] = rnfequation(mf.mod, subst(f.mod,'y,'x), 1)
%6 = [x^4 + 2*x^2 + 4, Mod(-1/2*x^2 - 1, x^4 + 2*x^2 + 4), 0]
? liftpol(substvec(v, [t,y], [a, x-k*a]))
%7 = [0, 1, 1/2*x^3 - 1, -1/2*x^3 - 1/2*x^2 - x, -x^3 + 1, -1/2*x^2 - 1]

mfeigensearch(AP)
Search for a normalized rational eigen cuspform with quadratic character given restrictions on a few initial coef-
ficients. The meaning of the parameters is as follows:

• NK governs the limits of the search: it is of the form [𝑁, 𝑘]: search for given level 𝑁 , weight 𝑘 and quadratic
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character; note that the character (𝐷/.) is uniquely determined by (𝑁, 𝑘). The level 𝑁 can be replaced by a
vector of allowed levels.

• AP is the search criterion, which can be omitted: a list of pairs [..., [𝑝, 𝑎𝑝], ...], where 𝑝 is a prime number and
𝑎𝑝 is either a t_INT (the 𝑝-th Fourier coefficient must match 𝑎𝑝 exactly) or a t_INTMOD Mod(𝑎, 𝑏) (the 𝑝-th
coefficient must be congruent to 𝑎 modulo 𝑏).

The result is a vector of newforms 𝑓 matching the search criteria, sorted by increasing level then increasing ‖𝐷‖.

? #mfeigensearch([[1..80],2], [[2,2],[3,-1]])
%1 = 1
? #mfeigensearch([[1..80],2], [[2,2],[5,2]])
%2 = 1
? v = mfeigensearch([[1..20],2], [[3,Mod(2,3)],[7,Mod(5,7)]]); #v
%3 = 1
? F=v[1]; [mfparams(F)[1], mfcoefs(F,15)]
%4 = [11, [0, 1, -2, -1, 2, 1, 2, -2, 0, -2, -2, 1, -2, 4, 4, -1]]

mfembed(v, precision)
Let 𝑓 be a generalized modular form with parameters [𝑁, 𝑘, 𝜒, 𝑃 ] (see mfparams, we denote Q(𝜒) the subfield
of C generated by the values of 𝜒 and Q(𝑓) the field of definition of 𝑓 . In this context Q(𝜒) has a single canonical
complex embeding given by 𝑠 : 𝑀𝑜𝑑(𝑡, 𝑝𝑜𝑙𝑐𝑦𝑐𝑙𝑜(𝑛, 𝑡)) : − −− > exp(2𝑖𝜋/𝑛) and the number field Q(𝑓) has
[Q(𝑓) : Q(𝜒)] induced embeddings attached to the complex roots of the polynomial 𝑠(𝑃 ). If Q(𝑓) is stricly
larger than Q(𝜒) we only allow an 𝑓 which is an eigenform, produced by mfeigenbasis.

This function is meant to create embeddings of Q(𝑓) and/or apply them to the object 𝑣, typically a vector of
Fourier coefficients of 𝑓 from mfcoefs.

• If 𝑣 is omitted and 𝑓 is a modular form as above, we return the embedding of Q(𝜒) if Q(𝜒) = Q(𝑓) and a
vector containing [Q(𝑓) : Q(𝜒)] embeddings of Q(𝑓) otherwise.

• If 𝑣 is given, it must be a scalar in Q(𝑓), or a vector/matrix of such, we apply the embeddings coefficientwise
and return either a single result if Q(𝑓) = Q(𝜒) and a vector of [Q(𝑓) : Q(𝜒)] results otherwise.

• Finally 𝑓 can be replaced by a single embedding produced by mfembed(𝑓) (𝑣 was omitted) and we apply
that particular embedding to 𝑣.

? mf = mfinit([35,2,Mod(11,35)], 0);
? [f] = mfbasis(mf);
? f.mod \\ Q (chi) = Q (zeta_3)
%3 = t^2 + t + 1
? v = mfcoefs(f,5); lift(v) \\ coefficients in Q (chi)
%4 = [0, 2, -2*t - 2, 2*t, 2*t, -2*t - 2]
? mfembed(f, v) \\ single embedding
%5 = [0, 2, -1 - 1.7320...*I, -1 + 1.73205...*I, -1 + 1.7320...*I, ...]

? [F] = mfeigenbasis(mf);
? mffields(mf)
%7 = [y^2 + Mod(-2*t, t^2 + t + 1)] \\ [Q (f):Q (chi)] = 2
? V = liftpol( mfcoefs(F,5) );
%8 = [0, 1, y + (-t - 1), (t + 1)*y + t, (-2*t - 2)*y + t, -t - 1]
? vall = mfembed(F, V); #vall
%9 = 2 \\ 2 embeddings, both applied to V
? vall[1] \\ the first
%10 = [0, 1, -1.2071... - 2.0907...*I, 0.2071... - 0.3587...*I, ...]
? vall[2] \\ and the second one

(continues on next page)
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%11 = [0, 1, 0.2071... + 0.3587...*I, -1.2071... + 2.0907...*I, ...]

? vE = mfembed(F); #vE \\ same 2 embeddings
%12 = 2
? mfembed(vE[1], V) \\ apply first embedding to V
%13 = [0, 1, -1.2071... - 2.0907...*I, 0.2071... - 0.3587...*I, ...]

For convenience, we also allow a modular form space from mfinit instead of 𝑓 , corresponding to the single
embedding of Q(𝜒).

? [mfB,MC,C] = mfatkininit(mf,7); MC \\ coefs in Q (chi)
%13 =
[ Mod(2/7*t, t^2 + t + 1) Mod(-1/7*t - 2/7, t^2 + t + 1)]

[Mod(-1/7*t - 2/7, t^2 + t + 1) Mod(2/7*t, t^2 + t + 1)]

? C \\ normalizing constant
%14 = 0.33863... - 0.16787*I
? M = mfembed(mf, MC) / C \\ the true matrix for the action of w_7
[-0.6294... + 0.4186...*I -0.3625... - 0.5450...*I]

[-0.3625... - 0.5450...*I -0.6294... + 0.4186...*I]

? exponent(M*conj(M) - 1) \\ M * conj(M) is close to 1
%16 = -126

mfeval(F, vtau, precision)
Computes the numerical value of the modular form 𝐹 , belonging to mf, at the complex number vtau or the vector
vtau of complex numbers in the completed upper-half plane. The result is given with absolute error less than
2−𝐵 , where 𝐵 = 𝑟𝑒𝑎𝑙𝑏𝑖𝑡𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.

If the field of definition Q(𝐹 ) is larger than Q(𝜒) then 𝐹 may be embedded into C in 𝑑 = [Q(𝐹 ) : Q(𝜒)] ways,
in which case a vector of the 𝑑 results is returned.

? mf = mfinit([11,2],0); F = mfbasis(mf)[1]; mfparams(F)
%1 = [11, 2, 1, y, t-1] \\ Q(F) = Q(chi) = Q
? mfeval(mf,F,I/2)
%2 = 0.039405471130100890402470386372028382117
? mf = mfinit([35,2],0); F = mfeigenbasis(mf)[2]; mfparams(F)
%3 = [35, 2, 1, y^2 - y - 4, t - 1] \\ [Q(F) : Q(chi)] = 2
? mfeval(mf,F,I/2)
%4 = [0.045..., 0.0385...] \\ sigma_1(F) and sigma_2(F) at I/2
? mf = mfinit([12,4],1); F = mfbasis(mf)[1];
? mfeval(mf, F, 0.318+10^(-7)*I)
%6 = 3.379... E-21 + 6.531... E-21*I \\ instantaneous !

In order to maximize the imaginary part of the argument, the function computes (𝑓‖𝑘𝛾)(𝛾−1.𝜏) for a suitable 𝛾
not necessarily in Γ0(𝑁) (in which case 𝑓‖𝛾 is evaluated using mfslashexpansion).

? T = mfTheta(); mf = mfinit(T); mfeval(mf,T,[0,1/2,1,oo])
%1 = [1/2 - 1/2*I, 0, 1/2 - 1/2*I, 1]

mffields()
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Given mf as output by mfinit with parameters (𝑁, 𝑘, 𝜒), returns the vector of polynomials defining each Galois
orbit of newforms over Q(𝜒).

? mf = mfinit([35,2],0); mffields(mf)
%1 = [y, y^2 - y - 4]

Here the character is trivial so Q(𝜒) = Q) and there are 3 newforms: one is rational (corresponding to 𝑦), the
other two are conjugate and defined over the quadratic field Q[𝑦]/(𝑦2 − 𝑦 − 4).

? [G,chi] = znchar(Mod(3,35));
? zncharconductor(G,chi)
%2 = 35
? charorder(G,chi)
%3 = 12
? mf = mfinit([35, 2, [G,chi]],0); mffields(mf)
%4 = [y, y]

Here the character is primitive of order 12 and the two newforms are defined over Q(𝜒) = Q(𝜁12).

? mf = mfinit([35, 2, Mod(13,35)],0); mffields(mf)
%3 = [y^2 + Mod(5*t, t^2 + 1)]

This time the character has order 4 and there are two conjugate newforms over Q(𝜒) = 𝑄(𝑖).

mffromell()

𝐸 being an elliptic curve defined over𝑄 given by an integral model in ellinit format, computes a 3-component
vector [mf,F,v], where 𝐹 is the newform corresponding to 𝐸 by modularity, mf is the newspace to which 𝐹
belongs, and v gives the coefficients of 𝐹 on mfbasis(mf).

? E = ellinit("26a1");
? [mf,F,co] = mffromell(E);
? co
%2 = [3/4, 1/4]~
? mfcoefs(F, 5)
%3 = [0, 1, -1, 1, 1, -3]
? ellan(E, 5)
%4 = [1, -1, 1, 1, -3]

mffrometaquo(flag)
Modular form corresponding to the eta quotient matrix eta. If the valuation 𝑣 at infinity is fractional, return 0.
If the eta quotient is not holomorphic but simply meromorphic, return 0 if flag = 0; return the eta quotient
(divided by 𝑞 to the power −𝑣 if 𝑣 < 0, i.e., with valuation 0) if flag is set.

? mffrometaquo(Mat([1,1]),1)
%1 = 0
? mfcoefs(mffrometaquo(Mat([1,24])),6)
%2 = [0, 1, -24, 252, -1472, 4830, -6048]
? mfcoefs(mffrometaquo([1,1;23,1]),10)
%3 = [0, 1, -1, -1, 0, 0, 1, 0, 1, 0, 0]
? F = mffrometaquo([1,2;2,-1]); mfparams(F)
%4 = [16, 1/2, 1, y, t - 1]
? mfcoefs(F,10)
%5 = [1, -2, 0, 0, 2, 0, 0, 0, 0, -2, 0]
? mffrometaquo(Mat([1,-24]))

(continues on next page)
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%6 = 0
? f = mffrometaquo(Mat([1,-24]),1); mfcoefs(f,6)
%7 = [1, 24, 324, 3200, 25650, 176256, 1073720]

For convenience, a t_VEC is also accepted instead of a factorization matrix with a single row:

? f = mffrometaquo([1,24]); \\ also valid

mffromlfun(precision)
Let 𝐿 being an 𝐿-function in any of the lfun formats representing a self-dual modular form (for instance an
eigenform). Return [NK,space,v] when mf = mfinit(NK,space) is the modular form space containing the
form and mftobasis(mf, v) will represent it on the space basis. If 𝐿 has rational coefficients, this will be
enough to recognize the modular form in mf :

? L = lfuncreate(x^2+1);
? lfunan(L,10)
%2 = [1, 1, 0, 1, 2, 0, 0, 1, 1, 2]
? [NK,space,v] = mffromlfun(L); NK
%4 = [4, 1, -4]
? mf=mfinit(NK,space); w = mftobasis(mf,v)
%5 = [1.0000000000000000000000000000000000000]~
? [f] = mfbasis(mf); mfcoefs(f,10) \\ includes a_0 !
%6 = [1/4, 1, 1, 0, 1, 2, 0, 0, 1, 1, 2]

If 𝐿 has inexact complex coefficients, one can for instance compute an eigenbasis for mf and check whether one
of the attached 𝐿-function is reasonably close to 𝐿. In the example, we cheat by producing the 𝐿 function from
an eigenform in a known space, but the function does not use this information:

? mf = mfinit([32,6,Mod(5,32)],0);
? [poldegree(K) | K<-mffields(mf)]
%2 = [19] \\ one orbit, [Q(F) : Q(chi)] = 19
? L = lfunmf(mf)[1][1]; \\ one of the 19 L-functions attached to F
? lfunan(L,3)
%4 = [1, 5.654... - 0.1812...*I, -7.876... - 19.02...*I]
? [NK,space,v] = mffromlfun(L); NK
%5 = [32, 6, Mod(5, 32)]
? vL = concat(lfunmf(mf)); \\ L functions for all cuspidal eigenforms
? an = lfunan(L,10);
? for (i = 1, #vL, if (normlp(lfunan(vL[i],10) - an, oo) < 1e-10, print(i)));
1

mffromqf(P)
𝑄 being an even integral positive definite quadratic form and 𝑃 a homogeneous spherical polynomial for 𝑄,
computes a 3-component vector [𝑚𝑓,𝐹, 𝑣], where 𝐹 is the theta function corresponding to (𝑄,𝑃 ), mf is the
corresponding space of modular forms (from mfinit), and 𝑣 gives the coefficients of 𝐹 on mfbasis(mf).

? [mf,F,v] = mffromqf(2*matid(10)); v
%1 = [64/5, 4/5, 32/5]~
? mfcoefs(F, 5)
%2 = [1, 20, 180, 960, 3380, 8424]
? mfcoef(F, 10000) \\ number of ways of writing 10000 as sum of 10 squares
%3 = 128205250571893636

(continues on next page)
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? mfcoefs(F, 10000); \\ fast !
time = 220ms
? [mf,F,v] = mffromqf([2,0;0,2],x^4-6*x^2*y^2+y^4);
? mfcoefs(F,10)
%6 = [0, 4, -16, 0, 64, -56, 0, 0, -256, 324, 224]
? mfcoef(F,100000) \\ instantaneous
%7 = 41304367104

Odd dimensions are supported, corresponding to forms of half-integral weight:

? [mf,F,v] = mffromqf(2*matid(3));
? mfisequal(F, mfpow(mfTheta(),3))
%2 = 1
? mfcoefs(F, 32) \\ illustrate Legendre's 3-square theorem
%3 = [ 1,
6, 12, 8, 6, 24, 24, 0, 12,
30, 24, 24, 8, 24, 48, 0, 6,
48, 36, 24,24, 48, 24, 0, 24,
30, 72, 32, 0, 72, 48, 0, 12]

mfgaloisprojrep(F, precision)
mf being an mf output by mfinit in weight 1, return a polynomial defining the field fixed by the kernel of
the projective Artin representation attached to F (by Deligne-Serre). Currently only implemented for projective
image 𝐴4 and 𝑆4.

\\ A4 example
? mf = mfinit([4*31,1,Mod(87,124)],0);
? F = mfeigenbasis(mf)[1];
? mfgaloistype(mf,F)
%3 = -12
? pol = mfgaloisprojrep(mf,F)
%4 = x^12 + 68*x^10 + 4808*x^8 + ... + 4096
? G = galoisinit(pol); galoisidentify(G)
%5 = [12,3] \\A4
? pol4 = polredbest(galoisfixedfield(G,G.gen[3], 1))
%6 = x^4 + 7*x^2 - 2*x + 14
? polgalois(pol4)
%7 = [12, 1, 1, "A4"]
? factor(nfdisc(pol4))
%8 =
[ 2 4]

[31 2]

\\ S4 example
? mf = mfinit([4*37,1,Mod(105,148)],0);
? F = mfeigenbasis(mf)[1];
? mfgaloistype(mf,F)
%11 = -24
? pol = mfgaloisprojrep(mf,F)
%12 = x^24 + 24*x^22 + 256*x^20 + ... + 255488256
? G = galoisinit(pol); galoisidentify(G)

(continues on next page)
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%13 = [24, 12] \\S4
? pol4 = polredbest(galoisfixedfield(G,G.gen[3..4], 1))
%14 = x^4 - x^3 + 5*x^2 - 7*x + 12
? polgalois(pol4)
%15 = [24, -1, 1, "S4"]
? factor(nfdisc(pol4))
%16 =
[ 2 2]

[37 3]

mfgaloistype(F)
NK being either [N,1,CHI] or an mf output by mfinit in weight 1, gives the vector of types of Galois represen-
tations attached to each cuspidal eigenform, unless the modular form F is specified, in which case only for F (note
that it is not tested whether F belongs to the correct modular form space, nor whether it is a cuspidal eigenform).
Types 𝐴4, 𝑆4, 𝐴5 are represented by minus their cardinality −12, −24, or −60, and type 𝐷𝑛 is represented by
its cardinality, the integer 2𝑛:

? mfgaloistype([124,1, Mod(67,124)]) \\ A4
%1 = [-12]
? mfgaloistype([148,1, Mod(105,148)]) \\ S4
%2 = [-24]
? mfgaloistype([633,1, Mod(71,633)]) \\ D10, A5
%3 = [10, -60]
? mfgaloistype([239,1, -239]) \\ D6, D10, D30
%4 = [6, 10, 30]
? mfgaloistype([71,1, -71])
%5 = [14]
? mf = mfinit([239,1, -239],0); F = mfeigenbasis(mf)[2];
? mfgaloistype(mf, F)
%7 = 10

The function may also return 0 as a type when it failed to determine it; in this case the correct type is either −12
or −60, and most likely −12.

mfhecke(F, n)
𝐹 being a modular form in modular form space mf, returns 𝑇 (𝑛)𝐹 , where 𝑇 (𝑛) is the 𝑛-th Hecke operator.

Warning. If 𝐹 is of level 𝑀 < 𝑁 , then 𝑇 (𝑛)𝐹 is in general not the same in 𝑀𝑘(Γ0(𝑀), 𝜒) and in
𝑀𝑘(Γ0(𝑁), 𝜒). We take 𝑇 (𝑛) at the same level as the one used in mf.

? mf = mfinit([26,2],0); F = mfbasis(mf)[1]; mftobasis(mf,F)
%1 = [1, 0]~
? G2 = mfhecke(mf,F,2); mftobasis(mf,G2)
%2 = [0, 1]~
? G5 = mfhecke(mf,F,5); mftobasis(mf,G5)
%3 = [-2, 1]~

Modular forms of half-integral weight are supported, in which case 𝑛 must be a perfect square, else 𝑇𝑛 will act
as 0 (the operator 𝑇𝑝 for 𝑝‖𝑁 is not supported yet):

? F = mfpow(mfTheta(),3); mf = mfinit(F);
? mfisequal(mfhecke(mf,F,9), mflinear([F],[4]))
%2 = 1
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(𝐹 is an eigenvector of all 𝑇𝑝2 , with eigenvalue 𝑝+ 1 for odd 𝑝.)

Warning. When 𝑛 is a large composite, resp. the square of a large composite in half-integral weight, it is in
general more efficient to use mfheckemat on the mftobasis coefficients:

? mfcoefs(mfhecke(mf,F,3^10), 10)
time = 917 ms.
%3 = [324, 1944, 3888, 2592, 1944, 7776, 7776, 0, 3888, 9720, 7776]
? M = mfheckemat(mf,3^10) \\ instantaneous
%4 =
[324]
? G = mflinear(mf, M*mftobasis(mf,F));
? mfcoefs(G, 10) \\ instantaneous
%6 = [324, 1944, 3888, 2592, 1944, 7776, 7776, 0, 3888, 9720, 7776]

mfheckemat(vecn)
If vecn is an integer, matrix of the Hecke operator 𝑇 (𝑛) on the basis formed by mfbasis(mf). If it is a vector,
vector of such matrices, usually faster than calling each one individually.

? mf=mfinit([32,4],0); mfheckemat(mf,3)
%1 =
[0 44 0]

[1 0 -10]

[0 -2 0]
? mfheckemat(mf,[5,7])
%2 = [[0, 0, 220; 0, -10, 0; 1, 0, 12], [0, 88, 0; 2, 0, -20; 0, -4, 0]]

mfinit(space)
Create the space of modular forms corresponding to the data contained in NK and space. NK is a vector which
can be either [𝑁, 𝑘] (𝑁 level, 𝑘 weight) corresponding to a subspace of 𝑀𝑘(Γ0(𝑁)), or [𝑁, 𝑘,𝐶𝐻𝐼] (CHI a
character) corresponding to a subspace of 𝑀𝑘(Γ0(𝑁), 𝜒). Alternatively, it can be a modular form 𝐹 or modular
form space, in which case we use mfparams to define the space parameters.

The subspace is described by the small integer space: 0 for the newspace 𝑆𝑛𝑒𝑤
𝑘 (Γ0(𝑁), 𝜒), 1 for the cuspidal

space 𝑆𝑘, 2 for the oldspace 𝑆𝑜𝑙𝑑
𝑘 , 3 for the space of Eisenstein series 𝐸𝑘 and 4 for the full space 𝑀𝑘.

Wildcards. For given level and weight, it is advantageous to compute simultaneously spaces attached to different
Galois orbits of characters, especially in weight 1. The parameter CHI may be set to 0 (wildcard), in which
case we return a vector of all mfinit (s) of non trivial spaces in 𝑆𝑘(Γ1(𝑁)), one for each Galois orbit (see
znchargalois). One may also set CHI to a vector of characters and we return a vector of all mfinits of subspaces
of 𝑀𝑘(𝐺0(𝑁), 𝜒) for 𝜒 in the list, in the same order. In weight 1, only 𝑆𝑛𝑒𝑤

1 , 𝑆1 and 𝐸1 support wildcards.

The output is a technical structure 𝑆, or a vector of structures if CHI was a wildcard, which contains the following
information: [𝑁, 𝑘, 𝜒] is given by mfparams(𝑆), the space dimension is mfdim(𝑆) and a C-basis for the space is
mfbasis(𝑆). The structure is entirely algebraic and does not depend on the current realbitprecision.

? S = mfinit([36,2], 0); \\ new space
? mfdim(S)
%2 = 1
? mfparams
%3 = [36, 2, 1, y] \\ trivial character
? f = mfbasis(S)[1]; mfcoefs(f,10)
%4 = [0, 1, 0, 0, 0, 0, 0, -4, 0, 0, 0]

(continues on next page)
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? vS = mfinit([36,2,0],0); \\ with wildcard
? #vS
%6 = 4 \\ 4 non trivial spaces (mod Galois action)
? apply(mfdim,vS)
%7 = [1, 2, 1, 4]
? mfdim([36,2,0], 0)
%8 = [[1, Mod(1, 36), 1, 0], [2, Mod(35, 36), 2, 0], [3, Mod(13, 36), 1, 0],
[6, Mod(11, 36), 4, 0]]

mfisCM()

Tests whether the eigenform 𝐹 is a CM form. The answer is 0 if it is not, and if it is, either the unique negative
discriminant of the CM field, or the pair of two negative discriminants of CM fields, this latter case occurring
only in weight 1 when the projective image is 𝐷2 = 𝐶2𝑥𝐶2, i.e., coded 4 by mfgaloistype.

? F = mffromell(ellinit([0,1]))[2]; mfisCM(F)
%1 = -3
? mf = mfinit([39,1,-39],0); F=mfeigenbasis(mf)[1]; mfisCM(F)
%2 = Vecsmall([-3, -39])
? mfgaloistype(mf)
%3 = [4]

mfisequal(G, lim)

Checks whether the modular forms 𝐹 and𝐺 are equal. If lim is nonzero, only check equality of the first 𝑙𝑖𝑚+ 1
Fourier coefficients and the function then also applies to generalized modular forms.

? D = mfDelta(); F = mfderiv(D);
? G = mfmul(mfEk(2), D);
? mfisequal(F, G)
%2 = 1

mfisetaquo(flag)
If the generalized modular form 𝑓 is a holomorphic eta quotient, return the eta quotient matrix, else return 0. If
flag is set, also accept meromorphic eta quotients: check whether 𝑓 = 𝑞−𝑣(𝑔)𝑔(𝑞) for some eta quotient 𝑔; if so,
return the eta quotient matrix attached to 𝑔, else return 0. See mffrometaquo.

? mfisetaquo(mfDelta())
%1 =
[1 24]
? f = mffrometaquo([1,1;23,1]);
? mfisetaquo(f)
%3 =
[ 1 1]

[23 1]
? f = mffrometaquo([1,-24], 1);
? mfisetaquo(f) \\ nonholomorphic
%5 = 0
? mfisetaquo(f,1)
%6 =
[1 -24]

631



CyPari2 Documentation, Release 2.1.3

mfkohnenbasis()

mf being a cuspidal space of half-integral weight 𝑘 >= 3/2 with level 𝑁 and character 𝜒, gives a basis 𝐵 of the
Kohnen +-space of mf as a matrix whose columns are the coefficients of 𝐵 on the basis of mf. The conductor of
either 𝜒 or 𝜒.(−4/.) must divide 𝑁/4.

? mf = mfinit([36,5/2],1); K = mfkohnenbasis(mf); K~
%1 =
[-1 0 0 2 0 0]

[ 0 0 0 0 1 0]
? (mfcoefs(mf,20) * K)~
%4 =
[0 -1 0 0 2 0 0 0 0 0 0 0 0 -6 0 0 8 0 0 0 0]

[0 0 0 0 0 1 0 0 -2 0 0 0 0 0 0 0 0 1 0 0 2]

? mf = mfinit([40,3/2,8],1); mfkohnenbasis(mf)
*** at top-level: mfkohnenbasis(mf)
*** ^-----------------
*** mfkohnenbasis: incorrect type in mfkohnenbasis [incorrect CHI] (t_VEC).

In the final example both 𝜒 = (8/.) and 𝜒.(−4/.) have conductor 8, which does not divide N/4 = 10.

mfkohnenbijection()

mf being a cuspidal space of half-integral weight, returns [mf2,M,K,shi], where 𝑀 is a matrix giving a
Hecke-module isomorphism from the cuspidal space mf2 giving 𝑆2𝑘−1(Γ0(𝑁), 𝜒2) to the Kohnen +-space
𝑆+
𝑘 (Γ0(4𝑁), 𝜒), K represents a basis𝐵 of the Kohnen +-space as a matrix whose columns are the coefficients of
𝐵 on the basis of mf; shi is a vector of pairs (𝑡𝑖, 𝑛𝑖) gives the linear combination of Shimura lifts giving 𝑀−1:
𝑡𝑖 is a squarefree positive integer and 𝑛𝑖 is a small nonzero integer.

? mf=mfinit([60,5/2],1); [mf2,M,K,shi]=mfkohnenbijection(mf); M
%2 =
[-3 0 5/2 7/2]

[ 1 -1/2 -7 -7]

[ 1 1/2 0 -3]

[ 0 0 5/2 5/2]

? shi
%2 = [[1, 1], [2, 1]]

This last command shows that the map giving the bijection is the sum of the Shimura lift with 𝑡 = 1 and the one
with 𝑡 = 2.

Since it gives a bijection of Hecke modules, this matrix can be used to transport modular form data from the easily
computed space of level 𝑁 and weight 2𝑘 − 1 to the more difficult space of level 4𝑁 and weight 𝑘: matrices of
Hecke operators, new space, splitting into eigenspaces and eigenforms. Examples:

? K^(-1)*mfheckemat(mf,121)*K /* matrix of T_11^2 on K. Slowish. */
time = 1,280 ms.
%1 =
[ 48 24 24 24]

(continues on next page)
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[ 0 32 0 -20]

[-48 -72 -40 -72]

[ 0 0 0 52]
? M*mfheckemat(mf2,11)*M^(-1) /* instantaneous via T_11 on S_{2k-1} */
time = 0 ms.
%2 =
[ 48 24 24 24]

[ 0 32 0 -20]

[-48 -72 -40 -72]

[ 0 0 0 52]
? mf20=mfinit(mf2,0); [mftobasis(mf2,b) | b<-mfbasis(mf20)]
%3 = [[0, 0, 1, 0]~, [0, 0, 0, 1]~]
? F1=M*[0,0,1,0]~
%4 = [1/2, 1/2, -3/2, -1/2]~
? F2=M*[0,0,0,1]~
%5 = [3/2, 1/2, -9/2, -1/2]
? K*F1
%6 = [1, 0, 0, 1, 1, 0, 0, 1, -3, 0, 0, -3, 0, 0]~
? K*F2
%7 = [3, 0, 0, 3, 1, 0, 0, 1, -9, 0, 0, -3, 0, 0]~

This gives a basis of the new space of 𝑆+
5/2(Γ0(60)) expressed on the initial basis of 𝑆5/2(Γ0(60)). If we want

the eigenforms, we write instead:

? BE=mfeigenbasis(mf20);[E1,E2]=apply(x->K*M*mftobasis(mf2,x),BE)
%1 = [[1, 0, 0, 1, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0]~,\
[0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, -3, 0, 0]~
? EI1 = mflinear(mf, E1); EI2=mflinear(mf, E2);

These are the two eigenfunctions in the space mf, the first (resp., second) will have Shimura image a multiple of
𝐵𝐸[1] (resp., 𝐵𝐸[2]). The function mfkohneneigenbasis does this directly.

mfkohneneigenbasis(bij)
mf being a cuspidal space of half-integral weight 𝑘 >= 3/2 and bij being the output of
mfkohnenbijection(mf), outputs a 3-component vector [mf0,BNEW,BEIGEN], where BNEW and BEIGEN are
two matrices whose columns are the coefficients of a basis of the Kohnen new space and of the eigenforms on the
basis of mf respectively, and mf0 is the corresponding new space of integral weight 2𝑘 − 1.

? mf=mfinit([44,5/2],1);bij=mfkohnenbijection(mf);
? [mf0,BN,BE]=mfkohneneigenbasis(mf,bij);
? BN~
%2 =
[2 0 0 -2 2 0 -8]

[2 0 0 4 14 0 -32]

? BE~
(continues on next page)
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%3 = [1 0 0 Mod(y-1, y^2-3) Mod(2*y+1, y^2-3) 0 Mod(-4*y-4, y^2-3)]
? lift(mfcoefs(mf,20)*BE[,1])
%4 = [0, 1, 0, 0, y - 1, 2*y + 1, 0, 0, 0, -4*y - 4, 0, 0,\
-5*y + 3, 0, 0, 0, -6, 0, 0, 0, 7*y + 9]~

mflinear(v)
vF being a vector of generalized modular forms and v a vector of coefficients of same length, compute the linear
combination of the entries of vF with coefficients v. Note. Use this in particular to subtract two forms 𝐹 and 𝐺
(with 𝑣𝐹 = [𝐹,𝐺] and 𝑣 = [1,−1]), or to multiply an form by a scalar 𝜆 (with 𝑣𝐹 = [𝐹 ] and 𝑣 = [𝜆]).

? D = mfDelta(); G = mflinear([D],[-3]);
? mfcoefs(G,4)
%2 = [0, -3, 72, -756, 4416]

For user convenience, we allow

• a modular form space mf as a vF argument, which is understood as mfbasis(mf);

• in this case, we also allow a modular form 𝑓 as 𝑣, which is understood as mftobasis(𝑚𝑓, 𝑓).

? T = mfpow(mfTheta(),7); F = mfShimura(T,-3); \\ Shimura lift for D=-3
? mfcoefs(F,8)
%2 = [-5/9, 280, 9240, 68320, 295960, 875280, 2254560, 4706240, 9471000]
? mf = mfinit(F); G = mflinear(mf,F);
? mfcoefs(G,8)
%4 = [-5/9, 280, 9240, 68320, 295960, 875280, 2254560, 4706240, 9471000]

This last construction allows to replace a general modular form by a simpler linear combination of basis functions,
which is often more efficient:

? T10=mfpow(mfTheta(),10); mfcoef(T10, 10^4) \\ direct evaluation
time = 399 ms.
%5 = 128205250571893636
? mf=mfinit(T10); F=mflinear(mf,T10); \\ instantaneous
? mfcoef(F, 10^4) \\ after linearization
time = 67 ms.
%7 = 128205250571893636

mfmanin(precision)
Given the modular symbol 𝐹𝑆 associated to an eigenform 𝐹 by mfsymbol(mf,F), computes the even and odd
special polynomials as well as the even and odd periods 𝜔+ and 𝜔− as a vector [[𝑃+, 𝑃−], [𝜔+, 𝜔−, 𝑟]], where
𝑟 = ℑ(𝜔+𝜔−)/ < 𝐹, 𝐹 >. If 𝐹 has several embeddings into C, give the vector of results corresponding to each
embedding.

? D=mfDelta(); mf=mfinit(D); DS=mfsymbol(mf,D);
? [pols,oms]=mfmanin(DS); pols
%2 = [[4*x^9 - 25*x^7 + 42*x^5 - 25*x^3 + 4*x],\
[-36*x^10 + 691*x^8 - 2073*x^6 + 2073*x^4 - 691*x^2 + 36]]
? oms
%3 = [0.018538552324740326472516069364750571812,\
-0.00033105361053212432521308691198949874026*I, 4096/691]
? mf=mfinit([11,2],0); F=mfeigenbasis(mf)[1]; FS=mfsymbol(mf,F);
? [pols,oms]=mfmanin(FS);pols

(continues on next page)
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%5 = [[0, 0, 0, 1, 1, 0, 0, -1, -1, 0, 0, 0],\
[2, 0, 10, 5, -5, -10, -10, -5, 5, 10, 0, -2]]
? oms[3]
%6 = 24/5

mfmul(G)

Multiply the two generalized modular forms 𝐹 and 𝐺.

? E4 = mfEk(4); G = mfmul(mfmul(E4,E4),E4);
? mfcoefs(G, 4)
%2 = [1, 720, 179280, 16954560, 396974160]
? mfcoefs(mfpow(E4,3), 4)
%3 = [1, 720, 179280, 16954560, 396974160]

mfnumcusps()

Number of cusps of Γ0(𝑁)

? mfnumcusps(24)
%1 = 8
? mfcusps(24)
%1 = [0, 1/2, 1/3, 1/4, 1/6, 1/8, 1/12, 1/24]

mfparams()

If 𝐹 is a modular form space, returns [N,k,CHI,space,:math:Phi`]`, level, weight, character 𝜒, and space
code; where Φ is the cyclotomic polynomial defining the field of values of CHI. If 𝐹 is a generalized modular
form, returns [N,k,CHI,P,:math:Phi`]`, where 𝑃 is the (polynomial giving the) field of definition of 𝐹 as a
relative extension of the cyclotomic field Q(𝜒) = Q[𝑡]/(Φ): in that case the level 𝑁 may be a multiple of the
level of 𝐹 and the polynomial 𝑃 may define a larger field than Q(𝐹 ). If you want the true level of 𝐹 from this
result, use mfconductor(mfinit(F),F). The polynomial 𝑃 defines an extension of Q(𝜒) = Q[𝑡]/(Φ(𝑡)); it
has coefficients in that number field (polmods in 𝑡).

In contrast with mfparams(F)[4] which always gives the polynomial 𝑃 defining the relative extension
Q(𝐹 )/Q(𝜒), the member function :math:`F.mod` returns the polynomial used to define Q(𝐹 ) over Q (either a
cyclotomic polynomial or a polynomial with cyclotomic coefficients).

? E1 = mfeisenstein(4,-3,-4); E2 = mfeisenstein(3,5,-7); E3 = mfmul(E1,E2);
? apply(mfparams, [E1,E2,E3])
%2 = [[12, 4, 12, y, t-1], [35, 3, -35, y, t-1], [420, 7, -420, y, t-1]]

? mf = mfinit([36,2,Mod(13,36)],0); [f] = mfeigenbasis(mf); mfparams(mf)
%3 = [36, 2, Mod(13, 36), 0, t^2 + t + 1]
? mfparams(f)
%4 = [36, 2, Mod(13, 36), y, t^2 + t + 1]
? f.mod
%5 = t^2 + t + 1

? mf = mfinit([36,4,Mod(13,36)],0); [f] = mfeigenbasis(mf);
? lift(mfparams(f))
%7 = [36, 4, 13, y^3 + (2*t-2)*y^2 + (-4*t+6)*y + (10*t-1), t^2+t+1]

mfperiodpol(f, flag, precision)

Period polynomial of the cuspidal part of the form 𝑓 , in other words
∫︀ 𝑖𝑜𝑜

0
(𝑋 − 𝜏)𝑘−2𝑓(𝜏)𝑑𝜏 . If flag is 0,
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ordinary period polynomial. If it is 1 or −1, even or odd part of that polynomial. 𝑓 can also be the modular
symbol output by mfsymbol (mf,f).

? D = mfDelta(); mf = mfinit(D,0);
? PP = mfperiodpol(mf, D, -1); PP/=polcoef(PP, 1); bestappr(PP)
%1 = x^9 - 25/4*x^7 + 21/2*x^5 - 25/4*x^3 + x
? PM = mfperiodpol(mf, D, 1); PM/=polcoef(PM, 0); bestappr(PM)
%2 = -x^10 + 691/36*x^8 - 691/12*x^6 + 691/12*x^4 - 691/36*x^2 + 1

mfpetersson(gs)
Petersson scalar product of the modular forms 𝑓 and 𝑔 belonging to the same modular form space mf, given by
the corresponding “modular symbols” fs and gs output by mfsymbol (also in weight 1 and half-integral weight,
where symbols do not exist). If gs is omitted it is understood to be equal to fs. The scalar product is normalized
by the factor 1/[Γ : Γ0(𝑁)]. Note that 𝑓 and 𝑔 can both be noncuspidal, in which case the program returns an
error if the product is divergent. If the fields of definition Q(𝑓) and Q(𝑔) are equal to Q(𝜒) the result is a scalar.
If [Q(𝑓) : Q(𝜒)] = 𝑑 > 1 and [Q(𝑔) : Q(𝜒)] = 𝑒 > 1 the result is a 𝑑𝑥𝑒 matrix corresponding to all the
embeddings of 𝑓 and 𝑔. In the intermediate cases 𝑑 = 1 or 𝑒 = 1 the result is a row or column vector.

? D=mfDelta(); mf=mfinit(D); DS=mfsymbol(mf,D); mfpetersson(DS)
%1 = 1.0353620568043209223478168122251645932 E-6
? mf=mfinit([11,6],0);B=mfeigenbasis(mf);BS=vector(#B,i,mfsymbol(mf,B[i]));
? mfpetersson(BS[1])
%3 = 1.6190120685220988139111708455305245466 E-5
? mfpetersson(BS[1],BS[2])
%4 = [-3.826479006582967148 E-42 - 2.801547395385577002 E-41*I,\
1.6661127341163336125 E-41 + 1.1734725972345985061 E-41*I,\
0.E-42 - 6.352626992842664490 E-41*I]~
? mfpetersson(BS[2])
%5 =
[ 2.7576133733... E-5 2.0... E-42 6.3... E-43 ]

[ -4.1... E-42 6.77837030070... E-5 3.3...E-42 ]

[ -6.32...E-43 3.6... E-42 2.27268958069... E-5]

? mf=mfinit([23,2],0); F=mfeigenbasis(mf)[1]; FS=mfsymbol(mf,F);
? mfpetersson(FS)
%5 =
[0.0039488965740025031688548076498662860143 -3.56 ... E-40]

[ -3.5... E-40 0.0056442542987647835101583821368582485396]

Noncuspidal example:

? E1=mfeisenstein(5,1,-3);E2=mfeisenstein(5,-3,1);
? mf=mfinit([12,5,-3]); cusps=mfcusps(12);
? apply(x->mfcuspval(mf,E1,x),cusps)
%3 = [0, 0, 1, 0, 1, 1]
? apply(x->mfcuspval(mf,E2,x),cusps)
%4 = [1/3, 1/3, 0, 1/3, 0, 0]
? E1S=mfsymbol(mf,E1);E2S=mfsymbol(mf,E2);
? mfpetersson(E1S,E2S)
%6 = -1.884821671646... E-5 - 1.9... E-43*I

Weight 1 and 1/2-integral weight example:
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? mf=mfinit([23,1,-23],1);F=mfbasis(mf)[1];FS=mfsymbol(mf,F);
? mfpetersson(mf,FS)
%2 = 0.035149946790370230814006345508484787443
? mf=mfinit([4,9/2],1);F=mfbasis(mf)[1];FS=mfsymbol(mf,F);
? mfpetersson(FS)
%4 = 0.00015577084407139192774373662467908966030

mfpow(n)
Compute 𝐹𝑛, where 𝑛 is an integer and 𝐹 is a generalized modular form:

? G = mfpow(mfEk(4), 3); \\ E4^3
? mfcoefs(G, 4)
%2 = [1, 720, 179280, 16954560, 396974160]

mfsearch(V, space)
NK being of the form [N,k] with 𝑘 possibly half-integral, search for a modular form with rational coefficients,
of weight 𝑘 and level 𝑁 , whose initial coefficients 𝑎(0),. . . are equal to 𝑉 ; space specifies the modular form
spaces in which to search, in mfinit or mfdim notation. The output is a list of matching forms with that given
level and weight. Note that the character is of the form (𝐷/.), where 𝐷 is a (positive or negative) fundamental
discriminant dividing 𝑁 . The forms are sorted by increasing ‖𝐷‖.

The parameter 𝑁 can be replaced by a vector of allowed levels, in which case the list of forms is sorted by
increasing level, then increasing ‖𝐷‖. If a form is found at level 𝑁 , any multiple of 𝑁 with the same 𝐷 is not
considered. Some useful possibilities are

• [:math:`N_1..:math:N_2]`: all levels between 𝑁1 and 𝑁2, endpoints included;

• :math:`F * [𝑁1..:math:N_2]`: same but levels divisible by 𝐹 ;

• divisors(𝑁0): all levels dividing 𝑁0.

Note that this is different from mfeigensearch, which only searches for rational eigenforms.

? F = mfsearch([[1..40], 2], [0,1,2,3,4], 1); #F
%1 = 3
? [ mfparams(f)[1..3] | f <- F ]
%2 = [[38, 2, 1], [40, 2, 8], [40, 2, 40]]
? mfcoefs(F[1],10)
%3 = [0, 1, 2, 3, 4, -5, -8, 1, -7, -5, 7]

mfshift(s)
Divide the generalized modular form 𝐹 by 𝑞𝑠, omitting the remainder if there is one. One can have 𝑠 < 0.

? D=mfDelta(); mfcoefs(mfshift(D,1), 4)
%1 = [1, -24, 252, -1472, 4830]
? mfcoefs(mfshift(D,2), 4)
%2 = [-24, 252, -1472, 4830, -6048]
? mfcoefs(mfshift(D,-1), 4)
%3 = [0, 0, 1, -24, 252]

mfshimura(F, D)

𝐹 being a modular form of half-integral weight 𝑘 >= 3/2 and 𝑡 a positive squarefree integer, returns the Shimura
lift𝐺 of weight 2𝑘−1 corresponding to𝐷. This function returns [𝑚𝑓2, 𝐺, 𝑣] where mf2 is a modular form space
containing 𝐺 and 𝑣 expresses 𝐺 in terms of mfbasis(𝑚𝑓2); so that 𝐺 is mflinear(𝑚𝑓2, 𝑣).
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? F = mfpow(mfTheta(), 7); mf = mfinit(F);
? [mf2, G, v] = mfshimura(mf, F, 3); mfcoefs(G,5)
%2 = [-5/9, 280, 9240, 68320, 295960, 875280]
? mfparams(G) \\ the level may be lower than expected
%3 = [1, 6, 1, y, t - 1]
? mfparams(mf2)
%4 = [2, 6, 1, 4, t - 1]
? v
%5 = [280, 0]~
? mfcoefs(mf2, 5)
%6 =
[-1/504 -1/504]

[ 1 0]

[ 33 1]

[ 244 0]

[ 1057 33]

[ 3126 0]
? mf = mfinit([60,5/2],1); F = mflinear(mf,mfkohnenbasis(mf)[,1]);
? mfparams(mfshimura(mf,F)[2])
%8 = [15, 4, 1, y, t - 1]
? mfparams(mfshimura(mf,F,6)[2])
%9 = [15, 4, 1, y, t - 1]

mfslashexpansion(f, g, n, flrat, params, precision)
Let mf be a modular form space in level 𝑁 , 𝑓 a modular form belonging to mf and let 𝑔 be in 𝑀+

2 (𝑄). This
function computes the Fourier expansion of 𝑓‖𝑘𝑔 to 𝑛 terms. We first describe the behaviour when flrat is 0:
the result is a vector 𝑣 of floating point complex numbers such that

𝑓‖𝑘𝑔(𝜏) = 𝑞𝛼
∑︁

𝑚>=0

𝑣[𝑚+ 1]𝑞𝑚/𝑤,

where 𝑞 = 𝑒(𝜏), 𝑤 is the width of the cusp 𝑔(𝑖𝑜𝑜) (namely (𝑁/(𝑐2, 𝑁) if 𝑔 is integral) and 𝛼 is a rational number.
If params is given, it is set to the parameters [𝛼,𝑤,𝑚𝑎𝑡𝑖𝑑(2)].

If flrat is 1, the program tries to rationalize the expression, i.e., to express the coefficients as rational numbers
or polmods. We write 𝑔 = 𝜆.𝑀.𝐴 where 𝜆 ∈ Q*, 𝑀 ∈ 𝑆𝐿2(Z) and 𝐴 = [𝑎, 𝑏; 0, 𝑑] is upper triangular, integral
and primitive with 𝑎 > 0, 𝑑 > 0 and 0 <= 𝑏 < 𝑑. Let 𝛼 and 𝑤 by the parameters attached to the expansion of
𝐹 := 𝑓‖𝑘𝑀 as above, i.e.

𝐹 (𝜏) = 𝑞𝛼
∑︁

𝑚>=0

𝑣[𝑚+ 1]𝑞𝑚/𝑤.

The function returns the expansion 𝑣 of 𝐹 = 𝑓‖𝑘𝑀 and sets the parameters to [𝛼,𝑤,𝐴]. Finally, the desired
expansion is (𝑎/𝑑)𝑘/2𝐹 (𝜏 + 𝑏/𝑑). The latter is identical to the returned expansion when 𝐴 is the identity,
i.e. when 𝑔 ∈ 𝑃𝑆𝐿2(Z). If this is not the case, the expansion differs from 𝑣 by the multiplicative constant
(𝑎/𝑑)𝑘/2𝑒(𝛼𝑏/(𝑑𝑤)) and a twist by a root of unity 𝑞1/𝑤 → 𝑒(𝑏/(𝑑𝑤))𝑞1/𝑤. The complications introduced by
this extra matrix 𝐴 allow to recognize the coefficients in a much smaller cyclotomic field, hence to obtain a sim-
pler description overall. (Note that this rationalization step may result in an error if the program cannot perform
it.)
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? mf = mfinit([32,4],0); f = mfbasis(mf)[1];
? mfcoefs(f, 10)
%2 = [0, 3, 0, 0, 0, 2, 0, 0, 0, 47, 0]
? mfatk = mfatkininit(mf,32); mfcoefs(mfatkin(mfatk,f),10) / mfatk[3]
%3 = [0, 1, 0, 16, 0, 22, 0, 32, 0, -27, 0]
? mfatk[3] \\ here normalizing constant C = 1, but need in general
%4 = 1
? mfslashexpansion(mf,f,[0,-1;1,0],10,1,&params) * 32^(4/2)
%5 = [0, 1, 0, 16, 0, 22, 0, 32, 0, -27, 0]
? params
%6 = [0, 32, [1, 0; 0, 1]]

? mf = mfinit([12,8],0); f = mfbasis(mf)[1];
? mfslashexpansion(mf,f,[1,0;2,1],7,0)
%7 = [0, 0, 0, 0.6666666... + 0.E-38*I, 0, -3.999999... + 6.92820...*I, 0,\
-11.99999999... - 20.78460969...*I]
? mfslashexpansion(mf,f,[1,0;2,1],7,1, &params)
%8 = [0, 0, 0, 2/3, 0, Mod(8*t, t^2+t+1), 0, Mod(-24*t-24, t^2+t+1)]
? params
%9 = [0, 3, [1, 0; 0, 1]]

If [Q(𝑓) : Q(𝜒)] > 1, the coefficients may be polynomials in 𝑦, where 𝑦 is any root of the polynomial giving the
field of definition of 𝑓 (f.mod or mfparams(f)[4]).

? mf=mfinit([23,2],0);f=mfeigenbasis(mf)[1];
? mfcoefs(f,5)
%1 = [Mod(0, y^2 - y - 1), Mod(1, y^2 - y - 1), Mod(-y, y^2 - y - 1),\
Mod(2*y - 1, y^2 - y - 1), Mod(y - 1, y^2 - y - 1), Mod(-2*y, y^2 - y - 1)]
? mfslashexpansion(mf,f,[1,0;0,1],5,1)
%2 = [0, 1, -y, 2*y - 1, y - 1, -2*y]
? mfslashexpansion(mf,f,[0,-1;1,0],5,1)
%3 = [0, -1/23, 1/23*y, -2/23*y + 1/23, -1/23*y + 1/23, 2/23*y]

Caveat. In half-integral weight, we define the “slash” operation as

(𝑓‖𝑘𝑔)(𝜏) := ((𝑐𝜏 + 𝑑)−1/2)2𝑘𝑓(𝑔.𝜏),

with the principal determination of the square root. In particular, the standard cocycle condition is no longer
satisfied and we only have 𝑓‖(𝑔𝑔′) = (𝑓‖𝑔)‖𝑔′.

mfspace(f )
Identify the modular space mf, resp. the modular form 𝑓 in mf if present, as the flag given to mfinit. Returns 0
(newspace), 1 (cuspidal space), 2 (old space), 3 (Eisenstein space) or 4 (full space).

? mf = mfinit([1,12],1); mfspace(mf)
%1 = 1
? mfspace(mf, mfDelta())
%2 = 0 \\ new space

This function returns −1 when the form 𝑓 is modular but does not belong to the space.

? mf = mfinit([1,2]; mfspace(mf, mfEk(2))
%3 = -1

When 𝑓 is not modular and is for instance only quasi-modular, the function returns nonsense:
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? M6 = mfinit([1,6]);
? dE4 = mfderiv(mfEk(4)); \\ not modular !
? mfspace(M6,dE4) \\ asserts (wrongly) that E4' belongs to new space
%3 = 0

mfsplit(dimlim, flag)
mf from mfinit with integral weight containing the new space (either the new space itself or the cuspidal space
or the full space), and preferably the newspace itself for efficiency, split the space into Galois orbits of eigenforms
of the newspace, satisfying various restrictions.

The functions returns [𝑣𝐹, 𝑣𝐾], where 𝑣𝐹 gives (Galois orbit of) eigenforms and 𝑣𝐾 is a list of polynomials
defining each Galois orbit. The eigenforms are given in mftobasis format, i.e. as a matrix whose columns give
the forms with respect to mfbasis(mf).

If dimlim is set, only the Galois orbits of dimension <= 𝑑𝑖𝑚𝑙𝑖𝑚 are computed (i.e. the rational eigenforms if
𝑑𝑖𝑚𝑙𝑖𝑚 = 1 and the character is real). This can considerably speed up the function when a Galois orbit is defined
over a large field.

flag speeds up computations when the dimension is large: if 𝑓𝑙𝑎𝑔 = 𝑑 > 0, when the dimension of the
eigenspace is > 𝑑, only the Galois polynomial is computed.

Note that the function mfeigenbasis returns all eigenforms in an easier to use format (as modular forms which
can be input as is in other functions); mfsplit is only useful when you can restrict to orbits of small dimensions,
e.g. rational eigenforms.

? mf=mfinit([11,2],0); f=mfeigenbasis(mf)[1]; mfcoefs(f,16)
%1 = [0, 1, -2, -1, ...]
? mf=mfinit([23,2],0); f=mfeigenbasis(mf)[1]; mfcoefs(f,16)
%2 = [Mod(0, z^2 - z - 1), Mod(1, z^2 - z - 1), Mod(-z, z^2 - z - 1), ...]
? mf=mfinit([179,2],0); apply(poldegree, mffields(mf))
%3 = [1, 3, 11]
? mf=mfinit([719,2],0);
? [vF,vK] = mfsplit(mf, 5); \\ fast when restricting to small orbits
time = 192 ms.
? #vF \\ a single orbit
%5 = 1
? poldegree(vK[1]) \\ of dimension 5
%6 = 5
? [vF,vK] = mfsplit(mf); \\ general case is slow
time = 2,104 ms.
? apply(poldegree,vK)
%8 = [5, 10, 45] \\ because degree 45 is large...

mfsturm()

Gives the Sturm bound for modular forms on Γ0(𝑁) and weight 𝑘, i.e., an upper bound for the order of the zero
at infinity of a nonzero form. NK is either

• a pair [𝑁, 𝑘], in which case the bound is the floor of (𝑘𝑁/12).
∏︀

𝑝‖𝑁 (1 + 1/𝑝);

• or the output of mfinit in which case the exact upper bound is returned.

? NK = [96,6]; mfsturm(NK)
%1 = 97
? mf=mfinit(NK,1); mfsturm(mf)
%2 = 76

(continues on next page)
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(continued from previous page)

? mfdim(NK,0) \\ new space
%3 = 72

mfsymbol(f, precision)
Initialize data for working with all period polynomials of the modular form 𝑓 : this is essential for efficiency for
functions such as mfsymboleval, mfmanin, and mfpetersson. An mfsymbol contains an mf structure and can
always be used whenever an mf would be needed.

? mf=mfinit([23,2],0);F=mfeigenbasis(mf)[1];
? FS=mfsymbol(mf,F);
? mfsymboleval(FS,[0,oo])
%3 = [8.762565143790690142 E-39 + 0.0877907874...*I,
-5.617375463602574564 E-39 + 0.0716801031...*I]
? mfpetersson(FS)
%4 =
[0.0039488965740025031688548076498662860143 1.2789721111175127425 E-40]

[1.2630501762985554269 E-40 0.0056442542987647835101583821368582485396]

By abuse of language, initialize data for working with mfpetersson in weight 1 and half-integral weight (where
no symbol exist); the mf argument may be an mfsymbol attached to a form on the space, which avoids recomputing
data independent of the form.

? mf=mfinit([12,9/2],1); F=mfbasis(mf);
? fs=mfsymbol(mf,F[1]);
time = 476 ms
? mfpetersson(fs)
%2 = 1.9722437519492014682047692073275406145 E-5
? f2s = mfsymbol(mf,F[2]);
time = 484 ms.
? mfpetersson(f2s)
%4 = 1.2142222531326333658647877864573002476 E-5
? gs = mfsymbol(fs,F[2]); \\ re-use existing symbol, a little faster
time = 430 ms.
? mfpetersson(gs) == %4 \\ same value
%6 = 1

For simplicity, we also allow mfsymbol(f) instead of mfsymbol(mfinit(f), f):

mfsymboleval(path, ga, precision)
Evaluation of the modular symbol 𝑓𝑠 (corresponding to the modular form 𝑓 ) output by mfsymbol on the given
path path, where path is either a vector [𝑠1, 𝑠2] or an integral matrix [𝑎, 𝑏; 𝑐, 𝑑] representing the path [𝑎/𝑐, 𝑏/𝑑].
In both cases 𝑠1 or 𝑠2 (or 𝑎/𝑐 or 𝑏/𝑑) can also be elements of the upper half-plane. To avoid possibly lengthy
mfsymbol computations, the program also accepts 𝑓𝑠 of the form [mf,F], but in that case 𝑠1 and 𝑠2 are limited
to oo and elements of the upper half-plane. The result is the polynomial equal to

∫︀ 𝑠2
𝑠1

(𝑋 − 𝜏)𝑘−2𝐹 (𝜏)𝑑𝜏 , the
integral being computed along a geodesic joining 𝑠1 and 𝑠2. If ga in𝐺𝐿+

2 (Q) is given, replace 𝐹 by 𝐹‖𝑘𝛾. Note
that if the integral diverges, the result will be a rational function. If the field of definition Q(𝑓) is larger than Q(𝜒)
then 𝑓 can be embedded into C in 𝑑 = [Q(𝑓) : Q(𝜒)] ways, in which case a vector of the 𝑑 results is returned.

? mf=mfinit([35,2],1);f=mfbasis(mf)[1];fs=mfsymbol(mf,f);
? mfsymboleval(fs,[0,oo])
%1 = 0.31404011074188471664161704390256378537*I

(continues on next page)
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? mfsymboleval(fs,[1,3;2,5])
%2 = -0.1429696291... - 0.2619975641...*I
? mfsymboleval(fs,[I,2*I])
%3 = 0.00088969563028739893631700037491116258378*I
? E2=mfEk(2);E22=mflinear([E2,mfbd(E2,2)],[1,-2]);mf=mfinit(E22);
? E2S = mfsymbol(mf,E22);
? mfsymboleval(E2S,[0,1])
%6 = (-1.00000...*x^2 + 1.00000...*x - 0.50000...)/(x^2 - x)

The rational function which is given in case the integral diverges is easy to interpret. For instance:

? E4=mfEk(4);mf=mfinit(E4);ES=mfsymbol(mf,E4);
? mfsymboleval(ES,[I,oo])
%2 = 1/3*x^3 - 0.928067...*I*x^2 - 0.833333...*x + 0.234978...*I
? mfsymboleval(ES,[0,I])
%3 = (-0.234978...*I*x^3 - 0.833333...*x^2 + 0.928067...*I*x + 0.333333...)/x

mfsymboleval(ES,[a,oo]) is the limit as 𝑇 → 𝑜𝑜 of∫︁ 𝑖𝑇

𝑎

(𝑋 − 𝜏)𝑘−2𝐹 (𝜏)𝑑𝜏 + 𝑎(0)(𝑋 − 𝑖𝑇 )𝑘−1/(𝑘 − 1),

where 𝑎(0) is the 0 at infinity. Similarly, mfsymboleval(ES,[0,a]) is the limit as 𝑇 → 𝑜𝑜 of∫︁ 𝑎

𝑖/𝑇

(𝑋 − 𝜏)𝑘−2𝐹 (𝜏)𝑑𝜏 + 𝑏(0)(1 + 𝑖𝑇𝑋)𝑘−1/(𝑘 − 1),

where 𝑏(0) is the 0 at infinity.

mftaylor(n, flreal, precision)
𝐹 being a form in 𝑀𝑘(𝑆𝐿2(Z)), computes the first 𝑛 + 1 canonical Taylor expansion of 𝐹 around 𝜏 = 𝐼 . If
flreal = 0, computes only an algebraic equivalence class. If flreal is set, compute 𝑝𝑛 such that for 𝜏 close
enough to 𝐼 we have

𝑓(𝜏) = (2𝐼/(𝜏 + 𝐼))𝑘
∑︁
𝑛>=0

𝑝𝑛((𝜏 − 𝐼)/(𝜏 + 𝐼))𝑛.

? D=mfDelta();
? mftaylor(D,8)
%2 = [1/1728, 0, -1/20736, 0, 1/165888, 0, 1/497664, 0, -11/3981312]

mftobasis(F, flag)
Coefficients of the form 𝐹 on the basis given by mfbasis(mf). A 𝑞-expansion or vector of coefficients can also
be given instead of 𝐹 , but in this case an error message may occur if the expansion is too short. An error message
is also given if 𝐹 does not belong to the modular form space. If flag is set, instead of error messages the output
is an affine space of solutions if a 𝑞-expansion or vector of coefficients is given, or the empty column otherwise.

? mf = mfinit([26,2],0); mfdim(mf)
%1 = 2
? F = mflinear(mf,[a,b]); mftobasis(mf,F)
%2 = [a, b]~

A 𝑞-expansion or vector of coefficients can also be given instead of 𝐹 .
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? Th = 1 + 2*sum(n=1, 8, q^(n^2), O(q^80));
? mf = mfinit([4,5,Mod(3,4)]);
? mftobasis(mf, Th^10)
%3 = [64/5, 4/5, 32/5]~

If 𝐹 does not belong to the corresponding space, the result is incorrect and simply matches the coefficients of
𝐹 up to some bound, and the function may either return an empty column or an error message. If flag is set,
there are no error messages, and the result is an empty column if 𝐹 is a modular form; if 𝐹 is supplied via a
series or vector of coefficients which does not contain enough information to force a unique (potential) solution,
the function returns [𝑣,𝐾] where 𝑣 is a solution and𝐾 is a matrix of maximal rank describing the affine space of
potential solutions 𝑣 +𝐾.𝑥.

? mf = mfinit([4,12],1);
? mftobasis(mf, q-24*q^2+O(q^3), 1)
%2 = [[43/64, -63/8, 800, 21/64]~, [1, 0; 24, 0; 2048, 768; -1, 0]]
? mftobasis(mf, [0,1,-24,252], 1)
%3 = [[1, 0, 1472, 0]~, [0; 0; 768; 0]]
? mftobasis(mf, [0,1,-24,252,-1472], 1)
%4 = [1, 0, 0, 0]~ \\ now uniquely determined
? mftobasis(mf, [0,1,-24,252,-1472,0], 1)
%5 = [1, 0, 0, 0]~ \\ wrong result: no such form exists
? mfcoefs(mflinear(mf,%), 5) \\ double check
%6 = [0, 1, -24, 252, -1472, 4830]
? mftobasis(mf, [0,1,-24,252,-1472,0])
*** at top-level: mftobasis(mf,[0,1,
*** ^--------------------
*** mftobasis: domain error in mftobasis: form does not belong to space
? mftobasis(mf, mfEk(10))
*** at top-level: mftobasis(mf,mfEk(
*** ^--------------------
*** mftobasis: domain error in mftobasis: form does not belong to space
? mftobasis(mf, mfEk(10), 1)
%7 = []~

mftonew(F)
mf being being a full or cuspidal space with parameters [𝑁, 𝑘, 𝜒] and 𝐹 a cusp form in that space, returns a vector
of 3-component vectors [𝑀,𝑑,𝐺], where 𝑓(𝜒)‖𝑀‖𝑁 , 𝑑‖𝑁/𝑀 , and 𝐺 is a form in 𝑆𝑛𝑒𝑤

𝑘 (Γ0(𝑀), 𝜒) such that
𝐹 is equal to the sum of the 𝐵(𝑑)(𝐺) over all these 3-component vectors.

? mf = mfinit([96,6],1); F = mfbasis(mf)[60]; s = mftonew(mf,F); #s
%1 = 1
? [M,d,G] = s[1]; [M,d]
%2 = [48, 2]
? mfcoefs(F,10)
%3 = [0, 0, -160, 0, 0, 0, 0, 0, 0, 0, -14400]
? mfcoefs(G,10)
%4 = [0, 0, -160, 0, 0, 0, 0, 0, 0, 0, -14400]

mftraceform(space)
If 𝑁𝐾 = [𝑁, 𝑘,𝐶𝐻𝐼, .] as in mfinit with 𝑘 integral, gives the trace form in the corresponding subspace of
𝑆𝑘(Γ0(𝑁), 𝜒). The supported values for space are 0: the newspace (default), 1: the full cuspidal space.
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? F = mftraceform([23,2]); mfcoefs(F,16)
%1 = [0, 2, -1, 0, -1, -2, -5, 2, 0, 4, 6, -6, 5, 6, 4, -10, -3]
? F = mftraceform([23,1,-23]); mfcoefs(F,16)
%2 = [0, 1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 0, -1]

mftwist(D)

𝐹 being a generalized modular form, returns the twist of 𝐹 by the integer𝐷, i.e., the form𝐺 such that mfcoef(G,
n) = `:math:`(D/n)mfcoef(F,n), where (𝐷/𝑛) is the Kronecker symbol.

? mf = mfinit([11,2],0); F = mfbasis(mf)[1]; mfcoefs(F, 5)
%1 = [0, 1, -2, -1, 2, 1]
? G = mftwist(F,-3); mfcoefs(G, 5)
%2 = [0, 1, 2, 0, 2, -1]
? mf2 = mfinit([99,2],0); mftobasis(mf2, G)
%3 = [1/3, 0, 1/3, 0]~

Note that twisting multiplies the level by 𝐷2. In particular it is not an involution:

? H = mftwist(G,-3); mfcoefs(H, 5)
%4 = [0, 1, -2, 0, 2, 1]
? mfparams(G)
%5 = [99, 2, 1, y, t - 1]

min(y)
Creates the maximum of 𝑥 and 𝑦 when they can be compared.

minpoly(v)
minimal polynomial of 𝐴 with respect to the variable 𝑣., i.e. the monic polynomial 𝑃 of minimal degree (in the
variable 𝑣) such that 𝑃 (𝐴) = 0.

modreverse()

Let 𝑧 = 𝑀𝑜𝑑(𝐴, 𝑇 ) be a polmod, and 𝑄 be its minimal polynomial, which must satisfy 𝑑𝑒𝑔(𝑄) = 𝑑𝑒𝑔(𝑇 ).
Returns a “reverse polmod” Mod(B, Q), which is a root of 𝑇 .

This is quite useful when one changes the generating element in algebraic extensions:

? u = Mod(x, x^3 - x -1); v = u^5;
? w = modreverse(v)
%2 = Mod(x^2 - 4*x + 1, x^3 - 5*x^2 + 4*x - 1)

which means that 𝑥3 − 5𝑥2 + 4𝑥− 1 is another defining polynomial for the cubic field

Q(𝑢) = Q[𝑥]/(𝑥3 − 𝑥− 1) = Q[𝑥]/(𝑥3 − 5𝑥2 + 4𝑥− 1) = Q(𝑣),

and that 𝑢 → 𝑣2 − 4𝑣 + 1 gives an explicit isomorphism. From this, it is easy to convert elements between the
𝐴(𝑢) ∈ Q(𝑢) and 𝐵(𝑣) ∈ Q(𝑣) representations:

? A = u^2 + 2*u + 3; subst(lift(A), 'x, w)
%3 = Mod(x^2 - 3*x + 3, x^3 - 5*x^2 + 4*x - 1)
? B = v^2 + v + 1; subst(lift(B), 'x, v)
%4 = Mod(26*x^2 + 31*x + 26, x^3 - x - 1)

If the minimal polynomial of 𝑧 has lower degree than expected, the routine fails
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? u = Mod(-x^3 + 9*x, x^4 - 10*x^2 + 1)
? modreverse(u)
*** modreverse: domain error in modreverse: deg(minpoly(z)) < 4
*** Break loop: type 'break' to go back to GP prompt
break> Vec( dbg_err() ) \\ ask for more info
["e_DOMAIN", "modreverse", "deg(minpoly(z))", "<", 4,
Mod(-x^3 + 9*x, x^4 - 10*x^2 + 1)]
break> minpoly(u)
x^2 - 8

moebius()

Moebius 𝜇-function of ‖𝑥‖; 𝑥 must be a nonzero integer.

msatkinlehner(Q, H)

Let 𝑀 be a full modular symbol space of level 𝑁 , as given by msinit, let 𝑄‖𝑁 , (𝑄,𝑁/𝑄) = 1, and let 𝐻 be a
subspace stable under the Atkin-Lehner involution 𝑤𝑄. Return the matrix of 𝑤𝑄 acting on 𝐻 (𝑀 if omitted).

? M = msinit(36,2); \\ M_2(Gamma_0(36))
? w = msatkinlehner(M,4); w^2 == 1
%2 = 1
? #w \\ involution acts on a 13-dimensional space
%3 = 13
? M = msinit(36,2, -1); \\ M_2(Gamma_0(36))^-
? w = msatkinlehner(M,4); w^2 == 1
%5 = 1
? #w
%6 = 4

mscosets(inH)

gen being a system of generators for a group 𝐺 and 𝐻 being a subgroup of finite index in 𝐺, return a list of
right cosets of 𝐻 and the right action of 𝐺 on 𝐻 . The subgroup 𝐻 is given by a criterion inH (closure) deciding
whether an element of 𝐺 belongs to 𝐻 . The group 𝐺 is restricted to types handled by generic multiplication (*)
and inversion (g^(-1)), such as matrix groups or permutation groups.

Let 𝑔𝑒𝑛𝑠 = [𝑔1, ..., 𝑔𝑟]. The function returns [𝐶,𝑀 ] where 𝐶 lists the ℎ = [𝐺 : 𝐻] representatives [𝛾1, ..., 𝛾ℎ]
for the right cosets 𝐻𝛾1, ...,𝐻𝛾ℎ; 𝛾1 is always the neutral element in 𝐺. For all 𝑖 <= ℎ, 𝑗 <= 𝑟, if 𝑀 [𝑖][𝑗] = 𝑘
then 𝐻𝛾𝑖𝑔𝑗 = 𝐻𝛾𝑘.

? PSL2 = [[0,1;-1,0], [1,1;0,1]]; \\ S and T
\\ G = PSL2, H = Gamma0(2)
? [C, M] = mscosets(PSL2, g->g[2,1] % 2 == 0);
? C \\ three cosets
%3 = [[1, 0; 0, 1], [0, 1; -1, 0], [0, 1; -1, -1]]
? M
%4 = [Vecsmall([2, 1]), Vecsmall([1, 3]), Vecsmall([3, 2])]

Looking at 𝑀 [1] we see that 𝑆 belongs to the second coset and 𝑇 to the first (trivial) coset.

mscuspidal(flag)
𝑀 being a full modular symbol space, as given by msinit, return its cuspidal part 𝑆. If 𝑓𝑙𝑎𝑔 = 1, return [𝑆,𝐸]
its decomposition into cuspidal and Eisenstein parts.

A subspace is given by a structure allowing quick projection and restriction of linear operators; its first component
is a matrix with integer coefficients whose columns form a Q-basis of the subspace.
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? M = msinit(2,8, 1); \\ M_8(Gamma_0(2))^+
? [S,E] = mscuspidal(M, 1);
? E[1] \\ 2-dimensional
%3 =
[0 -10]

[0 -15]

[0 -3]

[1 0]

? S[1] \\ 1-dimensional
%4 =
[ 3]

[30]

[ 6]

[-8]

msdim()

𝑀 being a full modular symbol space or subspace, for instance as given by msinit or mscuspidal, return its
dimension as a Q-vector space.

? M = msinit(11,4); msdim(M)
%1 = 6
? M = msinit(11,4,1); msdim(M)
%2 = 4 \\ dimension of the '+' part
? [S,E] = mscuspidal(M,1);
? [msdim(S), msdim(E)]
%4 = [2, 2]

Note that mfdim([N,k]) is going to be much faster if you only need the dimension of the space and not really to
work with it. This function is only useful to quickly check the dimension of an existing space.

mseisenstein()

𝑀 being a full modular symbol space, as given by msinit, return its Eisenstein subspace. A subspace is given
by a structure allowing quick projection and restriction of linear operators; its first component is a matrix with
integer coefficients whose columns form a Q-basis of the subspace. This is the same basis as given by the second
component of mscuspidal(𝑀, 1).

? M = msinit(2,8, 1); \\ M_8(Gamma_0(2))^+
? E = mseisenstein(M);
? E[1] \\ 2-dimensional
%3 =
[0 -10]

[0 -15]

[0 -3]

(continues on next page)
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[1 0]

? E == mscuspidal(M,1)[2]
%4 = 1

mseval(s, p)
Let ∆0 := 𝐷𝑖𝑣0(P1(Q)). Let𝑀 be a full modular symbol space, as given by msinit, let 𝑠 be a modular symbol
from 𝑀 , i.e. an element of Hom𝐺(∆0, 𝑉 ), and let 𝑝 = [𝑎, 𝑏] ∈ ∆0 be a path between two elements in P1(Q),
return 𝑠(𝑝) ∈ 𝑉 . The path extremities 𝑎 and 𝑏may be given as t_INT, t_FRAC or 𝑜𝑜 = (1 : 0); it is also possible
to describe the path by a 2𝑥2 integral matrix whose columns give the two cusps. The symbol 𝑠 is either

• a t_COL coding a modular symbol in terms of the fixed basis of Hom𝐺(∆0, 𝑉 ) chosen in 𝑀 ; if 𝑀 was
initialized with a nonzero sign (+ or −), then either the basis for the full symbol space or the -part can be
used (the dimension being used to distinguish the two).

• a t_MAT whose columns encode modular symbols as above. This is much faster than evaluating individual
symbols on the same path 𝑝 independently.

• a t_VEC (𝑣𝑖) of elements of 𝑉 , where the 𝑣𝑖 = 𝑠(𝑔𝑖) give the image of the generators 𝑔𝑖 of ∆0, see
mspathgens. We assume that 𝑠 is a proper symbol, i.e. that the 𝑣𝑖 satisfy the mspathgens relations.

If 𝑝 is omitted, convert a single symbol 𝑠 to the second form: a vector of the 𝑠(𝑔𝑖). A t_MAT is converted to a
vector of such.

? M = msinit(2,8,1); \\ M_8(Gamma_0(2))^+
? g = mspathgens(M)[1]
%2 = [[+oo, 0], [0, 1]]
? N = msnew(M)[1]; #N \\ Q-basis of new subspace, dimension 1
%3 = 1
? s = N[,1] \\ t_COL representation
%4 = [-3, 6, -8]~
? S = mseval(M, s) \\ t_VEC representation
%5 = [64*x^6-272*x^4+136*x^2-8, 384*x^5+960*x^4+192*x^3-672*x^2-432*x-72]
? mseval(M,s, g[1])
%6 = 64*x^6 - 272*x^4 + 136*x^2 - 8
? mseval(M,S, g[1])
%7 = 64*x^6 - 272*x^4 + 136*x^2 - 8

Note that the symbol should have values in 𝑉 = Q[𝑥, 𝑦]𝑘−2, we return the de-homogenized values corresponding
to 𝑦 = 1 instead.

msfarey(inH, CM)

𝐹 being a Farey symbol attached to a group 𝐺 contained in 𝑃𝑆𝐿2(Z) and 𝐻 a subgroup of 𝐺, return a Farey
symbol attached to 𝐻 . The subgroup 𝐻 is given by a criterion inH (closure) deciding whether an element of 𝐺
belongs to 𝐻 . The symbol 𝐹 can be created using

• mspolygon: 𝐺 = Γ0(𝑁), which runs in time 𝑂(𝑁);

• or msfarey itself, which runs in time 𝑂([𝐺 : 𝐻]2).

If present, the argument CM is set to mscosets(F[3]), giving the right cosets of 𝐻 and the action of 𝐺 by right
multiplication. Since msfarey’s algorithm is quadratic in the index [𝐺 : 𝐻], it is advisable to construct subgroups
by a chain of inclusions if possible.

\\ Gamma_0(N)
G0(N) = mspolygon(N);

(continues on next page)
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\\ Gamma_1(N): direct construction, slow
G1(N) = msfarey(mspolygon(1), g -> my(a = g[1,1]%N, c = g[2,1]%N);\
c == 0 && (a == 1 || a == N-1));
\\ Gamma_1(N) via Gamma_0(N): much faster
G1(N) = msfarey(G0(N), g -> my(a=g[1,1]%N); a==1 || a==N-1);

\\ Gamma(N)
G(N) = msfarey(G1(N), g -> g[1,2]%N==0);

G_00(N) = msfarey(G0(N), x -> x[1,2]%N==0);
G1_0(N1,N2) = msfarey(G0(1), x -> x[2,1]%N1==0 && x[1,2]%N2==0);

\\ Gamma_0(91) has 4 elliptic points of order 3, Gamma_1(91) has none
D0 = mspolygon(G0(91), 2)[4];
D1 = mspolygon(G1(91), 2)[4];
write("F.tex","\\documentclass{article}\\usepackage{tikz}\\begin{document}",\
D0,"\n",D1,"\\end{document}");

msfromcusp(c)
Returns the modular symbol attached to the cusp 𝑐, where 𝑀 is a modular symbol space of level 𝑁 , attached to
𝐺 = Γ0(𝑁). The cusp 𝑐 in P1(Q)/𝐺 is given either as oo (= (1 : 0)) or as a rational number 𝑎/𝑏 (= (𝑎 : 𝑏)).
The attached symbol maps the path [𝑏] − [𝑎] ∈ 𝐷𝑖𝑣0(P1(Q)) to 𝐸𝑐(𝑏) − 𝐸𝑐(𝑎), where 𝐸𝑐(𝑟) is 0 when 𝑟! = 𝑐
and 𝑋𝑘−2‖𝛾𝑟 otherwise, where 𝛾𝑟.𝑟 = (1 : 0). These symbols span the Eisenstein subspace of 𝑀 .

? M = msinit(2,8); \\ M_8(Gamma_0(2))
? E = mseisenstein(M);
? E[1] \\ two-dimensional
%3 =
[0 -10]

[0 -15]

[0 -3]

[1 0]

? s = msfromcusp(M,oo)
%4 = [0, 0, 0, 1]~
? mseval(M, s)
%5 = [1, 0]
? s = msfromcusp(M,1)
%6 = [-5/16, -15/32, -3/32, 0]~
? mseval(M,s)
%7 = [-x^6, -6*x^5 - 15*x^4 - 20*x^3 - 15*x^2 - 6*x - 1]

In case𝑀 was initialized with a nonzero sign, the symbol is given in terms of the fixed basis of the whole symbol
space, not the + or − part (to which it need not belong).

? M = msinit(2,8, 1); \\ M_8(Gamma_0(2))^+
? E = mseisenstein(M);
? E[1] \\ still two-dimensional, in a smaller space

(continues on next page)
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%3 =
[ 0 -10]

[ 0 3]

[-1 0]

? s = msfromcusp(M,oo) \\ in terms of the basis for M_8(Gamma_0(2)) !
%4 = [0, 0, 0, 1]~
? mseval(M, s) \\ same symbol as before
%5 = [1, 0]

msfromell(sign)
Let 𝐸/Q be an elliptic curve of conductor 𝑁 . For 𝜀 = 1, we define the (cuspidal, new) modular symbol 𝑥𝜀
in 𝐻1

𝑐 (𝑋0(𝑁),Q)𝜀 attached to 𝐸. For all primes 𝑝 not dividing 𝑁 we have 𝑇𝑝(𝑥𝜀) = 𝑎𝑝𝑥
𝜀, where 𝑎𝑝 =

𝑝+ 1 − #𝐸(F𝑝).

Let Ω+ = 𝐸.𝑜𝑚𝑒𝑔𝑎[1] be the real period of 𝐸 (integration of the Néron differential 𝑑𝑥/(2𝑦 + 𝑎1𝑥+ 𝑎3) on the
connected component of 𝐸(R), i.e. the generator of 𝐻1(𝐸,Z)+) normalized by Ω+ > 0. Let 𝑖Ω− the integral
on a generator of 𝐻1(𝐸,Z)− with Ω− ∈ R>0. If 𝑐𝑜𝑜 is the number of connected components of 𝐸(R), Ω− is
equal to (−2/𝑐𝑜𝑜)𝑥𝑖𝑚𝑎𝑔(𝐸.𝑜𝑚𝑒𝑔𝑎[2]). The complex modular symbol is defined by

𝐹 : 𝛿 → 2𝑖𝜋

∫︁
𝛿

𝑓(𝑧)𝑑𝑧

The modular symbols 𝑥𝜀 are normalized so that 𝐹 = 𝑥+Ω+ + 𝑥−𝑖Ω−. In particular, we have

𝑥+([0] − [𝑜𝑜]) = 𝐿(𝐸, 1)/Ω+,

which defines 𝑥 unless 𝐿(𝐸, 1) = 0. Furthermore, for all fundamental discriminants 𝐷 such that 𝜀.𝐷 > 0, we
also have ∑︁

0<=𝑎<‖𝐷‖

(𝐷‖𝑎)𝑥𝜀([𝑎/‖𝐷‖] − [𝑜𝑜]) = 𝐿(𝐸, (𝐷‖.), 1)/Ω𝜀,

where (𝐷‖.) is the Kronecker symbol. The period Ω− is also 2/𝑐𝑜𝑜𝑥 the real period of the twist 𝐸(−4) =
𝑒𝑙𝑙𝑡𝑤𝑖𝑠𝑡(𝐸,−4).

This function returns the pair [𝑀,𝑥], where 𝑀 is msinit(𝑁, 2) and 𝑥 is 𝑥𝑠𝑖𝑔𝑛 as above when 𝑠𝑖𝑔𝑛 = 1, and
𝑥 = [𝑥+, 𝑥−, 𝐿𝐸 ] when sign is 0, where 𝐿𝐸 is a matrix giving the canonical Z-lattice attached to 𝐸 in the sense
of mslattice applied to Q𝑥+ + Q𝑥−. Explicitly, it is generated by (𝑥+, 𝑥−) when 𝐸(R) has two connected
components and by (𝑥+ − 𝑥−, 2𝑥−) otherwise.

The modular symbols 𝑥 are given as a t_COL (in terms of the fixed basis of Hom𝐺(∆0,Q) chosen in 𝑀 ).

? E=ellinit([0,-1,1,-10,-20]); \\ X_0(11)
? [M,xp]= msfromell(E,1);
? xp
%3 = [1/5, -1/2, -1/2]~
? [M,x]= msfromell(E);
? x \\ x^+, x^- and L_E
%5 = [[1/5, -1/2, -1/2]~, [0, 1/2, -1/2]~, [1/5, 0; -1, 1; 0, -1]]
? p = 23; (mshecke(M,p) - ellap(E,p))*x[1]
%6 = [0, 0, 0]~ \\ true at all primes, including p = 11; same for x[2]
? (mshecke(M,p) - ellap(E,p))*x[3] == 0
%7 = 1
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Instead of a single curve 𝐸, one may use instead a vector of isogenous curves. The function then returns 𝑀 and
the vector of attached modular symbols.

msfromhecke(v, H)

Given a msinit𝑀 and a vector 𝑣 of pairs [𝑝, 𝑃 ] (where 𝑝 is prime and 𝑃 is a polynomial with integer coefficients),
return a basis of all modular symbols such that 𝑃 (𝑇𝑝)(𝑠) = 0. If𝐻 is present, it must be a Hecke-stable subspace
and we restrict to 𝑠 ∈ 𝐻 . When 𝑇𝑝 has a rational eigenvalue and 𝑃 (𝑥) = 𝑥 − 𝑎𝑝 has degree 1, we also accept
the integer 𝑎𝑝 instead of 𝑃 .

? E = ellinit([0,-1,1,-10,-20]) \\11a1
? ellap(E,2)
%2 = -2
? ellap(E,3)
%3 = -1
? M = msinit(11,2);
? S = msfromhecke(M, [[2,-2],[3,-1]])
%5 =
[ 1 1]

[-5 0]

[ 0 -5]
? mshecke(M, 2, S)
%6 =
[-2 0]

[ 0 -2]

? M = msinit(23,4);
? S = msfromhecke(M, [[5, x^4-14*x^3-244*x^2+4832*x-19904]]);
? factor( charpoly(mshecke(M,5,S)) )
%9 =
[x^4 - 14*x^3 - 244*x^2 + 4832*x - 19904 2]

msgetlevel()

𝑀 being a full modular symbol space, as given by msinit, return its level 𝑁 .

msgetsign()

𝑀 being a full modular symbol space, as given by msinit, return its sign: 1 or 0 (unset).

? M = msinit(11,4, 1);
? msgetsign(M)
%2 = 1
? M = msinit(11,4);
? msgetsign(M)
%4 = 0

msgetweight()

𝑀 being a full modular symbol space, as given by msinit, return its weight 𝑘.

? M = msinit(11,4);
? msgetweight(M)
%2 = 4
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mshecke(p, H)

𝑀 being a full modular symbol space, as given by msinit, 𝑝 being a prime number, and𝐻 being a Hecke-stable
subspace (𝑀 if omitted) return the matrix of 𝑇𝑝 acting on 𝐻 (𝑈𝑝 if 𝑝 divides 𝑁 ). Result is undefined if 𝐻 is not
stable by 𝑇𝑝 (resp. 𝑈𝑝).

? M = msinit(11,2); \\ M_2(Gamma_0(11))
? T2 = mshecke(M,2)
%2 =
[3 0 0]

[1 -2 0]

[1 0 -2]
? M = msinit(11,2, 1); \\ M_2(Gamma_0(11))^+
? T2 = mshecke(M,2)
%4 =
[ 3 0]

[-1 -2]

? N = msnew(M)[1] \\ Q-basis of new cuspidal subspace
%5 =
[-2]

[-5]

? p = 1009; mshecke(M, p, N) \\ action of T_1009 on N
%6 =
[-10]
? ellap(ellinit("11a1"), p)
%7 = -10

msinit(V, sign)
Given 𝐺 a finite index subgroup of 𝑆𝐿(2,Z) and a finite dimensional representation 𝑉 of 𝐺𝐿(2,Q), cre-
ates a space of modular symbols, the 𝐺-module Hom𝐺(𝐷𝑖𝑣0(P1(Q)), 𝑉 ). This is canonically isomorphic to
𝐻1

𝑐 (𝑋(𝐺), 𝑉 ), and allows to compute modular forms for 𝐺. If sign is present and nonzero, it must be 1
and we consider the subspace defined by 𝐾𝑒𝑟(𝜎 − 𝑠𝑖𝑔𝑛), where 𝜎 is induced by [-1,0;0,1]. Currently
the only supported groups are the Γ0(𝑁), coded by the integer 𝑁 > 0. The only supported representation is
𝑉𝑘 = Q[𝑋,𝑌 ]𝑘−2, coded by the integer 𝑘 >= 2.

? M = msinit(11,2); msdim(M) \\ Gamma0(11), weight 2
%1 = 3
? mshecke(M,2) \\ T_2 acting on M
%2 =
[3 1 1]

[0 -2 0]

[0 0 -2]
? msstar(M) \\ * involution
%3 =
[1 0 0]

(continues on next page)
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[0 0 1]

[0 1 0]

? Mp = msinit(11,2, 1); msdim(Mp) \\ + part
%4 = 2
? mshecke(Mp,2) \\ T_2 action on M^+
%5 =
[3 2]

[0 -2]
? msstar(Mp)
%6 =
[1 0]

[0 1]

msissymbol(s)
𝑀 being a full modular symbol space, as given by msinit, check whether 𝑠 is a modular symbol attached to 𝑀 .
If 𝐴 is a matrix, check whether its columns represent modular symbols and return a 0 − 1 vector.

? M = msinit(7,8, 1); \\ M_8(Gamma_0(7))^+
? A = msnew(M)[1];
? s = A[,1];
? msissymbol(M, s)
%4 = 1
? msissymbol(M, A)
%5 = [1, 1, 1]
? S = mseval(M,s);
? msissymbol(M, S)
%7 = 1
? [g,R] = mspathgens(M); g
%8 = [[+oo, 0], [0, 1/2], [1/2, 1]]
? #R \\ 3 relations among the generators g_i
%9 = 3
? T = S; T[3]++; \\ randomly perturb S(g_3)
? msissymbol(M, T)
%11 = 0 \\ no longer satisfies the relations

mslattice(H)

Let ∆0 := 𝐷𝑖𝑣0(P1(Q)) and 𝑉𝑘 = Q[𝑥, 𝑦]𝑘−2. Let 𝑀 be a full modular symbol space, as given by msinit and
let𝐻 be a subspace, e.g. as given by mscuspidal. This function returns a canonical Z structure on𝐻 defined as
follows. Consider the map 𝑐 : 𝑀 = HomΓ0(𝑁)(∆0, 𝑉𝑘) → 𝐻1(Γ0(𝑁), 𝑉𝑘) given by 𝜑 : − − − > 𝑐𝑙𝑎𝑠𝑠(𝛾 →
𝜑(0, 𝛾−10)). Let 𝐿𝑘 = Z[𝑥, 𝑦]𝑘−2 be the natural Z-structure of 𝑉𝑘. The result of mslattice is a Z-basis of the
inverse image by 𝑐 of 𝐻1(Γ0(𝑁), 𝐿𝑘) in the space of modular symbols generated by 𝐻 .

For user convenience, 𝐻 can be defined by a matrix representing the Q-basis of 𝐻 (in terms of the canonical
Q-basis of 𝑀 fixed by msinit and used to represent modular symbols).

If omitted, 𝐻 is the cuspidal part of 𝑀 as given by mscuspidal. The Eisenstein part
HomΓ0(𝑁)(𝐷𝑖𝑣(P1(Q)), 𝑉𝑘) is in the kernel of 𝑐, so the result has no meaning for the Eisenstein part
H.
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? M=msinit(11,2);
? [S,E] = mscuspidal(M,1); S[1] \\ a primitive Q-basis of S
%2 =
[ 1 1]
[-5 0]
[ 0 -5]
? mslattice(M,S)
%3 =
[-1/5 -1/5]
[ 1 0]
[ 0 1]
? mslattice(M,E)
%4 =
[1]
[0]
[0]
? M=msinit(5,4);
? S=mscuspidal(M); S[1]
%6 =
[ 7 20]
[ 3 3]
[-10 -23]
[-30 -30]
? mslattice(M,S)
%7 =
[-1/10 -11/130]
[ 0 -1/130]
[ 1/10 6/65]
[ 0 1/13]

msnew()

𝑀 being a full modular symbol space, as given by msinit, return the new part of its cuspidal subspace. A
subspace is given by a structure allowing quick projection and restriction of linear operators; its first component
is a matrix with integer coefficients whose columns form a Q-basis of the subspace.

? M = msinit(11,8, 1); \\ M_8(Gamma_0(11))^+
? N = msnew(M);
? #N[1] \\ 6-dimensional
%3 = 6

msomseval(PHI, path)
Return the vectors of moments of the 𝑝-adic distribution attached to the path path by the overconvergent modular
symbol PHI.

? M = msinit(3,6,1);
? Mp= mspadicinit(M,5,10);
? phi = [5,-3,-1]~;
? msissymbol(M,phi)
%4 = 1
? PHI = mstooms(Mp,phi);
? ME = msomseval(Mp,PHI,[oo, 0]);

mspadicL(s, r)

653



CyPari2 Documentation, Release 2.1.3

Returns the value (or 𝑟-th derivative) on a character 𝜒𝑠 of Z*
𝑝 of the 𝑝-adic 𝐿-function attached to mu.

Let Φ be the 𝑝-adic distribution-valued overconvergent symbol attached to a modular symbol 𝜑 for Γ0(𝑁) (eigen-
vector for 𝑇𝑁 (𝑝) for the eigenvalue 𝑎𝑝). Then 𝐿𝑝(Φ, 𝜒𝑠) = 𝐿𝑝(𝜇, 𝑠) is the 𝑝-adic 𝐿 function defined by

𝐿𝑝(Φ, 𝜒𝑠) =

∫︁
Z*
𝑝

𝜒𝑠(𝑧)𝑑𝜇(𝑧)

where 𝜇 is the distribution on Z*
𝑝 defined by the restriction of Φ([𝑜𝑜] − [0]) to Z*

𝑝. The 𝑟-th derivative is taken in
direction < 𝜒 >:

𝐿(𝑟)
𝑝 (Φ, 𝜒𝑠) =

∫︁
Z*
𝑝

𝜒𝑠(𝑧)(log 𝑧)𝑟𝑑𝜇(𝑧).

In the argument list,

• mu is as returned by mspadicmoments (distributions attached to Φ by restriction to discs 𝑎+ 𝑝𝜈Z𝑝, (𝑎, 𝑝) =
1).

• 𝑠 = [𝑠1, 𝑠2] with 𝑠1 ∈ Z ⊂ Z𝑝 and 𝑠2𝑚𝑜𝑑𝑝−1 or 𝑠2𝑚𝑜𝑑2 for 𝑝 = 2, encoding the 𝑝-adic character 𝜒𝑠 :=<
𝜒 >𝑠1 𝜏𝑠2 ; here 𝜒 is the cyclotomic character from 𝐺𝑎𝑙(Q𝑝(𝜇𝑝𝑜𝑜)/Q𝑝) to Z*

𝑝, and 𝜏 is the Teichmüller
character (for 𝑝 > 2 and the character of order 2 on (Z/4Z)* if 𝑝 = 2); for convenience, the character [𝑠, 𝑠]
can also be represented by the integer 𝑠.

When 𝑎𝑝 is a 𝑝-adic unit,𝐿𝑝 takes its values inQ𝑝. When 𝑎𝑝 is not a unit, it takes its values in the two-dimensional
Q𝑝-vector space 𝐷𝑐𝑟𝑖𝑠(𝑀(𝜑)) where 𝑀(𝜑) is the “motive” attached to 𝜑, and we return the two 𝑝-adic compo-
nents with respect to some fixed Q𝑝-basis.

? M = msinit(3,6,1); phi=[5, -3, -1]~;
? msissymbol(M,phi)
%2 = 1
? Mp = mspadicinit(M, 5, 4);
? mu = mspadicmoments(Mp, phi); \\ no twist
\\ End of initializations

? mspadicL(mu,0) \\ L_p(chi^0)
%5 = 5 + 2*5^2 + 2*5^3 + 2*5^4 + ...
? mspadicL(mu,1) \\ L_p(chi), zero for parity reasons
%6 = [O(5^13)]~
? mspadicL(mu,2) \\ L_p(chi^2)
%7 = 3 + 4*5 + 4*5^2 + 3*5^5 + ...
? mspadicL(mu,[0,2]) \\ L_p(tau^2)
%8 = 3 + 5 + 2*5^2 + 2*5^3 + ...
? mspadicL(mu, [1,0]) \\ L_p(<chi>)
%9 = 3*5 + 2*5^2 + 5^3 + 2*5^7 + 5^8 + 5^10 + 2*5^11 + O(5^13)
? mspadicL(mu,0,1) \\ L_p'(chi^0)
%10 = 2*5 + 4*5^2 + 3*5^3 + ...
? mspadicL(mu, 2, 1) \\ L_p'(chi^2)
%11 = 4*5 + 3*5^2 + 5^3 + 5^4 + ...

Now several quadratic twists: mstooms is indicated.

? PHI = mstooms(Mp,phi);
? mu = mspadicmoments(Mp, PHI, 12); \\ twist by 12
? mspadicL(mu)
%14 = 5 + 5^2 + 5^3 + 2*5^4 + ...

(continues on next page)
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? mu = mspadicmoments(Mp, PHI, 8); \\ twist by 8
? mspadicL(mu)
%16 = 2 + 3*5 + 3*5^2 + 2*5^4 + ...
? mu = mspadicmoments(Mp, PHI, -3); \\ twist by -3 < 0
? mspadicL(mu)
%18 = O(5^13) \\ always 0, phi is in the + part and D < 0

One can locate interesting symbols of level 𝑁 and weight 𝑘 with msnew and mssplit. Note that instead of a
symbol, one can input a 1-dimensional Hecke-subspace from mssplit: the function will automatically use the
underlying basis vector.

? M=msinit(5,4,1); \\ M_4(Gamma_0(5))^+
? L = mssplit(M, msnew(M)); \\ list of irreducible Hecke-subspaces
? phi = L[1]; \\ one Galois orbit of newforms
? #phi[1] \\... this one is rational
%4 = 1
? Mp = mspadicinit(M, 3, 4);
? mu = mspadicmoments(Mp, phi);
? mspadicL(mu)
%7 = 1 + 3 + 3^3 + 3^4 + 2*3^5 + 3^6 + O(3^9)

? M = msinit(11,8, 1); \\ M_8(Gamma_0(11))^+
? Mp = mspadicinit(M, 3, 4);
? L = mssplit(M, msnew(M));
? phi = L[1]; #phi[1] \\ ... this one is two-dimensional
%11 = 2
? mu = mspadicmoments(Mp, phi);
*** at top-level: mu=mspadicmoments(Mp,ph
*** ^--------------------
*** mspadicmoments: incorrect type in mstooms [dim_Q (eigenspace) > 1]

mspadicinit(p, n, flag)
𝑀 being a full modular symbol space, as given by msinit, and 𝑝 a prime, initialize technical data needed to
compute with overconvergent modular symbols, modulo 𝑝𝑛. If 𝑓𝑙𝑎𝑔 is unset, allow all symbols; else initialize
only for a restricted range of symbols depending on 𝑓𝑙𝑎𝑔: if 𝑓𝑙𝑎𝑔 = 0 restrict to ordinary symbols, else restrict
to symbols 𝜑 such that 𝑇𝑝(𝜑) = 𝑎𝑝𝜑, with 𝑣𝑝(𝑎𝑝) >= 𝑓𝑙𝑎𝑔, which is faster as 𝑓𝑙𝑎𝑔 increases. (The fastest
initialization is obtained for 𝑓𝑙𝑎𝑔 = 0 where we only allow ordinary symbols.) For supersingular eigensymbols,
such that 𝑝‖𝑎𝑝, we must further assume that 𝑝 does not divide the level.

? E = ellinit("11a1");
? [M,phi] = msfromell(E,1);
? ellap(E,3)
%3 = -1
? Mp = mspadicinit(M, 3, 10, 0); \\ commit to ordinary symbols
? PHI = mstooms(Mp,phi);

If we restrict the range of allowed symbols with flag (for faster initialization), exceptions will occur if 𝑣𝑝(𝑎𝑝)
violates this bound:

? E = ellinit("15a1");
? [M,phi] = msfromell(E,1);
? ellap(E,7)

(continues on next page)
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%3 = 0
? Mp = mspadicinit(M,7,5,0); \\ restrict to ordinary symbols
? PHI = mstooms(Mp,phi)
*** at top-level: PHI=mstooms(Mp,phi)
*** ^---------------
*** mstooms: incorrect type in mstooms [v_p(ap) > mspadicinit flag] (t_VEC).
? Mp = mspadicinit(M,7,5); \\ no restriction
? PHI = mstooms(Mp,phi);

This function uses 𝑂(𝑁2(𝑛+ 𝑘)2𝑝) memory, where 𝑁 is the level of 𝑀 .

mspadicmoments(PHI, D)

Given Mp from mspadicinit, an overconvergent eigensymbol PHI from mstooms and a fundamental dis-
criminant 𝐷 coprime to 𝑝, let 𝑃𝐻𝐼𝐷 denote the twisted symbol. This function computes the distribution
𝜇 = 𝑃𝐻𝐼𝐷([0] − 𝑜𝑜])‖Z*

𝑝 restricted to Z*
𝑝. More precisely, it returns the moments of the 𝑝 − 1 distributions

𝑃𝐻𝐼𝐷([0] − [𝑜𝑜])|(𝑎 + 𝑝Z𝑝), 0 < 𝑎 < 𝑝. We also allow PHI to be given as a classical symbol, which is then
lifted to an overconvergent symbol by mstooms; but this is wasteful if more than one twist is later needed.

The returned data 𝜇 (𝑝-adic distributions attached to PHI) can then be used in mspadicL or mspadicseries.
This precomputation allows to quickly compute derivatives of different orders or values at different characters.

? M = msinit(3,6, 1);
? phi = [5,-3,-1]~;
? msissymbol(M, phi)
%3 = 1
? p = 5; mshecke(M,p) * phi \\ eigenvector of T_5, a_5 = 6
%4 = [30, -18, -6]~
? Mp = mspadicinit(M, p, 10, 0); \\ restrict to ordinary symbols, mod p^10
? PHI = mstooms(Mp, phi);
? mu = mspadicmoments(Mp, PHI);
? mspadicL(mu)
%8 = 5 + 2*5^2 + 2*5^3 + ...
? mu = mspadicmoments(Mp, PHI, 12); \\ twist by 12
? mspadicL(mu)
%10 = 5 + 5^2 + 5^3 + 2*5^4 + ...

mspadicseries(i)
Let Φ be the 𝑝-adic distribution-valued overconvergent symbol attached to a modular symbol 𝜑 for Γ0(𝑁) (eigen-
vector for 𝑇𝑁 (𝑝) for the eigenvalue 𝑎𝑝). If 𝜇 is the distribution on Z*

𝑝 defined by the restriction of Φ([𝑜𝑜] − [0])
to Z*

𝑝, let

𝐿
𝑝 (𝜇, 𝜏 𝑖)(𝑥) =

∫︁
Z*
𝑝

𝜏 𝑖(𝑡)(1 + 𝑥)log𝑝(𝑡)/ log𝑝(𝑢)𝑑𝜇(𝑡)

Here, 𝜏 is the Teichmüller character and 𝑢 is a specific multiplicative generator of 1 + 2𝑝Z𝑝. (Namely 1 + 𝑝 if
𝑝 > 2 or 5 if 𝑝 = 2.) To explain the formula, let 𝐺𝑜𝑜 := 𝐺𝑎𝑙(Q(𝜇𝑝𝑜𝑜)/Q), let 𝜒 : 𝐺𝑜𝑜→ Z*

𝑝 be the cyclotomic
character (isomorphism) and 𝛾 the element of 𝐺𝑜𝑜 such that 𝜒(𝛾) = 𝑢; then 𝜒(𝛾)log𝑝(𝑡)/ log𝑝(𝑢) =< 𝑡 >.

The 𝑝-padic precision of individual terms is maximal given the precision of the overconvergent symbol 𝜇.

? [M,phi] = msfromell(ellinit("17a1"),1);
? Mp = mspadicinit(M, 5,7);
? mu = mspadicmoments(Mp, phi,1); \\ overconvergent symbol

(continues on next page)
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? mspadicseries(mu)
%4 = (4 + 3*5 + 4*5^2 + 2*5^3 + 2*5^4 + 5^5 + 4*5^6 + 3*5^7 + O(5^9)) \
+ (3 + 3*5 + 5^2 + 5^3 + 2*5^4 + 5^6 + O(5^7))*x \
+ (2 + 3*5 + 5^2 + 4*5^3 + 2*5^4 + O(5^5))*x^2 \
+ (3 + 4*5 + 4*5^2 + O(5^3))*x^3 \
+ (3 + O(5))*x^4 + O(x^5)

An example with nonzero Teichmüller:

? [M,phi] = msfromell(ellinit("11a1"),1);
? Mp = mspadicinit(M, 3,10);
? mu = mspadicmoments(Mp, phi,1);
? mspadicseries(mu, 2)
%4 = (2 + 3 + 3^2 + 2*3^3 + 2*3^5 + 3^6 + 3^7 + 3^10 + 3^11 + O(3^12)) \
+ (1 + 3 + 2*3^2 + 3^3 + 3^5 + 2*3^6 + 2*3^8 + O(3^9))*x \
+ (1 + 2*3 + 3^4 + 2*3^5 + O(3^6))*x^2 \
+ (3 + O(3^2))*x^3 + O(x^4)

Supersingular example (not checked)

? E = ellinit("17a1"); ellap(E,3)
%1 = 0
? [M,phi] = msfromell(E,1);
? Mp = mspadicinit(M, 3,7);
? mu = mspadicmoments(Mp, phi,1);
? mspadicseries(mu)
%5 = [(2*3^-1 + 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6 + O(3^7)) \
+ (2 + 3^3 + O(3^5))*x \
+ (1 + 2*3 + O(3^2))*x^2 + O(x^3),\
(3^-1 + 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6 + O(3^7)) \
+ (1 + 2*3 + 2*3^2 + 3^3 + 2*3^4 + O(3^5))*x \
+ (3^-2 + 3^-1 + O(3^2))*x^2 + O(3^-2)*x^3 + O(x^4)]

Example with a twist:

? E = ellinit("11a1");
? [M,phi] = msfromell(E,1);
? Mp = mspadicinit(M, 3,10);
? mu = mspadicmoments(Mp, phi,5); \\ twist by 5
? L = mspadicseries(mu)
%5 = (2*3^2 + 2*3^4 + 3^5 + 3^6 + 2*3^7 + 2*3^10 + O(3^12)) \
+ (2*3^2 + 2*3^6 + 3^7 + 3^8 + O(3^9))*x \
+ (3^3 + O(3^6))*x^2 + O(3^2)*x^3 + O(x^4)
? mspadicL(mu)
%6 = [2*3^2 + 2*3^4 + 3^5 + 3^6 + 2*3^7 + 2*3^10 + O(3^12)]~
? ellpadicL(E,3,10,,5)
%7 = 2 + 2*3^2 + 3^3 + 2*3^4 + 2*3^5 + 3^6 + 2*3^7 + O(3^10)
? mspadicseries(mu,1) \\ must be 0
%8 = O(3^12) + O(3^9)*x + O(3^6)*x^2 + O(3^2)*x^3 + O(x^4)

mspathgens()

Let ∆0 := 𝐷𝑖𝑣0(P1(Q)). Let 𝑀 being a full modular symbol space, as given by msinit, return a set of Z[𝐺]-
generators for ∆0. The output is [𝑔,𝑅], where 𝑔 is a minimal system of generators and 𝑅 the vector of Z[𝐺]-
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relations between the given generators. A relation is coded by a vector of pairs [𝑎𝑖, 𝑖] with 𝑎𝑖 ∈ Z[𝐺] and 𝑖 the
index of a generator, so that

∑︀
𝑖 𝑎𝑖𝑔[𝑖] = 0.

An element [𝑣] − [𝑢] in ∆0 is coded by the “path” [𝑢, 𝑣], where oo denotes the point at infinity (1 : 0) on the
projective line. An element of Z[𝐺] is either an integer 𝑛 (= 𝑛[𝑖𝑑2]) or a “factorization matrix”: the first column
contains distinct elements 𝑔𝑖 of 𝐺 and the second integers 𝑛𝑖 and the matrix codes

∑︀
𝑛𝑖[𝑔𝑖]:

? M = msinit(11,8); \\ M_8(Gamma_0(11))
? [g,R] = mspathgens(M);
? g
%3 = [[+oo, 0], [0, 1/3], [1/3, 1/2]] \\ 3 paths
? #R \\ a single relation
%4 = 1
? r = R[1]; #r \\ ...involving all 3 generators
%5 = 3
? r[1]
%6 = [[1, 1; [1, 1; 0, 1], -1], 1]
? r[2]
%7 = [[1, 1; [7, -2; 11, -3], -1], 2]
? r[3]
%8 = [[1, 1; [8, -3; 11, -4], -1], 3]

The given relation is of the form
∑︀

𝑖(1 − 𝛾𝑖)𝑔𝑖 = 0, with 𝛾𝑖 ∈ Γ0(11). There will always be a single relation
involving all generators (corresponding to a round trip along all cusps), then relations involving a single generator
(corresponding to 2 and 3-torsion elements in the group:

? M = msinit(2,8); \\ M_8(Gamma_0(2))
? [g,R] = mspathgens(M);
? g
%3 = [[+oo, 0], [0, 1]]

Note that the output depends only on the group 𝐺, not on the representation 𝑉 .

mspathlog(p)
Let ∆0 := 𝐷𝑖𝑣0(P1(Q)). Let 𝑀 being a full modular symbol space, as given by msinit, encoding fixed Z[𝐺]-
generators (𝑔𝑖) of ∆0 (see mspathgens). A path 𝑝 = [𝑎, 𝑏] between two elements in P1(Q) corresponds to
[𝑏] − [𝑎] ∈ ∆0. The path extremities 𝑎 and 𝑏 may be given as t_INT, t_FRAC or 𝑜𝑜 = (1 : 0). Finally, we also
allow to input a path as a 2𝑥2 integer matrix, whose first and second column give 𝑎 and 𝑏 respectively, with the
convention [𝑥, 𝑦] = (𝑥 : 𝑦) in P1(Q).

Returns (𝑝𝑖) in Z[𝐺] such that 𝑝 =
∑︀

𝑖 𝑝𝑖𝑔𝑖.

? M = msinit(2,8); \\ M_8(Gamma_0(2))
? [g,R] = mspathgens(M);
? g
%3 = [[+oo, 0], [0, 1]]
? p = mspathlog(M, [1/2,2/3]);
? p[1]
%5 =
[[1, 0; 2, 1] 1]

? p[2]
%6 =
[[1, 0; 0, 1] 1]

(continues on next page)
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[[3, -1; 4, -1] 1]
? mspathlog(M, [1,2;2,3]) == p \\ give path via a 2x2 matrix
%7 = 1

Note that the output depends only on the group 𝐺, not on the representation 𝑉 .

mspetersson(F, G)

𝑀 being a full modular symbol space for Γ = Γ0(𝑁), as given by msinit, calculate the intersection product
𝐹,𝐺 of modular symbols 𝐹 and 𝐺 on 𝑀 = HomΓ(∆0, 𝑉𝑘) extended to an hermitian bilinear form on 𝑀 ⊗ C
whose radical is the Eisenstein subspace of 𝑀 .

Suppose that 𝑓1 and 𝑓2 are two parabolic forms. Let 𝐹1 and 𝐹2 be the attached modular symbols

𝐹𝑖(𝛿) =

∫︁
𝛿

𝑓𝑖(𝑧).(𝑧𝑋 + 𝑌 )𝑘−2𝑑𝑧

and let 𝐹R
1 , 𝐹R

2 be the attached real modular symbols

𝐹R
𝑖 (𝛿) =

∫︁
𝛿

ℜ(𝑓𝑖(𝑧).(𝑧𝑋 + 𝑌 )𝑘−2𝑑𝑧)

Then we have

= -2 (2i)𝑘−2.ℑ(< 𝑓1, 𝑓2 >𝑃𝑒𝑡𝑒𝑟𝑠𝑠𝑜𝑛)

and

𝐹1, 𝐹2 = (2𝑖)𝑘−2 < 𝑓1, 𝑓2 >𝑃𝑒𝑡𝑒𝑟𝑠𝑠𝑜𝑛

In weight 2, the intersection product 𝐹,𝐺 has integer values on the Z-structure on𝑀 given by mslattice and defines
a Riemann form on 𝐻1

𝑝𝑎𝑟(Γ,R).

For user convenience, we allow 𝐹 and 𝐺 to be matrices and return the attached Gram matrix. If 𝐹 is omitted: treat it
as the full modular space attached to 𝑀 ; if 𝐺 is omitted, take it equal to 𝐹 .

? M = msinit(37,2);
? C = mscuspidal(M)[1];
? mspetersson(M, C)
%3 =
[ 0 -17 -8 -17]
[17 0 -8 -25]
[ 8 8 0 -17]
[17 25 17 0]
? mspetersson(M, mslattice(M,C))
%4 =
[0 -1 0 -1]
[1 0 0 -1]
[0 0 0 -1]
[1 1 1 0]
? E = ellinit("33a1");
? [M,xpm] = msfromell(E); [xp,xm,L] = xpm;
? mspetersson(M, mslattice(M,L))
%7 =

(continues on next page)

659



CyPari2 Documentation, Release 2.1.3

(continued from previous page)

[0 -3]
[3 0]
? ellmoddegree(E)
%8 = [3, -126]

The coefficient 3 in the matrix is the degree of the modular parametrization.

mspolygon(flag)
𝑀 describes a subgroup 𝐺 of finite index in the modular group 𝑃𝑆𝐿2(Z), as given by msinit or a positive
integer 𝑁 (encoding the group 𝐺 = Γ0(𝑁)), or by msfarey (arbitrary subgroup). Return an hyperbolic polygon
(Farey symbol) attached to 𝐺. More precisely:

• Its vertices are an ordered list in P1(Q) and contain a representatives of all cusps.

• Its edges are hyperbolic arcs joining two consecutive vertices; each edge 𝑒 is labelled by an integer 𝜇(𝑒) ∈
𝑜𝑜, 2, 3.

• Given a path (𝑎, 𝑏) between two elements of P1(Q), let (𝑎, 𝑏) = (𝑏, 𝑎) be the opposite path. There is an
involution 𝑒 → 𝑒* on the edges. We have 𝜇(𝑒) = 𝑜𝑜 if and only if 𝑒! = 𝑒*; when 𝜇(𝑒)! = 3, 𝑒 is 𝐺-
equivalent to 𝑒*, i.e. there exists 𝛾𝑒 ∈ 𝐺 such that 𝑒 = 𝛾𝑒𝑒*; if 𝜇(𝑒) = 3 there exists 𝛾𝑒 ∈ 𝐺 of order 3
such that the hyperbolic triangle (𝑒, 𝛾𝑒𝑒, 𝛾

2
𝑒𝑒) is invariant by 𝛾𝑒. In all cases, to each edge we have attached

𝛾𝑒 ∈ 𝐺 of order 𝜇(𝑒).

The polygon is given by a triple [𝐸,𝐴, 𝑔]

• The list 𝐸 of its consecutive edges as matrices in 𝑀2(Z).

• The permutation 𝐴 attached to the involution: if 𝑒 = 𝐸[𝑖] is the 𝑖-th edge, then A[i] is the index of 𝑒* in 𝐸.

• The list 𝑔 of pairing matrices 𝛾𝑒. Remark that 𝛾𝑒* = 𝛾−1
𝑒 if 𝜇(𝑒)! = 3, i.e., 𝑔[𝑖]−1 = 𝑔[𝐴[𝑖]] whenever

𝑖! = 𝐴[𝑖] (𝜇(𝑔[𝑖]) = 1) or 𝜇(𝑔[𝑖]) = 2 (𝑔[𝑖]2 = 1). Modulo these trivial relations, the pairing matrices form
a system of independant generators of 𝐺. Note that 𝛾𝑒 is elliptic if and only if 𝑒* = 𝑒.

The above data yields a fundamental domain for 𝐺 acting on Poincaré’s half-plane: take the convex hull of the
polygon defined by

• The edges in 𝐸 such that 𝑒! = 𝑒* or 𝑒* = 𝑒, where the pairing matrix 𝛾𝑒 has order 2;

• The edges (𝑟, 𝑡) and (𝑡, 𝑠) where the edge 𝑒 = (𝑟, 𝑠) ∈ 𝐸 is such that 𝑒 = 𝑒* and 𝛾𝑒 has order 3 and the
triangle (𝑟, 𝑡, 𝑠) is the image of (0, exp(2𝑖𝜋/3), 𝑜𝑜) by some element of 𝑃𝑆𝐿2(Q) formed around the edge.

Binary digits of flag mean:

1: return a normalized hyperbolic polygon if set, else a polygon with unimodular edges (matrices of determinant
1). A polygon is normalized in the sense of compact orientable surfaces if the distance 𝑑(𝑎, 𝑎*) between an edge
𝑎 and its image by the involution 𝑎* is less than 2, with equality if and only if 𝑎 is linked with another edge 𝑏 (𝑎,
𝑏, 𝑎* et 𝑏* appear consecutively in 𝐸 up to cyclic permutation). In particular, the vertices of all edges such that
that 𝑑(𝑎, 𝑎*)! = 1 (distance is 0 or 2) are all equivalent to 0 modulo 𝐺. The external vertices of 𝑎𝑎* such that
𝑑(𝑎, 𝑎*) = 1 are also equivalent to 0; the internal vertices 𝑎 ∩ 𝑎* (a single point), together with 0, form a system
of representatives of the cusps of 𝐺
𝑚𝑎𝑡ℎ𝑏𝑏𝑃 1(Q). This is useful to compute the homology group 𝐻1(𝐺,Z) as it gives a symplectic basis for the
intersection pairing. In this case, the number of parabolic matrices (trace 2) in the system of generators 𝐺 is
2(𝑡−1), where 𝑡 is the number of non equivalent cusps for𝐺. This is currently only implemented for𝐺 = Γ0(𝑁).

2: add graphical representations (in LaTeX form) for the hyperbolic polygon in Poincaré’s half-space and the
involution 𝑎→ 𝑎* of the Farey symbol. The corresponding character strings can be included in a LaTeX document
provided the preamble contains \usepackage{ tikz}.
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? [V,A,g] = mspolygon(3);
? V
%2 = [[-1, 1; -1, 0], [1, 0; 0, 1], [0, 1; -1, 1]]
? A
%3 = Vecsmall([2, 1, 3])
? g
%4 = [[-1, -1; 0, -1], [1, -1; 0, 1], [1, -1; 3, -2]]
? [V,A,g, D1,D2] = mspolygon(11,2); \\ D1 and D2 contains pictures
? {write("F.tex",
"\\documentclass{article}\\usepackage{tikz}\\begin{document}"
D1, "\n", D2,
"\\end{document}");}

? [V1,A1] = mspolygon(6,1); \\ normalized
? V1
%8 = [[-1, 1; -1, 0], [1, 0; 0, 1], [0, 1; -1, 3],
[1, -2; 3, -5], [-2, 1; -5, 2], [1, -1; 2, -1]]
? A1
%9 = Vecsmall([2, 1, 4, 3, 6, 5])

? [V0,A0] = mspolygon(6); \\ not normalized V[3]^* = V[6], d(V[3],V[6]) = 3
? A0
%11 = Vecsmall([2, 1, 6, 5, 4, 3])

? [V,A] = mspolygon(14, 1);
? A
%13 = Vecsmall([2, 1, 4, 3, 6, 5, 9, 10, 7, 8])

One can see from this last example that the (normalized) polygon has the form

(𝑎1, 𝑎
*
1, 𝑎2, 𝑎

*
2, 𝑎3, 𝑎

*
3, 𝑎4, 𝑎5, 𝑎

*
4, 𝑎

*
5),

that𝑋0(14) is of genus 1 (in general the genus is the number of blocks of the form 𝑎𝑏𝑎*𝑏*), has no elliptic points
(𝐴 has no fixed point) and 4 cusps (number of blocks of the form 𝑎𝑎* plus 1). The vertices of edges 𝑎4 and 𝑎5
all project to 0 in 𝑋0(14): the paths 𝑎4 and 𝑎5 project as loops in 𝑋0(14) and give a symplectic basis of the
homology 𝐻1(𝑋0(14),Z).

? [V,A] = mspolygon(15);
? apply(matdet, V) \\ all unimodular
%2 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
? [V,A] = mspolygon(15,1);
? apply(matdet, V) \\ normalized polygon but no longer unimodular edges
%4 = [1, 1, 1, 1, 2, 2, 47, 11, 47, 11]

msqexpansion(projH, serprec)
𝑀 being a full modular symbol space, as given by msinit, and projH being a projector on a Hecke-simple
subspace (as given by mssplit), return the Fourier coefficients 𝑎𝑛, 𝑛 <= 𝐵 of the corresponding normalized
newform. If 𝐵 is omitted, use seriesprecision.

This function uses a naive 𝑂(𝐵2𝑑3) algorithm, where 𝑑 = 𝑂(𝑘𝑁) is the dimension of 𝑀𝑘(Γ0(𝑁)).

? M = msinit(11,2, 1); \\ M_2(Gamma_0(11))^+
? L = mssplit(M, msnew(M));
? msqexpansion(M,L[1], 20)

(continues on next page)
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%3 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2, 1, -2, 4, 4, -1, -4, -2, 4, 0, 2]
? ellan(ellinit("11a1"), 20)
%4 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2, 1, -2, 4, 4, -1, -4, -2, 4, 0, 2]

The shortcut msqexpansion(M, s, B) is available for a symbol 𝑠, provided it is a Hecke eigenvector:

? E = ellinit("11a1");
? [M,S] = msfromell(E); [sp,sm] = S;
? msqexpansion(M,sp,10) \\ in the + eigenspace
%3 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2]
? msqexpansion(M,sm,10) \\ in the - eigenspace
%4 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2]
? ellan(E, 10)
%5 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2]

mssplit(H, dimlim)

Let 𝑀 denote a full modular symbol space, as given by msinit(𝑁, 𝑘, 1) or 𝑚𝑠𝑖𝑛𝑖𝑡(𝑁, 𝑘,−1) and let 𝐻 be a
Hecke-stable subspace of msnew(𝑀) (the full new subspace if𝐻 is omitted). This function splits 𝐻 into Hecke-
simple subspaces. If dimlim is present and positive, restrict to subspaces of dimension<= 𝑑𝑖𝑚𝑙𝑖𝑚. A subspace
is given by a structure allowing quick projection and restriction of linear operators; its first component is a matrix
with integer coefficients whose columns form a Q-basis of the subspace.

? M = msinit(11,8, 1); \\ M_8(Gamma_0(11))^+
? L = mssplit(M); \\ split msnew(M)
? #L
%3 = 2
? f = msqexpansion(M,L[1],5); f[1].mod
%4 = x^2 + 8*x - 44
? lift(f)
%5 = [1, x, -6*x - 27, -8*x - 84, 20*x - 155]
? g = msqexpansion(M,L[2],5); g[1].mod
%6 = x^4 - 558*x^2 + 140*x + 51744

To a Hecke-simple subspace corresponds an orbit of (normalized) newforms, defined over a number field. In the
above example, we printed the polynomials defining the said fields, as well as the first 5 Fourier coefficients (at
the infinite cusp) of one such form.

msstar(H)

𝑀 being a full modular symbol space, as given by msinit, return the matrix of the * involution, induced by
complex conjugation, acting on the (stable) subspace 𝐻 (𝑀 if omitted).

? M = msinit(11,2); \\ M_2(Gamma_0(11))
? w = msstar(M);
? w^2 == 1
%3 = 1

mstooms(phi)
Given Mp from mspadicinit, lift the (classical) eigen symbol phi to a 𝑝-adic distribution-valued overconvergent
symbol in the sense of Pollack and Stevens. More precisely, let 𝜑 belong to the space 𝑊 of modular symbols
of level 𝑁 , 𝑣𝑝(𝑁) <= 1, and weight 𝑘 which is an eigenvector for the Hecke operator 𝑇𝑁 (𝑝) for a nonzero
eigenvalue 𝑎𝑝 and let 𝑁0 = 𝑙𝑐𝑚(𝑁, 𝑝).

Under the action of 𝑇𝑁0
(𝑝), 𝜑 generates a subspace 𝑊𝜑 of dimension 1 (if 𝑝‖𝑁 ) or 2 (if 𝑝 does not divide 𝑁 ) in

the space of modular symbols of level 𝑁0.
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Let 𝑉𝑝 = [𝑝, 0; 0, 1] and 𝐶𝑝 = [𝑎𝑝, 𝑝
𝑘−1;−1, 0]. When 𝑝 does not divide 𝑁 and 𝑎𝑝 is divisible by 𝑝, mstooms

returns the lift Φ of (𝜑, 𝜑‖𝑘𝑉𝑝) such that

𝑇𝑁0(𝑝)Φ = 𝐶𝑝Φ

When 𝑝 does not divide 𝑁 and 𝑎𝑝 is not divisible by 𝑝, mstooms returns the lift Φ of 𝜑−𝛼−1𝜑‖𝑘𝑉𝑝 which is an
eigenvector of 𝑇𝑁0

(𝑝) for the unit eigenvalue where 𝛼2 − 𝑎𝑝𝛼+ 𝑝𝑘−1 = 0.

The resulting overconvergent eigensymbol can then be used in mspadicmoments, then mspadicL or
mspadicseries.

? M = msinit(3,6, 1); p = 5;
? Tp = mshecke(M, p); factor(charpoly(Tp))
%2 =
[x - 3126 2]

[ x - 6 1]
? phi = matker(Tp - 6)[,1] \\ generator of p-Eigenspace, a_p = 6
%3 = [5, -3, -1]~
? Mp = mspadicinit(M, p, 10, 0); \\ restrict to ordinary symbols, mod p^10
? PHI = mstooms(Mp, phi);
? mu = mspadicmoments(Mp, PHI);
? mspadicL(mu)
%7 = 5 + 2*5^2 + 2*5^3 + ...

A non ordinary symbol.

? M = msinit(4,6,1); p = 3;
? Tp = mshecke(M, p); factor(charpoly(Tp))
%2 =
[x - 244 3]

[ x + 12 1]
? phi = matker(Tp + 12)[,1] \\ a_p = -12 is divisible by p = 3
%3 = [-1/32, -1/4, -1/32, 1]~
? msissymbol(M,phi)
%4 = 1
? Mp = mspadicinit(M,3,5,0);
? PHI = mstooms(Mp,phi);
*** at top-level: PHI=mstooms(Mp,phi)
*** ^---------------
*** mstooms: incorrect type in mstooms [v_p(ap) > mspadicinit flag] (t_VEC).
? Mp = mspadicinit(M,3,5,1);
? PHI = mstooms(Mp,phi);

newtonpoly(p)
Gives the vector of the slopes of the Newton polygon of the polynomial 𝑥 with respect to the prime number 𝑝.
The 𝑛 components of the vector are in decreasing order, where 𝑛 is equal to the degree of 𝑥. Vertical slopes occur
iff the constant coefficient of 𝑥 is zero and are denoted by +oo.

nextprime()

Finds the smallest pseudoprime (see ispseudoprime) greater than or equal to 𝑥. 𝑥 can be of any real type. Note
that if 𝑥 is a pseudoprime, this function returns 𝑥 and not the smallest pseudoprime strictly larger than 𝑥. To
rigorously prove that the result is prime, use isprime.
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nfalgtobasis(x)
Given an algebraic number 𝑥 in the number field 𝑛𝑓 , transforms it to a column vector on the integral basis
:emphasis:`nf.zk`.

? nf = nfinit(y^2 + 4);
? nf.zk
%2 = [1, 1/2*y]
? nfalgtobasis(nf, [1,1]~)
%3 = [1, 1]~
? nfalgtobasis(nf, y)
%4 = [0, 2]~
? nfalgtobasis(nf, Mod(y, y^2+4))
%5 = [0, 2]~

This is the inverse function of nfbasistoalg.

nfbasis(dK)

Let 𝑇 (𝑋) be an irreducible polynomial with integral coefficients. This function returns an integral basis of the
number field defined by 𝑇 , that is a Z-basis of its maximal order. If present, dK is set to the discriminant of
the returned order. The basis elements are given as elements in 𝐾 = Q[𝑋]/(𝑇 ), in Hermite normal form with
respect to the Q-basis (1, 𝑋, ...,𝑋deg 𝑇−1) of 𝐾, lifted to Q[𝑋]. In particular its first element is always 1 and its
𝑖-th element is a polynomial of degree 𝑖− 1 whose leading coefficient is the inverse of an integer: the product of
those integers is the index of Z[𝑋]/(𝑇 ) in the maximal order Z𝐾 :

? nfbasis(x^2 + 4) \\ Z[X]/(T) has index 2 in Z_K
%1 = [1, x/2]
? nfbasis(x^2 + 4, &D)
%2 = [1, x/2]
? D
%3 = -4

This function uses a modified version of the round 4 algorithm, due to David Ford, Sebastian Pauli and Xavier
Roblot.

Local basis, orders maximal at certain primes.
Obtaining the maximal order is hard: it requires factoring the discriminant 𝐷 of 𝑇 . Obtaining an order which
is maximal at a finite explicit set of primes is easy, but it may then be a strict suborder of the maximal order.
To specify that we are interested in a given set of places only, we can replace the argument 𝑇 by an argument
[𝑇, 𝑙𝑖𝑠𝑡𝑃 ], where listP encodes the primes we are interested in: it must be a factorization matrix, a vector of
integers or a single integer.

• Vector: we assume that it contains distinct prime numbers.

• Matrix: we assume that it is a two-column matrix of a (partial) factorization of 𝐷; namely the first column
contains distinct primes and the second one the valuation of 𝐷 at each of these primes.

• Integer𝐵: this is replaced by the vector of primes up to𝐵. Note that the function will use at least𝑂(𝐵) time:
a small value, about 105, should be enough for most applications. Values larger than 232 are not supported.

In all these cases, the primes may or may not divide the discriminant𝐷 of 𝑇 . The function then returns a Z-basis
of an order whose index is not divisible by any of these prime numbers. The result may actually be a global integral
basis, in particular if all the prime divisors of the field discriminant are included, but this is not guaranteed! Note
that nfinit has built-in support for such a check:
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? K = nfinit([T, listP]);
? nfcertify(K) \\ we computed an actual maximal order
%2 = [];

The first line initializes a number field structure incorporating nfbasis([T, listP] in place of a proven integral
basis. The second line certifies that the resulting structure is correct. This allows to create an nf structure attached
to the number field𝐾 = Q[𝑋]/(𝑇 ), when the discriminant of 𝑇 cannot be factored completely, whereas the prime
divisors of disc𝐾 are known. If present, the argument dK is set to the discriminant of the returned order, and is
equal to the field discriminant if and only if the order is maximal.

Of course, if listP contains a single prime number 𝑝, the function returns a local integral basis for Z𝑝[𝑋]/(𝑇 ):

? nfbasis(x^2+x-1001)
%1 = [1, 1/3*x - 1/3]
? nfbasis( [x^2+x-1001, [2]] )
%2 = [1, x]

The following function computes the index 𝑖𝑇 of Z[𝑋]/(𝑇 ) in the order generated by the Z-basis 𝐵:

nfbasisindex(T, B) = vecprod([denominator(pollead(Q)) | Q <- B]);

In particular, 𝐵 is a basis of the maximal order if and only if 𝑝𝑜𝑙𝑑𝑖𝑠𝑐(𝑇 )/𝑖2𝑇 is equal to the field discriminant.
More generally, this formula gives the square of index of the order given by𝐵 in Z𝐾 . For instance, assume that 𝑃
is a vector of prime numbers containing (at least) all prime divisors of the field discriminant, then the following
construct allows to provably compute the field discriminant and to check whether the returned basis is actually a
basis of the maximal order

? B = nfbasis([T, P], &D);
? dK = sign(D) * vecprod([p^valuation(D,p) | p<-P]);
? dK * nfbasisindex(T, B)^2 == poldisc(T)

The variable dK contains the field discriminant and the last command returns 1 if and only if𝐵 is a Z-basis of the
maximal order. Of course, the nfinit / nfcertify approach is simpler, but it is also more costly.

The Buchmann-Lenstra algorithm.
We now complicate the picture: it is in fact allowed to include composite numbers instead of primes in listP
(Vector or Matrix case), provided they are pairwise coprime. The result may still be a correct integral basis if
the field discriminant factors completely over the actual primes in the list; again, this is not guaranteed. Adding
a composite 𝐶 such that 𝐶2 divides 𝐷 may help because when we consider 𝐶 as a prime and run the algorithm,
two good things can happen: either we succeed in proving that no prime dividing 𝐶 can divide the index (without
actually needing to find those primes), or the computation exhibits a nontrivial zero divisor, thereby factoring 𝐶
and we go on with the refined factorization. (Note that including a 𝐶 such that 𝐶2 does not divide 𝐷 is useless.)
If neither happen, then the computed basis need not generate the maximal order. Here is an example:

? B = 10^5;
? listP = factor(poldisc(T), B); \\ primes <= B dividing D + cofactor
? basis = nfbasis([T, listP], &D)

If the computed discriminant𝐷 factors completely over the primes less than𝐵 (together with the primes contained
in the addprimes table), then everything is certified: 𝐷 is the field discriminant and basis generates the maximal
order. This can be tested as follows:

F = factor(D, B); P = F[,1]; E = F[,2];
for (i = 1, #P,
if (P[i] > B && !isprime(P[i]), warning("nf may be incorrect")));
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This is a sufficient but not a necessary condition, hence the warning, instead of an error.

The function nfcertify speeds up and automates the above process:

? B = 10^5;
? nf = nfinit([T, B]);
? nfcertify(nf)
%3 = [] \\ nf is unconditionally correct
? [basis, disc] = [nf.zk, nf.disc];

nfbasistoalg(x)
Given an algebraic number 𝑥 in the number field nf, transforms it into t_POLMOD form.

? nf = nfinit(y^2 + 4);
? nf.zk
%2 = [1, 1/2*y]
? nfbasistoalg(nf, [1,1]~)
%3 = Mod(1/2*y + 1, y^2 + 4)
? nfbasistoalg(nf, y)
%4 = Mod(y, y^2 + 4)
? nfbasistoalg(nf, Mod(y, y^2+4))
%5 = Mod(y, y^2 + 4)

This is the inverse function of nfalgtobasis.

nfcertify()

𝑛𝑓 being as output by nfinit, checks whether the integer basis is known unconditionally. This is in partic-
ular useful when the argument to nfinit was of the form [𝑇, 𝑙𝑖𝑠𝑡𝑃 ], specifying a finite list of primes when
𝑝-maximality had to be proven, or a list of coprime integers to which Buchmann-Lenstra algorithm was to be
applied.

The function returns a vector of coprime composite integers. If this vector is empty, then nf.zk and nf.disc
are correct. Otherwise, the result is dubious. In order to obtain a certified result, one must completely factor each
of the given integers, then addprime each of their prime factors, then check whether nfdisc(nf.pol) is equal
to nf.disc.

nfcompositum(P, Q, flag)
Let nf be a number field structure attached to the field 𝐾 and let 𝑃 and 𝑄 be squarefree polynomials in 𝐾[𝑋]
in the same variable. Outputs the simple factors of the étale 𝐾-algebra 𝐴 = 𝐾[𝑋,𝑌 ]/(𝑃 (𝑋), 𝑄(𝑌 )). The
factors are given by a list of polynomials 𝑅 in 𝐾[𝑋], attached to the number field 𝐾[𝑋]/(𝑅), and sorted by
increasing degree (with respect to lexicographic ordering for factors of equal degrees). Returns an error if one of
the polynomials is not squarefree.

Note that it is more efficient to reduce to the case where 𝑃 and𝑄 are irreducible first. The routine will not perform
this for you, since it may be expensive, and the inputs are irreducible in most applications anyway. In this case,
there will be a single factor 𝑅 if and only if the number fields defined by 𝑃 and 𝑄 are linearly disjoint (their
intersection is 𝐾).

The binary digits of 𝑓𝑙𝑎𝑔 mean

1: outputs a vector of 4-component vectors [𝑅, 𝑎, 𝑏, 𝑘], where𝑅 ranges through the list of all possible compositums
as above, and 𝑎 (resp. 𝑏) expresses the root of 𝑃 (resp. 𝑄) as an element of 𝐾[𝑋]/(𝑅). Finally, 𝑘 is a small
integer such that 𝑏+ 𝑘𝑎 = 𝑋 modulo 𝑅.

2: assume that 𝑃 and 𝑄 define number fields that are linearly disjoint: both polynomials are irreducible and the
corresponding number fields have no common subfield besides 𝐾. This allows to save a costly factorization over
𝐾. In this case return the single simple factor instead of a vector with one element.
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A compositum is often defined by a complicated polynomial, which it is advisable to reduce before further work.
Here is an example involving the field 𝐾(𝜁5, 5

1/10), 𝐾 = Q(
√

5):

? K = nfinit(y^2-5);
? L = nfcompositum(K, x^5 - y, polcyclo(5), 1); \\ list of [R,a,b,k]
? [R, a] = L[1]; \\ pick the single factor, extract R,a (ignore b,k)
? lift(R) \\ defines the compositum
%4 = x^10 + (-5/2*y + 5/2)*x^9 + (-5*y + 20)*x^8 + (-20*y + 30)*x^7 + \
(-45/2*y + 145/2)*x^6 + (-71/2*y + 121/2)*x^5 + (-20*y + 60)*x^4 + \
(-25*y + 5)*x^3 + 45*x^2 + (-5*y + 15)*x + (-2*y + 6)
? a^5 - y \\ a fifth root of y
%5 = 0
? [T, X] = rnfpolredbest(K, R, 1);
? lift(T) \\ simpler defining polynomial for K[x]/(R)
%7 = x^10 + (-11/2*y + 25/2)
? liftall(X) \\ root of R in K[x]/(T(x))
%8 = (3/4*y + 7/4)*x^7 + (-1/2*y - 1)*x^5 + 1/2*x^2 + (1/4*y - 1/4)
? a = subst(a.pol, 'x, X); \\ a in the new coordinates
? liftall(a)
%10 = (-3/4*y - 7/4)*x^7 - 1/2*x^2
? a^5 - y
%11 = 0

The main variables of 𝑃 and 𝑄 must be the same and have higher priority than that of nf (see varhigher
and varlower).

nfdetint(x)
Given a pseudo-matrix 𝑥, computes a nonzero ideal contained in (i.e. multiple of) the determinant of 𝑥. This is
particularly useful in conjunction with nfhnfmod.

nfdisc()

field discriminant of the number field defined by the integral, preferably monic, irreducible polynomial 𝑇 (𝑋).
Returns the discriminant of the number field Q[𝑋]/(𝑇 ), using the Round 4 algorithm.

Local discriminants, valuations at certain primes.
As in nfbasis, the argument 𝑇 can be replaced by [𝑇, 𝑙𝑖𝑠𝑡𝑃 ], where listP is as in nfbasis: a vector of pairwise
coprime integers (usually distinct primes), a factorization matrix, or a single integer. In that case, the function
returns the discriminant of an order whose basis is given by nfbasis(T,listP), which need not be the maximal
order, and whose valuation at a prime entry in listP is the same as the valuation of the field discriminant.

In particular, if listP is [𝑝] for a prime 𝑝, we can return the 𝑝-adic discriminant of the maximal order of
Z𝑝[𝑋]/(𝑇 ), as a power of 𝑝, as follows:

? padicdisc(T,p) = p^valuation(nfdisc([T,[p]]), p);
? nfdisc(x^2 + 6)
%2 = -24
? padicdisc(x^2 + 6, 2)
%3 = 8
? padicdisc(x^2 + 6, 3)
%4 = 3

The following function computes the discriminant of the maximal order under the assumption that 𝑃 is a vector
of prime numbers containing (at least) all prime divisors of the field discriminant:
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globaldisc(T, P) =
{ my (D = nfdisc([T, P]));
sign(D) * vecprod([p^valuation(D,p) | p <-P]);
}
? globaldisc(x^2 + 6, [2, 3, 5])
%1 = -24

nfdiscfactors()

Given a polynomial 𝑇 with integer coefficients, return [𝐷, 𝑓𝑎𝐷] where 𝐷 is nfdisc(𝑇 ) and faD is the factor-
ization of ‖𝐷‖. All the variants [T,listP] are allowed (see ??nfdisc), in which case faD is the factorization
of the discriminant underlying order (which need not be maximal at the primes not specified by listP) and the
factorization may contain large composites.

? T = x^3 - 6021021*x^2 + 12072210077769*x - 8092423140177664432;
? [D,faD] = nfdiscfactors(T); print(faD); D
[3, 3; 500009, 2]
%2 = -6750243002187]

? T = x^3 + 9*x^2 + 27*x - 125014250689643346789780229390526092263790263725;
? [D,faD] = nfdiscfactors(T); print(faD); D
[3, 3; 1000003, 2]
%4 = -27000162000243

? [D,faD] = nfdiscfactors([T, 10^3]); print(faD)
[3, 3; 125007125141751093502187, 2]

In the final example, we only get a partial factorization, which is only guaranteed correct at primes <= 103.

The function also accept number field structures, for instance as output by nfinit, and returns the field discrim-
inant and its factorization:

? T = x^3 + 9*x^2 + 27*x - 125014250689643346789780229390526092263790263725;
? nf = nfinit(T); [D,faD] = nfdiscfactors(T); print(faD); D
%2 = -27000162000243
? nf.disc
%3 = -27000162000243

nfeltadd(x, y)
Given two elements 𝑥 and 𝑦 in nf, computes their sum 𝑥+ 𝑦 in the number field 𝑛𝑓 .

? nf = nfinit(1+x^2);
? nfeltadd(nf, 1, x) \\ 1 + I
%2 = [1, 1]~

nfeltdiv(x, y)
Given two elements 𝑥 and 𝑦 in nf, computes their quotient 𝑥/𝑦 in the number field 𝑛𝑓 .

nfeltdiveuc(x, y)
Given two elements 𝑥 and 𝑦 in nf, computes an algebraic integer 𝑞 in the number field 𝑛𝑓 such that the components
of 𝑥− 𝑞𝑦 are reasonably small. In fact, this is functionally identical to round(nfdiv(:emphasis:`nf,x,y))`.

nfeltdivmodpr(x, y, pr)
This function is obsolete, use nfmodpr.

668 Chapter 2. The Gen class wrapping PARI’s GEN type



CyPari2 Documentation, Release 2.1.3

Given two elements 𝑥 and 𝑦 in nf and pr a prime ideal in modpr format (see nfmodprinit), computes their
quotient 𝑥/𝑦 modulo the prime ideal pr.

nfeltdivrem(x, y)
Given two elements 𝑥 and 𝑦 in nf, gives a two-element row vector [𝑞, 𝑟] such that 𝑥 = 𝑞𝑦 + 𝑟, 𝑞 is an algebraic
integer in 𝑛𝑓 , and the components of 𝑟 are reasonably small.

nfeltembed(x, pl, precision)
Given an element 𝑥 in the number field nf, return the (real or) complex embeddings of 𝑥 specified by optional
argument pl, at the current realprecision:

• pl omitted: return the vector of embeddings at all 𝑟1 + 𝑟2 places;

• pl an integer between 1 and 𝑟1 + 𝑟2: return the 𝑖-th embedding of 𝑥, attached to the 𝑖-th root of nf.pol, i.e.
nf.roots:math:`[i]`;

• pl a vector or t_VECSMALL: return the vector of embeddings; the 𝑖-th entry gives the embedding at the place
attached to the 𝑝𝑙[𝑖]-th real root of nf.pol.

? nf = nfinit('y^3 - 2);
? nf.sign
%2 = [1, 1]
? nfeltembed(nf, 'y)
%3 = [1.25992[...], -0.62996[...] + 1.09112[...]*I]]
? nfeltembed(nf, 'y, 1)
%4 = 1.25992[...]
? nfeltembed(nf, 'y, 3) \\ there are only 2 arch. places
*** at top-level: nfeltembed(nf,'y,3)
*** ^-----------------
*** nfeltembed: domain error in nfeltembed: index > 2

nfeltmod(x, y)
Given two elements 𝑥 and 𝑦 in nf, computes an element 𝑟 of 𝑛𝑓 of the form 𝑟 = 𝑥 − 𝑞𝑦 with 𝑞 and algebraic
integer, and such that 𝑟 is small. This is functionally identical to

𝑥− 𝑛𝑓𝑚𝑢𝑙(𝑛𝑓, 𝑟𝑜𝑢𝑛𝑑(𝑛𝑓𝑑𝑖𝑣(𝑛𝑓, 𝑥, 𝑦)), 𝑦).

nfeltmul(x, y)
Given two elements 𝑥 and 𝑦 in nf, computes their product 𝑥 * 𝑦 in the number field 𝑛𝑓 .

nfeltmulmodpr(x, y, pr)
This function is obsolete, use nfmodpr.

Given two elements 𝑥 and 𝑦 in nf and pr a prime ideal in modpr format (see nfmodprinit), computes their
product 𝑥 * 𝑦 modulo the prime ideal pr.

nfeltnorm(x)
Returns the absolute norm of 𝑥.

nfeltpow(x, k)
Given an element 𝑥 in nf, and a positive or negative integer 𝑘, computes 𝑥𝑘 in the number field 𝑛𝑓 .

nfeltpowmodpr(x, k, pr)
This function is obsolete, use nfmodpr.

Given an element 𝑥 in nf, an integer 𝑘 and a prime ideal pr in modpr format (see nfmodprinit), computes 𝑥𝑘
modulo the prime ideal pr.
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nfeltreduce(a, id)
Given an ideal id in Hermite normal form and an element 𝑎 of the number field 𝑛𝑓 , finds an element 𝑟 in 𝑛𝑓 such
that 𝑎− 𝑟 belongs to the ideal and 𝑟 is small.

nfeltreducemodpr(x, pr)
This function is obsolete, use nfmodpr.

Given an element 𝑥 of the number field 𝑛𝑓 and a prime ideal pr in modpr format compute a canonical represen-
tative for the class of 𝑥 modulo pr.

nfeltsign(x, pl)
Given an element 𝑥 in the number field nf, returns the signs of the real embeddings of 𝑥 specified by optional
argument pl:

• pl omitted: return the vector of signs at all 𝑟1 real places;

• pl an integer between 1 and 𝑟1: return the sign of the 𝑖-th embedding of 𝑥, attached to the 𝑖-th real root of
nf.pol, i.e. nf.roots:math:`[i]`;

• pl a vector or t_VECSMALL: return the vector of signs; the 𝑖-th entry gives the sign at the real place attached
to the 𝑝𝑙[𝑖]-th real root of nf.pol.

? nf = nfinit(polsubcyclo(11,5,'y)); \\ Q(cos(2 pi/11))
? nf.sign
%2 = [5, 0]
? x = Mod('y, nf.pol);
? nfeltsign(nf, x)
%4 = [-1, -1, -1, 1, 1]
? nfeltsign(nf, x, 1)
%5 = -1
? nfeltsign(nf, x, [1..4])
%6 = [-1, -1, -1, 1]
? nfeltsign(nf, x, 6) \\ there are only 5 real embeddings
*** at top-level: nfeltsign(nf,x,6)
*** ^-----------------
*** nfeltsign: domain error in nfeltsign: index > 5

nfelttrace(x)
Returns the absolute trace of 𝑥.

nfeltval(x, pr, y)
Given an element 𝑥 in nf and a prime ideal pr in the format output by idealprimedec, computes the valuation
𝑣 at pr of the element 𝑥. The valuation of 0 is +oo.

? nf = nfinit(x^2 + 1);
? P = idealprimedec(nf, 2)[1];
? nfeltval(nf, x+1, P)
%3 = 1

This particular valuation can also be obtained using idealval(:emphasis:`nf,x,:emphasis:pr)`, since 𝑥 is then
converted to a principal ideal.

If the 𝑦 argument is present, sets 𝑦 = 𝑥𝜏𝑣 , where 𝜏 is a fixed “anti-uniformizer” for pr: its valuation at pr is −1;
its valuation is 0 at other prime ideals dividing :emphasis:`pr.p` and nonnegative at all other primes. In other
words 𝑦 is the part of 𝑥 coprime to pr. If 𝑥 is an algebraic integer, so is 𝑦.
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? nfeltval(nf, x+1, P, &y); y
%4 = [0, 1]~

For instance if 𝑥 =
∏︀

𝑖 𝑥
𝑒𝑖
𝑖 is known to be coprime to pr, where the 𝑥𝑖 are algebraic integers and 𝑒𝑖 ∈ Z then, if

𝑣𝑖 = 𝑛𝑓𝑒𝑙𝑡𝑣𝑎𝑙(𝑛𝑓, 𝑥𝑖, 𝑝𝑟, 𝑦𝑖), we still have 𝑥 =
∏︀

𝑖 𝑦
𝑒𝑖
𝑖 , where the 𝑦𝑖 are still algebraic integers but now all of

them are coprime to pr. They can then be mapped to the residue field of pr more efficiently than if the product
had been expanded beforehand: we can reduce mod pr after each ring operation.

nffactor(T)
Factorization of the univariate polynomial (or rational function) 𝑇 over the number field 𝑛𝑓 given by nfinit;
𝑇 has coefficients in 𝑛𝑓 (i.e. either scalar, polmod, polynomial or column vector). The factors are sorted by
increasing degree.

The main variable of 𝑛𝑓 must be of lower priority than that of 𝑇 , see priority (in the PARI manual). However
if the polynomial defining the number field occurs explicitly in the coefficients of 𝑇 as modulus of a t_POLMOD
or as a t_POL coefficient, its main variable must be the same as the main variable of 𝑇 . For example,

? nf = nfinit(y^2 + 1);
? nffactor(nf, x^2 + y); \\ OK
? nffactor(nf, x^2 + Mod(y, y^2+1)); \\ OK
? nffactor(nf, x^2 + Mod(z, z^2+1)); \\ WRONG

It is possible to input a defining polynomial for nf instead, but this is in general less efficient since parts of an nf
structure will then be computed internally. This is useful in two situations: when you do not need the nf elsewhere,
or when you cannot initialize an nf due to integer factorization difficulties when attempting to compute the field
discriminant and maximal order. In all cases, the function runs in polynomial time using Belabas’s variant of van
Hoeij’s algorithm, which copes with hundreds of modular factors.

Caveat. nfinit([T, listP]) allows to compute in polynomial time a conditional nf structure, which sets nf.
zk to an order which is not guaranteed to be maximal at all primes. Always either use nfcertify first (which
may not run in polynomial time) or make sure to input nf.pol instead of the conditional nf : nffactor is able
to recover in polynomial time in this case, instead of potentially missing a factor.

nffactorback(f, e)
Gives back the nf element corresponding to a factorization. The integer 1 corresponds to the empty factorization.

If 𝑒 is present, 𝑒 and 𝑓 must be vectors of the same length (𝑒 being integral), and the corresponding factorization
is the product of the 𝑓 [𝑖]𝑒[𝑖].

If not, and 𝑓 is vector, it is understood as in the preceding case with 𝑒 a vector of 1s: we return the product of the
𝑓 [𝑖]. Finally, 𝑓 can be a regular factorization matrix.

? nf = nfinit(y^2+1);
? nffactorback(nf, [3, y+1, [1,2]~], [1, 2, 3])
%2 = [12, -66]~
? 3 * (I+1)^2 * (1+2*I)^3
%3 = 12 - 66*I

nffactormod(Q, pr)
This routine is obsolete, use nfmodpr and factormod.

Factors the univariate polynomial 𝑄 modulo the prime ideal pr in the number field 𝑛𝑓 . The coefficients of
𝑄 belong to the number field (scalar, polmod, polynomial, even column vector) and the main variable of 𝑛𝑓
must be of lower priority than that of 𝑄 (see priority (in the PARI manual)). The prime ideal pr is either
in idealprimedec or (preferred) modprinit format. The coefficients of the polynomial factors are lifted to
elements of nf :
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? K = nfinit(y^2+1);
? P = idealprimedec(K, 3)[1];
? nffactormod(K, x^2 + y*x + 18*y+1, P)
%3 =
[x + (2*y + 1) 1]

[x + (2*y + 2) 1]
? P = nfmodprinit(K, P); \\ convert to nfmodprinit format
? nffactormod(K, x^2 + y*x + 18*y+1)
%5 =
[x + (2*y + 1) 1]

[x + (2*y + 2) 1]

Same result, of course, here about 10% faster due to the precomputation.

nfgaloisapply(aut, x)
Let 𝑛𝑓 be a number field as output by nfinit, and let aut be a Galois automorphism of 𝑛𝑓 expressed by its
image on the field generator (such automorphisms can be found using nfgaloisconj). The function computes
the action of the automorphism aut on the object 𝑥 in the number field; 𝑥 can be a number field element, or an ideal
(possibly extended). Because of possible confusion with elements and ideals, other vector or matrix arguments
are forbidden.

? nf = nfinit(x^2+1);
? L = nfgaloisconj(nf)
%2 = [-x, x]~
? aut = L[1]; /* the nontrivial automorphism */
? nfgaloisapply(nf, aut, x)
%4 = Mod(-x, x^2 + 1)
? P = idealprimedec(nf,5); /* prime ideals above 5 */
? nfgaloisapply(nf, aut, P[2]) == P[1]
%6 = 0 \\ !!!!
? idealval(nf, nfgaloisapply(nf, aut, P[2]), P[1])
%7 = 1

The surprising failure of the equality test (%7) is due to the fact that although the corresponding prime ideals are
equal, their representations are not. (A prime ideal is specified by a uniformizer, and there is no guarantee that
applying automorphisms yields the same elements as a direct idealprimedec call.)

The automorphism can also be given as a column vector, representing the image of Mod(x, nf.pol) as an
algebraic number. This last representation is more efficient and should be preferred if a given automorphism
must be used in many such calls.

? nf = nfinit(x^3 - 37*x^2 + 74*x - 37);
? aut = nfgaloisconj(nf)[2]; \\ an automorphism in basistoalg form
%2 = -31/11*x^2 + 1109/11*x - 925/11
? AUT = nfalgtobasis(nf, aut); \\ same in algtobasis form
%3 = [16, -6, 5]~
? v = [1, 2, 3]~; nfgaloisapply(nf, aut, v) == nfgaloisapply(nf, AUT, v)
%4 = 1 \\ same result...
? for (i=1,10^5, nfgaloisapply(nf, aut, v))
time = 463 ms.
? for (i=1,10^5, nfgaloisapply(nf, AUT, v))
time = 343 ms. \\ but the latter is faster
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nfgaloisconj(flag, d, precision)
𝑛𝑓 being a number field as output by nfinit, computes the conjugates of a root 𝑟 of the nonconstant polynomial
𝑥 = 𝑛𝑓 [1] expressed as polynomials in 𝑟. This also makes sense when the number field is not Galois since some
conjugates may lie in the field. 𝑛𝑓 can simply be a polynomial.

If no flags or 𝑓𝑙𝑎𝑔 = 0, use a combination of flag 4 and 1 and the result is always complete. There is no point
whatsoever in using the other flags.

If 𝑓𝑙𝑎𝑔 = 1, use nfroots: a little slow, but guaranteed to work in polynomial time.

If 𝑓𝑙𝑎𝑔 = 4, use galoisinit: very fast, but only applies to (most) Galois fields. If the field is Galois with weakly
super-solvable Galois group (see galoisinit), return the complete list of automorphisms, else only the identity
element. If present, 𝑑 is assumed to be a multiple of the least common denominator of the conjugates expressed
as polynomial in a root of pol.

This routine can only compute Q-automorphisms, but it may be used to get 𝐾-automorphism for any base field
𝐾 as follows:

rnfgaloisconj(nfK, R) = \\ K-automorphisms of L = K[X] / (R)
{
my(polabs, N,al,S, ala,k, vR);
R *= Mod(1, nfK.pol); \\ convert coeffs to polmod elts of K
vR = variable(R);
al = Mod(variable(nfK.pol),nfK.pol);
[polabs,ala,k] = rnfequation(nfK, R, 1);
Rt = if(k==0,R,subst(R,vR,vR-al*k));
N = nfgaloisconj(polabs) % Rt; \\ Q-automorphisms of L
S = select(s->subst(Rt, vR, Mod(s,Rt)) == 0, N);
if (k==0, S, apply(s->subst(s,vR,vR+k*al)-k*al,S));
}
K = nfinit(y^2 + 7);
rnfgaloisconj(K, x^4 - y*x^3 - 3*x^2 + y*x + 1) \\ K-automorphisms of L

nfgrunwaldwang(Lpr, Ld, pl, v)
Given nf a number field in nf or bnf format, a t_VEC Lpr of primes of nf and a t_VEC Ld of positive integers
of the same length, a t_VECSMALL pl of length 𝑟1 the number of real places of nf, computes a polynomial with
coefficients in nf defining a cyclic extension of nf of minimal degree satisfying certain local conditions:

• at the prime 𝐿𝑝𝑟[𝑖], the extension has local degree a multiple of 𝐿𝑑[𝑖];

• at the 𝑖-th real place of nf, it is complex if 𝑝𝑙[𝑖] = −1 (no condition if 𝑝𝑙[𝑖] = 0).

The extension has degree the LCM of the local degrees. Currently, the degree is restricted to be a prime power
for the search, and to be prime for the construction because of the rnfkummer restrictions.

When nf is Q, prime integers are accepted instead of prid structures. However, their primality is not checked
and the behavior is undefined if you provide a composite number.

Warning. If the number field nf does not contain the 𝑛-th roots of unity where 𝑛 is the degree of the extension
to be computed, the function triggers the computation of the bnf of 𝑛𝑓(𝜁𝑛), which may be costly.

? nf = nfinit(y^2-5);
? pr = idealprimedec(nf,13)[1];
? pol = nfgrunwaldwang(nf, [pr], [2], [0,-1], 'x)
%3 = x^2 + Mod(3/2*y + 13/2, y^2 - 5)

nfhilbert(a, b, pr)
If pr is omitted, compute the global quadratic Hilbert symbol (𝑎, 𝑏) in 𝑛𝑓 , that is 1 if 𝑥2 − 𝑎𝑦2 − 𝑏𝑧2 has a non
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trivial solution (𝑥, 𝑦, 𝑧) in 𝑛𝑓 , and −1 otherwise. Otherwise compute the local symbol modulo the prime ideal
pr, as output by idealprimedec.

nfhnf(x, flag)
Given a pseudo-matrix (𝐴, 𝐼), finds a pseudo-basis (𝐵, 𝐽) in Hermite normal form of the module it generates. If
𝑓𝑙𝑎𝑔 is nonzero, also return the transformation matrix 𝑈 such that 𝐴𝑈 = [0‖𝐵].

nfhnfmod(x, detx)
Given a pseudo-matrix (𝐴, 𝐼) and an ideal detx which is contained in (read integral multiple of) the determinant
of (𝐴, 𝐼), finds a pseudo-basis in Hermite normal form of the module generated by (𝐴, 𝐼). This avoids coefficient
explosion. detx can be computed using the function nfdetint.

nfinit(flag, precision)
pol being a nonconstant irreducible polynomial in Q[𝑋], preferably monic and integral, initializes a number field
structure (nf) attached to the field𝐾 defined by pol. As such, it’s a technical object passed as the first argument to
most nfxxx functions, but it contains some information which may be directly useful. Access to this information
via member functions is preferred since the specific data organization given below may change in the future.
Currently, nf is a row vector with 9 components:

𝑛𝑓 [1] contains the polynomial pol (:emphasis:`nf.pol`).

𝑛𝑓 [2] contains [𝑟1, 𝑟2] (:emphasis:`nf.sign`, :emphasis:`nf.r1`, :emphasis:`nf.r2`), the number of real
and complex places of 𝐾.

𝑛𝑓 [3] contains the discriminant 𝑑(𝐾) (:emphasis:`nf.disc`) of 𝐾.

𝑛𝑓 [4] contains the index of 𝑛𝑓 [1] (:emphasis:`nf.index`), i.e. [Z𝐾 : Z[𝜃]], where 𝜃 is any root of 𝑛𝑓 [1].

𝑛𝑓 [5] is a vector containing 7 matrices 𝑀 , 𝐺, roundG, 𝑇 , MD, TI, MDI and a vector vP defined as follows:

*𝑀 is the (𝑟1 + 𝑟2)𝑥𝑛matrix whose columns represent the numerical values of the conjugates of the elements
of the integral basis.

* 𝐺 is an 𝑛𝑥𝑛 matrix such that 𝑇2 =𝑡 𝐺𝐺, where 𝑇2 is the quadratic form 𝑇2(𝑥) =
∑︀

‖𝜎(𝑥)‖2, 𝜎 running
over the embeddings of 𝐾 into C.

* roundG is a rescaled copy of 𝐺, rounded to nearest integers.

* 𝑇 is the 𝑛𝑥𝑛matrix whose coefficients are 𝑇𝑟(𝜔𝑖𝜔𝑗) where the 𝜔𝑖 are the elements of the integral basis. Note
also that det(𝑇 ) is equal to the discriminant of the field 𝐾. Also, when understood as an ideal, the matrix 𝑇−1

generates the codifferent ideal.

* The columns of 𝑀𝐷 (:emphasis:`nf.diff`) express a Z-basis of the different of 𝐾 on the integral basis.

* TI is equal to the primitive part of 𝑇−1, which has integral coefficients.

* MDI is a two-element representation (for faster ideal product) of 𝑑(𝐾) times the codifferent ideal
(:emphasis:`nf.disc:math:*nf.codiff`, which is an integral ideal). This is used in idealinv.

* vP is the list of prime divisors of the field discriminant, i.e, the ramified primes (:emphasis:`nf.p`);
nfdiscfactors(nf) is the preferred way to access that information.

𝑛𝑓 [6] is the vector containing the 𝑟1 + 𝑟2 roots (:emphasis:`nf.roots`) of 𝑛𝑓 [1] corresponding to the 𝑟1 + 𝑟2
embeddings of the number field into C (the first 𝑟1 components are real, the next 𝑟2 have positive imaginary part).

𝑛𝑓 [7] is a Z-basis for 𝑑Z𝐾 , where 𝑑 = [Z𝐾 : Z(𝜃)], expressed on the powers of 𝜃. The multiplication by 𝑑
ensures that all polynomials have integral coefficients and 𝑛𝑓 [7]/𝑑 (:emphasis:`nf.zk`) is an integral basis for
Z𝐾 . Its first element is guaranteed to be 1. This basis is LLL-reduced with respect to 𝑇2 (strictly speaking, it is
a permutation of such a basis, due to the condition that the first element be 1).

𝑛𝑓 [8] is the 𝑛𝑥𝑛 integral matrix expressing the power basis in terms of the integral basis, and finally

𝑛𝑓 [9] is the 𝑛𝑥𝑛2 matrix giving the multiplication table of the integral basis.
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If a non monic or non integral polynomial is input, nfinit will transform it, and return a structure attached to
the new (monic integral) polynomial together with the attached change of variables, see 𝑓𝑙𝑎𝑔 = 3. It is allowed,
though not very useful given the existence of nfnewprec, to input a nf or a bnf instead of a polynomial. It is
also allowed to input a rnf, in which case an nf structure attached to the absolute defining polynomial polabs is
returned (flag is then ignored).

? nf = nfinit(x^3 - 12); \\ initialize number field Q[X] / (X^3 - 12)
? nf.pol \\ defining polynomial
%2 = x^3 - 12
? nf.disc \\ field discriminant
%3 = -972
? nf.index \\ index of power basis order in maximal order
%4 = 2
? nf.zk \\ integer basis, lifted to Q[X]
%5 = [1, x, 1/2*x^2]
? nf.sign \\ signature
%6 = [1, 1]
? factor(abs(nf.disc )) \\ determines ramified primes
%7 =
[2 2]

[3 5]
? idealfactor(nf, 2)
%8 =
[[2, [0, 0, -1]~, 3, 1, [0, 1, 0]~] 3] \\ p_2^3

Huge discriminants, helping nfdisc.
In case pol has a huge discriminant which is difficult to factor, it is hard to compute from scratch the maximal
order. The following special input formats are also accepted:

• [𝑝𝑜𝑙, 𝐵] where pol is a monic integral polynomial and 𝐵 is the lift of an integer basis, as would be computed
by nfbasis: a vector of polynomials with first element 1 (implicitly modulo pol). This is useful if the
maximal order is known in advance.

• [𝑝𝑜𝑙, 𝐵, 𝑃 ] where pol and 𝐵 are as above (a monic integral polynomial and the lift of an integer basis), and
𝑃 is the list of ramified primes in the extension.

• [𝑝𝑜𝑙, 𝑙𝑖𝑠𝑡𝑃 ] where pol is a rational polynomial and listP specifies a list of primes as in nfbasis. Instead
of the maximal order, nfinit then computes an order which is maximal at these particular primes as well
as the primes contained in the private prime table, see addprimes. The result has a good chance of being
correct when the discriminant nf.disc factors completely over this set of primes but this is not guaranteed.
The function nfcertify automates this:

? pol = polcompositum(x^5 - 101, polcyclo(7))[1];
? nf = nfinit( [pol, 10^3] );
? nfcertify(nf)
%3 = []

A priori, nf.zk defines an order which is only known to be maximal at all primes <= 103 (no prime <= 103

divides nf.index). The certification step proves the correctness of the computation. Had it failed, that particular
nf structure could not have been trusted and may have caused routines using it to fail randomly. One particular
function that remains trustworthy in all cases is idealprimedec when applied to a prime included in the above
list of primes or, more generally, a prime not dividing any entry in nfcertify output.

If 𝑓𝑙𝑎𝑔 = 2: pol is changed into another polynomial 𝑃 defining the same number field, which is as simple as can
easily be found using the polredbest algorithm, and all the subsequent computations are done using this new
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polynomial. In particular, the first component of the result is the modified polynomial.

If 𝑓𝑙𝑎𝑔 = 3, apply polredbest as in case 2, but outputs [𝑛𝑓,𝑀𝑜𝑑(𝑎, 𝑃 )], where 𝑛𝑓 is as before and
𝑀𝑜𝑑(𝑎, 𝑃 ) = 𝑀𝑜𝑑(𝑥, 𝑝𝑜𝑙) gives the change of variables. This is implicit when pol is not monic or not integral:
first a linear change of variables is performed, to get a monic integral polynomial, then polredbest.

nfisideal(x)
Returns 1 if 𝑥 is an ideal in the number field 𝑛𝑓 , 0 otherwise.

nfisincl(g, flag)
Let 𝑓 and 𝑔 define number fields, where 𝑓 and 𝑔 are irreducible polynomials inQ[𝑋] and nf structures as output by
nfinit. Tests whether the number field 𝑓 is conjugate to a subfield of the field 𝑔. If they are not, the output is the
integer 0. If they are, the output is a vector of polynomials (𝑓𝑙𝑎𝑔 = 0, default) or a single polynomial 𝑓𝑙𝑎𝑔 = 1,
each polynomial 𝑎 representing an embedding i.e. being such that 𝑔‖𝑓𝑜𝑎. If either 𝑓 or 𝑔 is not irreducible, the
result is undefined.

? T = x^6 + 3*x^4 - 6*x^3 + 3*x^2 + 18*x + 10;
? U = x^3 + 3*x^2 + 3*x - 2

? v = nfisincl(U, T);
%2 = [24/179*x^5-27/179*x^4+80/179*x^3-234/179*x^2+380/179*x+94/179]

? subst(U, x, Mod(v[1],T))
%3 = Mod(0, x^6 + 3*x^4 - 6*x^3 + 3*x^2 + 18*x + 10)
? #nfisincl(x^2+1, T) \\ two embeddings
%4 = 2

\\ same result with nf structures
? nfisincl(U, L = nfinit(T)) == v
%5 = 1
? nfisincl(K = nfinit(U), T) == v
%6 = 1
? nfisincl(K, L) == v
%7 = 1

\\ comparative bench: an nf is a little faster, esp. for the subfield
? B = 10^3;
? for (i=1, B, nfisincl(U,T))
time = 712 ms.

? for (i=1, B, nfisincl(K,T))
time = 485 ms.

? for (i=1, B, nfisincl(U,L))
time = 704 ms.

? for (i=1, B, nfisincl(K,L))
time = 465 ms.

Using an nf structure for the potential subfield is faster if the structure is already available. On the other hand,
the gain in nfisincl is usually not sufficient to make it worthwhile to initialize only for that purpose.

? for (i=1, B, nfinit(U))
time = 308 ms.
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nfisisom(g)
As nfisincl, but tests for isomorphism. More efficient if 𝑓 or 𝑔 is a number field structure.

? f = x^6 + 30*x^5 + 495*x^4 + 1870*x^3 + 16317*x^2 - 22560*x + 59648;
? g = x^6 + 42*x^5 + 999*x^4 + 8966*x^3 + 36117*x^2 + 21768*x + 159332;
? h = x^6 + 30*x^5 + 351*x^4 + 2240*x^3 + 10311*x^2 + 35466*x + 58321;

? #nfisisom(f,g) \\ two isomorphisms
%3 = 2
? nfisisom(f,h) \\ not isomorphic
%4 = 0
\\ comparative bench
? K = nfinit(f); L = nfinit(g); B = 10^3;
? for (i=1, B, nfisisom(f,g))
time = 6,124 ms.
? for (i=1, B, nfisisom(K,g))
time = 3,356 ms.
? for (i=1, B, nfisisom(f,L))
time = 3,204 ms.
? for (i=1, B, nfisisom(K,L))
time = 3,173 ms.

The function is usually very fast when the fields are nonisomorphic, whenever the fields can be distinguished via
a simple invariant such as degree, signature or discriminant. It may be slower when the fields share all invariants,
but still faster than computing actual isomorphisms:

\\ usually very fast when the answer is 'no':
? for (i=1, B, nfisisom(f,h))
time = 32 ms.

\\ but not always
? u = x^6 + 12*x^5 + 6*x^4 - 377*x^3 - 714*x^2 + 5304*x + 15379
? v = x^6 + 12*x^5 + 60*x^4 + 166*x^3 + 708*x^2 + 6600*x + 23353
? nfisisom(u,v)
%13 = 0
? polsturm(u) == polsturm(v)
%14 = 1
? nfdisc(u) == nfdisc(v)
%15 = 1
? for(i=1,B, nfisisom(u,v))
time = 1,821 ms.
? K = nfinit(u); L = nfinit(v);
? for(i=1,B, nfisisom(K,v))
time = 232 ms.

nfislocalpower(pr, a, n)
Let nf be a nf structure attached to a number field 𝐾, let 𝑎 ∈ 𝐾 and let pr be a prid structure attached to a
maximal ideal 𝑣. Return 1 if 𝑎 is an 𝑛-th power in the completed local field 𝐾𝑣 , and 0 otherwise.

? K = nfinit(y^2+1);
? P = idealprimedec(K,2)[1]; \\ the ramified prime above 2
? nfislocalpower(K,P,-1, 2) \\ -1 is a square
%3 = 1

(continues on next page)
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(continued from previous page)

? nfislocalpower(K,P,-1, 4) \\ ... but not a 4-th power
%4 = 0
? nfislocalpower(K,P,2, 2) \\ 2 is not a square
%5 = 0

? Q = idealprimedec(K,5)[1]; \\ a prime above 5
? nfislocalpower(K,Q, [0, 32]~, 30) \\ 32*I is locally a 30-th power
%7 = 1

nfkermodpr(x, pr)
This function is obsolete, use nfmodpr.

Kernel of the matrix 𝑎 in Z𝐾/𝑝𝑟, where pr is in modpr format (see nfmodprinit).

nfmodpr(x, pr)
Map 𝑥 to a t_FFELT in the residue field modulo pr. The argument pr is either a maximal ideal in idealprimedec
format or, preferably, a modpr structure from nfmodprinit. The function nfmodprlift allows to lift back to
Z𝐾 .

Note that the function applies to number field elements and not to vector / matrices / polynomials of such. Use
apply to convert recursive structures.

? K = nfinit(y^3-250);
? P = idealprimedec(K, 5)[2];
? modP = nfmodprinit(K, P, 't);
? K.zk
%4 = [1, 1/5*y, 1/25*y^2]
? apply(t->nfmodpr(K,t,modP), K.zk)
%5 = [1, t, 2*t + 1]
? %[1].mod
%6 = t^2 + 3*t + 4
? K.index
%7 = 125

For clarity, we represent elements in the residue field F5[𝑡]/(𝑇 ) as polynomials in the variable 𝑡. Whenever
the underlying rational prime does not divide K.index, it is actually the case that 𝑡 is the reduction of 𝑦 in
Q[𝑦]/(𝐾.𝑝𝑜𝑙) modulo an irreducible factor of K.pol over F𝑝. In the above example, 5 divides the index and 𝑡 is
actually the reduction of 𝑦/5.

nfmodprinit(pr, v)
Transforms the prime ideal pr into modpr format necessary for all operations modulo pr in the number field nf.
The functions nfmodpr and nfmodprlift allow to project to and lift from the residue field. The variable 𝑣 is
used to display finite field elements (see ffgen).

? K = nfinit(y^3-250);
? P = idealprimedec(K, 5)[2];
? modP = nfmodprinit(K, P, 't);
? K.zk
%4 = [1, 1/5*y, 1/25*y^2]
? apply(t->nfmodpr(K,t,modP), K.zk)
%5 = [1, t, 2*t + 1]
? %[1].mod
%6 = t^2 + 3*t + 4

(continues on next page)
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? K.index
%7 = 125

For clarity, we represent elements in the residue field F5[𝑡]/(𝑇 ) as polynomials in the variable 𝑡. Whenever
the underlying rational prime does not divide K.index, it is actually the case that 𝑡 is the reduction of 𝑦 in
Q[𝑦]/(𝐾.𝑝𝑜𝑙) modulo an irreducible factor of K.pol over F𝑝. In the above example, 5 divides the index and 𝑡 is
actually the reduction of 𝑦/5.

nfmodprlift(x, pr)
Lift the t_FFELT 𝑥 (from nfmodpr) in the residue field modulo pr to the ring of integers. Vectors and matrices
are also supported. For polynomials, use apply and the present function.

The argument pr is either a maximal ideal in idealprimedec format or, preferably, a modpr structure from
nfmodprinit. There are no compatibility checks to try and decide whether 𝑥 is attached the same residue field
as defined by pr: the result is undefined if not.

The function nfmodpr allows to reduce to the residue field.

? K = nfinit(y^3-250);
? P = idealprimedec(K, 5)[2];
? modP = nfmodprinit(K,P);
? K.zk
%4 = [1, 1/5*y, 1/25*y^2]
? apply(t->nfmodpr(K,t,modP), K.zk)
%5 = [1, y, 2*y + 1]
? nfmodprlift(K, %, modP)
%6 = [1, 1/5*y, 2/5*y + 1]
? nfeltval(K, %[3] - K.zk[3], P)
%7 = 1

nfnewprec(precision)
Transforms the number field 𝑛𝑓 into the corresponding data using current (usually larger) precision. This function
works as expected if nf is in fact a bnf or a bnr (update structure to current precision). If the original bnf structure
was not computed by bnfinit(,1), then this may be quite slow and even fail: many generators of principal ideals
have to be computed and the algorithm may fail because the accuracy is not sufficient to bootstrap the required
generators and fundamental units.

nfpolsturm(T, pl)
Given a polynomial 𝑇 with coefficients in the number field nf, returns the number of real roots of the 𝑠(𝑇 ) where
𝑠 runs through the real embeddings of the field specified by optional argument pl:

• pl omitted: all 𝑟1 real places;

• pl an integer between 1 and 𝑟1: the embedding attached to the 𝑖-th real root of nf.pol, i.e. nf.
roots:math:`[i]`;

• pl a vector or t_VECSMALL: the embeddings attached to the 𝑝𝑙[𝑖]-th real roots of nf.pol.

? nf = nfinit('y^2 - 2);
? nf.sign
%2 = [2, 0]
? nf.roots
%3 = [-1.414..., 1.414...]
? T = x^2 + 'y;
? nfpolsturm(nf, T, 1) \\ subst(T,y,sqrt(2)) has two real roots

(continues on next page)
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%5 = 2
? nfpolsturm(nf, T, 2) \\ subst(T,y,-sqrt(2)) has no real root
%6 = 0
? nfpolsturm(nf, T) \\ all embeddings together
%7 = [2, 0]
? nfpolsturm(nf, T, [2,1]) \\ second then first embedding
%8 = [0, 2]
? nfpolsturm(nf, x^3) \\ number of distinct roots !
%9 = [1, 1]
? nfpolsturm(nf, x, 6) \\ there are only 2 real embeddings !
*** at top-level: nfpolsturm(nf,x,6)
*** ^-----------------
*** nfpolsturm: domain error in nfpolsturm: index > 2

nfroots(x)
Roots of the polynomial 𝑥 in the number field 𝑛𝑓 given by nfinit without multiplicity (in Q if 𝑛𝑓 is omitted).
𝑥 has coefficients in the number field (scalar, polmod, polynomial, column vector). The main variable of 𝑛𝑓
must be of lower priority than that of 𝑥 (see priority (in the PARI manual)). However if the coefficients of the
number field occur explicitly (as polmods) as coefficients of 𝑥, the variable of these polmods must be the same
as the main variable of 𝑡 (see nffactor).

It is possible to input a defining polynomial for nf instead, but this is in general less efficient since parts of an nf
structure will then be computed internally. This is useful in two situations: when you do not need the nf elsewhere,
or when you cannot initialize an nf due to integer factorization difficulties when attempting to compute the field
discriminant and maximal order.

Caveat. nfinit([T, listP]) allows to compute in polynomial time a conditional nf structure, which sets nf.
zk to an order which is not guaranteed to be maximal at all primes. Always either use nfcertify first (which
may not run in polynomial time) or make sure to input nf.pol instead of the conditional nf : nfroots is able to
recover in polynomial time in this case, instead of potentially missing a factor.

nfrootsof1()

Returns a two-component vector [𝑤, 𝑧] where 𝑤 is the number of roots of unity in the number field nf, and 𝑧 is a
primitive 𝑤-th root of unity. It is possible to input a defining polynomial for nf instead.

? K = nfinit(polcyclo(11));
? nfrootsof1(K)
%2 = [22, [0, 0, 0, 0, 0, -1, 0, 0, 0, 0]~]
? z = nfbasistoalg(K, %[2]) \\ in algebraic form
%3 = Mod(-x^5, x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)
? [lift(z^11), lift(z^2)] \\ proves that the order of z is 22
%4 = [-1, -x^9 - x^8 - x^7 - x^6 - x^5 - x^4 - x^3 - x^2 - x - 1]

This function guesses the number 𝑤 as the gcd of the #𝑘(𝑣)* for unramified 𝑣 above odd primes, then computes
the roots in nf of the 𝑤-th cyclotomic polynomial. The algorithm is polynomial time with respect to the field
degree and the bitsize of the multiplication table in nf (both of them polynomially bounded in terms of the size
of the discriminant). Fields of degree up to 100 or so should require less than one minute.

nfsnf(x, flag)
Given a torsion Z𝐾-module 𝑥 attached to the square integral invertible pseudo-matrix (𝐴, 𝐼, 𝐽), returns an ideal
list𝐷 = [𝑑1, ..., 𝑑𝑛] which is the Smith normal form of 𝑥. In other words, 𝑥 is isomorphic toZ𝐾/𝑑1⊕...⊕Z𝐾/𝑑𝑛
and 𝑑𝑖 divides 𝑑𝑖−1 for 𝑖 >= 2. If 𝑓𝑙𝑎𝑔 is nonzero return [𝐷,𝑈, 𝑉 ], where 𝑈𝐴𝑉 is the identity.

See ZKmodules (in the PARI manual) for the definition of integral pseudo-matrix; briefly, it is input as a 3-
component row vector [𝐴, 𝐼, 𝐽 ] where 𝐼 = [𝑏1, ..., 𝑏𝑛] and 𝐽 = [𝑎1, ..., 𝑎𝑛] are two ideal lists, and 𝐴 is a square
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𝑛𝑥𝑛 matrix with columns (𝐴1, ..., 𝐴𝑛), seen as elements in 𝐾𝑛 (with canonical basis (𝑒1, ..., 𝑒𝑛)). This data
defines the Z𝐾 module 𝑥 given by

(𝑏1𝑒1 ⊕ ...⊕ 𝑏𝑛𝑒𝑛)/(𝑎1𝐴1 ⊕ ...⊕ 𝑎𝑛𝐴𝑛),

The integrality condition is 𝑎𝑖,𝑗 ∈ 𝑏𝑖𝑎
−1
𝑗 for all 𝑖, 𝑗. If it is not satisfied, then the 𝑑𝑖 will not be integral. Note that

every finitely generated torsion module is isomorphic to a module of this form and even with 𝑏𝑖 = 𝑍𝐾 for all 𝑖.

nfsolvemodpr(a, b, P)
This function is obsolete, use nfmodpr.

Let 𝑃 be a prime ideal in modpr format (see nfmodprinit), let 𝑎 be a matrix, invertible over the residue field,
and let 𝑏 be a column vector or matrix. This function returns a solution of 𝑎.𝑥 = 𝑏; the coefficients of 𝑥 are lifted
to nf elements.

? K = nfinit(y^2+1);
? P = idealprimedec(K, 3)[1];
? P = nfmodprinit(K, P);
? a = [y+1, y; y, 0]; b = [1, y]~
? nfsolvemodpr(K, a,b, P)
%5 = [1, 2]~

nfsplitting(d)
Defining polynomial over Q for the splitting field of 𝑃 ∈ Q[𝑥], that is the smallest field over which 𝑃 is totally
split. If irreducible, the polynomial 𝑃 can also be given by a nf structure, which is more efficient. If 𝑑 is given, it
must be a multiple of the splitting field degree. Note that if 𝑃 is reducible the splitting field degree can be smaller
than the degree of 𝑃 .

? K = nfinit(x^3-2);
? nfsplitting(K)
%2 = x^6 + 108
? nfsplitting(x^8-2)
%3 = x^16 + 272*x^8 + 64
? S = nfsplitting(x^6-8) // reducible
%4 = x^4+2*x^2+4
? lift(nfroots(subst(S,x,a),x^6-8))
%5 = [-a,a,-1/2*a^3-a,-1/2*a^3,1/2*a^3,1/2*a^3+a]

Specifying the degree of the splitting field can make the computation faster.

? nfsplitting(x^17-123);
time = 3,607 ms.
? poldegree(%)
%2 = 272
? nfsplitting(x^17-123,272);
time = 150 ms.
? nfsplitting(x^17-123,273);
*** nfsplitting: Warning: ignoring incorrect degree bound 273
time = 3,611 ms.

The complexity of the algorithm is polynomial in the degree 𝑑 of the splitting field and the bitsize of 𝑇 ; if 𝑑 is
large the result will likely be unusable, e.g. nfinit will not be an option:

? nfsplitting(x^6-x-1)
[... degree 720 polynomial deleted ...]
time = 11,020 ms.
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nfsubfields(d, fl)
Finds all subfields of degree 𝑑 of the number field defined by the (monic, integral) polynomial pol (all subfields
if 𝑑 is null or omitted). The result is a vector of subfields, each being given by [𝑔, ℎ] (default) or simply 𝑔 (flag =
1), where 𝑔 is an absolute equation and ℎ expresses one of the roots of 𝑔 in terms of the root 𝑥 of the polynomial
defining 𝑛𝑓 . This routine uses

• Allombert’s galoissubfields when nf is Galois (with weakly supersolvable Galois group).

• Klüners’s or van Hoeij-Klüners-Novocin algorithm in the general case. The latter runs in polynomial time
and is generally superior unless there exists a small unramified prime 𝑝 such that pol has few irreducible
factors modulo 𝑝.

An input of the form [nf, fa] is also allowed, where fa is the factorisation of nf.pol over nf, expressed as a famat
of polynomials with coefficients in the variable of nf, in which case the van Hoeij-Klüners-Novocin algorithm is
used.

? pol = x^4 - x^3 - x^2 + x + 1;
? nfsubfields(pol)
%2 = [[x, 0], [x^2 - x + 1, x^3 - x^2 + 1], [x^4 - x^3 - x^2 + x + 1, x]]
? nfsubfields(pol,,1)
%2 = [x, x^2 - x + 1, x^4 - x^3 - x^2 + x + 1]
? y=varhigher("y"); fa = nffactor(pol,subst(pol,x,y));
? #nfsubfields([pol,fa])
%5 = 3

nfsubfieldscm(fl)
Compute the maximal CM subfield of nf. Return 0 if nf does not have a CM subfield, otherwise return [𝑔, ℎ]
(default) or 𝑔 (flag = 1) where 𝑔 is an absolute equation and ℎ expresses a root of 𝑔 in terms of the generator of nf.
Moreover, the CM involution is given by 𝑋𝑚𝑜𝑑𝑔(𝑋) : − − − > −𝑋𝑚𝑜𝑑𝑔(𝑋), i.e. 𝑋𝑚𝑜𝑑𝑔(𝑋) is a totally
imaginary element.

An input of the form [nf, fa] is also allowed, where fa is the factorisation of nf.pol over nf, and nf is also
allowed to be a monic defining polynomial for the number field.

? nf = nfinit(x^8 + 20*x^6 + 10*x^4 - 4*x^2 + 9);
? nfsubfieldscm(nf)
%2 = [x^4 + 4480*x^2 + 3612672, 3*x^5 + 58*x^3 + 5*x]
? pol = y^16-8*y^14+29*y^12-60*y^10+74*y^8-48*y^6+8*y^4+4*y^2+1;
? fa = nffactor(pol, subst(pol,y,x));
? nfsubfieldscm([pol,fa])
%5 = [y^8 + ... , ...]

nfsubfieldsmax(fl)
Compute the list of maximal subfields of nf. The result is a vector as in nfsubfields.

An input of the form [nf, fa] is also allowed, where fa is the factorisation of nf.pol over nf, and nf is also
allowed to be a monic defining polynomial for the number field.

norm()

Algebraic norm of 𝑥, i.e. the product of 𝑥with its conjugate (no square roots are taken), or conjugates for polmods.
For vectors and matrices, the norm is taken componentwise and hence is not the 𝐿2-norm (see norml2). Note
that the norm of an element of R is its square, so as to be compatible with the complex norm.

norml2()

Square of the 𝐿2-norm of 𝑥. More precisely, if 𝑥 is a scalar, 𝑛𝑜𝑟𝑚𝑙2(𝑥) is defined to be the square of the
complex modulus of 𝑥 (real t_QUAD s are not supported). If 𝑥 is a polynomial, a (row or column) vector or a
matrix, norml2(:math:`x)` is defined recursively as

∑︀
𝑖 𝑛𝑜𝑟𝑚𝑙2(𝑥𝑖), where (𝑥𝑖) run through the components
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of 𝑥. In particular, this yields the usual
∑︀

‖𝑥𝑖‖2 (resp.
∑︀

‖𝑥𝑖,𝑗‖2) if 𝑥 is a polynomial or vector (resp. matrix)
with complex components.

? norml2( [ 1, 2, 3 ] ) \\ vector
%1 = 14
? norml2( [ 1, 2; 3, 4] ) \\ matrix
%2 = 30
? norml2( 2*I + x )
%3 = 5
? norml2( [ [1,2], [3,4], 5, 6 ] ) \\ recursively defined
%4 = 91

normlp(p, precision)
𝐿𝑝-norm of 𝑥; sup norm if 𝑝 is omitted or +oo. More precisely, if 𝑥 is a scalar, normlp(𝑥, 𝑝) is defined to be
abs(𝑥). If 𝑥 is a polynomial, a (row or column) vector or a matrix:

• if 𝑝 is omitted or +oo, then normlp(:math:`x)` is defined recursively as max𝑖 𝑛𝑜𝑟𝑚𝑙𝑝(𝑥𝑖)), where (𝑥𝑖)
run through the components of 𝑥. In particular, this yields the usual sup norm if 𝑥 is a polynomial or vector
with complex components.

• otherwise, normlp(:math:`x, 𝑝)` is defined recursively as (
∑︀

𝑖 𝑛𝑜𝑟𝑚𝑙𝑝
𝑝(𝑥𝑖, 𝑝))

1/𝑝. In particular, this
yields the usual (

∑︀
‖𝑥𝑖‖𝑝)1/𝑝 if 𝑥 is a polynomial or vector with complex components.

? v = [1,-2,3]; normlp(v) \\ vector
%1 = 3
? normlp(v, +oo) \\ same, more explicit
%2 = 3
? M = [1,-2;-3,4]; normlp(M) \\ matrix
%3 = 4
? T = (1+I) + I*x^2; normlp(T)
%4 = 1.4142135623730950488016887242096980786
? normlp([[1,2], [3,4], 5, 6]) \\ recursively defined
%5 = 6

? normlp(v, 1)
%6 = 6
? normlp(M, 1)
%7 = 10
? normlp(T, 1)
%8 = 2.4142135623730950488016887242096980786

numbpart()

Gives the number of unrestricted partitions of 𝑛, usually called 𝑝(𝑛) in the literature; in other words the number
of nonnegative integer solutions to 𝑎 + 2𝑏 + 3𝑐 + ... = 𝑛. 𝑛 must be of type integer and 𝑛 < 1015 (with trivial
values 𝑝(𝑛) = 0 for 𝑛 < 0 and 𝑝(0) = 1). The algorithm uses the Hardy-Ramanujan-Rademacher formula. To
explicitly enumerate them, see partitions.

numdiv()

Number of divisors of ‖𝑥‖. 𝑥 must be of type integer.

numerator(D)

Numerator of 𝑓 . This is defined as f * denominator(f,D), see denominator for details. The optional argu-
ment 𝐷 allows to control over which ring we compute the denominator:

• 1: we only consider the underlying Q-structure and the denominator is a (positive) rational integer

• a simple variable, say 'x: all entries as rational functions in𝐾(𝑥) and the denominator is a polynomial in 𝑥.
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? f = x + 1/y + 1/2;
? numerator(f) \\ a t_POL in x
%2 = x + ((y + 2)/(2*y))
? numerator(f, 1) \\ Q-denominator is 2
%3 = x + ((y + 2)/y)
? numerator(f, y) \\ as a rational function in y
%5 = 2*y*x + (y + 2)

omega()

Number of distinct prime divisors of ‖𝑥‖. 𝑥 must be of type integer.

? factor(392)
%1 =
[2 3]

[7 2]

? omega(392)
%2 = 2; \\ without multiplicity
? bigomega(392)
%3 = 5; \\ = 3+2, with multiplicity

padicappr(a)
Vector of 𝑝-adic roots of the polynomial pol congruent to the 𝑝-adic number 𝑎modulo 𝑝, and with the same 𝑝-adic
precision as 𝑎. The number 𝑎 can be an ordinary 𝑝-adic number (type t_PADIC, i.e. an element of Z𝑝) or can
be an integral element of a finite unramified extension Q𝑝[𝑋]/(𝑇 ) of Q𝑝, given as a t_POLMOD Mod(𝐴, 𝑇 ) at
least one of whose coefficients is a t_PADIC and 𝑇 irreducible modulo 𝑝. In this case, the result is the vector of
roots belonging to the same extension of Q𝑝 as 𝑎. The polynomial pol should have exact coefficients; if not, its
coefficients are first rounded to Q or Q[𝑋]/(𝑇 ) and this is the polynomial whose roots we consider.

padicfields(N, flag)
Returns a vector of polynomials generating all the extensions of degree 𝑁 of the field Q𝑝 of 𝑝-adic rational
numbers; 𝑁 is allowed to be a 2-component vector [𝑛, 𝑑], in which case we return the extensions of degree 𝑛 and
discriminant 𝑝𝑑.

The list is minimal in the sense that two different polynomials generate nonisomorphic extensions; in particular,
the number of polynomials is the number of classes of nonisomorphic extensions. If 𝑃 is a polynomial in this list,
𝛼 is any root of 𝑃 and 𝐾 = Q𝑝(𝛼), then 𝛼 is the sum of a uniformizer and a (lift of a) generator of the residue
field of 𝐾; in particular, the powers of 𝛼 generate the ring of 𝑝-adic integers of 𝐾.

If 𝑓𝑙𝑎𝑔 = 1, replace each polynomial 𝑃 by a vector [𝑃, 𝑒, 𝑓, 𝑑, 𝑐] where 𝑒 is the ramification index, 𝑓 the residual
degree, 𝑑 the valuation of the discriminant, and 𝑐 the number of conjugate fields. If 𝑓𝑙𝑎𝑔 = 2, only return the
number of extensions in a fixed algebraic closure (Krasner’s formula), which is much faster.

padicprec(p)
Returns the absolute 𝑝-adic precision of the object 𝑥; this is the minimum precision of the components of 𝑥. The
result is +oo if 𝑥 is an exact object (as a 𝑝-adic):

? padicprec((1 + O(2^5)) * x + (2 + O(2^4)), 2)
%1 = 4
? padicprec(x + 2, 2)
%2 = +oo
? padicprec(2 + x + O(x^2), 2)
%3 = +oo
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The function raises an exception if it encounters an object incompatible with 𝑝-adic computations:

? padicprec(O(3), 2)
*** at top-level: padicprec(O(3),2)
*** ^-----------------
*** padicprec: inconsistent moduli in padicprec: 3 != 2

? padicprec(1.0, 2)
*** at top-level: padicprec(1.0,2)
*** ^----------------
*** padicprec: incorrect type in padicprec (t_REAL).

parapply(x)
Parallel evaluation of f on the elements of x. The function fmust not access global variables or variables declared
with local(), and must be free of side effects.

parapply(factor,[2^256 + 1, 2^193 - 1])

factors 2256 + 1 and 2193 − 1 in parallel.

{
my(E = ellinit([1,3]), V = vector(12,i,randomprime(2^200)));
parapply(p->ellcard(E,p), V)
}

computes the order of 𝐸(F𝑝) for 12 random primes of 200 bits.

pareval()

Parallel evaluation of the elements of x, where x is a vector of closures. The closures must be of arity 0, must not
access global variables or variables declared with local and must be free of side effects.

Here is an artificial example explaining the MOV attack on the elliptic discrete log problem (by reducing it to a
standard discrete log over a finite field):

{
my(q = 2^30 + 3, m = 40 * q; p = 1 + m^2); \\ p, q are primes
my(E = ellinit([0,0,0,1,0] * Mod(1,p)));
my([P, Q] = ellgenerators(E));
\\ E(F_p) ~ Z/m P + Z/m Q and the order of the
\\ Weil pairing <P,Q> in (Z/p)^* is m
my(F = [m,factor(m)], e = random(m), R, wR, wQ);
R = ellpow(E, Q, e);
wR = ellweilpairing(E,P,R,m);
wQ = ellweilpairing(E,P,Q,m); \\ wR = wQ^e
pareval([()->znlog(wR,wQ,F), ()->elllog(E,R,Q), ()->e])
}

Note the use of my to pass “arguments” to the functions we need to evaluate while satisfying the listed require-
ments: closures of arity 0 and no global variables (another possibility would be to use export). As a result, the
final three statements satisfy all the listed requirements and are run in parallel. (Which is silly for this computation
but illustrates the use of pareval.) The function parfor is more powerful but harder to use.

parselect(A, flag)
Selects elements of 𝐴 according to the selection function 𝑓 , done in parallel. If flag is 1, return the indices of
those elements (indirect selection) The function f must not access global variables or variables declared with
local(), and must be free of side effects.
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permcycles()

Given a permutation 𝑥 on 𝑛 elements, return the orbits of 1, ..., 𝑛 under the action of 𝑥 as cycles.

? permcycles(Vecsmall([1,2,3]))
%1 = [Vecsmall([1]),Vecsmall([2]),Vecsmall([3])]
? permcycles(Vecsmall([2,3,1]))
%2 = [Vecsmall([1,2,3])]
? permcycles(Vecsmall([2,1,3]))
%3 = [Vecsmall([1,2]),Vecsmall([3])]

permorder()

Given a permutation 𝑥 on 𝑛 elements, return its order.

? p = Vecsmall([3,1,4,2,5]);
? p^2
%2 = Vecsmall([4,3,2,1,5])
? p^4
%3 = Vecsmall([1,2,3,4,5])
? permorder(p)
%4 = 4

permsign()

Given a permutation 𝑥 on 𝑛 elements, return its signature.

? p = Vecsmall([3,1,4,2,5]);
? permsign(p)
%2 = -1
? permsign(p^2)
%3 = 1

permtonum()

Given a permutation 𝑥 on 𝑛 elements, gives the number 𝑘 such that 𝑥 = 𝑛𝑢𝑚𝑡𝑜𝑝𝑒𝑟𝑚(𝑛, 𝑘), i.e. inverse function
of numtoperm. The numbering used is the standard lexicographic ordering, starting at 0.

plotdraw(flag)
Physically draw the rectwindow 𝑤. More generally, 𝑤 can be of the form [𝑤1, 𝑥1, 𝑦1, 𝑤2, 𝑥2, 𝑦2, ...] (number of
components must be divisible by 3; the windows 𝑤1, 𝑤2, etc. are physically placed with their upper left corner at
physical position (𝑥1, 𝑦1), (𝑥2, 𝑦2),. . . respectively, and are then drawn together. Overlapping regions will thus be
drawn twice, and the windows are considered transparent. Then display the whole drawing in a window on your
screen. If 𝑓𝑙𝑎𝑔! = 0, 𝑥1, 𝑦1 etc. express fractions of the size of the current output device

plotexport(list, flag)
Draw list of rectwindows as in plotdraw(list,flag), returning the resulting picture as a character string
which can then be written to a file. The format fmt is either "ps" (PostScript output) or "svg" (Scalable Vector
Graphics).

? plotinit(0, 100, 100);
? plotbox(0, 50, 50);
? plotcolor(0, 2);
? plotbox(0, 30, 30);
? plotdraw(0); \\ watch result on screen
? s = plotexport("svg", 0);
? write("graph.svg", s); \\ dump result to file
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plothraw(Y, flag)
Given 𝑋 and 𝑌 two vectors of equal length, plots (in high precision) the points whose (𝑥, 𝑦)-coordinates are
given in 𝑋 and 𝑌 . Automatic positioning and scaling is done, but with the same scaling factor on 𝑥 and 𝑦. If
𝑓𝑙𝑎𝑔 is 1, join points, other nonzero flags toggle display options and should be combinations of bits 2𝑘, 𝑘 >= 3
as in ploth.

plothrawexport(X, Y, flag)
Given 𝑋 and 𝑌 two vectors of equal length, plots (in high precision) the points whose (𝑥, 𝑦)-coordinates are
given in 𝑋 and 𝑌 , returning the resulting picture as a character string which can then be written to a file. The
format fmt is either "ps" (PostScript output) or "svg" (Scalable Vector Graphics).

Automatic positioning and scaling is done, but with the same scaling factor on 𝑥 and 𝑦. If 𝑓𝑙𝑎𝑔 is 1, join points,
other nonzero flags toggle display options and should be combinations of bits 2𝑘, 𝑘 >= 3 as in ploth.

polclass(inv, x)
Return a polynomial in Z[𝑥] generating the Hilbert class field for the imaginary quadratic discriminant 𝐷. If 𝑖𝑛𝑣
is 0 (the default), use the modular 𝑗-function and return the classical Hilbert polynomial, otherwise use a class
invariant. The following invariants correspond to the different values of 𝑖𝑛𝑣, where 𝑓 denotes Weber’s function
weber, and 𝑤𝑝,𝑞 the double eta quotient given by 𝑤𝑝,𝑞 = (𝜂(𝑥/𝑝)𝜂(𝑥/𝑞))/(𝜂(𝑥)𝜂(𝑥/𝑝𝑞))

The invariants𝑤𝑝,𝑞 are not allowed unless they satisfy the following technical conditions ensuring they do generate
the Hilbert class field and not a strict subfield:

• if 𝑝! = 𝑞, we need them both noninert, prime to the conductor of Z[
√
𝐷]. Let 𝑃,𝑄 be prime ideals above

𝑝 and 𝑞; if both are unramified, we further require that 𝑃 1𝑄1 be all distinct in the class group of Z[
√
𝐷]; if

both are ramified, we require that 𝑃𝑄! = 1 in the class group.

• if 𝑝 = 𝑞, we want it split and prime to the conductor and the prime ideal above it must have order ! = 1, 2, 4
in the class group.

Invariants are allowed under the additional conditions on 𝐷 listed below.

• 0 : 𝑗

• 1 : 𝑓 , 𝐷 = 1𝑚𝑜𝑑8 and 𝐷 = 1, 2𝑚𝑜𝑑3;

• 2 : 𝑓2, 𝐷 = 1𝑚𝑜𝑑8 and 𝐷 = 1, 2𝑚𝑜𝑑3;

• 3 : 𝑓3, 𝐷 = 1𝑚𝑜𝑑8;

• 4 : 𝑓4, 𝐷 = 1𝑚𝑜𝑑8 and 𝐷 = 1, 2𝑚𝑜𝑑3;

• 5 : 𝛾2 = 𝑗1/3, 𝐷 = 1, 2𝑚𝑜𝑑3;

• 6 : 𝑤2,3, 𝐷 = 1𝑚𝑜𝑑8 and 𝐷 = 1, 2𝑚𝑜𝑑3;

• 8 : 𝑓8, 𝐷 = 1𝑚𝑜𝑑8 and 𝐷 = 1, 2𝑚𝑜𝑑3;

• 9 : 𝑤3,3, 𝐷 = 1𝑚𝑜𝑑2 and 𝐷 = 1, 2𝑚𝑜𝑑3;

• 10: 𝑤2,5, 𝐷! = 60𝑚𝑜𝑑80 and 𝐷 = 1, 2𝑚𝑜𝑑3;

• 14: 𝑤2,7, 𝐷 = 1𝑚𝑜𝑑8;

• 15: 𝑤3,5, 𝐷 = 1, 2𝑚𝑜𝑑3;

• 21: 𝑤3,7, 𝐷 = 1𝑚𝑜𝑑2 and 21 does not divide 𝐷

• 23: 𝑤2
2,3, 𝐷 = 1, 2𝑚𝑜𝑑3;

• 24: 𝑤2
2,5, 𝐷 = 1, 2𝑚𝑜𝑑3;

• 26: 𝑤2,13, 𝐷! = 156𝑚𝑜𝑑208;

• 27: 𝑤2
2,7, 𝐷! = 28𝑚𝑜𝑑112;
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• 28: 𝑤2
3,3, 𝐷 = 1, 2𝑚𝑜𝑑3;

• 35: 𝑤5,7, 𝐷 = 1, 2𝑚𝑜𝑑3;

• 39: 𝑤3,13, 𝐷 = 1𝑚𝑜𝑑2 and 𝐷 = 1, 2𝑚𝑜𝑑3;

The algorithm for computing the polynomial does not use the floating point approach, which would evaluate a
precise modular function in a precise complex argument. Instead, it relies on a faster Chinese remainder based
approach modulo small primes, in which the class invariant is only defined algebraically by the modular poly-
nomial relating the modular function to 𝑗. So in fact, any of the several roots of the modular polynomial may
actually be the class invariant, and more precise assertions cannot be made.

For instance, while polclass(D) returns the minimal polynomial of 𝑗(𝜏) with 𝜏 (any) quadratic integer for the
discriminant 𝐷, the polynomial returned by polclass(D, 5) can be the minimal polynomial of any of 𝛾2(𝜏),
𝜁3𝛾2(𝜏) or 𝜁23𝛾2(𝜏), the three roots of the modular polynomial 𝑗 = 𝛾32 , in which 𝑗 has been specialised to 𝑗(𝜏).

The modular polynomial is given by 𝑗 = ((𝑓24 − 16)3)/(𝑓24) for Weber’s function 𝑓 .

For the double eta quotients of level 𝑁 = 𝑝𝑞, all functions are covered such that the modular curve 𝑋+
0 (𝑁),

the function field of which is generated by the functions invariant under Γ0(𝑁) and the Fricke-Atkin-Lehner
involution, is of genus 0 with function field generated by (a power of) the double eta quotient 𝑤. This ensures
that the full Hilbert class field (and not a proper subfield) is generated by class invariants from these double eta
quotients. Then the modular polynomial is of degree 2 in 𝑗, and of degree 𝜓(𝑁) = (𝑝+ 1)(𝑞 + 1) in 𝑤.

? polclass(-163)
%1 = x + 262537412640768000
? polclass(-51, , 'z)
%2 = z^2 + 5541101568*z + 6262062317568
? polclass(-151,1)
x^7 - x^6 + x^5 + 3*x^3 - x^2 + 3*x + 1

polcoef(n, v)
Coefficient of degree 𝑛 of the polynomial 𝑥, with respect to the main variable if 𝑣 is omitted, with respect to 𝑣
otherwise. If 𝑛 is greater than the degree, the result is zero.

Naturally applies to scalars (polynomial of degree 0), as well as to rational functions whose denominator is a
monomial. It also applies to power series: if 𝑛 is less than the valuation, the result is zero. If it is greater than the
largest significant degree, then an error message is issued.

polcoeff(n, v)
Deprecated alias for polcoef.

polcompositum(Q, flag)
𝑃 and 𝑄 being squarefree polynomials in Z[𝑋] in the same variable, outputs the simple factors of the étale Q-
algebra 𝐴 = Q(𝑋,𝑌 )/(𝑃 (𝑋), 𝑄(𝑌 )). The factors are given by a list of polynomials 𝑅 in Z[𝑋], attached to the
number field Q(𝑋)/(𝑅), and sorted by increasing degree (with respect to lexicographic ordering for factors of
equal degrees). Returns an error if one of the polynomials is not squarefree.

Note that it is more efficient to reduce to the case where 𝑃 and𝑄 are irreducible first. The routine will not perform
this for you, since it may be expensive, and the inputs are irreducible in most applications anyway. In this case,
there will be a single factor 𝑅 if and only if the number fields defined by 𝑃 and 𝑄 are linearly disjoint (their
intersection is Q).

Assuming 𝑃 is irreducible (of smaller degree than 𝑄 for efficiency), it is in general much faster to proceed as
follows

nf = nfinit(P); L = nffactor(nf, Q)[,1];
vector(#L, i, rnfequation(nf, L[i]))
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to obtain the same result. If you are only interested in the degrees of the simple factors, the rnfequation
instruction can be replaced by a trivial poldegree(P) * poldegree(L[i]).

The binary digits of 𝑓𝑙𝑎𝑔 mean

1: outputs a vector of 4-component vectors [𝑅, 𝑎, 𝑏, 𝑘], where𝑅 ranges through the list of all possible compositums
as above, and 𝑎 (resp. 𝑏) expresses the root of 𝑃 (resp. 𝑄) as an element of Q(𝑋)/(𝑅). Finally, 𝑘 is a small
integer such that 𝑏+ 𝑘𝑎 = 𝑋 modulo 𝑅.

2: assume that 𝑃 and 𝑄 define number fields which are linearly disjoint: both polynomials are irreducible and
the corresponding number fields have no common subfield besides Q. This allows to save a costly factorization
over Q. In this case return the single simple factor instead of a vector with one element.

A compositum is often defined by a complicated polynomial, which it is advisable to reduce before further work.
Here is an example involving the field Q(𝜁5, 5

1/5):

? L = polcompositum(x^5 - 5, polcyclo(5), 1); \\ list of [R,a,b,k]
? [R, a] = L[1]; \\ pick the single factor, extract R,a (ignore b,k)
? R \\ defines the compositum
%3 = x^20 + 5*x^19 + 15*x^18 + 35*x^17 + 70*x^16 + 141*x^15 + 260*x^14\
+ 355*x^13 + 95*x^12 - 1460*x^11 - 3279*x^10 - 3660*x^9 - 2005*x^8 \
+ 705*x^7 + 9210*x^6 + 13506*x^5 + 7145*x^4 - 2740*x^3 + 1040*x^2 \
- 320*x + 256
? a^5 - 5 \\ a fifth root of 5
%4 = 0
? [T, X] = polredbest(R, 1);
? T \\ simpler defining polynomial for Q[x]/(R)
%6 = x^20 + 25*x^10 + 5
? X \\ root of R in Q[y]/(T(y))
%7 = Mod(-1/11*x^15 - 1/11*x^14 + 1/22*x^10 - 47/22*x^5 - 29/11*x^4 + 7/22,\
x^20 + 25*x^10 + 5)
? a = subst(a.pol, 'x, X) \\ a in the new coordinates
%8 = Mod(1/11*x^14 + 29/11*x^4, x^20 + 25*x^10 + 5)
? a^5 - 5
%9 = 0

In the above example, 𝑥5 − 5 and the 5-th cyclotomic polynomial are irreducible over Q; they have coprime
degrees so define linearly disjoint extensions and we could have started by

? [R,a] = polcompositum(x^5 - 5, polcyclo(5), 3); \\ [R,a,b,k]

polcyclofactors()

Returns a vector of polynomials, whose product is the product of distinct cyclotomic polynomials dividing 𝑓 .

? f = x^10+5*x^8-x^7+8*x^6-4*x^5+8*x^4-3*x^3+7*x^2+3;
? v = polcyclofactors(f)
%2 = [x^2 + 1, x^2 + x + 1, x^4 - x^3 + x^2 - x + 1]
? apply(poliscycloprod, v)
%3 = [1, 1, 1]
? apply(poliscyclo, v)
%4 = [4, 3, 10]

In general, the polynomials are products of cyclotomic polynomials and not themselves irreducible:

? g = x^8+2*x^7+6*x^6+9*x^5+12*x^4+11*x^3+10*x^2+6*x+3;
? polcyclofactors(g)

(continues on next page)
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(continued from previous page)

%2 = [x^6 + 2*x^5 + 3*x^4 + 3*x^3 + 3*x^2 + 2*x + 1]
? factor(%[1])
%3 =
[ x^2 + x + 1 1]

[x^4 + x^3 + x^2 + x + 1 1]

poldegree(v)
Degree of the polynomial 𝑥 in the main variable if 𝑣 is omitted, in the variable 𝑣 otherwise.

The degree of 0 is -oo. The degree of a nonzero scalar is 0. Finally, when 𝑥 is a nonzero polynomial or rational
function, returns the ordinary degree of 𝑥. Raise an error otherwise.

poldisc(v)
Discriminant of the polynomial pol in the main variable if 𝑣 is omitted, in 𝑣 otherwise. Uses a modular algorithm
over Z or Q, and the subresultant algorithm otherwise.

? T = x^4 + 2*x+1;
? poldisc(T)
%2 = -176
? poldisc(T^2)
%3 = 0

For convenience, the function also applies to types t_QUAD and t_QFI/t_QFR:

? z = 3*quadgen(8) + 4;
? poldisc(z)
%2 = 8
? q = Qfb(1,2,3);
? poldisc(q)
%4 = -8

poldiscfactors(flag)
Given a polynomial 𝑇 with integer coefficients, return [𝐷, 𝑓𝑎𝐷] where 𝐷 is the discriminant of 𝑇 and faD is a
cheap partial factorization of ‖𝐷‖: entries in its first column are coprime and not perfect powers but need not be
primes. The factors are obtained by a combination of trial division, testing for perfect powers, factorizations in
coprimes, and computing Euclidean remainder sequences for (𝑇, 𝑇 ′) modulo composite factors 𝑑 of 𝐷 (which is
likely to produce 0-divisors in Z/𝑑Z). If flag is 1, finish the factorization using factorint.

? T = x^3 - 6021021*x^2 + 12072210077769*x - 8092423140177664432;
? [D,faD] = poldiscfactors(T); print(faD); D
[3, 3; 7, 2; 373, 2; 500009, 2; 24639061, 2]
%2 = -27937108625866859018515540967767467

? T = x^3 + 9*x^2 + 27*x - 125014250689643346789780229390526092263790263725;
? [D,faD] = poldiscfactors(T); print(faD)
[2, 6; 3, 3; 125007125141751093502187, 4]
? [D,faD] = poldiscfactors(T, 1); print(faD)
[2, 6; 3, 3; 500009, 12; 1000003, 4]

poldiscreduced()

Reduced discriminant vector of the (integral, monic) polynomial 𝑓 . This is the vector of elementary divisors of
Z[𝛼]/𝑓 ′(𝛼)Z[𝛼], where 𝛼 is a root of the polynomial 𝑓 . The components of the result are all positive, and their
product is equal to the absolute value of the discriminant of 𝑓 .
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polgalois(precision)
Galois group of the nonconstant polynomial 𝑇 ∈ Q[𝑋]. In the present version 2.13.3, 𝑇 must be irreducible and
the degree 𝑑 of 𝑇 must be less than or equal to 7. If the galdata package has been installed, degrees 8, 9, 10 and
11 are also implemented. By definition, if 𝐾 = Q[𝑥]/(𝑇 ), this computes the action of the Galois group of the
Galois closure of 𝐾 on the 𝑑 distinct roots of 𝑇 , up to conjugacy (corresponding to different root orderings).

The output is a 4-component vector [𝑛, 𝑠, 𝑘, 𝑛𝑎𝑚𝑒] with the following meaning: 𝑛 is the cardinality of the group,
𝑠 is its signature (𝑠 = 1 if the group is a subgroup of the alternating group 𝐴𝑑, 𝑠 = −1 otherwise) and name
is a character string containing name of the transitive group according to the GAP 4 transitive groups library by
Alexander Hulpke.

𝑘 is more arbitrary and the choice made up to version 2.2.3 of PARI is rather unfortunate: for 𝑑 > 7, 𝑘 is the
numbering of the group among all transitive subgroups of 𝑆𝑑, as given in “The transitive groups of degree up to
eleven”, G. Butler and J. McKay, Communications in Algebra, vol. 11, 1983, pp. 863–911 (group 𝑘 is denoted
𝑇𝑘 there). And for 𝑑 <= 7, it was ad hoc, so as to ensure that a given triple would denote a unique group.
Specifically, for polynomials of degree 𝑑 <= 7, the groups are coded as follows, using standard notations

In degree 1: 𝑆1 = [1, 1, 1].

In degree 2: 𝑆2 = [2,−1, 1].

In degree 3: 𝐴3 = 𝐶3 = [3, 1, 1], 𝑆3 = [6,−1, 1].

In degree 4: 𝐶4 = [4,−1, 1], 𝑉4 = [4, 1, 1], 𝐷4 = [8,−1, 1], 𝐴4 = [12, 1, 1], 𝑆4 = [24,−1, 1].

In degree 5: 𝐶5 = [5, 1, 1], 𝐷5 = [10, 1, 1], 𝑀20 = [20,−1, 1], 𝐴5 = [60, 1, 1], 𝑆5 = [120,−1, 1].

In degree 6: 𝐶6 = [6,−1, 1], 𝑆3 = [6,−1, 2], 𝐷6 = [12,−1, 1], 𝐴4 = [12, 1, 1], 𝐺18 = [18,−1, 1], 𝑆−
4 =

[24,−1, 1], 𝐴4𝑥𝐶2 = [24,−1, 2], 𝑆+
4 = [24, 1, 1], 𝐺−

36 = [36,−1, 1], 𝐺+
36 = [36, 1, 1], 𝑆4𝑥𝐶2 = [48,−1, 1],

𝐴5 = 𝑃𝑆𝐿2(5) = [60, 1, 1], 𝐺72 = [72,−1, 1], 𝑆5 = 𝑃𝐺𝐿2(5) = [120,−1, 1], 𝐴6 = [360, 1, 1], 𝑆6 =
[720,−1, 1].

In degree 7: 𝐶7 = [7, 1, 1], 𝐷7 = [14,−1, 1], 𝑀21 = [21, 1, 1], 𝑀42 = [42,−1, 1], 𝑃𝑆𝐿2(7) = 𝑃𝑆𝐿3(2) =
[168, 1, 1], 𝐴7 = [2520, 1, 1], 𝑆7 = [5040,−1, 1].

This is deprecated and obsolete, but for reasons of backward compatibility, we cannot change this behavior yet.
So you can use the default new_galois_format to switch to a consistent naming scheme, namely 𝑘 is always
the standard numbering of the group among all transitive subgroups of 𝑆𝑛. If this default is in effect, the above
groups will be coded as:

In degree 1: 𝑆1 = [1, 1, 1].

In degree 2: 𝑆2 = [2,−1, 1].

In degree 3: 𝐴3 = 𝐶3 = [3, 1, 1], 𝑆3 = [6,−1, 2].

In degree 4: 𝐶4 = [4,−1, 1], 𝑉4 = [4, 1, 2], 𝐷4 = [8,−1, 3], 𝐴4 = [12, 1, 4], 𝑆4 = [24,−1, 5].

In degree 5: 𝐶5 = [5, 1, 1], 𝐷5 = [10, 1, 2], 𝑀20 = [20,−1, 3], 𝐴5 = [60, 1, 4], 𝑆5 = [120,−1, 5].

In degree 6: 𝐶6 = [6,−1, 1], 𝑆3 = [6,−1, 2], 𝐷6 = [12,−1, 3], 𝐴4 = [12, 1, 4], 𝐺18 = [18,−1, 5], 𝐴4𝑥𝐶2 =
[24,−1, 6], 𝑆+

4 = [24, 1, 7], 𝑆−
4 = [24,−1, 8], 𝐺−

36 = [36,−1, 9], 𝐺+
36 = [36, 1, 10], 𝑆4𝑥𝐶2 = [48,−1, 11],

𝐴5 = 𝑃𝑆𝐿2(5) = [60, 1, 12], 𝐺72 = [72,−1, 13], 𝑆5 = 𝑃𝐺𝐿2(5) = [120,−1, 14], 𝐴6 = [360, 1, 15],
𝑆6 = [720,−1, 16].

In degree 7: 𝐶7 = [7, 1, 1], 𝐷7 = [14,−1, 2], 𝑀21 = [21, 1, 3], 𝑀42 = [42,−1, 4], 𝑃𝑆𝐿2(7) = 𝑃𝑆𝐿3(2) =
[168, 1, 5], 𝐴7 = [2520, 1, 6], 𝑆7 = [5040,−1, 7].

Warning. The method used is that of resolvent polynomials and is sensitive to the current precision. The preci-
sion is updated internally but, in very rare cases, a wrong result may be returned if the initial precision was not
sufficient.
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polgraeffe()

Returns the Graeffe transform 𝑔 of 𝑓 , such that 𝑔(𝑥2) = 𝑓(𝑥)𝑓(−𝑥).

polhensellift(B, p, e)
Given a prime 𝑝, an integral polynomial𝐴whose leading coefficient is a 𝑝-unit, a vector𝐵 of integral polynomials
that are monic and pairwise relatively prime modulo 𝑝, and whose product is congruent to 𝐴/𝑙𝑐(𝐴) modulo 𝑝,
lift the elements of 𝐵 to polynomials whose product is congruent to 𝐴 modulo 𝑝𝑒.

More generally, if 𝑇 is an integral polynomial irreducible mod 𝑝, and𝐵 is a factorization of𝐴 over the finite field
F𝑝[𝑡]/(𝑇 ), you can lift it to Z𝑝[𝑡]/(𝑇, 𝑝𝑒) by replacing the 𝑝 argument with [𝑝, 𝑇 ]:

? { T = t^3 - 2; p = 7; A = x^2 + t + 1;
B = [x + (3*t^2 + t + 1), x + (4*t^2 + 6*t + 6)];
r = polhensellift(A, B, [p, T], 6) }
%1 = [x + (20191*t^2 + 50604*t + 75783), x + (97458*t^2 + 67045*t + 41866)]
? liftall( r[1] * r[2] * Mod(Mod(1,p^6),T) )
%2 = x^2 + (t + 1)

polinterpolate(Y, t, e)
Given the data vectors 𝑋 and 𝑌 of the same length 𝑛 (𝑋 containing the 𝑥-coordinates, and 𝑌 the corresponding
𝑦-coordinates), this function finds the interpolating polynomial 𝑃 of minimal degree passing through these points
and evaluates it at 𝑡. If 𝑌 is omitted, the polynomial 𝑃 interpolates the (𝑖,𝑋[𝑖]).

? v = [1, 2, 4, 8, 11, 13];
? P = polinterpolate(v) \\ formal interpolation
%1 = 7/120*x^5 - 25/24*x^4 + 163/24*x^3 - 467/24*x^2 + 513/20*x - 11
? [ subst(P,'x,a) | a <- [1..6] ]
%2 = [1, 2, 4, 8, 11, 13]
? polinterpolate(v,, 10) \\ evaluate at 10
%3 = 508
? subst(P, x, 10)
%4 = 508

? P = polinterpolate([1,2,4], [9,8,7])
%5 = 1/6*x^2 - 3/2*x + 31/3
? [subst(P, 'x, a) | a <- [1,2,4]]
%6 = [9, 8, 7]
? P = polinterpolate([1,2,4], [9,8,7], 0)
%7 = 31/3

If the goal is to extrapolate a function at a unique point, it is more efficient to use the 𝑡 argument rather than
interpolate formally then evaluate:

? x0 = 1.5;
? v = vector(20, i,random([-10,10]));
? for(i=1,10^3, subst(polinterpolate(v),'x, x0))
time = 352 ms.
? for(i=1,10^3, polinterpolate(v,,x0))
time = 111 ms.

? v = vector(40, i,random([-10,10]));
? for(i=1,10^3, subst(polinterpolate(v), 'x, x0))
time = 3,035 ms.
? for(i=1,10^3, polinterpolate(v,, x0))
time = 436 ms.
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The threshold depends on the base field. Over small prime finite fields, interpolating formally first is more efficient

? bench(p, N, T = 10^3) =
{ my (v = vector(N, i, random(Mod(0,p))));
my (x0 = Mod(3, p), t1, t2);
gettime();
for(i=1, T, subst(polinterpolate(v), 'x, x0));
t1 = gettime();
for(i=1, T, polinterpolate(v,, x0));
t2 = gettime(); [t1, t2];
}
? p = 101;
? bench(p, 4, 10^4) \\ both methods are equivalent
%3 = [39, 40]
? bench(p, 40) \\ with 40 points formal is much faster
%4 = [45, 355]

As the cardinality increases, formal interpolation requires more points to become interesting:

? p = nextprime(2^128);
? bench(p, 4) \\ formal is slower
%3 = [16, 9]
? bench(p, 10) \\ formal has become faster
%4 = [61, 70]
? bench(p, 100) \\ formal is much faster
%5 = [1682, 9081]

? p = nextprime(10^500);
? bench(p, 4) \\ formal is slower
%7 = [72, 354]
? bench(p, 20) \\ formal is still slower
%8 = [1287, 962]
? bench(p, 40) \\ formal has become faster
%9 = [3717, 4227]
? bench(p, 100) \\ faster but relatively less impressive
%10 = [16237, 32335]

If 𝑡 is a complex numeric value and 𝑒 is present, 𝑒 will contain an error estimate on the returned value. More
precisely, let 𝑃 be the interpolation polynomial on the given 𝑛 points; there exist a subset of 𝑛− 1 points and 𝑄
the attached interpolation interpolation polynomial such that 𝑒 = 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡(𝑃 (𝑡)−𝑄(𝑡)) (Neville’s algorithm).

? f(x) = 1 / (1 + 25*x^2);
? x0 = 975/1000;
? test(X) =
{ my (P, e);
P = polinterpolate(X, [f(x) | x <- X], x0, &e);
[ exponent(P - f(x0)), e ];
}
\\ equidistant nodes vs. Chebyshev nodes
? test( [-10..10] / 10 )
%4 = [6, 5]
? test( polrootsreal(polchebyshev(21)) )
%5 = [-15, -10]

(continues on next page)
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(continued from previous page)

? test( [-100..100] / 100 )
%7 = [93, 97] \\ P(x0) is way different from f(x0)
? test( polrootsreal(polchebyshev(201)) )
%8 = [-60, -55]

This is an example of Runge’s phenomenon: increasing the number of equidistant nodes makes extrapolation
much worse. Note that the error estimate is not a guaranteed upper bound (cf %4), but is reasonably tight in
practice.

poliscyclo()

Returns 0 if 𝑓 is not a cyclotomic polynomial, and 𝑛 > 0 if 𝑓 = Φ𝑛, the 𝑛-th cyclotomic polynomial.

? poliscyclo(x^4-x^2+1)
%1 = 12
? polcyclo(12)
%2 = x^4 - x^2 + 1
? poliscyclo(x^4-x^2-1)
%3 = 0

poliscycloprod()

Returns 1 if 𝑓 is a product of cyclotomic polynomial, and 0 otherwise.

? f = x^6+x^5-x^3+x+1;
? poliscycloprod(f)
%2 = 1
? factor(f)
%3 =
[ x^2 + x + 1 1]

[x^4 - x^2 + 1 1]
? [ poliscyclo(T) | T <- %[,1] ]
%4 = [3, 12]
? polcyclo(3) * polcyclo(12)
%5 = x^6 + x^5 - x^3 + x + 1

polisirreducible()

pol being a polynomial (univariate in the present version 2.13.3), returns 1 if pol is nonconstant and irreducible,
0 otherwise. Irreducibility is checked over the smallest base field over which pol seems to be defined.

pollead(v)
Leading coefficient of the polynomial or power series 𝑥. This is computed with respect to the main variable of 𝑥
if 𝑣 is omitted, with respect to the variable 𝑣 otherwise.

polrecip()

Reciprocal polynomial of pol with respect to its main variable, i.e. the coefficients of the result are in reverse
order; pol must be a polynomial.

? polrecip(x^2 + 2*x + 3)
%1 = 3*x^2 + 2*x + 1
? polrecip(2*x + y)
%2 = y*x + 2

polred(flag, _arg2)
This function is deprecated, use polredbest instead. Finds polynomials with reasonably small coefficients
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defining subfields of the number field defined by 𝑇 . One of the polynomials always defines Q (hence has degree
1), and another always defines the same number field as 𝑇 if 𝑇 is irreducible.

All 𝑇 accepted by nfinit are also allowed here; in particular, the format [T, listP] is recommended, e.g.
with 𝑙𝑖𝑠𝑡𝑃 = 105 or a vector containing all ramified primes. Otherwise, the maximal order of Q[𝑥]/(𝑇 ) must be
computed.

The following binary digits of 𝑓𝑙𝑎𝑔 are significant:

1: Possibly use a suborder of the maximal order. The primes dividing the index of the order chosen are larger
than primelimit or divide integers stored in the addprimes table. This flag is deprecated, the [T, listP]
format is more flexible.

2: gives also elements. The result is a two-column matrix, the first column giving primitive elements defining
these subfields, the second giving the corresponding minimal polynomials.

? M = polred(x^4 + 8, 2)
%1 =
[ 1 x - 1]

[ 1/2*x^2 + 1 x^2 - 2*x + 3]

[-1/2*x^2 + 1 x^2 - 2*x + 3]

[ 1/2*x^2 x^2 + 2]

[ 1/4*x^3 x^4 + 2]
? minpoly(Mod(M[2,1], x^4+8))
%2 = x^2 + 2

polredabs(flag)
Returns a canonical defining polynomial 𝑃 for the number field Q[𝑋]/(𝑇 ) defined by 𝑇 , such that the sum of the
squares of the modulus of the roots (i.e. the 𝑇2-norm) is minimal. Different 𝑇 defining isomorphic number fields
will yield the same 𝑃 . All 𝑇 accepted by nfinit are also allowed here, e.g. nonmonic polynomials, or pairs
[T, listP] specifying that a nonmaximal order may be used. For convenience, any number field structure (nf,
bnf,. . . ) can also be used instead of 𝑇 .

? polredabs(x^2 + 16)
%1 = x^2 + 1
? K = bnfinit(x^2 + 16); polredabs(K)
%2 = x^2 + 1

Warning 1. Using a t_POL 𝑇 requires computing and fully factoring the discriminant 𝑑𝐾 of the maximal order
which may be very hard. You can use the format [T, listP], where listP encodes a list of known coprime
divisors of disc(𝑇 ) (see ??nfbasis), to help the routine, thereby replacing this part of the algorithm by a poly-
nomial time computation But this may only compute a suborder of the maximal order, when the divisors are not
squarefree or do not include all primes dividing 𝑑𝐾 . The routine attempts to certify the result independently of
this order computation as per nfcertify: we try to prove that the computed order is maximal. If the certification
fails, the routine then fully factors the integers returned by nfcertify. You can also use polredbest to avoid
this factorization step; in this case, the result is small but no longer canonical.

Warning 2. Apart from the factorization of the discriminant of 𝑇 , this routine runs in polynomial time for a fixed
degree. But the complexity is exponential in the degree: this routine may be exceedingly slow when the number
field has many subfields, hence a lot of elements of small 𝑇2-norm. If you do not need a canonical polynomial,
the function polredbest is in general much faster (it runs in polynomial time), and tends to return polynomials
with smaller discriminants.
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The binary digits of 𝑓𝑙𝑎𝑔 mean

1: outputs a two-component row vector [𝑃, 𝑎], where 𝑃 is the default output and Mod(a, P) is a root of the
original 𝑇 .

4: gives all polynomials of minimal 𝑇2 norm; of the two polynomials 𝑃 (𝑥) and 𝑃 (−𝑥), only one is given.

16: (OBSOLETE) Possibly use a suborder of the maximal order, without attempting to certify the result as in
Warning 1. This makes polredabs behave like polredbest. Just use the latter.

? T = x^16 - 136*x^14 + 6476*x^12 - 141912*x^10 + 1513334*x^8 \
- 7453176*x^6 + 13950764*x^4 - 5596840*x^2 + 46225
? T1 = polredabs(T); T2 = polredbest(T);
? [ norml2(polroots(T1)), norml2(polroots(T2)) ]
%3 = [88.0000000, 120.000000]
? [ sizedigit(poldisc(T1)), sizedigit(poldisc(T2)) ]
%4 = [75, 67]

The precise definition of the output of polredabs is as follows.

• Consider the finite list of characteristic polynomials of primitive elements of 𝐾 that are in Z𝐾 and minimal
for the 𝑇2 norm; now remove from the list the polynomials whose discriminant do not have minimal absolute
value. Note that this condition is restricted to the original list of polynomials with minimal 𝑇2 norm and does
not imply that the defining polynomial for the field with smallest discriminant belongs to the list !

• To a polynomial 𝑃 (𝑥) = 𝑥𝑛 + ...+𝑎𝑛 ∈ R[𝑥] we attach the sequence 𝑆(𝑃 ) given by ‖𝑎1‖, 𝑎1, ..., ‖𝑎𝑛‖, 𝑎𝑛.
Order the polynomials 𝑃 by the lexicographic order on the coefficient vectors 𝑆(𝑃 ). Then the output of
polredabs is the smallest polynomial in the above list for that order. In other words, the monic polynomial
which is lexicographically smallest with respect to the absolute values of coefficients, favouring negative
coefficients to break ties, i.e. choosing 𝑥3 − 2 rather than 𝑥3 + 2.

polredbest(flag)
Finds a polynomial with reasonably small coefficients defining the same number field as 𝑇 . All 𝑇 accepted by
nfinit are also allowed here (e.g. nonmonic polynomials, nf, bnf, [T,Z_K_basis]). Contrary to polredabs,
this routine runs in polynomial time, but it offers no guarantee as to the minimality of its result.

This routine computes an LLL-reduced basis for an order in Q[𝑋]/(𝑇 ), then examines small linear combinations
of the basis vectors, computing their characteristic polynomials. It returns the separable polynomial 𝑃 of smallest
discriminant, the one with lexicographically smallest abs(Vec(P)) in case of ties. This is a good candidate
for subsequent number field computations since it guarantees that the denominators of algebraic integers, when
expressed in the power basis, are reasonably small. With no claim of minimality, though.

It can happen that iterating this functions yields better and better polynomials, until it stabilizes:

? \p5
? P = X^12+8*X^8-50*X^6+16*X^4-3069*X^2+625;
? poldisc(P)*1.
%2 = 1.2622 E55
? P = polredbest(P);
? poldisc(P)*1.
%4 = 2.9012 E51
? P = polredbest(P);
? poldisc(P)*1.
%6 = 8.8704 E44

In this example, the initial polynomial 𝑃 is the one returned by polredabs, and the last one is stable.

If 𝑓𝑙𝑎𝑔 = 1: outputs a two-component row vector [𝑃, 𝑎], where 𝑃 is the default output and Mod(a, P) is a root
of the original 𝑇 .
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? [P,a] = polredbest(x^4 + 8, 1)
%1 = [x^4 + 2, Mod(x^3, x^4 + 2)]
? charpoly(a)
%2 = x^4 + 8

In particular, the map Q[𝑥]/(𝑇 ) → Q[𝑥]/(𝑃 ), 𝑥 : − − − > 𝑀𝑜𝑑(𝑎, 𝑃 ) defines an isomorphism of number
fields, which can be computed as

subst(lift(Q), 'x, a)

if 𝑄 is a t_POLMOD modulo 𝑇 ; b = modreverse(a) returns a t_POLMOD giving the inverse of the above map
(which should be useless since Q[𝑥]/(𝑃 ) is a priori a better representation for the number field and its elements).

polredord()

This function is obsolete, use polredbest.

polresultant(y, v, flag)
Resultant of the two polynomials 𝑥 and 𝑦 with exact entries, with respect to the main variables of 𝑥 and 𝑦 if 𝑣 is
omitted, with respect to the variable 𝑣 otherwise. The algorithm assumes the base ring is a domain. If you also
need the 𝑢 and 𝑣 such that 𝑥 * 𝑢+ 𝑦 * 𝑣 = 𝑅𝑒𝑠(𝑥, 𝑦), use the polresultantext function.

If 𝑓𝑙𝑎𝑔 = 0 (default), uses the algorithm best suited to the inputs, either the subresultant algorithm (Lazard/Ducos
variant, generic case), a modular algorithm (inputs in Q[𝑋]) or Sylvester’s matrix (inexact inputs).

If 𝑓𝑙𝑎𝑔 = 1, uses the determinant of Sylvester’s matrix instead; this should always be slower than the default.

If 𝑥 or 𝑦 are multivariate with a huge polynomial content, it is advisable to remove it before calling this function.
Compare:

? a = polcyclo(7) * ((t+1)/(t+2))^100;
? b = polcyclo(11)* ((t+2)/(t+3))^100);
? polresultant(a,b);
time = 3,833 ms.
? ca = content(a); cb = content(b); \
polresultant(a/ca,b/cb)*ca^poldegree(b)*cb*poldegree(a); \\ instantaneous

The function only removes rational denominators and does not compute automatically the content because it is
generically small and potentially very expensive (e.g. in multivariate contexts). The choice is yours, depending
on your application.

polresultantext(B, v)
Finds polynomials 𝑈 and 𝑉 such that 𝐴 * 𝑈 +𝐵 * 𝑉 = 𝑅, where 𝑅 is the resultant of 𝑈 and 𝑉 with respect to
the main variables of 𝐴 and 𝐵 if 𝑣 is omitted, and with respect to 𝑣 otherwise. Returns the row vector [𝑈, 𝑉,𝑅].
The algorithm used (subresultant) assumes that the base ring is a domain.

? A = x*y; B = (x+y)^2;
? [U,V,R] = polresultantext(A, B)
%2 = [-y*x - 2*y^2, y^2, y^4]
? A*U + B*V
%3 = y^4
? [U,V,R] = polresultantext(A, B, y)
%4 = [-2*x^2 - y*x, x^2, x^4]
? A*U+B*V
%5 = x^4
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polroots(precision)
Complex roots of the polynomial 𝑇 , given as a column vector where each root is repeated according to its multi-
plicity and given as floating point complex numbers at the current realprecision:

? polroots(x^2)
%1 = [0.E-38 + 0.E-38*I, 0.E-38 + 0.E-38*I]~

? polroots(x^3+1)
%2 = [-1.00... + 0.E-38*I, 0.50... - 0.866...*I, 0.50... + 0.866...*I]~

The algorithm used is a modification of Schönhage’s root-finding algorithm, due to and originally implemented
by Gourdon. It runs in polynomial time in 𝑑𝑒𝑔(𝑇 ) and the precision. If furthermore 𝑇 has rational coefficients,
roots are guaranteed to the required relative accuracy. If the input polynomial 𝑇 is exact, then the ordering of the
roots does not depend on the precision: they are ordered by increasing ‖ℑ𝑧‖, then by increasing ℜ𝑧; in case of
tie (conjugates), the root with negative imaginary part comes first.

polrootsbound(tau)
Return a sharp upper bound 𝐵 for the modulus of the largest complex root of the polynomial 𝑇 with complex
coefficients with relative error 𝜏 . More precisely, we have ‖𝑧‖ <= 𝐵 for all roots and there exist one root such
that ‖𝑧0‖ >= 𝐵 exp(−2𝜏). Much faster than either polroots or polrootsreal.

? T=poltchebi(500);
? vecmax(abs(polroots(T)))
time = 5,706 ms.
%2 = 0.99999506520185816611184481744870013191
? vecmax(abs(polrootsreal(T)))
time = 1,972 ms.
%3 = 0.99999506520185816611184481744870013191
? polrootsbound(T)
time = 217 ms.
%4 = 1.0098792554165905155
? polrootsbound(T, log(2)/2) \\ allow a factor 2, much faster
time = 51 ms.
%5 = 1.4065759938190154354
? polrootsbound(T, 1e-4)
time = 504 ms.
%6 = 1.0000920717983847741
? polrootsbound(T, 1e-6)
time = 810 ms.
%7 = 0.9999960628901692905
? polrootsbound(T, 1e-10)
time = 1,351 ms.
%8 = 0.9999950652993869760

polrootsff(p, a)
Obsolete, kept for backward compatibility: use factormod.

polrootsmod(D)

Vector of roots of the polynomial 𝑓 over the finite field defined by the domain 𝐷 as follows:

• 𝐷 = 𝑝 a prime: factor over F𝑝;

• 𝐷 = [𝑇, 𝑝] for a prime 𝑝 and 𝑇 (𝑦) an irreducible polynomial over F𝑝: factor over F𝑝[𝑦]/(𝑇 ) (as usual the
main variable of 𝑇 must have lower priority than the main variable of 𝑓 );

• 𝐷 a t_FFELT: factor over the attached field;
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• 𝐷 omitted: factor over the field of definition of 𝑓 , which must be a finite field.

Multiple roots are not repeated.

? polrootsmod(x^2-1,2)
%1 = [Mod(1, 2)]~
? polrootsmod(x^2+1,3)
%2 = []~
? polrootsmod(x^2+1, [y^2+1,3])
%3 = [Mod(Mod(1, 3)*y, Mod(1, 3)*y^2 + Mod(1, 3)),
Mod(Mod(2, 3)*y, Mod(1, 3)*y^2 + Mod(1, 3))]~
? polrootsmod(x^2 + Mod(1,3))
%4 = []~
? liftall( polrootsmod(x^2 + Mod(Mod(1,3),y^2+1)) )
%5 = [y, 2*y]~
? t = ffgen(y^2+Mod(1,3)); polrootsmod(x^2 + t^0)
%6 = [y, 2*y]~

polrootspadic(p, r)
Vector of 𝑝-adic roots of the polynomial pol, given to 𝑝-adic precision 𝑟; the integer 𝑝 is assumed to be a prime.
Multiple roots are not repeated. Note that this is not the same as the roots in Z/𝑝𝑟Z, rather it gives approximations
in Z/𝑝𝑟Z of the true roots living in Q𝑝:

? polrootspadic(x^3 - x^2 + 64, 2, 4)
%1 = [2^3 + O(2^4), 2^3 + O(2^4), 1 + O(2^4)]~
? polrootspadic(x^3 - x^2 + 64, 2, 5)
%2 = [2^3 + O(2^5), 2^3 + 2^4 + O(2^5), 1 + O(2^5)]~

As the second commands show, the first two roots are distinct in Q𝑝, even though they are equal modulo 24.

More generally, if 𝑇 is an integral polynomial irreducible mod 𝑝 and 𝑓 has coefficients in Q[𝑡]/(𝑇 ), the argument
𝑝 may be replaced by the vector [𝑇, 𝑝]; we then return the roots of 𝑓 in the unramified extension Q𝑝[𝑡]/(𝑇 ).

? polrootspadic(x^3 - x^2 + 64*y, [y^2+y+1,2], 5)
%3 = [Mod((2^3 + O(2^5))*y + (2^3 + O(2^5)), y^2 + y + 1),
Mod((2^3 + 2^4 + O(2^5))*y + (2^3 + 2^4 + O(2^5)), y^2 + y + 1),
Mod(1 + O(2^5), y^2 + y + 1)]~

If pol has inexact t_PADIC coefficients, this need not well-defined; in this case, the polynomial is first made
integral by dividing out the 𝑝-adic content, then lifted to Z using truncate coefficientwise. Hence the roots
given are approximations of the roots of an exact polynomial which is 𝑝-adically close to the input. To avoid
pitfalls, we advise to only factor polynomials with exact rational coefficients.

polrootsreal(ab, precision)
Real roots of the polynomial 𝑇 with real coefficients, multiple roots being included according to their multiplicity.
If the polynomial does not have rational coefficients, it is first rescaled and rounded. The roots are given to a
relative accuracy of realprecision. If argument ab is present, it must be a vector [𝑎, 𝑏] with two components
(of type t_INT, t_FRAC or t_INFINITY) and we restrict to roots belonging to that closed interval.

? \p9
? polrootsreal(x^2-2)
%1 = [-1.41421356, 1.41421356]~
? polrootsreal(x^2-2, [1,+oo])
%2 = [1.41421356]~
? polrootsreal(x^2-2, [2,3])

(continues on next page)
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(continued from previous page)

%3 = []~
? polrootsreal((x-1)*(x-2), [2,3])
%4 = [2.00000000]~

The algorithm used is a modification of Uspensky’s method (relying on Descartes’s rule of sign), following
Rouillier and Zimmerman’s article “Efficient isolation of a polynomial real roots” (http://hal.inria.fr/
inria-00072518/). Barring bugs, it is guaranteed to converge and to give the roots to the required accuracy.

Remark. If the polynomial 𝑇 is of the form𝑄(𝑥ℎ) for some ℎ >= 2 and ab is omitted, the routine will apply the
algorithm to 𝑄 (restricting to nonnegative roots when ℎ is even), then take ℎ-th roots. On the other hand, if you
want to specify ab, you should apply the routine to 𝑄 yourself and a suitable interval [𝑎′, 𝑏′] using approximate
ℎ-th roots adapted to your problem: the function will not perform this change of variables if ab is present.

polsturm(ab, _arg2)
Number of distinct real roots of the real polynomial T. If the argument ab is present, it must be a vector [𝑎, 𝑏]
with two real components (of type t_INT, t_REAL, t_FRAC or t_INFINITY) and we count roots belonging to
that closed interval.

If possible, you should stick to exact inputs, that is avoid t_REAL s in 𝑇 and the bounds 𝑎, 𝑏: the result is then guar-
anteed and we use a fast algorithm (Uspensky’s method, relying on Descartes’s rule of sign, see polrootsreal).
Otherwise, the polynomial is rescaled and rounded first and the result may be wrong due to that initial error. If
only 𝑎 or 𝑏 is inexact, on the other hand, the interval is first thickened using rational endpoints and the result
remains guaranteed unless there exist a root very close to a nonrational endpoint (which may be missed or unduly
included).

? T = (x-1)*(x-2)*(x-3);
? polsturm(T)
%2 = 3
? polsturm(T, [-oo,2])
%3 = 2
? polsturm(T, [1/2,+oo])
%4 = 3
? polsturm(T, [1, Pi]) \\ Pi inexact: not recommended !
%5 = 3
? polsturm(T*1., [0, 4]) \\ T*1. inexact: not recommended !
%6 = 3
? polsturm(T^2, [0, 4]) \\ not squarefree: roots are not repeated!
%7 = 3

polsylvestermatrix(y)
Forms the Sylvester matrix corresponding to the two polynomials 𝑥 and 𝑦, where the coefficients of the polynomi-
als are put in the columns of the matrix (which is the natural direction for solving equations afterwards). The use
of this matrix can be essential when dealing with polynomials with inexact entries, since polynomial Euclidean
division doesn’t make much sense in this case.

polsym(n)
Creates the column vector of the symmetric powers of the roots of the polynomial 𝑥 up to power 𝑛, using Newton’s
formula.

polteichmuller(p, r)
Given 𝑇 ∈ F𝑝[𝑋] return the polynomial 𝑃 ∈ Z𝑝[𝑋] whose roots (resp. leading coefficient) are the Teichmuller
lifts of the roots (resp. leading coefficient) of 𝑇 , to 𝑝-adic precision 𝑟. If 𝑇 is monic, 𝑃 is the reduction modulo
𝑝𝑟 of the unique monic polynomial congruent to 𝑇 modulo 𝑝 such that 𝑃 (𝑋𝑝) = 0(𝑚𝑜𝑑𝑃 (𝑋), 𝑝𝑟).
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? T = ffinit(3, 3, 't)
%1 = Mod(1,3)*t^3 + Mod(1,3)*t^2 + Mod(1,3)*t + Mod(2,3)
? P = polteichmuller(T,3,5)
%2 = t^3 + 166*t^2 + 52*t + 242
? subst(P, t, t^3) % (P*Mod(1,3^5))
%3 = Mod(0, 243)
? [algdep(a+O(3^5),2) | a <- Vec(P)]
%4 = [x - 1, 5*x^2 + 1, x^2 + 4*x + 4, x + 1]

When 𝑇 is monic and irreducible mod 𝑝, this provides a model Q𝑝[𝑋]/(𝑃 ) of the unramified extension
Q𝑝[𝑋]/(𝑇 ) where the Frobenius has the simple form 𝑋𝑚𝑜𝑑𝑃 : −−− > 𝑋𝑝𝑚𝑜𝑑𝑃 .

poltschirnhaus()

Applies a random Tschirnhausen transformation to the polynomial 𝑥, which is assumed to be nonconstant and
separable, so as to obtain a new equation for the étale algebra defined by 𝑥. This is for instance useful when
computing resolvents, hence is used by the polgalois function.

polylogmult(z, t, precision)
For 𝑠 a vector of positive integers and 𝑧 a vector of complex numbers of the same length, returns the multiple
polylogarithm value (MPV)

𝜁(𝑠1, ..., 𝑠𝑟; 𝑧1, ..., 𝑧𝑟) =
∑︁

𝑛1>...>𝑛𝑟>0

∏︁
1<=𝑖<=𝑟

𝑧𝑛𝑖
𝑖 /𝑛𝑠𝑖

𝑖 .

If 𝑧 is omitted, assume 𝑧 = [1, ..., 1], i.e., Multiple Zeta Value. More generally, return Yamamoto’s interpolation
between ordinary multiple polylogarithms (𝑡 = 0) and star polylogarithms (𝑡 = 1, using the condition 𝑛1 >=
... >= 𝑛𝑟 > 0), evaluated at 𝑡.

We must have ‖𝑧1...𝑧𝑖‖ <= 1 for all 𝑖, and if 𝑠1 = 1 we must have 𝑧1! = 1.

? 8*polylogmult([2,1],[-1,1]) - zeta(3)
%1 = 0.E-38

Warning. The algorithm used converges when the 𝑧𝑖 are 1. It may not converge as some 𝑧𝑖! = 1 becomes too
close to 1, even at roots of 1 of moderate order:

? polylogmult([2,1], (99+20*I)/101 * [1,1])
*** polylogmult: sorry, polylogmult in this range is not yet implemented.
? polylogmult([2,1], exp(I*Pi/20)* [1,1])
*** polylogmult: sorry, polylogmult in this range is not yet implemented.

More precisely, if 𝑦𝑖 := 1/(𝑧1...𝑧𝑖) and

𝑣 := min
𝑖<𝑗;𝑦𝑖!=1

‖(1 − 𝑦𝑖)𝑦𝑗‖ > 1/4

then the algorithm computes the value up to a 2−𝑏 absolute error in𝑂(𝑘2𝑁) operations on floating point numbers
of 𝑂(𝑁) bits, where 𝑘 =

∑︀
𝑖 𝑠𝑖 is the weight and 𝑁 = 𝑏/ log2(4𝑣).

powers(n, x0)
For nonnegative𝑛, return the vector with𝑛+1 components [1, 𝑥, ..., 𝑥𝑛] if x0 is omitted, and [𝑥0, 𝑥0*𝑥, ..., 𝑥0*𝑥𝑛]
otherwise.

? powers(Mod(3,17), 4)
%1 = [Mod(1, 17), Mod(3, 17), Mod(9, 17), Mod(10, 17), Mod(13, 17)]
? powers(Mat([1,2;3,4]), 3)

(continues on next page)
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(continued from previous page)

%2 = [[1, 0; 0, 1], [1, 2; 3, 4], [7, 10; 15, 22], [37, 54; 81, 118]]
? powers(3, 5, 2)
%3 = [2, 6, 18, 54, 162, 486]

When 𝑛 < 0, the function returns the empty vector [].

precision(n)
The function behaves differently according to whether 𝑛 is present or not. If 𝑛 is missing, the function returns the
floating point precision in decimal digits of the PARI object 𝑥. If 𝑥 has no floating point component, the function
returns +oo.

? precision(exp(1e-100))
%1 = 154 \\ 154 significant decimal digits
? precision(2 + x)
%2 = +oo \\ exact object
? precision(0.5 + O(x))
%3 = 38 \\ floating point accuracy, NOT series precision
? precision( [ exp(1e-100), 0.5 ] )
%4 = 38 \\ minimal accuracy among components

Using getlocalprec() allows to retrieve the working precision (as modified by possible localprec state-
ments).

If 𝑛 is present, the function creates a new object equal to 𝑥 with a new floating point precision 𝑛: 𝑛 is the number
of desired significant decimal digits. If 𝑛 is smaller than the precision of a t_REAL component of 𝑥, it is truncated,
otherwise it is extended with zeros. For non-floating-point types, no change.

precprime()

Finds the largest pseudoprime (see ispseudoprime) less than or equal to 𝑥. 𝑥 can be of any real type. Returns
0 if 𝑥 <= 1. Note that if 𝑥 is a prime, this function returns 𝑥 and not the largest prime strictly smaller than 𝑥. To
rigorously prove that the result is prime, use isprime.

primecert(flag)
If N is a prime, return a PARI Primality Certificate for the prime 𝑁 , as described below. Otherwise, return 0. A
Primality Certificate 𝑐 can be checked using primecertisvalid(𝑐).

If 𝑓𝑙𝑎𝑔 = 0 (default), return an ECPP certificate (Atkin-Morain)

A PARI ECPP Primality Certificate for the prime 𝑁 is either a prime integer 𝑁 < 264 or a vector C of length ℓ
whose 𝑖 is a vector [𝑁𝑖, 𝑡𝑖, 𝑠𝑖, 𝑎𝑖, 𝑃𝑖] of length 5 where 𝑁1 = 𝑁 . It is said to be valid if for each 𝑖 = 1, ..., ℓ, all
of the following conditions are satisfied

• 𝑁𝑖 is a positive integer

• 𝑡𝑖 is an integer such that 𝑡2𝑖 < 4𝑁𝑖

• 𝑠𝑖 is a positive integer which divides 𝑚𝑖 where 𝑚𝑖 = 𝑁𝑖 + 1 − 𝑡𝑖

• If we set 𝑞𝑖 = (𝑚𝑖)/(𝑠𝑖), then

* 𝑞𝑖 > (𝑁
1/4
𝑖 + 1)2

* 𝑞𝑖 = 𝑁𝑖+1 if 1 <= 𝑖 < 𝑙

* 𝑞ℓ <= 264 is prime

• 𝑎𝑖 is an integer
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* P[i] is a vector of length 2 representing the affine point 𝑃𝑖 = (𝑥𝑖, 𝑦𝑖) on the elliptic curve 𝐸 : 𝑦2 =
𝑥3 + 𝑎𝑖𝑥+ 𝑏𝑖 modulo 𝑁𝑖 where 𝑏𝑖 = 𝑦2𝑖 − 𝑥3𝑖 − 𝑎𝑖𝑥𝑖 satisfying the following:

* 𝑚𝑖𝑃𝑖 = 𝑜𝑜

* 𝑠𝑖𝑃𝑖! = 𝑜𝑜

Using the following theorem, the data in the vector C allows to recursively certify the primality of 𝑁 (and all the
𝑞𝑖) under the single assumption that 𝑞ℓ be prime.

Theorem. If 𝑁 is an integer and there exist positive integers 𝑚, 𝑞 and a point 𝑃 on the elliptic curve 𝐸 :
𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 defined modulo 𝑁 such that 𝑞 > (𝑁1/4 + 1)2, 𝑞 is a prime divisor of 𝑚, 𝑚𝑃 = 𝑜𝑜 and
(𝑚)/(𝑞)𝑃 ! = 𝑜𝑜, then 𝑁 is prime.

? primecert(10^35 + 69)
%1 = [[100000000000000000000000000000000069, 5468679110354
52074, 2963504668391148, 0, [60737979324046450274283740674
208692, 24368673584839493121227731392450025]], [3374383076
4501150277, -11610830419, 734208843, 0, [26740412374402652
72 4, 6367191119818901665]], [45959444779, 299597, 2331, 0
, [18022351516, 9326882 51]]]
? primecert(nextprime(2^64))
%2 = [[18446744073709551629, -8423788454, 160388, 1, [1059
8342506117936052, 2225259013356795550]]]
? primecert(6)
%3 = 0
? primecert(41)
%4 = 41

If 𝑓𝑙𝑎𝑔 = 1 (very slow), return an 𝑁 − 1 certificate (Pocklington Lehmer)

A PARI 𝑁 − 1 Primality Certificate for the prime 𝑁 is either a prime integer 𝑁 < 264 or a pair [𝑁,𝐶], where
𝐶 is a vector with ℓ elements which are either a single integer 𝑝𝑖 < 264 or a triple [𝑝𝑖, 𝑎𝑖, 𝐶𝑖] with 𝑝𝑖 > 264

satisfying the following properties:

• 𝑝𝑖 is a prime divisor of 𝑁 − 1;

• 𝑎𝑖 is an integer such that 𝑎𝑁−1
𝑖 = 1(𝑚𝑜𝑑𝑁) and 𝑎(𝑁−1)/𝑝𝑖

𝑖 − 1 is coprime with 𝑁 ;

• 𝐶𝑖 is an 𝑁 − 1 Primality Certificate for 𝑝𝑖

• The product 𝐹 of the 𝑝𝑣𝑝𝑖 (𝑁−1)

𝑖 is strictly larger than 𝑁1/3. Provided that all 𝑝𝑖 are indeed primes, this
implies that any divisor of 𝑁 is congruent to 1 modulo 𝐹 .

• The Billhart, Lehmer, Selfridge criterion is satisfied: when we write 𝑁 = 1 + 𝑐1𝐹 + 𝑐2𝐹
2 in base 𝐹 the

polynomial 1+ 𝑐1𝑋+ 𝑐2𝑋
2 is irreducible over Z, i.e. 𝑐21−4𝑐2 is not a square. This implies that𝑁 is prime.

This algorithm requires factoring partially 𝑝− 1 for various prime integers 𝑝 with an unfactored parted <= 𝑝2/3

and this may be exceedingly slow compared to the default.

The algorithm fails if one of the pseudo-prime factors is not prime, which is exceedingly unlikely and well worth
a bug report. Note that if you monitor the algorithm at a high enough debug level, you may see warnings about
untested integers being declared primes. This is normal: we ask for partial factorizations (sufficient to prove
primality if the unfactored part is not too large), and factor warns us that the cofactor hasn’t been tested. It may
or may not be tested later, and may or may not be prime. This does not affect the validity of the whole Primality
Certificate.

primecertexport(format)
Returns a string suitable for print/write to display a primality certificate from primecert, the format of which
depends on the value of format:
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• 0 (default): Human-readable format. See ??primecert for the meaning of the successive
𝑁, 𝑡, 𝑠, 𝑎,𝑚, 𝑞, 𝐸, 𝑃 . The integer 𝐷 is the negative fundamental discriminant coredisc(𝑡2 − 4𝑁).

• 1: Primo format 4.

• 2: MAGMA format.

Currently, only ECPP Primality Certificates are supported.

? cert = primecert(10^35+69);
? s = primecertexport(cert); \\ Human-readable
? print(s)
[1]
N = 100000000000000000000000000000000069
t = 546867911035452074
s = 2963504668391148
a = 0
D = -3
m = 99999999999999999453132088964547996
q = 33743830764501150277
E = [0, 1]
P = [21567861682493263464353543707814204,
49167839501923147849639425291163552]
[2]
N = 33743830764501150277
t = -11610830419
s = 734208843
a = 0
D = -3
m = 33743830776111980697
q = 45959444779
E = [0, 25895956964997806805]
P = [29257172487394218479, 3678591960085668324]

\\ Primo format
? s = primecertexport(cert,1); write("cert.out", s);

\\ Magma format, write to file
? s = primecertexport(cert,2); write("cert.m", s);

? cert = primecert(10^35+69, 1); \\ N-1 certificate
? primecertexport(cert)
*** at top-level: primecertexport(cert)
*** ^---------------------
*** primecertexport: sorry, N-1 certificate is not yet implemented.

primecertisvalid()

Verifies if cert is a valid PARI ECPP Primality certificate, as described in ??primecert.

? cert = primecert(10^35 + 69)
%1 = [[100000000000000000000000000000000069, 5468679110354
52074, 2963504668391148, 0, [60737979324046450274283740674
208692, 24368673584839493121227731392450025]], [3374383076
4501150277, -11610830419, 734208843, 0, [26740412374402652
72 4, 6367191119818901665]], [45959444779, 299597, 2331, 0

(continues on next page)
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, [18022351516, 9326882 51]]]
? primecertisvalid(cert)
%2 = 1

? cert[1][1]++; \\ random perturbation
? primecertisvalid(cert)
%4 = 0 \\ no longer valid
? primecertisvalid(primecert(6))
%5 = 0

primepi()

The prime counting function. Returns the number of primes 𝑝, 𝑝 <= 𝑥.

? primepi(10)
%1 = 4;
? primes(5)
%2 = [2, 3, 5, 7, 11]
? primepi(10^11)
%3 = 4118054813

Uses checkpointing and a naive 𝑂(𝑥) algorithm; make sure to start gp with primelimit at least
√
𝑥.

primes()

Creates a row vector whose components are the first 𝑛 prime numbers. (Returns the empty vector for 𝑛 <= 0.)
A t_VEC 𝑛 = [𝑎, 𝑏] is also allowed, in which case the primes in [𝑎, 𝑏] are returned

? primes(10) \\ the first 10 primes
%1 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
? primes([0,29]) \\ the primes up to 29
%2 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
? primes([15,30])
%3 = [17, 19, 23, 29]

prodeulerrat(s, a, precision)∏︀
𝑝>=𝑎 𝐹 (𝑝𝑠), where the product is taken over prime numbers and 𝐹 is a rational function.

? prodeulerrat(1+1/q^3,1)
%1 = 1.1815649490102569125693997341604542605
? zeta(3)/zeta(6)
%2 = 1.1815649490102569125693997341604542606

prodnumrat(a, precision)∏︀
𝑛>=𝑎 𝐹 (𝑛), where 𝐹 − 1 is a rational function of degree less than or equal to −2.

? prodnumrat(1+1/x^2,1)
%1 = 3.6760779103749777206956974920282606665

psdraw(flag)
This function is obsolete, use plotexport and write the result to file.

psi(precision)
The 𝜓-function of 𝑥, i.e. the logarithmic derivative Γ′(𝑥)/Γ(𝑥).
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psplothraw(listy, flag)
This function is obsolete, use plothrawexport and write the result to file.

qfauto(fl)
𝐺 being a square and symmetric matrix with integer entries representing a positive definite quadratic form, outputs
the automorphism group of the associate lattice. Since this requires computing the minimal vectors, the compu-
tations can become very lengthy as the dimension grows. 𝐺 can also be given by an qfisominit structure. See
qfisominit for the meaning of fl.

The output is a two-components vector [𝑜, 𝑔] where 𝑜 is the group order and 𝑔 is the list of generators (as a vector).
For each generator 𝐻 , the equality 𝐺 = 𝑡𝐻𝐺𝐻 holds.

The interface of this function is experimental and will likely change in the future.

This function implements an algorithm of Plesken and Souvignier, following Souvignier’s implementation.

qfautoexport(flag)
qfa being an automorphism group as output by qfauto, export the underlying matrix group as a string suitable
for (no flags or 𝑓𝑙𝑎𝑔 = 0) GAP or (𝑓𝑙𝑎𝑔 = 1) Magma. The following example computes the size of the matrix
group using GAP:

? G = qfauto([2,1;1,2])
%1 = [12, [[-1, 0; 0, -1], [0, -1; 1, 1], [1, 1; 0, -1]]]
? s = qfautoexport(G)
%2 = "Group([[-1, 0], [0, -1]], [[0, -1], [1, 1]], [[1, 1], [0, -1]])"
? extern("echo \"Order("s");\" | gap -q")
%3 = 12

qfbclassno(flag)
Ordinary class number of the quadratic order of discriminant 𝐷, for “small” values of 𝐷.

• if 𝐷 > 0 or 𝑓𝑙𝑎𝑔 = 1, use a 𝑂(‖𝐷‖1/2) algorithm (compute 𝐿(1, 𝜒𝐷) with the approximate functional
equation). This is slower than quadclassunit as soon as ‖𝐷‖ 102 or so and is not meant to be used for
large 𝐷.

• if𝐷 < 0 and 𝑓𝑙𝑎𝑔 = 0 (or omitted), use a 𝑂(‖𝐷‖1/4) algorithm (Shanks’s baby-step/giant-step method). It
should be faster than quadclassunit for small values of 𝐷, say ‖𝐷‖ < 1018.

Important warning. In the latter case, this function only implements part of Shanks’s method (which allows to
speed it up considerably). It gives unconditionnally correct results for ‖𝐷‖ < 2.1010, but may give incorrect
results for larger values if the class group has many cyclic factors. We thus recommend to double-check results
using the function quadclassunit, which is about 2 to 3 times slower in the range ‖𝐷‖ ∈ [1010, 1018], assuming
GRH. We currently have no counter-examples but they should exist: we would appreciate a bug report if you find
one.

Warning. Contrary to what its name implies, this routine does not compute the number of classes of binary
primitive forms of discriminant 𝐷, which is equal to the narrow class number. The two notions are the same
when 𝐷 < 0 or the fundamental unit 𝜀 has negative norm; when 𝐷 > 0 and 𝑁𝜀 > 0, the number of classes
of forms is twice the ordinary class number. This is a problem which we cannot fix for backward compatibility
reasons. Use the following routine if you are only interested in the number of classes of forms:

QFBclassno(D) =
qfbclassno(D) * if (D < 0 || norm(quadunit(D)) < 0, 1, 2)

Here are a few examples:
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? qfbclassno(400000028) \\ D > 0: slow
time = 3,140 ms.
%1 = 1
? quadclassunit(400000028).no
time = 20 ms. \\{ much faster, assume GRH}
%2 = 1
? qfbclassno(-400000028) \\ D < 0: fast enough
time = 0 ms.
%3 = 7253
? quadclassunit(-400000028).no
time = 0 ms.
%4 = 7253

See also qfbhclassno.

qfbcompraw(y)
composition of the binary quadratic forms 𝑥 and 𝑦, without reduction of the result. This is useful e.g. to compute
a generating element of an ideal. The result is undefined if 𝑥 and 𝑦 do not have the same discriminant.

qfbhclassno()

Hurwitz class number of 𝑥, when 𝑥 is nonnegative and congruent to 0 or 3 modulo 4, and 0 for other values. For
𝑥 > 5.105, we assume the GRH, and use quadclassunit with default parameters.

? qfbhclassno(1) \\ not 0 or 3 mod 4
%1 = 0
? qfbhclassno(3)
%2 = 1/3
? qfbhclassno(4)
%3 = 1/2
? qfbhclassno(23)
%4 = 3

qfbil(y, q)
This function is obsolete, use qfeval.

qfbnucomp(y, L)
composition of the primitive positive definite binary quadratic forms 𝑥 and 𝑦 (type t_QFI) using the NUCOMP
and NUDUPL algorithms of Shanks, à la Atkin. 𝐿 is any positive constant, but for optimal speed, one should
take 𝐿 = ‖𝐷/4‖1/4, i.e. sqrtnint(abs(D) >> 2,4), where 𝐷 is the common discriminant of 𝑥 and 𝑦. When
𝑥 and 𝑦 do not have the same discriminant, the result is undefined.

The current implementation is slower than the generic routine for small𝐷, and becomes faster when𝐷 has about
45 bits.

qfbnupow(n, L)
𝑛-th power of the primitive positive definite binary quadratic form 𝑥 using Shanks’s NUCOMP and NUDUPL
algorithms; if set, 𝐿 should be equal to sqrtnint(abs(D) >> 2,4), where 𝐷 < 0 is the discriminant of 𝑥.

The current implementation is slower than the generic routine for small discriminant 𝐷, and becomes faster for
𝐷 245.

qfbpowraw(n)
𝑛-th power of the binary quadratic form 𝑥, computed without doing any reduction (i.e. using qfbcompraw). Here
𝑛 must be nonnegative and 𝑛 < 231.

707



CyPari2 Documentation, Release 2.1.3

qfbprimeform(p, precision)
Prime binary quadratic form of discriminant 𝑥whose first coefficient is 𝑝, where ‖𝑝‖ is a prime number. By abuse
of notation, 𝑝 = 1 is also valid and returns the unit form. Returns an error if 𝑥 is not a quadratic residue mod 𝑝,
or if 𝑥 < 0 and 𝑝 < 0. (Negative definite t_QFI are not implemented.) In the case where 𝑥 > 0, the “distance”
component of the form is set equal to zero according to the current precision.

qfbred(flag, d, isd, sd)
Reduces the binary quadratic form 𝑥 (updating Shanks’s distance function if 𝑥 is indefinite). The binary digits of
𝑓𝑙𝑎𝑔 are toggles meaning

1: perform a single reduction step

2: don’t update Shanks’s distance

The arguments 𝑑, isd, sd, if present, supply the values of the discriminant, 𝑓𝑙𝑜𝑜𝑟
√
𝑑, and

√
𝑑 respectively (no

checking is done of these facts). If 𝑑 < 0 these values are useless, and all references to Shanks’s distance are
irrelevant.

qfbredsl2(data)
Reduction of the (real or imaginary) binary quadratic form 𝑥, return [𝑦, 𝑔] where 𝑦 is reduced and 𝑔 in 𝑆𝐿(2,Z)
is such that 𝑔.𝑥 = 𝑦; data, if present, must be equal to [𝐷, 𝑠𝑞𝑟𝑡𝑖𝑛𝑡(𝐷)], where 𝐷 > 0 is the discriminant of 𝑥.
In case 𝑥 is a t_QFR, the distance component is unaffected.

qfbsolve(n, flag)
Solve the equation 𝑄(𝑥, 𝑦) = 𝑛 in coprime integers 𝑥 and 𝑦 (primitive solutions), where 𝑄 is a binary quadratic
form and 𝑛 an integer, up to the action of the special orthogonal group 𝐺 = 𝑆𝑂(𝑄,Z), which is isomorphic to
the group of units of positive norm of the quadratic order of discriminant 𝐷 = disc𝑄. If 𝐷 > 0, 𝐺 is infinite. If
𝐷 < −4, 𝐺 is of order 2, if 𝐷 = −3, 𝐺 is of order 6 and if 𝐷 = −4, 𝐺 is of order 4.

Binary digits of 𝑓𝑙𝑎𝑔 mean: 1: return all solutions if set, else a single solution; return [] if a single solution is
wanted (bit unset) but none exist. 2: also include imprimitive solutions.

When 𝑓𝑙𝑎𝑔 = 2 (return a single solution, possibly imprimitive), the algorithm returns a solution with minimal
content; in particular, a primitive solution exists if and only if one is returned.

The integer 𝑛 can be given by its factorization matrix :emphasis:`fa = factor(n)` or by the pair [𝑛, 𝑓𝑎].

? qfbsolve(Qfb(1,0,2), 603) \\ a single primitive solution
%1 = [5, 17]

? qfbsolve(Qfb(1,0,2), 603, 1) \\ all primitive solutions
%2 = [[5, 17], [-19, -11], [19, -11], [5, -17]]

? qfbsolve(Qfb(1,0,2), 603, 2) \\ a single, possibly imprimitive solution
%3 = [5, 17] \\ actually primitive

? qfbsolve(Qfb(1,0,2), 603, 3) \\ all solutions
%4 = [[5, 17], [-19, -11], [19, -11], [5, -17], [-21, 9], [-21, -9]]

? N = 2^128+1; F = factor(N);
? qfbsolve(Qfb(1,0,1),[N,F],1)
%3 = [[-16382350221535464479,8479443857936402504],
[18446744073709551616,-1],[-18446744073709551616,-1],
[16382350221535464479,8479443857936402504]]

For fixed 𝑄, assuming the factorisation of 𝑛 is given, the algorithm runs in probabilistic polynomial time in
log 𝑝, where 𝑝 is the largest prime divisor of 𝑛, through the computation of square roots of 𝐷 modulo 4𝑝). The
dependency on 𝑄 is more complicated: polynomial time in log |𝐷‖ if 𝑄 is imaginary, but exponential time if 𝑄
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is real (through the computation of a full cycle of reduced forms). In the latter case, note that bnfisprincipal
provides a solution in heuristic subexponential time assuming the GRH.

qfeval(x, y)
Evaluate the quadratic form 𝑞 (given by a symmetric matrix) at the vector 𝑥; if 𝑦 is present, evaluate the polar
form at (𝑥, 𝑦); if 𝑞 omitted, use the standard Euclidean scalar product, corresponding to the identity matrix.

Roughly equivalent to x~ * q * y, but a little faster and more convenient (does not distinguish between column
and row vectors):

? x = [1,2,3]~; y = [-1,3,1]~; q = [1,2,3;2,2,-1;3,-1,9];
? qfeval(q,x,y)
%2 = 23
? for(i=1,10^6, qfeval(q,x,y))
time = 661ms
? for(i=1,10^6, x~*q*y)
time = 697ms

The speedup is noticeable for the quadratic form, compared to x~ * q * x, since we save almost half the oper-
ations:

? for(i=1,10^6, qfeval(q,x))
time = 487ms

The special case 𝑞 = 𝐼𝑑 is handled faster if we omit 𝑞 altogether:

? qfeval(,x,y)
%6 = 8
? q = matid(#x);
? for(i=1,10^6, qfeval(q,x,y))
time = 529 ms.
? for(i=1,10^6, qfeval(,x,y))
time = 228 ms.
? for(i=1,10^6, x~*y)
time = 274 ms.

We also allow t_MAT s of compatible dimensions for 𝑥, and return x~ * q * x in this case as well:

? M = [1,2,3;4,5,6;7,8,9]; qfeval(,M) \\ Gram matrix
%5 =
[66 78 90]

[78 93 108]

[90 108 126]

? q = [1,2,3;2,2,-1;3,-1,9];
? for(i=1,10^6, qfeval(q,M))
time = 2,008 ms.
? for(i=1,10^6, M~*q*M)
time = 2,368 ms.

? for(i=1,10^6, qfeval(,M))
time = 1,053 ms.

(continues on next page)
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? for(i=1,10^6, M~*M)
time = 1,171 ms.

If 𝑞 is a t_QFI or t_QFR, it is implicitly converted to the attached symmetric t_MAT. This is done more efficiently
than by direct conversion, since we avoid introducing a denominator 2 and rational arithmetic:

? q = Qfb(2,3,4); x = [2,3];
? qfeval(q, x)
%2 = 62
? Q = Mat(q)
%3 =
[ 2 3/2]

[3/2 4]
? qfeval(Q, x)
%4 = 62
? for (i=1, 10^6, qfeval(q,x))
time = 758 ms.
? for (i=1, 10^6, qfeval(Q,x))
time = 1,110 ms.

Finally, when 𝑥 is a t_MAT with integral coefficients, we allow a t_QFI or t_QFR for 𝑞 and return the binary
quadratic form 𝑞𝑜𝑀 . Again, the conversion to t_MAT is less efficient in this case:

? q = Qfb(2,3,4); Q = Mat(q); x = [1,2;3,4];
? qfeval(q, x)
%2 = Qfb(47, 134, 96)
? qfeval(Q,x)
%3 =
[47 67]

[67 96]
? for (i=1, 10^6, qfeval(q,x))
time = 701 ms.
? for (i=1, 10^6, qfeval(Q,x))
time = 1,639 ms.

qfgaussred()

decomposition into squares of the quadratic form represented by the symmetric matrix 𝑞. The result is a matrix
whose diagonal entries are the coefficients of the squares, and the off-diagonal entries on each line represent the
bilinear forms. More precisely, if (𝑎𝑖𝑗) denotes the output, one has

𝑞(𝑥) =
∑︁
𝑖

𝑎𝑖𝑖(𝑥𝑖 +
∑︁
𝑗!=𝑖

𝑎𝑖𝑗𝑥𝑗)
2

? qfgaussred([0,1;1,0])
%1 =
[1/2 1]

[-1 -1/2]

This means that 2𝑥𝑦 = (1/2)(𝑥 + 𝑦)2 − (1/2)(𝑥 − 𝑦)2. Singular matrices are supported, in which case some
diagonal coefficients will vanish:
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? qfgaussred([1,1;1,1])
%1 =
[1 1]

[1 0]

This means that 𝑥2 + 2𝑥𝑦 + 𝑦2 = (𝑥+ 𝑦)2.

qfisom(H, fl, grp)
𝐺, 𝐻 being square and symmetric matrices with integer entries representing positive definite quadratic forms,
return an invertible matrix 𝑆 such that 𝐺 = 𝑡𝑆𝐻𝑆. This defines a isomorphism between the corresponding
lattices. Since this requires computing the minimal vectors, the computations can become very lengthy as the
dimension grows. See qfisominit for the meaning of fl. If grp is given it must be the automorphism group of
𝐻 . It will be used to speed up the computation.

𝐺 can also be given by an qfisominit structure which is preferable if several forms 𝐻 need to be compared to
𝐺.

This function implements an algorithm of Plesken and Souvignier, following Souvignier’s implementation.

qfisominit(fl, m)

𝐺 being a square and symmetric matrix with integer entries representing a positive definite quadratic form, return
an isom structure allowing to compute isomorphisms between 𝐺 and other quadratic forms faster.

The interface of this function is experimental and will likely change in future release.

If present, the optional parameter fl must be a t_VEC with two components. It allows to specify the invariants
used, which can make the computation faster or slower. The components are

• fl[1] Depth of scalar product combination to use.

• fl[2] Maximum level of Bacher polynomials to use.

If present, 𝑚 must be the set of vectors of norm up to the maximal of the diagonal entry of 𝐺, either as a matrix
or as given by qfminim. Otherwise this function computes the minimal vectors so it become very lengthy as the
dimension of 𝐺 grows.

qfjacobi(precision)
Apply Jacobi’s eigenvalue algorithm to the real symmetric matrix 𝐴. This returns [𝐿, 𝑉 ], where

• 𝐿 is the vector of (real) eigenvalues of 𝐴, sorted in increasing order,

• 𝑉 is the corresponding orthogonal matrix of eigenvectors of 𝐴.

? \p19
? A = [1,2;2,1]; mateigen(A)
%1 =
[-1 1]

[ 1 1]
? [L, H] = qfjacobi(A);
? L
%3 = [-1.000000000000000000, 3.000000000000000000]~
? H
%4 =
[ 0.7071067811865475245 0.7071067811865475244]

[-0.7071067811865475244 0.7071067811865475245]
(continues on next page)
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? norml2( (A-L[1])*H[,1] ) \\ approximate eigenvector
%5 = 9.403954806578300064 E-38
? norml2(H*H~ - 1)
%6 = 2.350988701644575016 E-38 \\ close to orthogonal

qflll(flag)
LLL algorithm applied to the columns of the matrix 𝑥. The columns of 𝑥 may be linearly dependent. The result
is by default a unimodular transformation matrix 𝑇 such that 𝑥.𝑇 is an LLL-reduced basis of the lattice generated
by the column vectors of 𝑥. Note that if 𝑥 is not of maximal rank 𝑇 will not be square. The LLL parameters
are (0.51, 0.99), meaning that the Gram-Schmidt coefficients for the final basis satisfy ‖𝜇𝑖,𝑗‖ ≤ 0.51, and the
Lovász’s constant is 0.99.

If 𝑓𝑙𝑎𝑔 = 0 (default), assume that 𝑥 has either exact (integral or rational) or real floating point entries. The matrix
is rescaled, converted to integers and the behavior is then as in 𝑓𝑙𝑎𝑔 = 1.

If 𝑓𝑙𝑎𝑔 = 1, assume that 𝑥 is integral. Computations involving Gram-Schmidt vectors are approximate, with
precision varying as needed (Lehmer’s trick, as generalized by Schnorr). Adapted from Nguyen and Stehlé’s
algorithm and Stehlé’s code (fplll-1.3).

If 𝑓𝑙𝑎𝑔 = 2, 𝑥 should be an integer matrix whose columns are linearly independent. Returns a partially reduced
basis for 𝑥, using an unpublished algorithm by Peter Montgomery: a basis is said to be partially reduced if
‖𝑣𝑖𝑣𝑗‖ >= ‖𝑣𝑖‖ for any two distinct basis vectors 𝑣𝑖, 𝑣𝑗 . This is faster than 𝑓𝑙𝑎𝑔 = 1, esp. when one row is huge
compared to the other rows (knapsack-style), and should quickly produce relatively short vectors. The resulting
basis is not LLL-reduced in general. If LLL reduction is eventually desired, avoid this partial reduction: applying
LLL to the partially reduced matrix is significantly slower than starting from a knapsack-type lattice.

If 𝑓𝑙𝑎𝑔 = 3, as 𝑓𝑙𝑎𝑔 = 1, but the reduction is performed in place: the routine returns 𝑥.𝑇 . This is usually faster
for knapsack-type lattices.

If 𝑓𝑙𝑎𝑔 = 4, as 𝑓𝑙𝑎𝑔 = 1, returning a vector [𝐾,𝑇 ] of matrices: the columns of𝐾 represent a basis of the integer
kernel of 𝑥 (not LLL-reduced in general) and 𝑇 is the transformation matrix such that 𝑥.𝑇 is an LLL-reduced
Z-basis of the image of the matrix 𝑥.

If 𝑓𝑙𝑎𝑔 = 5, case as case 4, but 𝑥 may have polynomial coefficients.

If 𝑓𝑙𝑎𝑔 = 8, same as case 0, but 𝑥 may have polynomial coefficients.

? \p500
realprecision = 500 significant digits
? a = 2*cos(2*Pi/97);
? C = 10^450;
? v = powers(a,48); b = round(matconcat([matid(48),C*v]~));
? p = b * qflll(b)[,1]; \\ tiny linear combination of powers of 'a'
time = 4,470 ms.
? exponent(v * p / C)
%5 = -1418
? p3 = qflll(b,3)[,1]; \\ compute in place, faster
time = 3,790 ms.
? p3 == p \\ same result
%7 = 1
? p2 = b * qflll(b,2)[,1]; \\ partial reduction: faster, not as good
time = 343 ms.
? exponent(v * p2 / C)
%9 = -1190
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qflllgram(flag)
Same as qflll, except that the matrix 𝐺 = 𝑥 * 𝑥 is the Gram matrix of some lattice vectors 𝑥, and not the
coordinates of the vectors themselves. In particular,𝐺must now be a square symmetric real matrix, corresponding
to a positive quadratic form (not necessarily definite: 𝑥 needs not have maximal rank). The result is a unimodular
transformation matrix 𝑇 such that 𝑥.𝑇 is an LLL-reduced basis of the lattice generated by the column vectors of
𝑥. See qflll for further details about the LLL implementation.

If 𝑓𝑙𝑎𝑔 = 0 (default), assume that 𝐺 has either exact (integral or rational) or real floating point entries. The
matrix is rescaled, converted to integers and the behavior is then as in 𝑓𝑙𝑎𝑔 = 1.

If 𝑓𝑙𝑎𝑔 = 1, assume that 𝐺 is integral. Computations involving Gram-Schmidt vectors are approximate, with
precision varying as needed (Lehmer’s trick, as generalized by Schnorr). Adapted from Nguyen and Stehlé’s
algorithm and Stehlé’s code (fplll-1.3).

𝑓𝑙𝑎𝑔 = 4: 𝐺 has integer entries, gives the kernel and reduced image of 𝑥.

𝑓𝑙𝑎𝑔 = 5: same as 4, but 𝐺 may have polynomial coefficients.

qfminim(B, m, flag, precision)
𝑥 being a square and symmetric matrix of dimension 𝑑 representing a positive definite quadratic form, this function
deals with the vectors of 𝑥 whose norm is less than or equal to 𝐵, enumerated using the Fincke-Pohst algorithm,
storing at most 𝑚 pairs of vectors: only one vector is given for each pair 𝑣. There is no limit if 𝑚 is omitted:
beware that this may be a huge vector! The vectors are returned in no particular order.

The function searches for the minimal nonzero vectors if 𝐵 is omitted. The behavior is undefined if 𝑥 is not
positive definite (a “precision too low” error is most likely, although more precise error messages are possible).
The precise behavior depends on 𝑓𝑙𝑎𝑔.

• If 𝑓𝑙𝑎𝑔 = 0 (default), return [𝑁,𝑀, 𝑉 ], where 𝑁 is the number of vectors enumerated (an even number,
possibly larger than 2𝑚), 𝑀 <= 𝐵 is the maximum norm found, and 𝑉 is a matrix whose columns are
found vectors.

• If 𝑓𝑙𝑎𝑔 = 1, ignore 𝑚 and return [𝑀,𝑣], where 𝑣 is a nonzero vector of length 𝑀 <= 𝐵. If no nonzero
vector has length <= 𝐵, return []. If no explicit 𝐵 is provided, return a vector of smallish norm, namely the
vector of smallest length (usually the first one but not always) in an LLL-reduced basis for 𝑥.

In these two cases, 𝑥 must have integral small entries: more precisely, we definitely must have 𝑑.‖𝑥‖𝑜𝑜2 < 253

but even that may not be enough. The implementation uses low precision floating point computations for maximal
speed and gives incorrect results when 𝑥 has large entries. That condition is checked in the code and the routine
raises an error if large rounding errors occur. A more robust, but much slower, implementation is chosen if the
following flag is used:

• If 𝑓𝑙𝑎𝑔 = 2, 𝑥 can have non integral real entries, but this is also useful when 𝑥 has large integral entries.
Return [𝑁,𝑀, 𝑉 ] as in case 𝑓𝑙𝑎𝑔 = 0, where 𝑀 is returned as a floating point number. If 𝑥 is inexact
and 𝐵 is omitted, the “minimal” vectors in 𝑉 only have approximately the same norm (up to the internal
working accuracy). This version is very robust but still offers no hard and fast guarantee about the result: it
involves floating point operations performed at a high floating point precision depending on your input, but
done without rigorous tracking of roundoff errors (as would be provided by interval arithmetic for instance).
No example is known where the input is exact but the function returns a wrong result.

? x = matid(2);
? qfminim(x) \\ 4 minimal vectors of norm 1: ±[0,1], ±[1,0]
%2 = [4, 1, [0, 1; 1, 0]]
? { x = \\ The Leech lattice
[4, 2, 0, 0, 0,-2, 0, 0, 0, 0, 0, 0, 1,-1, 0, 0, 0, 1, 0,-1, 0, 0, 0,-2;
2, 4,-2,-2, 0,-2, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0, 0,-1, 0, 1,-1,-1;
0,-2, 4, 0,-2, 0, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 1, 0, 0, 1,-1,-1, 0, 0;
0,-2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1,-1, 0, 0, 0, 1,-1, 0, 1,-1, 1, 0;

(continues on next page)
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0, 0,-2, 0, 4, 0, 0, 0, 1,-1, 0, 0, 1, 0, 0, 0,-2, 0, 0,-1, 1, 1, 0, 0;
-2, -2,0, 0, 0, 4,-2, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,-1, 1, 1;
0, 0, 0, 0, 0,-2, 4,-2, 0, 0, 0, 0, 0, 1, 0, 0, 0,-1, 0, 0, 0, 1,-1, 0;
0, 0, 0, 0, 0, 0,-2, 4, 0, 0, 0, 0,-1, 0, 0, 0, 0, 0,-1,-1,-1, 0, 1, 0;
0, 0, 0, 0, 1,-1, 0, 0, 4, 0,-2, 0, 1, 1, 0,-1, 0, 1, 0, 0, 0, 0, 0, 0;
0, 0, 0, 0,-1, 0, 0, 0, 0, 4, 0, 0, 1, 1,-1, 1, 0, 0, 0, 1, 0, 0, 1, 0;
0, 0, 0, 0, 0, 0, 0, 0,-2, 0, 4,-2, 0,-1, 0, 0, 0,-1, 0,-1, 0, 0, 0, 0;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 4,-1, 1, 0, 0,-1, 1, 0, 1, 1, 1,-1, 0;
1, 0,-1, 1, 1, 0, 0,-1, 1, 1, 0,-1, 4, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1,-1;
-1,-1, 1,-1, 0, 0, 1, 0, 1, 1,-1, 1, 0, 4, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 1, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0;
0, 0, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 1, 1, 0, 4, 0, 0, 0, 0, 1, 1, 0, 0;
0, 0, 1, 0,-2, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0, 4, 1, 1, 1, 0, 0, 1, 1;
1, 0, 0, 1, 0, 0,-1, 0, 1, 0,-1, 1, 1, 0, 0, 0, 1, 4, 0, 1, 1, 0, 1, 0;
0, 0, 0,-1, 0, 1, 0,-1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 4, 0, 1, 1, 0, 1;
-1, -1,1, 0,-1, 1, 0,-1, 0, 1,-1, 1, 0, 1, 0, 0, 1, 1, 0, 4, 0, 0, 1, 1;
0, 0,-1, 1, 1, 0, 0,-1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 4, 1, 0, 1;
0, 1,-1,-1, 1,-1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 4, 0, 1;
0,-1, 0, 1, 0, 1,-1, 1, 0, 1, 0,-1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 4, 1;
-2,-1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 4]; }
? qfminim(x,,0) \\ 0: don't store minimal vectors
time = 121 ms.
%4 = [196560, 4, [;]] \\ 196560 minimal vectors of norm 4
? qfminim(x) \\ store all minimal vectors !
time = 821 ms.
? qfminim(x,,0,2); \\ safe algorithm. Slower and unnecessary here.
time = 5,540 ms.
%6 = [196560, 4.000061035156250000, [;]]
? qfminim(x,,,2); \\ safe algorithm; store all minimal vectors
time = 6,602 ms.

In this example, storing 0 vectors limits memory use; storing all of them requires a parisize about 50MB. All
minimal vectors are nevertheless enumerated in both cases of course, which means the speedup is likely to be
marginal.

qfnorm(q)
This function is obsolete, use qfeval.

qforbits(V)
Return the orbits of 𝑉 under the action of the group of linear transformation generated by the set𝐺. It is assumed
that 𝐺 contains minus identity, and only one vector in 𝑣,−𝑣 should be given. If 𝐺 does not stabilize 𝑉 , the
function return 0.

In the example below, we compute representatives and lengths of the orbits of the vectors of norm <= 3 under
the automorphisms of the lattice Z6.

? Q=matid(6); G=qfauto(Q); V=qfminim(Q,3);
? apply(x->[x[1],#x],qforbits(G,V))
%2 = [[[0,0,0,0,0,1]~,6],[[0,0,0,0,1,-1]~,30],[[0,0,0,1,-1,-1]~,80]]

qfparam(sol, flag)
Coefficients of binary quadratic forms that parametrize the solutions of the ternary quadratic form 𝐺, using the
particular solution sol. flag is optional and can be 1, 2, or 3, in which case the flag-th form is reduced. The default
is flag = 0 (no reduction).
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? G = [1,0,0;0,1,0;0,0,-34];
? M = qfparam(G, qfsolve(G))
%2 =
[ 3 -10 -3]

[-5 -6 5]

[ 1 0 1]

Indeed, the solutions can be parametrized as

(3𝑥2 − 10𝑥𝑦 − 3𝑦2)2 + (−5𝑥2 − 6𝑥𝑦 + 5𝑦2)2 − 34(𝑥2 + 𝑦2)2 = 0.

? v = y^2 * M*[1,x/y,(x/y)^2]~
%3 = [3*x^2 - 10*y*x - 3*y^2, -5*x^2 - 6*y*x + 5*y^2, -x^2 - y^2]~
? v~*G*v
%4 = 0

qfperfection()

𝐺 being a square and symmetric matrix with integer entries representing a positive definite quadratic form, outputs
the perfection rank of the form. That is, gives the rank of the family of the 𝑠 symmetric matrices 𝑣𝑣𝑡, where 𝑣
runs through the minimal vectors.

The algorithm computes the minimal vectors and its runtime is exponential in the dimension of 𝑥.

qfrep(B, flag)
𝑞 being a square and symmetric matrix with integer entries representing a positive definite quadratic form, count
the vectors representing successive integers.

• If 𝑓𝑙𝑎𝑔 = 0, count all vectors. Outputs the vector whose 𝑖-th entry, 1 <= 𝑖 <= 𝐵 is half the number of
vectors 𝑣 such that 𝑞(𝑣) = 𝑖.

• If 𝑓𝑙𝑎𝑔 = 1, count vectors of even norm. Outputs the vector whose 𝑖-th entry, 1 <= 𝑖 <= 𝐵 is half the
number of vectors such that 𝑞(𝑣) = 2𝑖.

? q = [2, 1; 1, 3];
? qfrep(q, 5)
%2 = Vecsmall([0, 1, 2, 0, 0]) \\ 1 vector of norm 2, 2 of norm 3, etc.
? qfrep(q, 5, 1)
%3 = Vecsmall([1, 0, 0, 1, 0]) \\ 1 vector of norm 2, 0 of norm 4, etc.

This routine uses a naive algorithm based on qfminim, and will fail if any entry becomes larger than 231 (or 263).

qfsign()

Returns [𝑝,𝑚] the signature of the quadratic form represented by the symmetric matrix 𝑥. Namely, 𝑝 (resp.𝑚) is
the number of positive (resp. negative) eigenvalues of 𝑥. The result is computed using Gaussian reduction.

qfsolve()

Given a square symmetric matrix 𝐺 of dimension 𝑛 >= 1, solve over Q the quadratic equation 𝑋𝑡𝐺𝑋 = 0.
The matrix𝐺must have rational coefficients. The solution might be a single nonzero vector (vectorv) or a matrix
(whose columns generate a totally isotropic subspace).

If no solution exists, returns an integer, that can be a prime 𝑝 such that there is no local solution at 𝑝, or −1 if
there is no real solution, or −2 if 𝑛 = 2 and −det𝐺 is positive but not a square (which implies there is a real
solution, but no local solution at some 𝑝 dividing det𝐺).
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? G = [1,0,0;0,1,0;0,0,-34];
? qfsolve(G)
%1 = [-3, -5, 1]~
? qfsolve([1,0; 0,2])
%2 = -1 \\ no real solution
? qfsolve([1,0,0;0,3,0; 0,0,-2])
%3 = 3 \\ no solution in Q_3
? qfsolve([1,0; 0,-2])
%4 = -2 \\ no solution, n = 2

quadclassunit(flag, tech, precision)
Buchmann-McCurley’s sub-exponential algorithm for computing the class group of a quadratic order of discrim-
inant 𝐷.

This function should be used instead of qfbclassno or quadregulator when𝐷 < −1025,𝐷 > 1010, or when
the structure is wanted. It is a special case of bnfinit, which is slower, but more robust.

The result is a vector 𝑣 whose components should be accessed using member functions:

• :math:`v.no`: the class number

• :math:`v.cyc`: a vector giving the structure of the class group as a product of cyclic groups;

• :math:`v.gen`: a vector giving generators of those cyclic groups (as binary quadratic forms).

• :math:`v.reg`: the regulator, computed to an accuracy which is the maximum of an internal accuracy de-
termined by the program and the current default (note that once the regulator is known to a small accuracy
it is trivial to compute it to very high accuracy, see the tutorial).

The 𝑓𝑙𝑎𝑔 is obsolete and should be left alone. In older versions, it supposedly computed the narrow class group
when 𝐷 > 0, but this did not work at all; use the general function bnfnarrow.

Optional parameter tech is a row vector of the form [𝑐1, 𝑐2], where 𝑐1 <= 𝑐2 are nonnegative real numbers which
control the execution time and the stack size, see GRHbnf (in the PARI manual). The parameter is used as a
threshold to balance the relation finding phase against the final linear algebra. Increasing the default 𝑐1 means
that relations are easier to find, but more relations are needed and the linear algebra will be harder. The default
value for 𝑐1 is 0 and means that it is taken equal to 𝑐2. The parameter 𝑐2 is mostly obsolete and should not be
changed, but we still document it for completeness: we compute a tentative class group by generators and relations
using a factorbase of prime ideals <= 𝑐1(log ‖𝐷‖)2, then prove that ideals of norm <= 𝑐2(log ‖𝐷‖)2 do not
generate a larger group. By default an optimal 𝑐2 is chosen, so that the result is provably correct under the GRH
— a famous result of Bach states that 𝑐2 = 6 is fine, but it is possible to improve on this algorithmically. You
may provide a smaller 𝑐2, it will be ignored (we use the provably correct one); you may provide a larger 𝑐2 than
the default value, which results in longer computing times for equally correct outputs (under GRH).

quaddisc()

Discriminant of the étale algebra Q(
√
𝑥), where 𝑥 ∈ Q*. This is the same as coredisc(𝑑) where 𝑑 is the integer

squarefree part of 𝑥, so 𝑥 = 𝑑𝑓2 with 𝑓 ∈ Q* and 𝑑 ∈ Z. This returns 0 for 𝑥 = 0, 1 for 𝑥 square and the
discriminant of the quadratic field Q(

√
𝑥) otherwise.

? quaddisc(7)
%1 = 28
? quaddisc(-7)
%2 = -7

quadgen(v)

Creates the quadratic number 𝜔 = (𝑎+
√
𝐷)/2 where 𝑎 = 0 if𝐷 = 0𝑚𝑜𝑑4, 𝑎 = 1 if𝐷 = 1𝑚𝑜𝑑4, so that (1, 𝜔)
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is an integral basis for the quadratic order of discriminant 𝐷. 𝐷 must be an integer congruent to 0 or 1 modulo
4, which is not a square. If v is given, the variable name is used to display 𝑔 else ‘w’ is used.

? w = quadgen(5, 'w); w^2 - w - 1
%1 = 0
? w = quadgen(0, 'w)
*** at top-level: w=quadgen(0)
*** ^----------
*** quadgen: domain error in quadpoly: issquare(disc) = 1

quadhilbert(precision)
Relative equation defining the Hilbert class field of the quadratic field of discriminant 𝐷.

If 𝐷 < 0, uses complex multiplication (Schertz’s variant).

If𝐷 > 0 Stark units are used and (in rare cases) a vector of extensions may be returned whose compositum is the
requested class field. See bnrstark for details.

quadpoly(v)
Creates the “canonical” quadratic polynomial (in the variable 𝑣) corresponding to the discriminant 𝐷, i.e. the
minimal polynomial of 𝑞𝑢𝑎𝑑𝑔𝑒𝑛(𝐷). 𝐷 must be an integer congruent to 0 or 1 modulo 4, which is not a square.

? quadpoly(5,'y)
%1 = y^2 - y - 1
? quadpoly(0,'y)
*** at top-level: quadpoly(0,'y)
*** ^--------------
*** quadpoly: domain error in quadpoly: issquare(disc) = 1

quadray(f, precision)
Relative equation for the ray class field of conductor 𝑓 for the quadratic field of discriminant 𝐷 using analytic
methods. A bnf for 𝑥2 −𝐷 is also accepted in place of 𝐷.

For 𝐷 < 0, uses the 𝜎 function and Schertz’s method.

For 𝐷 > 0, uses Stark’s conjecture, and a vector of relative equations may be returned. See bnrstark for more
details.

quadregulator(precision)
Regulator of the quadratic field of positive discriminant 𝑥. Returns an error if 𝑥 is not a discriminant (fundamental
or not) or if 𝑥 is a square. See also quadclassunit if 𝑥 is large.

quadunit(v)

Fundamental unit 𝑢 of the real quadratic field Q(
√
𝐷) where 𝐷 is the positive discriminant of the field. If 𝐷 is

not a fundamental discriminant, this probably gives the fundamental unit of the corresponding order. 𝐷 must be
an integer congruent to 0 or 1 modulo 4, which is not a square; the result is a quadratic number (see quadgen (in
the PARI manual)). If v is given, the variable name is used to display 𝑢 else ‘w’ is used. The algorithm computes
the continued fraction of (1+

√
𝐷)/2 or

√
𝐷/2 (see GTM 138, algorithm 5.7.2). Although the continued fraction

length is only 𝑂(
√
𝐷), the function still runs in time 𝑂(𝐷), in part because the output size is not polynomially

bounded in terms of log𝐷. See bnfinit and bnfunits for a better alternative for large 𝐷, running in time
subexponential in log𝐷 and returning the fundamental units in compact form (as a short list of 𝑆-units of size
𝑂(log𝐷)3 raised to possibly large exponents).

ramanujantau()

Compute the value of Ramanujan’s tau function at an individual 𝑛, assuming the truth of the GRH (to com-
pute quickly class numbers of imaginary quadratic fields using quadclassunit). Algorithm in 𝑂(𝑛1/2) using
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𝑂(log 𝑛) space. If all values up to 𝑁 are required, then∑︁
𝜏(𝑛)𝑞𝑛 = 𝑞

∏︁
𝑛>=1

(1 − 𝑞𝑛)24

will produce them in time 𝑂(𝑁), against 𝑂(𝑁3/2) for individual calls to ramanujantau; of course the space
complexity then becomes 𝑂(𝑁).

? tauvec(N) = Vec(q*eta(q + O(q^N))^24);
? N = 10^4; v = tauvec(N);
time = 26 ms.
? ramanujantau(N)
%3 = -482606811957501440000
? w = vector(N, n, ramanujantau(n)); \\ much slower !
time = 13,190 ms.
? v == w
%4 = 1

random()

Returns a random element in various natural sets depending on the argument 𝑁 .

• t_INT: returns an integer uniformly distributed between 0 and 𝑁 − 1. Omitting the argument is equivalent
to random(2^31).

• t_REAL: returns a real number in [0, 1[ with the same accuracy as 𝑁 (whose mantissa has the same number
of significant words).

• t_INTMOD: returns a random intmod for the same modulus.

• t_FFELT: returns a random element in the same finite field.

• t_VEC of length 2, 𝑁 = [𝑎, 𝑏]: returns an integer uniformly distributed between 𝑎 and 𝑏.

• t_VEC generated by ellinit over a finite field 𝑘 (coefficients are t_INTMOD s modulo a prime or t_FFELT s):
returns a “random” 𝑘-rational affine point on the curve. More precisely if the curve has a single point (at
infinity!) we return it; otherwise we return an affine point by drawing an abscissa uniformly at random until
ellordinate succeeds. Note that this is definitely not a uniform distribution over 𝐸(𝑘), but it should be
good enough for applications.

• t_POL return a random polynomial of degree at most the degree of𝑁 . The coefficients are drawn by applying
random to the leading coefficient of 𝑁 .

? random(10)
%1 = 9
? random(Mod(0,7))
%2 = Mod(1, 7)
? a = ffgen(ffinit(3,7), 'a); random(a)
%3 = a^6 + 2*a^5 + a^4 + a^3 + a^2 + 2*a
? E = ellinit([3,7]*Mod(1,109)); random(E)
%4 = [Mod(103, 109), Mod(10, 109)]
? E = ellinit([1,7]*a^0); random(E)
%5 = [a^6 + a^5 + 2*a^4 + 2*a^2, 2*a^6 + 2*a^4 + 2*a^3 + a^2 + 2*a]
? random(Mod(1,7)*x^4)
%6 = Mod(5, 7)*x^4 + Mod(6, 7)*x^3 + Mod(2, 7)*x^2 + Mod(2, 7)*x + Mod(5, 7)

These variants all depend on a single internal generator, and are independent from your operating system’s random
number generators. A random seed may be obtained via getrand, and reset using setrand: from a given seed,
and given sequence of random s, the exact same values will be generated. The same seed is used at each startup,
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reseed the generator yourself if this is a problem. Note that internal functions also call the random number
generator; adding such a function call in the middle of your code will change the numbers produced.

Technical note. Up to version 2.4 included, the internal generator produced pseudo-random numbers by means
of linear congruences, which were not well distributed in arithmetic progressions. We now use Brent’s XORGEN
algorithm, based on Feedback Shift Registers, see http://wwwmaths.anu.edu.au/~brent/random.html.
The generator has period 24096 − 1, passes the Crush battery of statistical tests of L’Ecuyer and Simard, but is
not suitable for cryptographic purposes: one can reconstruct the state vector from a small sample of consecutive
values, thus predicting the entire sequence.

randomprime(q)
Returns a strong pseudo prime (see ispseudoprime) in [2, 𝑁 − 1]. A t_VEC 𝑁 = [𝑎, 𝑏] is also allowed, with
𝑎 <= 𝑏 in which case a pseudo prime 𝑎 <= 𝑝 <= 𝑏 is returned; if no prime exists in the interval, the function
will run into an infinite loop. If the upper bound is less than 264 the pseudo prime returned is a proven prime.

? randomprime(100)
%1 = 71
? randomprime([3,100])
%2 = 61
? randomprime([1,1])
*** at top-level: randomprime([1,1])
*** ^------------------
*** randomprime: domain error in randomprime:
*** floor(b) - max(ceil(a),2) < 0
? randomprime([24,28]) \\ infinite loop

If the optional parameter 𝑞 is an integer, return a prime congruent to 1𝑚𝑜𝑑𝑞; if 𝑞 is an intmod, return a prime in
the given congruence class. If the class contains no prime in the given interval, the function will raise an exception
if the class is not invertible, else run into an infinite loop

? randomprime(100, 4) \\ 1 mod 4
%1 = 71
? randomprime(100, 4)
%2 = 13
? randomprime([10,100], Mod(2,5))
%3 = 47
? randomprime(100, Mod(0,2)) \\ silly but works
%4 = 2
? randomprime([3,100], Mod(0,2)) \\ not invertible
*** at top-level: randomprime([3,100],Mod(0,2))
*** ^-----------------------------
*** randomprime: elements not coprime in randomprime:
0
2
? randomprime(100, 97) \\ infinite loop

real()

Real part of 𝑥. When 𝑥 is a quadratic number, this is the coefficient of 1 in the “canonical” integral basis (1, 𝜔).

? real(3 + I)
%1 = 3
? x = 3 + quadgen(-23);
? real(x) \\ as a quadratic number
%3 = 3

(continues on next page)
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? real(x * 1.) \\ as a complex number
%4 = 3.5000000000000000000000000000000000000

removeprimes()

Removes the primes listed in 𝑥 from the prime number table. In particular removeprimes(addprimes())
empties the extra prime table. 𝑥 can also be a single integer. List the current extra primes if 𝑥 is omitted.

rnfalgtobasis(x)
Expresses 𝑥 on the relative integral basis. Here, 𝑟𝑛𝑓 is a relative number field extension 𝐿/𝐾 as output by
rnfinit, and 𝑥 an element of 𝐿 in absolute form, i.e. expressed as a polynomial or polmod with polmod coeffi-
cients, not on the relative integral basis.

rnfbasis(M)

Let𝐾 the field represented by bnf, as output by bnfinit. 𝑀 is a projective Z𝐾-module of rank 𝑛 (𝑀 ⊗𝐾 is an
𝑛-dimensional 𝐾-vector space), given by a pseudo-basis of size 𝑛. The routine returns either a true Z𝐾-basis of
𝑀 (of size 𝑛) if it exists, or an 𝑛+ 1-element generating set of 𝑀 if not.

It is allowed to use a monic irreducible polynomial 𝑃 in 𝐾[𝑋] instead of 𝑀 , in which case, 𝑀 is defined as the
ring of integers of 𝐾[𝑋]/(𝑃 ), viewed as a Z𝐾-module.

Huge discriminants, helping rnfdisc. The format [𝑇,𝐵] is also accepted instead of 𝑇 and computes an order
which is maximal at all maximal ideals specified by 𝐵, see ??rnfinit: the valuation of 𝐷 is then correct at all
such maximal ideals but may be incorrect at other primes.

rnfbasistoalg(x)
Computes the representation of 𝑥 as a polmod with polmods coefficients. Here, 𝑟𝑛𝑓 is a relative number field
extension 𝐿/𝐾 as output by rnfinit, and 𝑥 an element of 𝐿 expressed on the relative integral basis.

rnfcharpoly(T, a, var)
Characteristic polynomial of 𝑎 over 𝑛𝑓 , where 𝑎 belongs to the algebra defined by 𝑇 over 𝑛𝑓 , i.e. 𝑛𝑓 [𝑋]/(𝑇 ).
Returns a polynomial in variable 𝑣 (𝑥 by default).

? nf = nfinit(y^2+1);
? rnfcharpoly(nf, x^2+y*x+1, x+y)
%2 = x^2 + Mod(-y, y^2 + 1)*x + 1

rnfconductor(T, flag)
Given a bnf structure attached to a number field 𝐾, as produced by bnfinit, and 𝑇 an irreducible polynomial
in 𝐾[𝑥] defining an Abelian extension 𝐿 = 𝐾[𝑥]/(𝑇 ), computes the class field theory conductor of this Abelian
extension. If 𝑇 does not define an Abelian extension over 𝐾, the result is undefined; it may be the integer 0 (in
which case the extension is definitely not Abelian) or a wrong result.

The result is a 3-component vector [𝑓, 𝑏𝑛𝑟,𝐻], where 𝑓 is the conductor of the extension given as a 2-component
row vector [𝑓0, 𝑓𝑜𝑜], bnr is the attached bnr structure and 𝐻 is a matrix in HNF defining the subgroup of the ray
class group on the ray class group generators bnr.gen; in particular, it is a left divisor of the diagonal matrix
attached to bnr.cyc and ‖ det𝐻‖ = 𝑁 = deg 𝑇 .

If flag is set, return [𝑓, 𝑏𝑛𝑟𝑚𝑜𝑑,𝐻], where bnrmod is now attached to 𝐶𝑙𝑓/𝐶𝑙𝑁𝑓 , and 𝐻 is as before since it
contains the 𝑁 -th powers. This is useful when 𝑓 contains a maximal ideal with huge residue field, since the
corresponding tough discrete logarithms are trivialized: in the quotient group, all elements have small order
dividing 𝑁 . This allows to work in 𝐶𝑙𝑓/𝐻 but no longer in 𝐶𝑙𝑓 .

Huge discriminants, helping rnfdisc. The format [𝑇,𝐵] is also accepted instead of 𝑇 and computes the con-
ductor of the extension provided it factors completely over the maximal ideals specified by 𝐵, see ??rnfinit:
the valuation of 𝑓0 is then correct at all such maximal ideals but may be incorrect at other primes.
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rnfdedekind(pol, pr, flag)
Given a number field𝐾 coded by 𝑛𝑓 and a monic polynomial 𝑃 ∈ Z𝐾 [𝑋], irreducible over𝐾 and thus defining
a relative extension 𝐿 of 𝐾, applies Dedekind’s criterion to the order Z𝐾 [𝑋]/(𝑃 ), at the prime ideal pr. It is
possible to set pr to a vector of prime ideals (test maximality at all primes in the vector), or to omit altogether, in
which case maximality at all primes is tested; in this situation flag is automatically set to 1.

The default historic behavior (flag is 0 or omitted and pr is a single prime ideal) is not so useful since
rnfpseudobasis gives more information and is generally not that much slower. It returns a 3-component vector
[𝑚𝑎𝑥, 𝑏𝑎𝑠𝑖𝑠, 𝑣]:

• basis is a pseudo-basis of an enlarged order 𝑂 produced by Dedekind’s criterion, containing the original
order Z𝐾 [𝑋]/(𝑃 ) with index a power of pr. Possibly equal to the original order.

• max is a flag equal to 1 if the enlarged order 𝑂 could be proven to be pr-maximal and to 0 otherwise; it may
still be maximal in the latter case if pr is ramified in 𝐿,

• 𝑣 is the valuation at pr of the order discriminant.

If flag is nonzero, on the other hand, we just return 1 if the order Z𝐾 [𝑋]/(𝑃 ) is pr-maximal (resp. maximal at all
relevant primes, as described above), and 0 if not. This is much faster than the default, since the enlarged order is
not computed.

? nf = nfinit(y^2-3); P = x^3 - 2*y;
? pr3 = idealprimedec(nf,3)[1];
? rnfdedekind(nf, P, pr3)
%3 = [1, [[1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 1, 1]], 8]
? rnfdedekind(nf, P, pr3, 1)
%4 = 1

In this example, pr3 is the ramified ideal above 3, and the order generated by the cube roots of 𝑦 is already pr3-
maximal. The order-discriminant has valuation 8. On the other hand, the order is not maximal at the prime above
2:

? pr2 = idealprimedec(nf,2)[1];
? rnfdedekind(nf, P, pr2, 1)
%6 = 0
? rnfdedekind(nf, P, pr2)
%7 = [0, [[2, 0, 0; 0, 1, 0; 0, 0, 1], [[1, 0; 0, 1], [1, 0; 0, 1],
[1, 1/2; 0, 1/2]]], 2]

The enlarged order is not proven to be pr2-maximal yet. In fact, it is; it is in fact the maximal order:

? B = rnfpseudobasis(nf, P)
%8 = [[1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 1, [1, 1/2; 0, 1/2]],
[162, 0; 0, 162], -1]
? idealval(nf,B[3], pr2)
%9 = 2

It is possible to use this routine with nonmonic 𝑃 =
∑︀

𝑖<=𝑛 𝑝𝑖𝑋
𝑖 ∈ Z𝐾 [𝑋] if 𝑓𝑙𝑎𝑔 = 1; in this case, we test

maximality of Dedekind’s order generated by

1, 𝑝𝑛𝛼, 𝑝𝑛𝛼
2 + 𝑝𝑛−1𝛼, ..., 𝑝𝑛𝛼

𝑛−1 + 𝑝𝑛−1𝛼
𝑛−2 + ...+ 𝑝1𝛼.

The routine will fail if 𝑃 vanishes on the projective line over the residue field Z𝐾/𝑝𝑟 (FIXME).

rnfdet(M)

Given a pseudo-matrix 𝑀 over the maximal order of 𝑛𝑓 , computes its determinant.
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rnfdisc(T)
Given an nf structure attached to a number field 𝐾, as output by nfinit, and a monic irreducible polynomial
𝑇 ∈ 𝐾[𝑥] defining a relative extension 𝐿 = 𝐾[𝑥]/(𝑇 ), compute the relative discriminant of 𝐿. This is a vector
[𝐷, 𝑑], where 𝐷 is the relative ideal discriminant and 𝑑 is the relative discriminant considered as an element of
𝐾*/𝐾*2. The main variable of 𝑛𝑓 must be of lower priority than that of 𝑇 , see priority (in the PARI manual).

Huge discriminants, helping rnfdisc. The format [𝑇,𝐵] is also accepted instead of 𝑇 and computes an order
which is maximal at all maximal ideals specified by 𝐵, see ??rnfinit: the valuation of 𝐷 is then correct at all
such maximal ideals but may be incorrect at other primes.

rnfeltabstorel(x)
Let 𝑟𝑛𝑓 be a relative number field extension 𝐿/𝐾 as output by rnfinit and let 𝑥 be an element of 𝐿 expressed
as a polynomial modulo the absolute equation :emphasis:`rnf.pol`, or in terms of the absolute Z-basis for Z𝐿

if rnf contains one (as in rnfinit(nf,pol,1), or after a call to nfinit(rnf)). Computes 𝑥 as an element of
the relative extension 𝐿/𝐾 as a polmod with polmod coefficients.

? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? L.polabs
%2 = x^4 + 1
? rnfeltabstorel(L, Mod(x, L.polabs))
%3 = Mod(x, x^2 + Mod(-y, y^2 + 1))
? rnfeltabstorel(L, 1/3)
%4 = 1/3
? rnfeltabstorel(L, Mod(x, x^2-y))
%5 = Mod(x, x^2 + Mod(-y, y^2 + 1))

? rnfeltabstorel(L, [0,0,0,1]~) \\ Z_L not initialized yet
*** at top-level: rnfeltabstorel(L,[0,
*** ^--------------------
*** rnfeltabstorel: incorrect type in rnfeltabstorel, apply nfinit(rnf).
? nfinit(L); \\ initialize now
? rnfeltabstorel(L, [0,0,0,1]~)
%6 = Mod(Mod(y, y^2 + 1)*x, x^2 + Mod(-y, y^2 + 1))

rnfeltdown(x, flag)
𝑟𝑛𝑓 being a relative number field extension 𝐿/𝐾 as output by rnfinit and 𝑥 being an element of 𝐿 expressed
as a polynomial or polmod with polmod coefficients (or as a t_COL on nfinit(rnf).zk), computes 𝑥 as an
element of 𝐾 as a t_POLMOD if 𝑓𝑙𝑎𝑔 = 0 and as a t_COL otherwise. If 𝑥 is not in 𝐾, a domain error occurs.

? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? L.pol
%2 = x^4 + 1
? rnfeltdown(L, Mod(x^2, L.pol))
%3 = Mod(y, y^2 + 1)
? rnfeltdown(L, Mod(x^2, L.pol), 1)
%4 = [0, 1]~
? rnfeltdown(L, Mod(y, x^2-y))
%5 = Mod(y, y^2 + 1)
? rnfeltdown(L, Mod(y,K.pol))
%6 = Mod(y, y^2 + 1)
? rnfeltdown(L, Mod(x, L.pol))
*** at top-level: rnfeltdown(L,Mod(x,x
*** ^--------------------
*** rnfeltdown: domain error in rnfeltdown: element not in the base field

(continues on next page)

722 Chapter 2. The Gen class wrapping PARI’s GEN type



CyPari2 Documentation, Release 2.1.3

(continued from previous page)

? rnfeltdown(L, Mod(y, x^2-y), 1) \\ as a t_COL
%7 = [0, 1]~
? rnfeltdown(L, [0,1,0,0]~) \\ not allowed without absolute nf struct
*** rnfeltdown: incorrect type in rnfeltdown (t_COL).
? nfinit(L); \\ add absolute nf structure to L
? rnfeltdown(L, [0,1,0,0]~) \\ now OK
%8 = Mod(y, y^2 + 1)

If we had started with L = rnfinit(K, x^2-y, 1), then the final would have worked directly.

rnfeltnorm(x)
𝑟𝑛𝑓 being a relative number field extension 𝐿/𝐾 as output by rnfinit and 𝑥 being an element of 𝐿, returns the
relative norm 𝑁𝐿/𝐾(𝑥) as an element of 𝐾.

? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? rnfeltnorm(L, Mod(x, L.pol))
%2 = Mod(x, x^2 + Mod(-y, y^2 + 1))
? rnfeltnorm(L, 2)
%3 = 4
? rnfeltnorm(L, Mod(x, x^2-y))

rnfeltreltoabs(x)
𝑟𝑛𝑓 being a relative number field extension 𝐿/𝐾 as output by rnfinit and 𝑥 being an element of 𝐿 expressed
as a polynomial or polmod with polmod coefficients, computes 𝑥 as an element of the absolute extension 𝐿/Q as
a polynomial modulo the absolute equation :emphasis:`rnf.pol`.

? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? L.pol
%2 = x^4 + 1
? rnfeltreltoabs(L, Mod(x, L.pol))
%3 = Mod(x, x^4 + 1)
? rnfeltreltoabs(L, Mod(y, x^2-y))
%4 = Mod(x^2, x^4 + 1)
? rnfeltreltoabs(L, Mod(y,K.pol))
%5 = Mod(x^2, x^4 + 1)

rnfelttrace(x)
𝑟𝑛𝑓 being a relative number field extension 𝐿/𝐾 as output by rnfinit and 𝑥 being an element of 𝐿, returns the
relative trace 𝑇𝑟𝐿/𝐾(𝑥) as an element of 𝐾.

? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? rnfelttrace(L, Mod(x, L.pol))
%2 = 0
? rnfelttrace(L, 2)
%3 = 4
? rnfelttrace(L, Mod(x, x^2-y))

rnfeltup(x, flag)
𝑟𝑛𝑓 being a relative number field extension 𝐿/𝐾 as output by rnfinit and 𝑥 being an element of 𝐾, computes
𝑥 as an element of the absolute extension 𝐿/Q. As a t_POLMOD modulo :emphasis:`rnf.pol` if 𝑓𝑙𝑎𝑔 = 0 and
as a t_COL on the absolute field integer basis if 𝑓𝑙𝑎𝑔 = 1.

723



CyPari2 Documentation, Release 2.1.3

? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? L.pol
%2 = x^4 + 1
? rnfeltup(L, Mod(y, K.pol))
%3 = Mod(x^2, x^4 + 1)
? rnfeltup(L, y)
%4 = Mod(x^2, x^4 + 1)
? rnfeltup(L, [1,2]~) \\ in terms of K.zk
%5 = Mod(2*x^2 + 1, x^4 + 1)
? rnfeltup(L, y, 1) \\ in terms of nfinit(L).zk
%6 = [0, 1, 0, 0]~
? rnfeltup(L, [1,2]~, 1)
%7 = [1, 2, 0, 0]~

rnfequation(pol, flag)
Given a number field 𝑛𝑓 as output by nfinit (or simply a polynomial) and a polynomial pol with coefficients in
𝑛𝑓 defining a relative extension 𝐿 of 𝑛𝑓 , computes an absolute equation of 𝐿 over Q.

The main variable of 𝑛𝑓 must be of lower priority than that of pol (see priority (in the PARI manual)). Note that
for efficiency, this does not check whether the relative equation is irreducible over 𝑛𝑓 , but only if it is squarefree.
If it is reducible but squarefree, the result will be the absolute equation of the étale algebra defined by pol. If pol
is not squarefree, raise an e_DOMAIN exception.

? rnfequation(y^2+1, x^2 - y)
%1 = x^4 + 1
? T = y^3-2; rnfequation(nfinit(T), (x^3-2)/(x-Mod(y,T)))
%2 = x^6 + 108 \\ Galois closure of Q(2^(1/3))

If 𝑓𝑙𝑎𝑔 is nonzero, outputs a 3-component row vector [𝑧, 𝑎, 𝑘], where

• 𝑧 is the absolute equation of 𝐿 over Q, as in the default behavior,

• 𝑎 expresses as a t_POLMOD modulo 𝑧 a root 𝛼 of the polynomial defining the base field 𝑛𝑓 ,

• 𝑘 is a small integer such that 𝜃 = 𝛽 + 𝑘𝛼 is a root of 𝑧, where 𝛽 is a root of 𝑝𝑜𝑙. It is guaranteed that 𝑘 = 0
whenever Q(𝛽) = 𝐿.

? T = y^3-2; pol = x^2 +x*y + y^2;
? [z,a,k] = rnfequation(T, pol, 1);
? z
%3 = x^6 + 108
? subst(T, y, a)
%4 = 0
? alpha= Mod(y, T);
? beta = Mod(x*Mod(1,T), pol);
? subst(z, x, beta + k*alpha)
%7 = 0

rnfhnfbasis(x)
Given 𝑏𝑛𝑓 as output by bnfinit, and either a polynomial 𝑥 with coefficients in 𝑏𝑛𝑓 defining a relative extension
𝐿 of 𝑏𝑛𝑓 , or a pseudo-basis 𝑥 of such an extension, gives either a true 𝑏𝑛𝑓 -basis of 𝐿 in upper triangular Hermite
normal form, if it exists, and returns 0 otherwise.

rnfidealabstorel(x)
Let 𝑟𝑛𝑓 be a relative number field extension 𝐿/𝐾 as output by rnfinit and let 𝑥 be an ideal of the absolute
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extension𝐿/Q. Returns the relative pseudo-matrix in HNF giving the ideal 𝑥 considered as an ideal of the relative
extension 𝐿/𝐾, i.e. as a Z𝐾-module.

Let Labs be an (absolute) nf structure attached to 𝐿, obtained via Labs = nfinit(rnf)). Then rnf “knows”
about Labs and 𝑥 may be given in any format attached to Labs, e.g. a prime ideal or an ideal in HNF wrt.
Labs.zk:

? K = nfinit(y^2+1); rnf = rnfinit(K, x^2-y); Labs = nfinit(rnf);
? m = idealhnf(Labs, 17, x^3+2); \\ some ideal in HNF wrt. Labs.zk
? B = rnfidealabstorel(rnf, m)
%3 = [[1, 8; 0, 1], [[17, 4; 0, 1], 1]] \\ pseudo-basis for m as Z_K-module
? A = rnfidealreltoabs(rnf, B)
%4 = [17, x^2 + 4, x + 8, x^3 + 8*x^2] \\ Z-basis for m in Q[x]/(rnf.polabs)
? mathnf(matalgtobasis(Labs, A)) == m
%5 = 1

If on the other hand, we do not have a Labs at hand, because it would be too expensive to compute, but we
nevertheless have a Z-basis for 𝑥, then we can use the function with this basis as argument. The entries of 𝑥
may be given either modulo rnf.polabs (absolute form, possibly lifted) or modulo rnf.pol (relative form as
t_POLMOD s):

? K = nfinit(y^2+1); rnf = rnfinit(K, x^2-y);
? rnfidealabstorel(rnf, [17, x^2 + 4, x + 8, x^3 + 8*x^2])
%2 = [[1, 8; 0, 1], [[17, 4; 0, 1], 1]]
? rnfidealabstorel(rnf, Mod([17, y + 4, x + 8, y*x + 8*y], x^2-y))
%3 = [[1, 8; 0, 1], [[17, 4; 0, 1], 1]]

rnfidealdown(x)
Let 𝑟𝑛𝑓 be a relative number field extension 𝐿/𝐾 as output by rnfinit, and 𝑥 an ideal of 𝐿, given either in
relative form or by a Z-basis of elements of 𝐿 (see rnfidealabstorel (in the PARI manual)). This function
returns the ideal of 𝐾 below 𝑥, i.e. the intersection of 𝑥 with 𝐾.

rnfidealfactor(x)
Factor into prime ideal powers the ideal 𝑥 in the attached absolute number field 𝐿 = 𝑛𝑓𝑖𝑛𝑖𝑡(𝑟𝑛𝑓). The out-
put format is similar to the factor function, and the prime ideals are represented in the form output by the
idealprimedec function for 𝐿.

? rnf = rnfinit(nfinit(y^2+1), x^2-y+1);
? rnfidealfactor(rnf, y+1) \\ P_2^2
%2 =
[[2, [0,0,1,0]~, 4, 1, [0,0,0,2;0,0,-2,0;-1,-1,0,0;1,-1,0,0]] 2]

? rnfidealfactor(rnf, x) \\ P_2
%3 =
[[2, [0,0,1,0]~, 4, 1, [0,0,0,2;0,0,-2,0;-1,-1,0,0;1,-1,0,0]] 1]

? L = nfinit(rnf);
? id = idealhnf(L, idealhnf(L, 25, (x+1)^2));
? idealfactor(L, id) == rnfidealfactor(rnf, id)
%6 = 1

Note that ideals of the base field 𝐾 must be explicitly lifted to 𝐿 via rnfidealup before they can be factored.

rnfidealhnf(x)
𝑟𝑛𝑓 being a relative number field extension𝐿/𝐾 as output by rnfinit and 𝑥 being a relative ideal (which can be,
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as in the absolute case, of many different types, including of course elements), computes the HNF pseudo-matrix
attached to 𝑥, viewed as a Z𝐾-module.

rnfidealmul(x, y)
𝑟𝑛𝑓 being a relative number field extension 𝐿/𝐾 as output by rnfinit and 𝑥 and 𝑦 being ideals of the relative
extension 𝐿/𝐾 given by pseudo-matrices, outputs the ideal product, again as a relative ideal.

rnfidealnormabs(x)
Let 𝑟𝑛𝑓 be a relative number field extension 𝐿/𝐾 as output by rnfinit and let 𝑥 be a relative ideal (which can
be, as in the absolute case, of many different types, including of course elements). This function computes the
norm of the 𝑥 considered as an ideal of the absolute extension 𝐿/Q. This is identical to

idealnorm(rnf, rnfidealnormrel(rnf,x))

but faster.

rnfidealnormrel(x)
Let 𝑟𝑛𝑓 be a relative number field extension 𝐿/𝐾 as output by rnfinit and let 𝑥 be a relative ideal (which can
be, as in the absolute case, of many different types, including of course elements). This function computes the
relative norm of 𝑥 as an ideal of 𝐾 in HNF.

rnfidealprimedec(pr)
Let rnf be a relative number field extension 𝐿/𝐾 as output by rnfinit, and pr a maximal ideal of𝐾 (prid), this
function completes the rnf with a nf structure attached to 𝐿 (see rnfinit (in the PARI manual)) and returns the
prime ideal decomposition of pr in 𝐿/𝐾.

? K = nfinit(y^2+1); rnf = rnfinit(K, x^3+y+1);
? P = idealprimedec(K, 2)[1];
? S = rnfidealprimedec(rnf, P);
? #S
%4 = 1

The argument pr is also allowed to be a prime number 𝑝, in which case the function returns a pair of vectors
[SK,SL], where SK contains the primes of 𝐾 above 𝑝 and SL[𝑖] is the vector of primes of 𝐿 above SK[𝑖].

? [SK,SL] = rnfidealprimedec(rnf, 5);
? [#SK, vector(#SL,i,#SL[i])]
%6 = [2, [2, 2]]

rnfidealreltoabs(x, flag)
Let 𝑟𝑛𝑓 be a relative number field extension 𝐿/𝐾 as output by rnfinit and let 𝑥 be a relative ideal, given as a
Z𝐾-module by a pseudo matrix [𝐴, 𝐼]. This function returns the ideal 𝑥 as an absolute ideal of 𝐿/Q. If 𝑓𝑙𝑎𝑔 = 0,
the result is given by a vector of t_POLMOD s modulo rnf.pol forming a Z-basis; if 𝑓𝑙𝑎𝑔 = 1, it is given in HNF
in terms of the fixed Z-basis for Z𝐿, see rnfinit (in the PARI manual).

? K = nfinit(y^2+1); rnf = rnfinit(K, x^2-y);
? P = idealprimedec(K,2)[1];
? P = rnfidealup(rnf, P)
%3 = [2, x^2 + 1, 2*x, x^3 + x]
? Prel = rnfidealhnf(rnf, P)
%4 = [[1, 0; 0, 1], [[2, 1; 0, 1], [2, 1; 0, 1]]]
? rnfidealreltoabs(rnf,Prel)
%5 = [2, x^2 + 1, 2*x, x^3 + x]
? rnfidealreltoabs(rnf,Prel,1)
%6 =

(continues on next page)
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(continued from previous page)

[2 1 0 0]

[0 1 0 0]

[0 0 2 1]

[0 0 0 1]

The reason why we do not return by default (𝑓𝑙𝑎𝑔 = 0) the customary HNF in terms of a fixed Z-basis for Z𝐿

is precisely because a rnf does not contain such a basis by default. Completing the structure so that it contains a
nf structure for 𝐿 is polynomial time but costly when the absolute degree is large, thus it is not done by default.
Note that setting 𝑓𝑙𝑎𝑔 = 1 will complete the rnf.

rnfidealtwoelt(x)
𝑟𝑛𝑓 being a relative number field extension 𝐿/𝐾 as output by rnfinit and 𝑥 being an ideal of the relative
extension 𝐿/𝐾 given by a pseudo-matrix, gives a vector of two generators of 𝑥 over Z𝐿 expressed as polmods
with polmod coefficients.

rnfidealup(x, flag)
Let 𝑟𝑛𝑓 be a relative number field extension 𝐿/𝐾 as output by rnfinit and let 𝑥 be an ideal of𝐾. This function
returns the ideal 𝑥Z𝐿 as an absolute ideal of 𝐿/Q, in the form of a Z-basis. If 𝑓𝑙𝑎𝑔 = 0, the result is given by a
vector of polynomials (modulo rnf.pol); if 𝑓𝑙𝑎𝑔 = 1, it is given in HNF in terms of the fixed Z-basis for Z𝐿,
see rnfinit (in the PARI manual).

? K = nfinit(y^2+1); rnf = rnfinit(K, x^2-y);
? P = idealprimedec(K,2)[1];
? rnfidealup(rnf, P)
%3 = [2, x^2 + 1, 2*x, x^3 + x]
? rnfidealup(rnf, P,1)
%4 =
[2 1 0 0]

[0 1 0 0]

[0 0 2 1]

[0 0 0 1]

The reason why we do not return by default (𝑓𝑙𝑎𝑔 = 0) the customary HNF in terms of a fixed Z-basis for Z𝐿

is precisely because a rnf does not contain such a basis by default. Completing the structure so that it contains a
nf structure for 𝐿 is polynomial time but costly when the absolute degree is large, thus it is not done by default.
Note that setting 𝑓𝑙𝑎𝑔 = 1 will complete the rnf.

rnfinit(T, flag)
Given an nf structure attached to a number field 𝐾, as output by nfinit, and a monic irreducible polynomial 𝑇
in Z𝐾 [𝑥] defining a relative extension 𝐿 = 𝐾[𝑥]/(𝑇 ), this computes data to work in 𝐿/𝐾 The main variable of
𝑇 must be of higher priority (see priority (in the PARI manual)) than that of 𝑛𝑓 , and the coefficients of 𝑇 must
be in 𝐾.

The result is a row vector, whose components are technical. We let 𝑚 = [𝐾 : Q] the degree of the base field,
𝑛 = [𝐿 : 𝐾] the relative degree, 𝑟1 and 𝑟2 the number of real and complex places of𝐾. Access to this information
via member functions is preferred since the specific data organization specified below will change in the future.

If 𝑓𝑙𝑎𝑔 = 1, add an nf structure attached to 𝐿 to rnf. This is likely to be very expensive if the absolute degree
𝑚𝑛 is large, but fixes an integer basis for Z𝐿 as a Z-module and allows to input and output elements of 𝐿 in
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absolute form: as t_COL for elements, as t_MAT in HNF for ideals, as prid for prime ideals. Without such a call,
elements of 𝐿 are represented as t_POLMOD, etc. Note that a subsequent nfinit(𝑟𝑛𝑓) will also explicitly add
such a component, and so will the following functions rnfidealmul, rnfidealtwoelt, rnfidealprimedec,
rnfidealup (with flag 1) and rnfidealreltoabs (with flag 1). The absolute nf structure attached to 𝐿 can be
recovered using nfinit(rnf).

𝑟𝑛𝑓 [1]) contains the relative polynomial 𝑇 .

𝑟𝑛𝑓 [2] contains the integer basis [𝐴, 𝑑] of 𝐾, as (integral) elements of 𝐿/Q. More precisely, 𝐴 is a vector of
polynomial with integer coefficients, 𝑑 is a denominator, and the integer basis is given by 𝐴/𝑑.

𝑟𝑛𝑓 [3] (rnf.disc) is a two-component row vector [𝑑(𝐿/𝐾), 𝑠] where 𝑑(𝐿/𝐾) is the relative ideal discriminant
of 𝐿/𝐾 and 𝑠 is the discriminant of 𝐿/𝐾 viewed as an element of 𝐾*/(𝐾*)2, in other words it is the output of
rnfdisc.

𝑟𝑛𝑓 [4]) is the ideal index 𝑓 , i.e. such that 𝑑(𝑇 )Z𝐾 = 𝑓2𝑑(𝐿/𝐾).

𝑟𝑛𝑓 [5]) is the list of rational primes dividing the norm of the relative discriminant ideal.

𝑟𝑛𝑓 [7] (rnf.zk) is the pseudo-basis (𝐴, 𝐼) for the maximal order Z𝐿 as a Z𝐾-module: 𝐴 is the relative integral
pseudo basis expressed as polynomials (in the variable of 𝑇 ) with polmod coefficients in 𝑛𝑓 , and the second
component 𝐼 is the ideal list of the pseudobasis in HNF.

𝑟𝑛𝑓 [8] is the inverse matrix of the integral basis matrix, with coefficients polmods in 𝑛𝑓 .

𝑟𝑛𝑓 [9] is currently unused.

𝑟𝑛𝑓 [10] (rnf.nf) is 𝑛𝑓 .

𝑟𝑛𝑓 [11] is an extension of rnfequation(K, T, 1). Namely, a vector [𝑃, 𝑎, 𝑘,𝐾.𝑝𝑜𝑙, 𝑇 ] describing the absolute
extension𝐿/Q: 𝑃 is an absolute equation, more conveniently obtained as rnf.polabs; 𝑎 expresses the generator
𝛼 = 𝑦𝑚𝑜𝑑𝐾.𝑝𝑜𝑙 of the number field 𝐾 as an element of 𝐿, i.e. a polynomial modulo the absolute equation 𝑃 ;

𝑘 is a small integer such that, if 𝛽 is an abstract root of 𝑇 and 𝛼 the generator of𝐾 given above, then 𝑃 (𝛽+𝑘𝛼) =
0. It is guaranteed that 𝑘 = 0 if Q(𝛽) = 𝐿.

Caveat. Be careful if 𝑘! = 0 when dealing simultaneously with absolute and relative quantities since 𝐿 =
Q(𝛽 + 𝑘𝛼) = 𝐾(𝛼), and the generator chosen for the absolute extension is not the same as for the relative one.
If this happens, one can of course go on working, but we advise to change the relative polynomial so that its root
becomes 𝛽 + 𝑘𝛼. Typical GP instructions would be

[P,a,k] = rnfequation(K, T, 1);
if (k, T = subst(T, x, x - k*Mod(y, K.pol)));
L = rnfinit(K, T);

𝑟𝑛𝑓 [12] is by default unused and set equal to 0. This field is used to store further information about the field as it
becomes available (which is rarely needed, hence would be too expensive to compute during the initial rnfinit
call).

Huge discriminants, helping rnfdisc. When 𝑇 has a discriminant which is difficult to factor, it is hard to compute
Z𝐿. As in nfinit, the special input format [𝑇,𝐵] is also accepted, where 𝑇 is a polynomial as above and 𝐵
specifies a list of maximal ideals. The following formats are recognized for 𝐵:

• an integer: the list of all maximal ideals above a rational prime 𝑝 < 𝐵.

• a vector of rational primes or prime ideals: the list of all maximal ideals dividing an element in the list.

Instead of Z𝐿, this produces an order which is maximal at all such maximal ideals primes. The result may
actually be a complete and correct rnf structure if the relative ideal discriminant factors completely over this list
of maximal ideals but this is not guaranteed. In general, the order may not be maximal at primes 𝑝 not in the list
such that 𝑝2 divides the relative ideal discriminant.
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rnfisabelian(T)
𝑇 being a relative polynomial with coefficients in nf, return 1 if it defines an abelian extension, and 0 otherwise.

? K = nfinit(y^2 + 23);
? rnfisabelian(K, x^3 - 3*x - y)
%2 = 1

rnfisfree(x)
Given 𝑏𝑛𝑓 as output by bnfinit, and either a polynomial 𝑥 with coefficients in 𝑏𝑛𝑓 defining a relative extension
𝐿 of 𝑏𝑛𝑓 , or a pseudo-basis 𝑥 of such an extension, returns true (1) if 𝐿/𝑏𝑛𝑓 is free, false (0) if not.

rnfislocalcyclo()

Let rnf be a relative number field extension 𝐿/𝐾 as output by rnfinit whose degree [𝐿 : 𝐾] is a power of a
prime ℓ. Return 1 if the ℓ-extension is locally cyclotomic (locally contained in the cyclotomic Zℓ-extension of
𝐾𝑣 at all places 𝑣‖ℓ), and 0 if not.

? K = nfinit(y^2 + y + 1);
? L = rnfinit(K, x^3 - y); /* = K(zeta_9), globally cyclotomic */
? rnfislocalcyclo(L)
%3 = 1
\\ we expect 3-adic continuity by Krasner's lemma
? vector(5, i, rnfislocalcyclo(rnfinit(K, x^3 - y + 3^i)))
%5 = [0, 1, 1, 1, 1]

rnfisnorm(a, flag)
Similar to bnfisnorm but in the relative case. 𝑇 is as output by rnfisnorminit applied to the extension 𝐿/𝐾.
This tries to decide whether the element 𝑎 in 𝐾 is the norm of some 𝑥 in the extension 𝐿/𝐾.

The output is a vector [𝑥, 𝑞], where 𝑎 = Norm(𝑥) * 𝑞. The algorithm looks for a solution 𝑥 which is an 𝑆-integer,
with 𝑆 a list of places of𝐾 containing at least the ramified primes, the generators of the class group of 𝐿, as well
as those primes dividing 𝑎. If 𝐿/𝐾 is Galois, then this is enough but you may want to add more primes to 𝑆
to produce different elements, possibly smaller; otherwise, 𝑓𝑙𝑎𝑔 is used to add more primes to 𝑆: all the places
above the primes 𝑝 <= 𝑓𝑙𝑎𝑔 (resp. 𝑝‖𝑓𝑙𝑎𝑔) if 𝑓𝑙𝑎𝑔 > 0 (resp. 𝑓𝑙𝑎𝑔 < 0).

The answer is guaranteed (i.e. 𝑎 is a norm iff 𝑞 = 1) if the field is Galois, or, under GRH, if 𝑆 contains all primes
less than 12 log2 ‖disc(𝑀)‖, where 𝑀 is the normal closure of 𝐿/𝐾.

If rnfisnorminit has determined (or was told) that 𝐿/𝐾 is Galois, and 𝑓𝑙𝑎𝑔! = 0, a Warning is issued (so that
you can set 𝑓𝑙𝑎𝑔 = 1 to check whether 𝐿/𝐾 is known to be Galois, according to 𝑇 ). Example:

bnf = bnfinit(y^3 + y^2 - 2*y - 1);
p = x^2 + Mod(y^2 + 2*y + 1, bnf.pol);
T = rnfisnorminit(bnf, p);
rnfisnorm(T, 17)

checks whether 17 is a norm in the Galois extension Q(𝛽)/Q(𝛼), where 𝛼3 + 𝛼2 − 2𝛼− 1 = 0 and 𝛽2 + 𝛼2 +
2𝛼+ 1 = 0 (it is).

rnfisnorminit(polrel, flag)
Let 𝐾 be defined by a root of pol, and 𝐿/𝐾 the extension defined by the polynomial polrel. As usual, pol can in
fact be an nf, or bnf, etc; if pol has degree 1 (the base field is Q), polrel is also allowed to be an nf, etc. Computes
technical data needed by rnfisnorm to solve norm equations 𝑁𝑥 = 𝑎, for 𝑥 in 𝐿, and 𝑎 in 𝐾.

If 𝑓𝑙𝑎𝑔 = 0, do not care whether 𝐿/𝐾 is Galois or not.

If 𝑓𝑙𝑎𝑔 = 1, 𝐿/𝐾 is assumed to be Galois (unchecked), which speeds up rnfisnorm.

If 𝑓𝑙𝑎𝑔 = 2, let the routine determine whether 𝐿/𝐾 is Galois.

729



CyPari2 Documentation, Release 2.1.3

rnfkummer(subgp, precision)
This function is deprecated, use bnrclassfield.

rnflllgram(pol, order, precision)
Given a polynomial pol with coefficients in nf defining a relative extension 𝐿 and a suborder order of 𝐿 (of
maximal rank), as output by rnfpseudobasis(𝑛𝑓, 𝑝𝑜𝑙) or similar, gives [[𝑛𝑒𝑤𝑜𝑟𝑑𝑒𝑟], 𝑈 ], where neworder is a
reduced order and 𝑈 is the unimodular transformation matrix.

rnfnormgroup(pol)
bnr being a big ray class field as output by bnrinit and pol a relative polynomial defining an Abelian extension,
computes the norm group (alias Artin or Takagi group) corresponding to the Abelian extension of 𝑏𝑛𝑓 =bnr.
bnf defined by pol, where the module corresponding to bnr is assumed to be a multiple of the conductor (i.e. pol
defines a subextension of bnr). The result is the HNF defining the norm group on the given generators of bnr.
gen. Note that neither the fact that pol defines an Abelian extension nor the fact that the module is a multiple of
the conductor is checked. The result is undefined if the assumption is not correct, but the function will return the
empty matrix [;] if it detects a problem; it may also not detect the problem and return a wrong result.

rnfpolred(pol, precision)
This function is obsolete: use rnfpolredbest instead. Relative version of polred. Given a monic polynomial
pol with coefficients in 𝑛𝑓 , finds a list of relative polynomials defining some subfields, hopefully simpler and
containing the original field. In the present version 2.13.3, this is slower and less efficient than rnfpolredbest.

Remark. This function is based on an incomplete reduction theory of lattices over number fields, implemented
by rnflllgram, which deserves to be improved.

rnfpolredabs(pol, flag)
Relative version of polredabs. Given an irreducible monic polynomial pol with coefficients in the maximal
order of 𝑛𝑓 , finds a canonical relative polynomial defining the same field, hopefully with small coefficients. Note
that the equation is only canonical for a fixed nf, using a different defining polynomial in the nf structure will
produce a different relative equation.

The binary digits of 𝑓𝑙𝑎𝑔 correspond to 1: add information to convert elements to the new representation, 2:
absolute polynomial, instead of relative, 16: possibly use a suborder of the maximal order. More precisely:

0: default, return 𝑃

1: returns [𝑃, 𝑎] where 𝑃 is the default output and 𝑎, a t_POLMOD modulo 𝑃 , is a root of pol.

2: returns Pabs, an absolute, instead of a relative, polynomial. This polynomial is canonical and does not depend
on the nf structure. Same as but faster than

polredabs(rnfequation(nf, pol))

3: returns [𝑃𝑎𝑏𝑠, 𝑎, 𝑏], where Pabs is an absolute polynomial as above, 𝑎, 𝑏 are t_POLMOD modulo Pabs, roots of
nf.pol and pol respectively.

16: (OBSOLETE) possibly use a suborder of the maximal order. This makes rnfpolredabs behave as
rnfpolredbest. Just use the latter.

Warning. The complexity of rnfpolredabs is exponential in the absolute degree. The function
rnfpolredbest runs in polynomial time, and tends to return polynomials with smaller discriminants. It also
supports polynomials with arbitrary coefficients in nf, neither integral nor necessarily monic.

rnfpolredbest(pol, flag)
Relative version of polredbest. Given a polynomial pol with coefficients in 𝑛𝑓 , finds a simpler relative polyno-
mial 𝑃 defining the same field. As opposed to rnfpolredabs this function does not return a smallest (canonical)
polynomial with respect to some measure, but it does run in polynomial time.
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The binary digits of 𝑓𝑙𝑎𝑔 correspond to 1: add information to convert elements to the new representation, 2:
absolute polynomial, instead of relative. More precisely:

0: default, return 𝑃

1: returns [𝑃, 𝑎] where 𝑃 is the default output and 𝑎, a t_POLMOD modulo 𝑃 , is a root of pol.

2: returns Pabs, an absolute, instead of a relative, polynomial. Same as but faster than

rnfequation(nf, rnfpolredbest(nf,pol))

3: returns [𝑃𝑎𝑏𝑠, 𝑎, 𝑏], where Pabs is an absolute polynomial as above, 𝑎, 𝑏 are t_POLMOD modulo Pabs, roots of
nf.pol and pol respectively.

? K = nfinit(y^3-2); pol = x^2 +x*y + y^2;
? [P, a] = rnfpolredbest(K,pol,1);
? P
%3 = x^2 - x + Mod(y - 1, y^3 - 2)
? a
%4 = Mod(Mod(2*y^2+3*y+4,y^3-2)*x + Mod(-y^2-2*y-2,y^3-2),
x^2 - x + Mod(y-1,y^3-2))
? subst(K.pol,y,a)
%5 = 0
? [Pabs, a, b] = rnfpolredbest(K,pol,3);
? Pabs
%7 = x^6 - 3*x^5 + 5*x^3 - 3*x + 1
? a
%8 = Mod(-x^2+x+1, x^6-3*x^5+5*x^3-3*x+1)
? b
%9 = Mod(2*x^5-5*x^4-3*x^3+10*x^2+5*x-5, x^6-3*x^5+5*x^3-3*x+1)
? subst(K.pol,y,a)
%10 = 0
? substvec(pol,[x,y],[a,b])
%11 = 0

rnfpseudobasis(T)
Given an nf structure attached to a number field 𝐾, as output by nfinit, and a monic irreducible polynomial 𝑇
in Z𝐾 [𝑥] defining a relative extension𝐿 = 𝐾[𝑥]/(𝑇 ), computes the relative discriminant of𝐿 and a pseudo-basis
(𝐴, 𝐽) for the maximal order Z𝐿 viewed as a Z𝐾-module. This is output as a vector [𝐴, 𝐽,𝐷, 𝑑], where 𝐷 is the
relative ideal discriminant and 𝑑 is the relative discriminant considered as an element of 𝐾*/𝐾*2.

? K = nfinit(y^2+1);
? [A,J,D,d] = rnfpseudobasis(K, x^2+y);
? A
%3 =
[1 0]

[0 1]

? J
%4 = [1, 1]
? D
%5 = [0, -4]~
? d
%6 = [0, -1]~
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Huge discriminants, helping rnfdisc. The format [𝑇,𝐵] is also accepted instead of 𝑇 and produce an order
which is maximal at all prime ideals specified by 𝐵, see ??rnfinit.

? p = 585403248812100232206609398101;
? q = 711171340236468512951957953369;
? T = x^2 + 3*(p*q)^2;
? [A,J,D,d] = V = rnfpseudobasis(K, T); D
time = 22,178 ms.
%10 = 3
? [A,J,D,d] = W = rnfpseudobasis(K, [T,100]); D
time = 5 ms.
%11 = 3
? V == W
%12 = 1
? [A,J,D,d] = W = rnfpseudobasis(K, [T, [3]]); D
%13 = 3
? V == W
%14 = 1

In this example, the results are identical since𝐷∩Z factors over primes less than 100 (and in fact, over 3). Had it
not been the case, the order would have been guaranteed maximal at primes 𝑝‖𝑝 for 𝑝 <= 100 only (resp. 𝑝‖3).
And might have been nonmaximal at any other prime ideal 𝑝 such that 𝑝2 divided 𝐷.

rnfsteinitz(x)
Given a number field 𝑛𝑓 as output by nfinit and either a polynomial 𝑥with coefficients in 𝑛𝑓 defining a relative
extension𝐿 of 𝑛𝑓 , or a pseudo-basis 𝑥 of such an extension as output for example by rnfpseudobasis, computes
another pseudo-basis (𝐴, 𝐼) (not in HNF in general) such that all the ideals of 𝐼 except perhaps the last one are
equal to the ring of integers of𝑛𝑓 , and outputs the four-component row vector [𝐴, 𝐼,𝐷, 𝑑] as in rnfpseudobasis.
The name of this function comes from the fact that the ideal class of the last ideal of 𝐼 , which is well defined, is
the Steinitz class of the Z𝐾-module Z𝐿 (its image in 𝑆𝐾0(Z𝐾)).

round(e)
If 𝑥 is in R, rounds 𝑥 to the nearest integer (rounding to +𝑜𝑜 in case of ties), then and sets 𝑒 to the number of
error bits, that is the binary exponent of the difference between the original and the rounded value (the “fractional
part”). If the exponent of 𝑥 is too large compared to its precision (i.e. 𝑒 > 0), the result is undefined and an error
occurs if 𝑒 was not given.

Important remark. Contrary to the other truncation functions, this function operates on every coefficient at
every level of a PARI object. For example

𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒((2.4 *𝑋2 − 1.7)/(𝑋)) = 2.4 *𝑋,

whereas

𝑟𝑜𝑢𝑛𝑑((2.4 *𝑋2 − 1.7)/(𝑋)) = (2 *𝑋2 − 2)/(𝑋).

An important use of round is to get exact results after an approximate computation, when theory tells you that
the coefficients must be integers.

select(A, flag)
We first describe the default behavior, when 𝑓𝑙𝑎𝑔 is 0 or omitted. Given a vector or list A and a t_CLOSURE f,
select returns the elements 𝑥 of A such that 𝑓(𝑥) is nonzero. In other words, f is seen as a selection function
returning a boolean value.
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? select(x->isprime(x), vector(50,i,i^2+1))
%1 = [2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601]
? select(x->(x<100), %)
%2 = [2, 5, 17, 37]

returns the primes of the form 𝑖2 + 1 for some 𝑖 <= 50, then the elements less than 100 in the preceding result.
The select function also applies to a matrix A, seen as a vector of columns, i.e. it selects columns instead of
entries, and returns the matrix whose columns are the selected ones.

Remark. For 𝑣 a t_VEC, t_COL, t_VECSMALL, t_LIST or t_MAT, the alternative set-notations

[g(x) | x <- v, f(x)]
[x | x <- v, f(x)]
[g(x) | x <- v]

are available as shortcuts for

apply(g, select(f, Vec(v)))
select(f, Vec(v))
apply(g, Vec(v))

respectively:

? [ x | x <- vector(50,i,i^2+1), isprime(x) ]
%1 = [2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601]

If 𝑓𝑙𝑎𝑔 = 1, this function returns instead the indices of the selected elements, and not the elements themselves
(indirect selection):

? V = vector(50,i,i^2+1);
? select(x->isprime(x), V, 1)
%2 = Vecsmall([1, 2, 4, 6, 10, 14, 16, 20, 24, 26, 36, 40])
? vecextract(V, %)
%3 = [2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601]

The following function lists the elements in (Z/𝑁Z)*:

? invertibles(N) = select(x->gcd(x,N) == 1, [1..N])

Finally

? select(x->x, M)

selects the nonzero entries in M. If the latter is a t_MAT, we extract the matrix of nonzero columns. Note that
removing entries instead of selecting them just involves replacing the selection function f with its negation:

? select(x->!isprime(x), vector(50,i,i^2+1))

seralgdep(p, r)
finds a linear relation between powers (1, 𝑠, ..., 𝑠𝑝) of the series 𝑠, with polynomial coefficients of degree <= 𝑟.
In case no relation is found, return 0.

? s = 1 + 10*y - 46*y^2 + 460*y^3 - 5658*y^4 + 77740*y^5 + O(y^6);
? seralgdep(s, 2, 2)

(continues on next page)
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(continued from previous page)

%2 = -x^2 + (8*y^2 + 20*y + 1)
? subst(%, x, s)
%3 = O(y^6)
? seralgdep(s, 1, 3)
%4 = (-77*y^2 - 20*y - 1)*x + (310*y^3 + 231*y^2 + 30*y + 1)
? seralgdep(s, 1, 2)
%5 = 0

The series main variable must not be 𝑥, so as to be able to express the result as a polynomial in 𝑥.

serchop(n)
Remove all terms of degree strictly less than 𝑛 in series 𝑠. When the series contains no terms of degree < 𝑛,
return 𝑂(𝑥𝑛).

? s = 1/x + x + 2*x^2 + O(x^3);
? serchop(s)
%2 = x + 2*x^3 + O(x^3)
? serchop(s, 2)
%3 = 2*x^2 + O(x^3)
? serchop(s, 100)
%4 = O(x^100)

serconvol(y)
Convolution (or Hadamard product) of the two power series 𝑥 and 𝑦; in other words if 𝑥 =

∑︀
𝑎𝑘 * 𝑋𝑘 and

𝑦 =
∑︀
𝑏𝑘 *𝑋𝑘 then 𝑠𝑒𝑟𝑐𝑜𝑛𝑣𝑜𝑙(𝑥, 𝑦) =

∑︀
𝑎𝑘 * 𝑏𝑘 *𝑋𝑘.

serlaplace()

𝑥 must be a power series with nonnegative exponents or a polynomial. If 𝑥 =
∑︀

(𝑎𝑘/𝑘!) *𝑋𝑘 then the result is∑︀
𝑎𝑘 *𝑋𝑘.

serprec(v)
Returns the absolute precision of 𝑥 with respect to power series in the variable 𝑣; this is the minimum precision
of the components of 𝑥. The result is +oo if 𝑥 is an exact object (as a series in 𝑣):

? serprec(x + O(y^2), y)
%1 = 2
? serprec(x + 2, x)
%2 = +oo
? serprec(2 + x + O(x^2), y)
%3 = +oo

serreverse()

Reverse power series of 𝑠, i.e. the series 𝑡 such that 𝑡(𝑠) = 𝑥; 𝑠must be a power series whose valuation is exactly
equal to one.

? \ps 8
? t = serreverse(tan(x))
%2 = x - 1/3*x^3 + 1/5*x^5 - 1/7*x^7 + O(x^8)
? tan(t)
%3 = x + O(x^8)

setbinop(X, Y)
The set whose elements are the f(x,y), where x,y run through X,Y. respectively. If 𝑌 is omitted, assume that
𝑋 = 𝑌 and that 𝑓 is symmetric: 𝑓(𝑥, 𝑦) = 𝑓(𝑦, 𝑥) for all 𝑥, 𝑦 in 𝑋 .

734 Chapter 2. The Gen class wrapping PARI’s GEN type



CyPari2 Documentation, Release 2.1.3

? X = [1,2,3]; Y = [2,3,4];
? setbinop((x,y)->x+y, X,Y) \\ set X + Y
%2 = [3, 4, 5, 6, 7]
? setbinop((x,y)->x-y, X,Y) \\ set X - Y
%3 = [-3, -2, -1, 0, 1]
? setbinop((x,y)->x+y, X) \\ set 2X = X + X
%2 = [2, 3, 4, 5, 6]

setintersect(y)
Intersection of the two sets 𝑥 and 𝑦 (see setisset). If 𝑥 or 𝑦 is not a set, the result is undefined.

setisset()

Returns true (1) if 𝑥 is a set, false (0) if not. In PARI, a set is a row vector whose entries are strictly increasing
with respect to a (somewhat arbitrary) universal comparison function. To convert any object into a set (this is
most useful for vectors, of course), use the function Set.

? a = [3, 1, 1, 2];
? setisset(a)
%2 = 0
? Set(a)
%3 = [1, 2, 3]

setminus(y)
Difference of the two sets 𝑥 and 𝑦 (see setisset), i.e. set of elements of 𝑥 which do not belong to 𝑦. If 𝑥 or 𝑦 is
not a set, the result is undefined.

setrand()

Reseeds the random number generator using the seed 𝑛. No value is returned. The seed is a small positive in-
teger 0 < 𝑛 < 264 used to generate deterministically a suitable state array. All gp session start by an implicit
setrand(1), so resetting the seed to this value allows to replay all computations since the session start. Alterna-
tively, running a randomized computation starting by setrand (𝑛) twice with the same 𝑛 will generate the exact
same output.

In the other direction, including a call to setrand(getwalltime()) from your gprc will cause GP to produce
different streams of random numbers in each session. (Unix users may want to use /dev/urandom instead of
getwalltime.)

For debugging purposes, one can also record a particular random state using getrand (the value is encoded as a
huge integer) and feed it to setrand:

? state = getrand(); \\ record seed
...
? setrand(state); \\ we can now replay the exact same computations

setsearch(x, flag)
Determines whether 𝑥 belongs to the set 𝑆 (see setisset).

We first describe the default behavior, when 𝑓𝑙𝑎𝑔 is zero or omitted. If 𝑥 belongs to the set 𝑆, returns the index
𝑗 such that 𝑆[𝑗] = 𝑥, otherwise returns 0.

? T = [7,2,3,5]; S = Set(T);
? setsearch(S, 2)
%2 = 1
? setsearch(S, 4) \\ not found
%3 = 0

(continues on next page)

735



CyPari2 Documentation, Release 2.1.3

(continued from previous page)

? setsearch(T, 7) \\ search in a randomly sorted vector
%4 = 0 \\ WRONG !

If 𝑆 is not a set, we also allow sorted lists with respect to the cmp sorting function, without repeated entries, as
per listsort(𝐿, 1); otherwise the result is undefined.

? L = List([1,4,2,3,2]); setsearch(L, 4)
%1 = 0 \\ WRONG !
? listsort(L, 1); L \\ sort L first
%2 = List([1, 2, 3, 4])
? setsearch(L, 4)
%3 = 4 \\ now correct

If 𝑓𝑙𝑎𝑔 is nonzero, this function returns the index 𝑗 where 𝑥 should be inserted, and 0 if it already belongs to 𝑆.
This is meant to be used for dynamically growing (sorted) lists, in conjunction with listinsert.

? L = List([1,5,2,3,2]); listsort(L,1); L
%1 = List([1,2,3,5])
? j = setsearch(L, 4, 1) \\ 4 should have been inserted at index j
%2 = 4
? listinsert(L, 4, j); L
%3 = List([1, 2, 3, 4, 5])

setunion(y)
Union of the two sets 𝑥 and 𝑦 (see setisset). If 𝑥 or 𝑦 is not a set, the result is undefined.

shift(n)
Shifts 𝑥 componentwise left by 𝑛 bits if 𝑛 >= 0 and right by ‖𝑛‖ bits if 𝑛 < 0. May be abbreviated as 𝑥 :literal:`
<< ` 𝑛 or 𝑥 :literal:` >> ` (−𝑛). A left shift by 𝑛 corresponds to multiplication by 2𝑛. A right shift of an integer
𝑥 by ‖𝑛‖ corresponds to a Euclidean division of 𝑥 by 2‖𝑛‖ with a remainder of the same sign as 𝑥, hence is not
the same (in general) as 𝑥 2𝑛.

shiftmul(n)
Multiplies 𝑥 by 2𝑛. The difference with shift is that when 𝑛 < 0, ordinary division takes place, hence for
example if 𝑥 is an integer the result may be a fraction, while for shifts Euclidean division takes place when 𝑛 < 0
hence if 𝑥 is an integer the result is still an integer.

sigma(k)
Sum of the 𝑘 − 𝑡ℎ powers of the positive divisors of ‖𝑥‖. 𝑥 and 𝑘 must be of type integer.

sign()

sign (0, 1 or −1) of 𝑥, which must be of type integer, real or fraction; t_QUAD with positive discriminants and
t_INFINITY are also supported.

simplify()

This function simplifies 𝑥 as much as it can. Specifically, a complex or quadratic number whose imaginary part is
the integer 0 (i.e. not Mod(0,2) or 0.E-28) is converted to its real part, and a polynomial of degree 0 is converted
to its constant term. Simplifications occur recursively.

This function is especially useful before using arithmetic functions, which expect integer arguments:

? x = 2 + y - y
%1 = 2
? isprime(x)

(continues on next page)
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*** at top-level: isprime(x)
*** ^----------
*** isprime: not an integer argument in an arithmetic function
? type(x)
%2 = "t_POL"
? type(simplify(x))
%3 = "t_INT"

Note that GP results are simplified as above before they are stored in the history. (Unless you disable automatic
simplification with \backslash y, that is.) In particular

? type(%1)
%4 = "t_INT"

sin(precision)
Sine of 𝑥. Note that, for real 𝑥, cosine and sine can be obtained simultaneously as

cs(x) = my(z = exp(I*x)); [real(z), imag(z)];

and for general complex 𝑥 as

cs2(x) = my(z = exp(I*x), u = 1/z); [(z+u)/2, (z-u)/2];

Note that the latter function suffers from catastrophic cancellation when 𝑧2 1.

sinc(precision)
Cardinal sine of 𝑥, i.e. sin(𝑥)/𝑥 if 𝑥! = 0, 1 otherwise. Note that this function also allows to compute

(1 − cos(𝑥))/𝑥2 = 𝑠𝑖𝑛𝑐(𝑥/2)2/2

accurately near 𝑥 = 0.

sinh(precision)
Hyperbolic sine of 𝑥.

sizebyte()

Outputs the total number of bytes occupied by the tree representing the PARI object 𝑥.

sizedigit()

This function is DEPRECATED, essentially meaningless, and provided for backwards compatibility only. Don’t
use it!

outputs a quick upper bound for the number of decimal digits of (the components of) 𝑥, off by at most 1. More
precisely, for a positive integer 𝑥, it computes (approximately) the ceiling of

𝑓𝑙𝑜𝑜𝑟(1 + log2 𝑥) log10 2,

To count the number of decimal digits of a positive integer 𝑥, use #digits(x). To estimate (recursively) the size
of 𝑥, use normlp(x).

sqr()

Square of 𝑥. This operation is not completely straightforward, i.e. identical to 𝑥 * 𝑥, since it can usually be
computed more efficiently (roughly one-half of the elementary multiplications can be saved). Also, squaring a
2-adic number increases its precision. For example,
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? (1 + O(2^4))^2
%1 = 1 + O(2^5)
? (1 + O(2^4)) * (1 + O(2^4))
%2 = 1 + O(2^4)

Note that this function is also called whenever one multiplies two objects which are known to be identical, e.g. they
are the value of the same variable, or we are computing a power.

? x = (1 + O(2^4)); x * x
%3 = 1 + O(2^5)
? (1 + O(2^4))^4
%4 = 1 + O(2^6)

(note the difference between %2 and %3 above).

sqrt(precision)
Principal branch of the square root of 𝑥, defined as

√
𝑥 = exp(log 𝑥/2). In particular, we have 𝐴𝑟𝑔(𝑠𝑞𝑟𝑡(𝑥)) ∈

] − 𝜋/2, 𝜋/2], and if 𝑥 ∈ R and 𝑥 < 0, then the result is complex with positive imaginary part.

Intmod a prime 𝑝, t_PADIC and t_FFELT are allowed as arguments. In the first 2 cases (t_INTMOD, t_PADIC),
the square root (if it exists) which is returned is the one whose first 𝑝-adic digit is in the interval [0, 𝑝/2]. For
other arguments, the result is undefined.

sqrtint(r)
Returns the integer square root of 𝑥, i.e. the largest integer 𝑦 such that 𝑦2 <= 𝑥, where 𝑥 a nonnegative integer.
If 𝑟 is present, set it to the remainder 𝑟 = 𝑥− 𝑦2, which satisfies 0 <= 𝑟 <= 2𝑦

? x = 120938191237; sqrtint(x)
%1 = 347761
? sqrt(x)
%2 = 347761.68741970412747602130964414095216
? y = sqrtint(x, &r)
%3 = 347761
? x - y^2
%4 = 478116

sqrtn(n, z, precision)
Principal branch of the 𝑛, i.e. such that 𝐴𝑟𝑔(𝑠𝑞𝑟𝑡𝑛(𝑥)) ∈]− 𝜋/𝑛, 𝜋/𝑛]. Intmod a prime and 𝑝-adics are allowed
as arguments.

If 𝑧 is present, it is set to a suitable root of unity allowing to recover all the other roots. If it was not possible, z is
set to zero. In the case this argument is present and no 𝑛 is returned instead of raising an error.

? sqrtn(Mod(2,7), 2)
%1 = Mod(3, 7)
? sqrtn(Mod(2,7), 2, &z); z
%2 = Mod(6, 7)
? sqrtn(Mod(2,7), 3)
*** at top-level: sqrtn(Mod(2,7),3)
*** ^-----------------
*** sqrtn: nth-root does not exist in gsqrtn.
? sqrtn(Mod(2,7), 3, &z)
%2 = 0
? z
%3 = 0
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The following script computes all roots in all possible cases:

sqrtnall(x,n)=
{ my(V,r,z,r2);
r = sqrtn(x,n, &z);
if (!z, error("Impossible case in sqrtn"));
if (type(x) == "t_INTMOD" || type(x)=="t_PADIC",
r2 = r*z; n = 1;
while (r2!=r, r2*=z;n++));
V = vector(n); V[1] = r;
for(i=2, n, V[i] = V[i-1]*z);
V
}
addhelp(sqrtnall,"sqrtnall(x,n):compute the vector of nth-roots of x");

sqrtnint(n)
Returns the integer 𝑛-th root of 𝑥, i.e. the largest integer 𝑦 such that 𝑦𝑛 <= 𝑥, where 𝑥 is a nonnegative integer.

? N = 120938191237; sqrtnint(N, 5)
%1 = 164
? N^(1/5)
%2 = 164.63140849829660842958614676939677391

The special case 𝑛 = 2 is sqrtint

strchr()

Converts integer or vector of integers 𝑥 to a string, translating each integer (in the range [1, 255]) into a character
using ASCII encoding.

? strchr(97)
%1 = "a"
? Vecsmall("hello world")
%2 = Vecsmall([104, 101, 108, 108, 111, 32, 119, 111, 114, 108, 100])
? strchr(%)
%3 = "hello world"

strjoin(p)
Joins the strings in vector 𝑣, separating them with delimiter 𝑝. The reverse operation is strsplit.

? v = ["abc", "def", "ghi"]
? strjoin(v, "/")
%2 = "abc/def/ghi"
? strjoin(v)
%3 = "abcdefghi"

strsplit(p)
Splits the string 𝑠 into a vector of strings, with 𝑝 acting as a delimiter. If 𝑝 is empty or omitted, split the string
into characters.

? strsplit("abc::def::ghi", "::")
%1 = ["abc", "def", "ghi"]
? strsplit("abc", "")
%2 = ["a", "b", "c"]
? strsplit("aba", "a")
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If 𝑠 starts (resp. ends) with the pattern 𝑝, then the first (resp. last) entry in the vector is the empty string:

? strsplit("aba", "a")
%3 = ["", "b", ""]

subgrouplist(bound, flag)
cyc being a vector of positive integers giving the cyclic components for a finite Abelian group 𝐺 (or any object
which has a .cyc method), outputs the list of subgroups of 𝐺. Subgroups are given as HNF left divisors of the
SNF matrix corresponding to 𝐺.

If 𝑓𝑙𝑎𝑔 = 0 (default) and cyc is a bnr structure output by bnrinit, gives only the subgroups whose modulus is
the conductor. Otherwise, all subgroups are given.

If bound is present, and is a positive integer, restrict the output to subgroups of index less than bound. If bound
is a vector containing a single positive integer 𝐵, then only subgroups of index exactly equal to 𝐵 are computed.
For instance

? subgrouplist([6,2])
%1 = [[6, 0; 0, 2], [2, 0; 0, 2], [6, 3; 0, 1], [2, 1; 0, 1], [3, 0; 0, 2],
[1, 0; 0, 2], [6, 0; 0, 1], [2, 0; 0, 1], [3, 0; 0, 1], [1, 0; 0, 1]]
? subgrouplist([6,2],3) \\ index less than 3
%2 = [[2, 1; 0, 1], [1, 0; 0, 2], [2, 0; 0, 1], [3, 0; 0, 1], [1, 0; 0, 1]]
? subgrouplist([6,2],[3]) \\ index 3
%3 = [[3, 0; 0, 1]]
? bnr = bnrinit(bnfinit(x), [120,[1]], 1);
? L = subgrouplist(bnr, [8]);

In the last example, 𝐿 corresponds to the 24 subfields of Q(𝜁120), of degree 8 and conductor 120𝑜𝑜 (by setting
flag, we see there are a total of 43 subgroups of degree 8).

? vector(#L, i, galoissubcyclo(bnr, L[i]))

will produce their equations. (For a general base field, you would have to rely on bnrstark, or bnrclassfield.)

Warning. This function requires factoring the exponent of 𝐺. If you are only interested in subgroups of index 𝑛
(or dividing 𝑛), you may considerably speed up the function by computing the subgroups of𝐺/𝐺𝑛, whose cyclic
components are apply(x- > gcd(n,x), C) (where 𝐶 gives the cyclic components of 𝐺). If you want the bnr
variant, now is a good time to use bnrinit(,,, n) as well, to directly compute the ray class group modulo 𝑛-th
powers.

subst(y, z)
Replace the simple variable 𝑦 by the argument 𝑧 in the “polynomial” expression 𝑥. If 𝑧 is a vector, return the
vector of the evaluated expressions subst(x, y, z[i]).

Every type is allowed for 𝑥, but if it is not a genuine polynomial (or power series, or rational function), the
substitution will be done as if the scalar components were polynomials of degree zero. In particular, beware that:

? subst(1, x, [1,2; 3,4])
%1 =
[1 0]

[0 1]

? subst(1, x, Mat([0,1]))
*** at top-level: subst(1,x,Mat([0,1])
*** ^--------------------
*** subst: forbidden substitution by a non square matrix.
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If 𝑥 is a power series, 𝑧 must be either a polynomial, a power series, or a rational function. If 𝑥 is a vector, matrix
or list, the substitution is applied to each individual entry.

Use the function substvec to replace several variables at once, or the function substpol to replace a polynomial
expression.

substpol(y, z)
Replace the “variable” 𝑦 by the argument 𝑧 in the “polynomial” expression 𝑥. Every type is allowed for 𝑥, but
the same behavior as subst above apply.

The difference with subst is that 𝑦 is allowed to be any polynomial here. The substitution is done moding out
all components of 𝑥 (recursively) by 𝑦 − 𝑡, where 𝑡 is a new free variable of lowest priority. Then substituting 𝑡
by 𝑧 in the resulting expression. For instance

? substpol(x^4 + x^2 + 1, x^2, y)
%1 = y^2 + y + 1
? substpol(x^4 + x^2 + 1, x^3, y)
%2 = x^2 + y*x + 1
? substpol(x^4 + x^2 + 1, (x+1)^2, y)
%3 = (-4*y - 6)*x + (y^2 + 3*y - 3)

substvec(v, w)
𝑣 being a vector of monomials of degree 1 (variables), 𝑤 a vector of expressions of the same length, replace in
the expression 𝑥 all occurrences of 𝑣𝑖 by 𝑤𝑖. The substitutions are done simultaneously; more precisely, the 𝑣𝑖
are first replaced by new variables in 𝑥, then these are replaced by the 𝑤𝑖:

? substvec([x,y], [x,y], [y,x])
%1 = [y, x]
? substvec([x,y], [x,y], [y,x+y])
%2 = [y, x + y] \\ not [y, 2*y]

sumdedekind(k)
Returns the Dedekind sum attached to the integers ℎ and 𝑘, corresponding to a fast implementation of

s(h,k) = sum(n = 1, k-1, (n/k)*(frac(h*n/k) - 1/2))

sumdigits(B)
Sum of digits in the integer ‖𝑛‖, when written in base 𝐵 > 1.

? sumdigits(123456789)
%1 = 45
? sumdigits(123456789, 2)
%1 = 16

Note that the sum of bits in 𝑛 is also returned by hammingweight. This function is much faster than
vecsum(digits(n,B)) when 𝐵 is 10 or a power of 2, and only slightly faster in other cases.

sumeulerrat(s, a, precision)∑︀
𝑝>=𝑎 𝐹 (𝑝𝑠), where the sum is taken over prime numbers and 𝐹 is a rational function.

? sumeulerrat(1/p^2)
%1 = 0.45224742004106549850654336483224793417
? sumeulerrat(1/p, 2)
%2 = 0.45224742004106549850654336483224793417
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sumformal(v)
formal sum of the polynomial expression 𝑓 with respect to the main variable if 𝑣 is omitted, with respect to the
variable 𝑣 otherwise; it is assumed that the base ring has characteristic zero. In other words, considering 𝑓 as
a polynomial function in the variable 𝑣, returns 𝐹 , a polynomial in 𝑣 vanishing at 0, such that 𝐹 (𝑏) − 𝐹 (𝑎) =
𝑠𝑢𝑚𝑏

𝑣=𝑎+1𝑓(𝑣):

? sumformal(n) \\ 1 + ... + n
%1 = 1/2*n^2 + 1/2*n
? f(n) = n^3+n^2+1;
? F = sumformal(f(n)) \\ f(1) + ... + f(n)
%3 = 1/4*n^4 + 5/6*n^3 + 3/4*n^2 + 7/6*n
? sum(n = 1, 2000, f(n)) == subst(F, n, 2000)
%4 = 1
? sum(n = 1001, 2000, f(n)) == subst(F, n, 2000) - subst(F, n, 1000)
%5 = 1
? sumformal(x^2 + x*y + y^2, y)
%6 = y*x^2 + (1/2*y^2 + 1/2*y)*x + (1/3*y^3 + 1/2*y^2 + 1/6*y)
? x^2 * y + x * sumformal(y) + sumformal(y^2) == %
%7 = 1

sumnumapinit(precision)
Initialize tables for Abel-Plana summation of a series

∑︀
𝑓(𝑛), where 𝑓 is holomorphic in a right half-plane. If

given, asymp is of the form [+𝑜𝑜, 𝛼], as in intnum and indicates the decrease rate at infinity of functions to be
summed. A positive 𝛼 > 0 encodes an exponential decrease of type exp(−𝛼𝑛) and a negative −2 < 𝛼 < −1
encodes a slow polynomial decrease of type 𝑛𝛼.

? \p200
? sumnumap(n=1, n^-2);
time = 163 ms.
? tab = sumnumapinit();
time = 160 ms.
? sumnumap(n=1, n^-2, tab); \\ faster
time = 7 ms.

? tab = sumnumapinit([+oo, log(2)]); \\ decrease like 2^-n
time = 164 ms.
? sumnumap(n=1, 2^-n, tab) - 1
time = 36 ms.
%5 = 3.0127431466707723218 E-282

? tab = sumnumapinit([+oo, -4/3]); \\ decrease like n^(-4/3)
time = 166 ms.
? sumnumap(n=1, n^(-4/3), tab);
time = 181 ms.

sumnuminit(precision)
Initialize tables for Euler-MacLaurin delta summation of a series with positive terms. If given, asymp is of the
form [+𝑜𝑜, 𝛼], as in intnum and indicates the decrease rate at infinity of functions to be summed. A positive
𝛼 > 0 encodes an exponential decrease of type exp(−𝛼𝑛) and a negative −2 < 𝛼 < −1 encodes a slow
polynomial decrease of type 𝑛𝛼.

? \p200
? sumnum(n=1, n^-2);

(continues on next page)
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time = 200 ms.
? tab = sumnuminit();
time = 188 ms.
? sumnum(n=1, n^-2, tab); \\ faster
time = 8 ms.

? tab = sumnuminit([+oo, log(2)]); \\ decrease like 2^-n
time = 200 ms.
? sumnum(n=1, 2^-n, tab)
time = 44 ms.

? tab = sumnuminit([+oo, -4/3]); \\ decrease like n^(-4/3)
time = 200 ms.
? sumnum(n=1, n^(-4/3), tab);
time = 221 ms.

sumnumlagrangeinit(c1, precision)
Initialize tables for Lagrange summation of a series. By default, assume that the remainder 𝑅(𝑛) =∑︀

𝑚>=𝑛 𝑓(𝑚) has an asymptotic expansion

𝑅(𝑛) =
∑︁

𝑚>=𝑛

𝑓(𝑛)
∑︁
𝑖>=1

𝑎𝑖/𝑛
𝑖

at infinity. The argument asymp allows to specify different expansions:

• a real number 𝛽 means

𝑅(𝑛) = 𝑛−𝛽
∑︁
𝑖>=1

𝑎𝑖/𝑛
𝑖

• a t_CLOSURE 𝑔 means

𝑅(𝑛) = 𝑔(𝑛)
∑︁
𝑖>=1

𝑎𝑖/𝑛
𝑖

(𝑇ℎ𝑒𝑝𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔𝑐𝑎𝑠𝑒𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠𝑡𝑜 : 𝑚𝑎𝑡ℎ : ‘𝑔(𝑛) = 𝑛−𝛽 ‘.)

• a pair [𝛼, 𝛽] where 𝛽 is as above and 𝛼 ∈ 2, 1, 1/2, 1/3, 1/4. We let𝑅2(𝑛) = 𝑅(𝑛)− 𝑓(𝑛)/2 and𝑅𝛼(𝑛) =
𝑅(𝑛) for 𝛼! = 2. Then

𝑅𝛼(𝑛) = 𝑔(𝑛)
∑︁
𝑖>=1

𝑎𝑖/𝑛
𝑖𝛼

𝑁𝑜𝑡𝑒𝑡ℎ𝑎𝑡𝑡ℎ𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒𝑠𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑎𝑏𝑙𝑒𝑓𝑜𝑟𝑡ℎ𝑒 : 𝑚𝑎𝑡ℎ : ‘𝛼‘𝑖𝑠𝑡ℎ𝑖𝑠𝑙𝑖𝑠𝑡(: 𝑚𝑎𝑡ℎ : ‘1/4‘𝑏𝑒𝑖𝑛𝑔𝑡ℎ𝑒𝑠𝑙𝑜𝑤𝑒𝑠𝑡).

The constant 𝑐1 is technical and computed by the program, but can be set by the user: the number of interpolation
steps will be chosen close to 𝑐1.𝐵, where 𝐵 is the bit accuracy.

? \p2000
? sumnumlagrange(n=1, n^-2);
time = 173 ms.
? tab = sumnumlagrangeinit();
time = 172 ms.
? sumnumlagrange(n=1, n^-2, tab);
time = 4 ms.

(continues on next page)
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? \p115
? sumnumlagrange(n=1, n^(-4/3)) - zeta(4/3);
%1 = -0.1093[...] \\ junk: expansion in n^(1/3)
time = 84 ms.
? tab = sumnumlagrangeinit([1/3,0]); \\ alpha = 1/3
time = 336 ms.
? sumnumlagrange(n=1, n^(-4/3), tab) - zeta(4/3)
time = 84 ms.
%3 = 1.0151767349262596893 E-115 \\ now OK

? tab = sumnumlagrangeinit(1/3); \\ alpha = 1, beta = 1/3: much faster
time = 3ms
? sumnumlagrange(n=1, n^(-4/3), tab) - zeta(4/3) \\ ... but wrong
%5 = -0.273825[...] \\ junk !
? tab = sumnumlagrangeinit(-2/3); \\ alpha = 1, beta = -2/3
time = 3ms
? sumnumlagrange(n=1, n^(-4/3), tab) - zeta(4/3)
%6 = 2.030353469852519379 E-115 \\ now OK

in The final example with 𝜁(4/3), the remainder 𝑅1(𝑛) is of the form 𝑛−1/3
∑︀

𝑖>=0 𝑎𝑖/𝑛
𝑖, i.e.

𝑛2/3
∑︀

𝑖>=1 𝑎𝑖/𝑛
𝑖. The explains the wrong result for 𝛽 = 1/3 and the correction with 𝛽 = −2/3.

sumnummonieninit(w, n0, precision)
Initialize tables for Monien summation of a series

∑︀
𝑛>=𝑛0

𝑓(𝑛) where 𝑓(1/𝑧) has a complex analytic continu-
ation in a (complex) neighbourhood of the segment [0, 1].

By default, assume that 𝑓(𝑛) = 𝑂(𝑛−2) and has a nonzero asymptotic expansion

𝑓(𝑛) =
∑︁
𝑖>=2

𝑎𝑖/𝑛
𝑖

at infinity. Note that the sum starts at 𝑖 = 2! The argument asymp allows to specify different expansions:

• a real number 𝛽 > 0 means

𝑓(𝑛) =
∑︁
𝑖>=1

𝑎𝑖/𝑛
𝑖+𝛽

(𝑁𝑜𝑤𝑡ℎ𝑒𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛𝑠𝑡𝑎𝑟𝑡𝑠𝑎𝑡 : 𝑚𝑎𝑡ℎ : ‘1‘.)

• a vector [𝛼, 𝛽] of reals, where we must have 𝛼 > 0 and 𝛼+ 𝛽 > 1 to ensure convergence, means that

𝑓(𝑛) =
∑︁
𝑖>=1

𝑎𝑖/𝑛
𝛼𝑖+𝛽

𝑁𝑜𝑡𝑒𝑡ℎ𝑎𝑡 : 𝑚𝑎𝑡ℎ : ‘𝑎𝑠𝑦𝑚𝑝 = [1, 𝛽]‘𝑖𝑠𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑡𝑜 : 𝑚𝑎𝑡ℎ : ‘𝑎𝑠𝑦𝑚𝑝 = 𝛽‘.

? \p57
? s = sumnum(n = 1, sin(1/sqrt(n)) / n); \\ reference point

? \p38
? sumnummonien(n = 1, sin(1/sqrt(n)) / n) - s
%2 = -0.001[...] \\ completely wrong

(continues on next page)
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? t = sumnummonieninit(1/2); \\ f(n) = sum_i 1 / n^(i+1/2)
? sumnummonien(n = 1, sin(1/sqrt(n)) / n, t) - s
%3 = 0.E-37 \\ now correct

(As a matter of fact, in the above summation, the result given by sumnum at \p38 is slighly incorrect, so we had
to increase the accuracy to \p57.)

The argument 𝑤 is used to sum expressions of the form∑︁
𝑛>=𝑛0

𝑓(𝑛)𝑤(𝑛),

for varying 𝑓 as above, and fixed weight function 𝑤, where we further assume that the auxiliary sums

𝑔𝑤(𝑚) =
∑︁

𝑛>=𝑛0

𝑤(𝑛)/𝑛𝛼𝑚+𝛽

converge for all 𝑚 >= 1. Note that for nonnegative integers 𝑘, and weight 𝑤(𝑛) = (log 𝑛)𝑘, the function
𝑔𝑤(𝑚) = 𝜁(𝑘)(𝛼𝑚 + 𝛽) has a simple expression; for general weights, 𝑔𝑤 is computed using sumnum. The
following variants are available

• an integer 𝑘 >= 0, to code 𝑤(𝑛) = (log 𝑛)𝑘;

• a t_CLOSURE computing the values 𝑤(𝑛), where we assume that 𝑤(𝑛) = 𝑂(𝑛𝜖) for all 𝜖 > 0;

• a vector [𝑤, 𝑓𝑎𝑠𝑡], where 𝑤 is a closure as above and fast is a scalar; we assume that 𝑤(𝑛) = 𝑂(𝑛𝑓𝑎𝑠𝑡+𝜖);
note that 𝑤 = [𝑤, 0] is equivalent to 𝑤 = 𝑤. Note that if 𝑤 decreases exponentially, suminf should be used
instead.

The subsequent calls to sumnummonien must use the same value of 𝑛0 as was used here.

? \p300
? sumnummonien(n = 1, n^-2*log(n)) + zeta'(2)
time = 328 ms.
%1 = -1.323[...]E-6 \\ completely wrong, f does not satisfy hypotheses !
? tab = sumnummonieninit(, 1); \\ codes w(n) = log(n)
time = 3,993 ms.
? sumnummonien(n = 1, n^-2, tab) + zeta'(2)
time = 41 ms.
%3 = -5.562684646268003458 E-309 \\ now perfect

? tab = sumnummonieninit(, n->log(n)); \\ generic, slower
time = 9,808 ms.
? sumnummonien(n = 1, n^-2, tab) + zeta'(2)
time = 40 ms.
%5 = -5.562684646268003458 E-309 \\ identical result

sumnumrat(a, precision)∑︀
𝑛>=𝑎 𝐹 (𝑛), where 𝐹 is a rational function of degree less than or equal to −2 and where poles of 𝐹 at integers

>= 𝑎 are omitted from the summation. The argument 𝑎 must be a t_INT or -oo.

? sumnumrat(1/(x^2+1)^2,0)
%1 = 1.3068369754229086939178621382829073480
? sumnumrat(1/x^2, -oo) \\ value at x=0 is discarded
%2 = 3.2898681336964528729448303332920503784

(continues on next page)
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? 2*zeta(2)
%3 = 3.2898681336964528729448303332920503784

When deg𝐹 = −1, we define
𝑜𝑜∑︁
−𝑜𝑜

𝐹 (𝑛) :=
∑︁
𝑛>=0

(𝐹 (𝑛) + 𝐹 (−1 − 𝑛)) :

? sumnumrat(1/x, -oo)
%4 = 0.E-38

tan(precision)
Tangent of 𝑥.

tanh(precision)
Hyperbolic tangent of 𝑥.

taylor(t, serprec)
Taylor expansion around 0 of 𝑥with respect to the simple variable 𝑡. 𝑥 can be of any reasonable type, for example
a rational function. Contrary to Ser, which takes the valuation into account, this function adds 𝑂(𝑡𝑑) to all
components of 𝑥.

? taylor(x/(1+y), y, 5)
%1 = (y^4 - y^3 + y^2 - y + 1)*x + O(y^5)
? Ser(x/(1+y), y, 5)
*** at top-level: Ser(x/(1+y),y,5)
*** ^----------------
*** Ser: main variable must have higher priority in gtoser.

teichmuller(tab)
Teichmüller character of the 𝑝-adic number 𝑥, i.e. the unique (𝑝 − 1)-th root of unity congruent to 𝑥/𝑝𝑣𝑝(𝑥)

modulo 𝑝. If 𝑥 is of the form [𝑝, 𝑛], for a prime 𝑝 and integer 𝑛, return the lifts to Z of the images of 𝑖 + 𝑂(𝑝𝑛)
for 𝑖 = 1, ..., 𝑝 − 1, i.e. all roots of 1 ordered by residue class modulo 𝑝. Such a vector can be fed back to
teichmuller, as the optional argument tab, to speed up later computations.

? z = teichmuller(2 + O(101^5))
%1 = 2 + 83*101 + 18*101^2 + 69*101^3 + 62*101^4 + O(101^5)
? z^100
%2 = 1 + O(101^5)
? T = teichmuller([101, 5]);
? teichmuller(2 + O(101^5), T)
%4 = 2 + 83*101 + 18*101^2 + 69*101^3 + 62*101^4 + O(101^5)

As a rule of thumb, if more than

𝑝/2(log2(𝑝) + ℎ𝑎𝑚𝑚𝑖𝑛𝑔𝑤𝑒𝑖𝑔ℎ𝑡(𝑝))

values of teichmuller are to be computed, then it is worthwile to initialize:

? p = 101; n = 100; T = teichmuller([p,n]); \\ instantaneous
? for(i=1,10^3, vector(p-1, i, teichmuller(i+O(p^n), T)))
time = 60 ms.

(continues on next page)
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? for(i=1,10^3, vector(p-1, i, teichmuller(i+O(p^n))))
time = 1,293 ms.
? 1 + 2*(log(p)/log(2) + hammingweight(p))
%8 = 22.316[...]

Here the precomputation induces a speedup by a factor 1293/60 21.5.

Caveat. If the accuracy of tab (the argument 𝑛 above) is lower than the precision of 𝑥, the former is used, i.e.
the cached value is not refined to higher accuracy. It the accuracy of tab is larger, then the precision of 𝑥 is used:

? Tlow = teichmuller([101, 2]); \\ lower accuracy !
? teichmuller(2 + O(101^5), Tlow)
%10 = 2 + 83*101 + O(101^5) \\ no longer a root of 1

? Thigh = teichmuller([101, 10]); \\ higher accuracy
? teichmuller(2 + O(101^5), Thigh)
%12 = 2 + 83*101 + 18*101^2 + 69*101^3 + 62*101^4 + O(101^5)

theta(z, precision)
Jacobi sine theta-function

𝜃1(𝑧, 𝑞) = 2𝑞1/4
∑︁
𝑛>=0

(−1)𝑛𝑞𝑛(𝑛+1) sin((2𝑛+ 1)𝑧).

thetanullk(k, precision)
𝑘-th derivative at 𝑧 = 0 of 𝑡ℎ𝑒𝑡𝑎(𝑞, 𝑧).

thue(a, sol)
Returns all solutions of the equation 𝑃 (𝑥, 𝑦) = 𝑎 in integers 𝑥 and 𝑦, where tnf was created with 𝑡ℎ𝑢𝑒𝑖𝑛𝑖𝑡(𝑃 ).
If present, sol must contain the solutions of Norm(𝑥) = 𝑎 modulo units of positive norm in the number field
defined by 𝑃 (as computed by bnfisintnorm). If there are infinitely many solutions, an error is issued.

It is allowed to input directly the polynomial 𝑃 instead of a tnf, in which case, the function first performs
thueinit(P,0). This is very wasteful if more than one value of 𝑎 is required.

If tnf was computed without assuming GRH (flag 1 in thueinit), then the result is unconditional. Otherwise,
it depends in principle of the truth of the GRH, but may still be unconditionally correct in some favorable cases.
The result is conditional on the GRH if 𝑎! = 1 and 𝑃 has a single irreducible rational factor, whose attached
tentative class number ℎ and regulator 𝑅 (as computed assuming the GRH) satisfy

• ℎ > 1,

• 𝑅/0.2 > 1.5.

Here’s how to solve the Thue equation 𝑥13 − 5𝑦13 = −4:

? tnf = thueinit(x^13 - 5);
? thue(tnf, -4)
%1 = [[1, 1]]

In this case, one checks that bnfinit(x^13 -5).no is 1. Hence, the only solution is (𝑥, 𝑦) = (1, 1) and the
result is unconditional. On the other hand:

? P = x^3-2*x^2+3*x-17; tnf = thueinit(P);
? thue(tnf, -15)

(continues on next page)

747



CyPari2 Documentation, Release 2.1.3

(continued from previous page)

%2 = [[1, 1]] \\ a priori conditional on the GRH.
? K = bnfinit(P); K.no
%3 = 3
? K.reg
%4 = 2.8682185139262873674706034475498755834

This time the result is conditional. All results computed using this particular tnf are likewise conditional, except
for a right-hand side of 1. The above result is in fact correct, so we did not just disprove the GRH:

? tnf = thueinit(x^3-2*x^2+3*x-17, 1 /*unconditional*/);
? thue(tnf, -15)
%4 = [[1, 1]]

Note that reducible or nonmonic polynomials are allowed:

? tnf = thueinit((2*x+1)^5 * (4*x^3-2*x^2+3*x-17), 1);
? thue(tnf, 128)
%2 = [[-1, 0], [1, 0]]

Reducible polynomials are in fact much easier to handle.

Note. When 𝑃 is irreducible without a real root, the default strategy is to use brute force enumeration in time
‖𝑎‖1/ deg𝑃 and avoid computing a tough bnf attached to 𝑃 , see thueinit. Besides reusing a quantity you might
need for other purposes, the default argument sol can also be used to use a different strategy and prove that there
are no solutions; of course you need to compute a bnf on you own to obtain sol. If there are solutions this won’t
help unless 𝑃 is quadratic, since the enumeration will be performed in any case.

thueinit(flag, precision)
Initializes the tnf corresponding to 𝑃 , a nonconstant univariate polynomial with integer coefficients. The result
is meant to be used in conjunction with thue to solve Thue equations 𝑃 (𝑋/𝑌 )𝑌 deg𝑃 = 𝑎, where 𝑎 is an integer.
Accordingly, 𝑃 must either have at least two distinct irreducible factors over Q, or have one irreducible factor 𝑇
with degree > 2 or two conjugate complex roots: under these (necessary and sufficient) conditions, the equation
has finitely many integer solutions.

? S = thueinit(t^2+1);
? thue(S, 5)
%2 = [[-2, -1], [-2, 1], [-1, -2], [-1, 2], [1, -2], [1, 2], [2, -1], [2, 1]]
? S = thueinit(t+1);
*** at top-level: thueinit(t+1)
*** ^-------------
*** thueinit: domain error in thueinit: P = t + 1

The hardest case is when deg𝑃 > 2 and 𝑃 is irreducible with at least one real root. The routine then uses
Bilu-Hanrot’s algorithm.

If 𝑓𝑙𝑎𝑔 is nonzero, certify results unconditionally. Otherwise, assume GRH, this being much faster of course. In
the latter case, the result may still be unconditionally correct, see thue. For instance in most cases where 𝑃 is
reducible (not a pure power of an irreducible), or conditional computed class groups are trivial or the right hand
side is 1, then results are unconditional.

Note. The general philosophy is to disprove the existence of large solutions then to enumerate bounded solutions
naively. The implementation will overflow when there exist huge solutions and the equation has degree > 2 (the
quadratic imaginary case is special, since we can stick to bnfisintnorm, there are no fundamental units):
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? thue(t^3+2, 10^30)
*** at top-level: L=thue(t^3+2,10^30)
*** ^-----------------
*** thue: overflow in thue (SmallSols): y <= 80665203789619036028928.
? thue(x^2+2, 10^30) \\ quadratic case much easier
%1 = [[-1000000000000000, 0], [1000000000000000, 0]]

Note. It is sometimes possible to circumvent the above, and in any case obtain an important speed-up, if you
can write 𝑃 = 𝑄(𝑥𝑑) for some 𝑑 > 1 and 𝑄 still satisfying the thueinit hypotheses. You can then solve the
equation attached to 𝑄 then eliminate all solutions (𝑥, 𝑦) such that either 𝑥 or 𝑦 is not a 𝑑-th power.

? thue(x^4+1, 10^40); \\ stopped after 10 hours
? filter(L,d) =
my(x,y); [[x,y] | v<-L, ispower(v[1],d,&x)&&ispower(v[2],d,&y)];
? L = thue(x^2+1, 10^40);
? filter(L, 2)
%4 = [[0, 10000000000], [10000000000, 0]]

The last 2 commands use less than 20ms.

Note. When 𝑃 is irreducible without a real root, the equation can be solved unconditionnally in time ‖𝑎‖1/ deg𝑃 .
When this latter quantity is huge and the equation has no solutions, this fact may still be ascertained via arithmetic
conditions but this now implies solving norm equations, computing a bnf and possibly assuming the GRH. When
there is no real root, the code does not compute a bnf (with certification if 𝑓𝑙𝑎𝑔 = 1) if it expects this to be an
“easy” computation (because the result would only be used for huge values of 𝑎). See thue for a way to compute
an expensive bnf on your own and still get a result where this default cheap strategy fails.

trace()

This applies to quite general 𝑥. If 𝑥 is not a matrix, it is equal to the sum of 𝑥 and its conjugate, except for polmods
where it is the trace as an algebraic number.

For 𝑥 a square matrix, it is the ordinary trace. If 𝑥 is a nonsquare matrix (but not a vector), an error occurs.

truncate(e)
Truncates 𝑥 and sets 𝑒 to the number of error bits. When 𝑥 is in R, this means that the part after the decimal
point is chopped away, 𝑒 is the binary exponent of the difference between the original and the truncated value (the
“fractional part”). If the exponent of 𝑥 is too large compared to its precision (i.e. 𝑒 > 0), the result is undefined
and an error occurs if 𝑒 was not given. The function applies componentwise on vector / matrices; 𝑒 is then the
maximal number of error bits. If 𝑥 is a rational function, the result is the “integer part” (Euclidean quotient of
numerator by denominator) and 𝑒 is not set.

Note a very special use of truncate: when applied to a power series, it transforms it into a polynomial or a
rational function with denominator a power of 𝑋 , by chopping away the 𝑂(𝑋𝑘). Similarly, when applied to a
𝑝-adic number, it transforms it into an integer or a rational number by chopping away the 𝑂(𝑝𝑘).

type()

This is useful only under gp. Returns the internal type name of the PARI object 𝑥 as a string. Check out existing
type names with the metacommand \t. For example type(1) will return “t_INT”.

valuation(p)
Computes the highest exponent of 𝑝 dividing 𝑥. If 𝑝 is of type integer, 𝑥 must be an integer, an intmod whose
modulus is divisible by 𝑝, a fraction, a 𝑞-adic number with 𝑞 = 𝑝, or a polynomial or power series in which case
the valuation is the minimum of the valuation of the coefficients.

If 𝑝 is of type polynomial, 𝑥 must be of type polynomial or rational function, and also a power series if 𝑥 is a
monomial. Finally, the valuation of a vector, complex or quadratic number is the minimum of the component
valuations.
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If 𝑥 = 0, the result is +oo if 𝑥 is an exact object. If 𝑥 is a 𝑝-adic numbers or power series, the result is the exponent
of the zero. Any other type combinations gives an error.

variable()

Gives the main variable of the object 𝑥 (the variable with the highest priority used in 𝑥), and 𝑝 if 𝑥 is a 𝑝-adic
number. Return 0 if 𝑥 has no variable attached to it.

? variable(x^2 + y)
%1 = x
? variable(1 + O(5^2))
%2 = 5
? variable([x,y,z,t])
%3 = x
? variable(1)
%4 = 0

The construction

if (!variable(x),...)

can be used to test whether a variable is attached to 𝑥.

If 𝑥 is omitted, returns the list of user variables known to the interpreter, by order of decreasing priority. (Highest
priority is initially 𝑥, which come first until varhigher is used.) If varhigher or varlower are used, it is quite
possible to end up with different variables (with different priorities) printed in the same way: they will then appear
multiple times in the output:

? varhigher("y");
? varlower("y");
? variable()
%4 = [y, x, y]

Using v = variable() then v[1], v[2], etc. allows to recover and use existing variables.

variables()

Returns the list of all variables occurring in object 𝑥 (all user variables known to the interpreter if 𝑥 is omitted),
sorted by decreasing priority.

? variables([x^2 + y*z + O(t), a+x])
%1 = [x, y, z, t, a]

The construction

if (!variables(x),...)

can be used to test whether a variable is attached to 𝑥.

If varhigher or varlower are used, it is quite possible to end up with different variables (with different priori-
ties) printed in the same way: they will then appear multiple times in the output:

? y1 = varhigher("y");
? y2 = varlower("y");
? variables(y*y1*y2)
%4 = [y, y, y]
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vecextract(y, z)
Extraction of components of the vector or matrix 𝑥 according to 𝑦. In case 𝑥 is a matrix, its components are the
columns of 𝑥. The parameter 𝑦 is a component specifier, which is either an integer, a string describing a range,
or a vector.

If 𝑦 is an integer, it is considered as a mask: the binary bits of 𝑦 are read from right to left, but correspond to
taking the components from left to right. For example, if 𝑦 = 13 = (1101)2 then the components 1,3 and 4 are
extracted.

If 𝑦 is a vector (t_VEC, t_COL or t_VECSMALL), which must have integer entries, these entries correspond to the
component numbers to be extracted, in the order specified.

If 𝑦 is a string, it can be

• a single (nonzero) index giving a component number (a negative index means we start counting from the
end).

• a range of the form ":math:`a..:math:b”, where :math:`a and 𝑏 are indexes as above. Any of 𝑎 and 𝑏 can
be omitted; in this case, we take as default values 𝑎 = 1 and 𝑏 = −1, i.e. the first and last components
respectively. We then extract all components in the interval [𝑎, 𝑏], in reverse order if 𝑏 < 𝑎.

In addition, if the first character in the string is ^, the complement of the given set of indices is taken.

If 𝑧 is not omitted, 𝑥must be a matrix. 𝑦 is then the row specifier, and 𝑧 the column specifier, where the component
specifier is as explained above.

? v = [a, b, c, d, e];
? vecextract(v, 5) \\ mask
%1 = [a, c]
? vecextract(v, [4, 2, 1]) \\ component list
%2 = [d, b, a]
? vecextract(v, "2..4") \\ interval
%3 = [b, c, d]
? vecextract(v, "-1..-3") \\ interval + reverse order
%4 = [e, d, c]
? vecextract(v, "^2") \\ complement
%5 = [a, c, d, e]
? vecextract(matid(3), "2..", "..")
%6 =
[0 1 0]

[0 0 1]

The range notations v[i..j] and v[^i] (for t_VEC or t_COL) and M[i..j, k..l] and friends (for t_MAT)
implement a subset of the above, in a simpler and faster way, hence should be preferred in most common situations.
The following features are not implemented in the range notation:

• reverse order,

• omitting either 𝑎 or 𝑏 in :math:`a..:math:b`.

vecmax(v)
If 𝑥 is a vector or a matrix, returns the largest entry of 𝑥, otherwise returns a copy of 𝑥. Error if 𝑥 is empty.

If 𝑣 is given, set it to the index of a largest entry (indirect maximum), when 𝑥 is a vector. If 𝑥 is a matrix, set 𝑣 to
coordinates [𝑖, 𝑗] such that 𝑥[𝑖, 𝑗] is a largest entry. This flag is ignored if 𝑥 is not a vector or matrix.

? vecmax([10, 20, -30, 40])
%1 = 40

(continues on next page)
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? vecmax([10, 20, -30, 40], &v); v
%2 = 4
? vecmax([10, 20; -30, 40], &v); v
%3 = [2, 2]

vecmin(v)
If 𝑥 is a vector or a matrix, returns the smallest entry of 𝑥, otherwise returns a copy of 𝑥. Error if 𝑥 is empty.

If 𝑣 is given, set it to the index of a smallest entry (indirect minimum), when 𝑥 is a vector. If 𝑥 is a matrix, set 𝑣
to coordinates [𝑖, 𝑗] such that 𝑥[𝑖, 𝑗] is a smallest entry. This is ignored if 𝑥 is not a vector or matrix.

? vecmin([10, 20, -30, 40])
%1 = -30
? vecmin([10, 20, -30, 40], &v); v
%2 = 3
? vecmin([10, 20; -30, 40], &v); v
%3 = [2, 1]

vecprod()

Return the product of the components of the vector 𝑣. Return 1 on an empty vector.

? vecprod([1,2,3])
%1 = 6
? vecprod([])
%2 = 1

vecsearch(x, cmpf )
Determines whether 𝑥 belongs to the sorted vector or list 𝑣: return the (positive) index where 𝑥 was found, or 0
if it does not belong to 𝑣.

If the comparison function cmpf is omitted, we assume that 𝑣 is sorted in increasing order, according to the
standard comparison function lex, thereby restricting the possible types for 𝑥 and the elements of 𝑣 (integers,
fractions, reals, and vectors of such). We also transparently allow a t_VECSMALL 𝑥 in this case, for the natural
ordering of the integers.

If cmpf is present, it is understood as a comparison function and we assume that 𝑣 is sorted according to it, see
vecsort for how to encode comparison functions.

? v = [1,3,4,5,7];
? vecsearch(v, 3)
%2 = 2
? vecsearch(v, 6)
%3 = 0 \\ not in the list
? vecsearch([7,6,5], 5) \\ unsorted vector: result undefined
%4 = 0

Note that if we are sorting with respect to a key which is expensive to compute (e.g. a discriminant), one should
rather precompute all keys, sort that vector and search in the vector of keys, rather than searching in the original
vector with respect to a comparison function.

By abuse of notation, 𝑥 is also allowed to be a matrix, seen as a vector of its columns; again by abuse of notation,
a t_VEC is considered as part of the matrix, if its transpose is one of the matrix columns.
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? v = vecsort([3,0,2; 1,0,2]) \\ sort matrix columns according to lex order
%1 =
[0 2 3]

[0 2 1]
? vecsearch(v, [3,1]~)
%2 = 3
? vecsearch(v, [3,1]) \\ can search for x or x~
%3 = 3
? vecsearch(v, [1,2])
%4 = 0 \\ not in the list

vecsort(cmpf, flag)
Sorts the vector 𝑥 in ascending order, using a mergesort method. 𝑥 must be a list, vector or matrix (seen as a
vector of its columns). Note that mergesort is stable, hence the initial ordering of “equal” entries (with respect to
the sorting criterion) is not changed.

If cmpf is omitted, we use the standard comparison function lex, thereby restricting the possible types for the
elements of 𝑥 (integers, fractions or reals and vectors of those). We also transparently allow a t_VECSMALL 𝑥 in
this case, for the standard ordering on the integers.

If cmpf is present, it is understood as a comparison function and we sort according to it. The following possibilities
exist:

• an integer 𝑘: sort according to the value of the 𝑘-th subcomponents of the components of 𝑥.

• a vector: sort lexicographically according to the components listed in the vector. For example, if 𝑐𝑚𝑝𝑓 =
[2, 1, 3], sort with respect to the second component, and when these are equal, with respect to the first, and
when these are equal, with respect to the third.

• a comparison function: t_CLOSURE with two arguments 𝑥 and 𝑦, and returning a real number which is < 0,
> 0 or = 0 if 𝑥 < 𝑦, 𝑥 > 𝑦 or 𝑥 = 𝑦 respectively.

• a key: t_CLOSURE with one argument 𝑥 and returning the value 𝑓(𝑥) with respect to which we sort.

? vecsort([3,0,2; 1,0,2]) \\ sort columns according to lex order
%1 =
[0 2 3]

[0 2 1]
? vecsort(v, (x,y)->y-x) \\ reverse sort
? vecsort(v, (x,y)->abs(x)-abs(y)) \\ sort by increasing absolute value
? vecsort(v, abs) \\ sort by increasing absolute value, using key
? cmpf(x,y) = my(dx = poldisc(x), dy = poldisc(y)); abs(dx) - abs(dy);
? v = [x^2+1, x^3-2, x^4+5*x+1] vecsort(v, cmpf) \\ comparison function
? vecsort(v, x->abs(poldisc(x))) \\ key

The abs and cmpf examples show how to use a named function instead of an anonymous function. It is preferable
to use a key whenever possible rather than include it in the comparison function as above since the key is evaluated
𝑂(𝑛) times instead of 𝑂(𝑛 log 𝑛), where 𝑛 is the number of entries.

A direct approach is also possible and equivalent to using a sorting key:

? T = [abs(poldisc(x)) | x<-v];
? perm = vecsort(T,,1); \\ indirect sort
? vecextract(v, perm)
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This also provides the vector 𝑇 of all keys, which is interesting for instance in later vecsearch calls: it is more
efficient to sort 𝑇 (T = vecextract(T, perm)) then search for a key in 𝑇 rather than to search in 𝑣 using a
comparison function or a key. Note also that mapisdefined is often easier to use and faster than vecsearch.

The binary digits of flag mean:

• 1: indirect sorting of the vector 𝑥, i.e. if 𝑥 is an 𝑛-component vector, returns a permutation of [1, 2, ..., 𝑛]
which applied to the components of 𝑥 sorts 𝑥 in increasing order. For example, vecextract(x,
vecsort(x,,1)) is equivalent to vecsort(x).

• 4: use descending instead of ascending order.

• 8: remove “duplicate” entries with respect to the sorting function (keep the first occurring entry). For exam-
ple:

? vecsort([Pi,Mod(1,2),z], (x,y)->0, 8) \\ make everything compare equal
%1 = [3.141592653589793238462643383]
? vecsort([[2,3],[0,1],[0,3]], 2, 8)
%2 = [[0, 1], [2, 3]]

vecsum()

Return the sum of the components of the vector 𝑣. Return 0 on an empty vector.

? vecsum([1,2,3])
%1 = 6
? vecsum([])
%2 = 0

weber(flag, precision)
One of Weber’s three 𝑓 functions. If 𝑓𝑙𝑎𝑔 = 0, returns

𝑓(𝑥) = exp(−𝑖𝜋/24).𝜂((𝑥+ 1)/2)/𝜂(𝑥)𝑠𝑢𝑐ℎ𝑡ℎ𝑎𝑡𝑗 = (𝑓24 − 16)3/𝑓24,

where 𝑗 is the elliptic 𝑗-invariant (see the function ellj). If 𝑓𝑙𝑎𝑔 = 1, returns

𝑓1(𝑥) = 𝜂(𝑥/2)/𝜂(𝑥)𝑠𝑢𝑐ℎ𝑡ℎ𝑎𝑡𝑗 = (𝑓241 + 16)3/𝑓241 .

Finally, if 𝑓𝑙𝑎𝑔 = 2, returns

𝑓2(𝑥) =
√

2𝜂(2𝑥)/𝜂(𝑥)𝑠𝑢𝑐ℎ𝑡ℎ𝑎𝑡𝑗 = (𝑓242 + 16)3/𝑓242 .

Note the identities 𝑓8 = 𝑓81 + 𝑓82 and 𝑓𝑓1𝑓2 =
√

2.

zeta(precision)
For 𝑠! = 1 a complex number, Riemann’s zeta function 𝜁(𝑠) =

∑︀
𝑛>=1 𝑛

−𝑠, computed using the Euler-Maclaurin
summation formula, except when 𝑠 is of type integer, in which case it is computed using Bernoulli numbers for
𝑠 <= 0 or 𝑠 > 0 and even, and using modular forms for 𝑠 > 0 and odd. Power series are also allowed:

? zeta(2) - Pi^2/6
%1 = 0.E-38
? zeta(1+x+O(x^3))
%2 = 1.0000000000000000000000000000000000000*x^-1 + \
0.57721566490153286060651209008240243104 + O(x)

For 𝑠! = 1 a 𝑝-adic number, Kubota-Leopoldt zeta function at 𝑠, that is the unique continuous 𝑝-adic function on
the 𝑝-adic integers that interpolates the values of (1−𝑝−𝑘)𝜁(𝑘) at negative integers 𝑘 such that 𝑘 = 1(𝑚𝑜𝑑𝑝−1)
(resp. 𝑘 is odd) if 𝑝 is odd (resp. 𝑝 = 2). Power series are not allowed in this case.
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? zeta(-3+O(5^10))
%1 = 4*5^-1 + 4 + 3*5 + 4*5^3 + 4*5^5 + 4*5^7 + O(5^9)))))
? (1-5^3) * zeta(-3)
%2 = -1.0333333333333333333333333333333333333
? bestappr(%)
%3 = -31/30
? zeta(-3+O(5^10)) - (-31/30)
%4 = O(5^9)

zetahurwitz(x, der, precision)
Hurwitz zeta function 𝜁(𝑠, 𝑥) =

∑︀
𝑛>=0(𝑛+ 𝑥)−𝑠 and analytically continued, with 𝑠! = 1 and 𝑥 not a negative

or zero integer. Note that 𝜁(𝑠, 1) = 𝜁(𝑠). 𝑠 can also be a polynomial, rational function, or power series. If der
is positive, compute the der’th derivative with respect to 𝑠. Note that the derivative with respect to 𝑥 is simply
−𝑠𝜁(𝑠+ 1, 𝑥).

? zetahurwitz(Pi,Pi)
%1 = 0.056155444497585099925180502385781494484
? zetahurwitz(2,1) - zeta(2)
%2 = -2.350988701644575016 E-38
? zetahurwitz(Pi,3) - (zeta(Pi)-1-1/2^Pi)
%3 = -2.2040519077917890774 E-39
? zetahurwitz(-7/2,1) - zeta(-7/2)
%4 = -2.295887403949780289 E-41
? zetahurwitz(-2.3,Pi+I*log(2))
%5 = -5.1928369229555125820137832704455696057\
- 6.1349660138824147237884128986232049582*I
? zetahurwitz(-1+x^2+O(x^3),1)
%6 = -0.083333333333333333333333333333333333333\
- 0.16542114370045092921391966024278064276*x^2 + O(x^3)
? zetahurwitz(1+x+O(x^4),2)
%7 = 1.0000000000000000000000000000000000000*x^-1\
- 0.42278433509846713939348790991759756896\
+ 0.072815845483676724860586375874901319138*x + O(x^2)
? zetahurwitz(2,1,2) \\ zeta''(2)
%8 = 1.9892802342989010234208586874215163815

zetamult(t, precision)
For 𝑠 a vector of positive integers such that 𝑠[1] >= 2, returns the multiple zeta value (MZV)

𝜁(𝑠1, ..., 𝑠𝑘) =
∑︁

𝑛1>...>𝑛𝑘>0

𝑛−𝑠1
1 ...𝑛−𝑠𝑘

𝑘

of length 𝑘 and weight
∑︀

𝑖 𝑠𝑖. More generally, return Yamamoto’s 𝑡-MZV interpolation evaluated at 𝑡: for 𝑡 = 0,
this is the ordinary MZV; for 𝑡 = 1, we obtain the MZSV star value, with >= instead of strict inequalities; and
of course, for 𝑡 =′ 𝑥 we obtain Yamamoto’s one-variable polynomial.

? zetamult([2,1]) - zeta(3) \\ Euler's identity
%1 = 0.E-38
? zetamult([2,1], 1) \\ star value
%2 = 2.4041138063191885707994763230228999815
? zetamult([2,1], 'x)
%3 = 1.20205[...]*x + 1.20205[...]

If the bit precision is 𝐵, this function runs in time 𝑂(𝑘(𝐵 + 𝑘)2) if 𝑡 = 0, and 𝑂(𝑘𝐵3) otherwise.
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In addition to the above format (avec), the function also accepts a binary word format evec (each 𝑠𝑖 is replaced
by 𝑠𝑖 bits, all of them 0 but the last one) giving the MZV representation as an iterated integral, and an index
format (if 𝑒 is the positive integer attached the evec vector of bits, the index is the integer 𝑒 + 2𝑘−2). The
function zetamultconvert allows to pass from one format to the other; the function zetamultall computes
simultaneously all MZVs of weight

∑︀
𝑖<=𝑘 𝑠𝑖 up to 𝑛.

zetamultconvert(fl)
a being either an evec, avec, or index m, converts into evec (fl = 0), avec (fl = 1), or index m (fl = 2).

? zetamultconvert(10)
%1 = Vecsmall([3, 2])
? zetamultconvert(13)
%2 = Vecsmall([2, 2, 1])
? zetamultconvert(10, 0)
%3 = Vecsmall([0, 0, 1, 0, 1])
? zetamultconvert(13, 0)
%4 = Vecsmall([0, 1, 0, 1, 1])

The last two lines imply that [3, 2] and [2, 2, 1] are dual (reverse order of bits and swap 0 and 1 in evec form).
Hence they have the same zeta value:

? zetamult([3,2])
%5 = 0.22881039760335375976874614894168879193
? zetamult([2,2,1])
%6 = 0.22881039760335375976874614894168879193

zetamultdual()

𝑠 being either an evec, avec, or index m, return the dual sequence in avec format. The dual of a sequence of
length 𝑟 and weight 𝑘 has length 𝑘 − 𝑟 and weight 𝑘. Duality is an involution and zeta values attached to dual
sequences are the same:

? zetamultdual([4])
%1 = Vecsmall([2, 1, 1])
? zetamultdual(%)
%2 = Vecsmall([4])
? zetamult(%1) - zetamult(%2)
%3 = 0.E-38

In evec form, duality simply reverses the order of bits and swaps 0 and 1:

? zetamultconvert([4], 0)
%4 = Vecsmall([0, 0, 0, 1])
? zetamultconvert([2,1,1], 0)
%5 = Vecsmall([0, 1, 1, 1])

znchar()

Given a datum𝐷 describing a group (Z/𝑁Z)* and a Dirichlet character 𝜒, return the pair [G, chi], where G is
znstar(N, 1)) and chi is a GP character.

The following possibilities for 𝐷 are supported

• a nonzero t_INT congruent to 0, 1 modulo 4, return the real character modulo 𝐷 given by the Kronecker
symbol (𝐷/.);

• a t_INTMOD Mod(m, N), return the Conrey character modulo 𝑁 of index 𝑚 (see znconreylog).
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• a modular form space as per mfinit([𝑁, 𝑘, 𝜒]) or a modular form for such a space, return the underlying
Dirichlet character 𝜒 (which may be defined modulo a divisor of 𝑁 but need not be primitive).

In the remaining cases, G is initialized by znstar(N, 1).

• a pair [G, chi], where chi is a standard GP Dirichlet character 𝑐 = (𝑐𝑗) on G (generic character t_VEC or
Conrey characters t_COL or t_INT); given generators 𝐺 = ⊕(Z/𝑑𝑗Z)𝑔𝑗 , 𝜒(𝑔𝑗) = 𝑒(𝑐𝑗/𝑑𝑗).

• a pair [G, chin], where chin is a normalized representation [𝑛, 𝑐] of the Dirichlet character 𝑐; 𝜒(𝑔𝑗) =
𝑒( 𝑐𝑗/𝑛) where 𝑛 is minimal (order of 𝜒).

? [G,chi] = znchar(-3);
? G.cyc
%2 = [2]
? chareval(G, chi, 2)
%3 = 1/2
? kronecker(-3,2)
%4 = -1
? znchartokronecker(G,chi)
%5 = -3
? mf = mfinit([28, 5/2, Mod(2,7)]); [f] = mfbasis(mf);
? [G,chi] = znchar(mf); [G.mod, chi]
%7 = [7, [2]~]
? [G,chi] = znchar(f); chi
%8 = [28, [0, 2]~]

zncharconductor(chi)
Let G be attached to (Z/𝑞Z)* (as per G = znstar(q, 1)) and chi be a Dirichlet character on (Z/𝑞Z)* (see
dirichletchar (in the PARI manual) or ??character). Return the conductor of chi:

? G = znstar(126000, 1);
? zncharconductor(G,11) \\ primitive
%2 = 126000
? zncharconductor(G,1) \\ trivial character, not primitive!
%3 = 1
? zncharconductor(G,1009) \\ character mod 5^3
%4 = 125

znchardecompose(chi, Q)

Let 𝑁 =
∏︀

𝑝 𝑝
𝑒𝑝 and a Dirichlet character 𝜒, we have a decomposition 𝜒 =

∏︀
𝑝 𝜒𝑝 into character modulo 𝑁

where the conductor of 𝜒𝑝 divides 𝑝𝑒𝑝 ; it equals 𝑝𝑒𝑝 for all 𝑝 if and only if 𝜒 is primitive.

Given a znstar G describing a group (Z/𝑁Z)*, a Dirichlet character chi and an integer 𝑄, return
∏︀

𝑝‖(𝑄,𝑁) 𝜒𝑝.
For instance, if 𝑄 = 𝑝 is a prime divisor of 𝑁 , the function returns 𝜒𝑝 (as a character modulo 𝑁 ), given as a
Conrey character (t_COL).

? G = znstar(40, 1);
? G.cyc
%2 = [4, 2, 2]
? chi = [2, 1, 1];
? chi2 = znchardecompose(G, chi, 2)
%4 = [1, 1, 0]~
? chi5 = znchardecompose(G, chi, 5)
%5 = [0, 0, 2]~
? znchardecompose(G, chi, 3)

(continues on next page)
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%6 = [0, 0, 0]~
? c = charmul(G, chi2, chi5)
%7 = [1, 1, 2]~ \\ t_COL: in terms of Conrey generators !
? znconreychar(G,c)
%8 = [2, 1, 1] \\ t_VEC: in terms of SNF generators

znchargauss(chi, a, precision)
Given a Dirichlet character 𝜒 on 𝐺 = (Z/𝑁Z)* (see znchar), return the complex Gauss sum

𝑔(𝜒, 𝑎) =

𝑁∑︁
𝑛=1

𝜒(𝑛)𝑒(𝑎𝑛/𝑁)

? [G,chi] = znchar(-3); \\ quadratic Gauss sum: I*sqrt(3)
? znchargauss(G,chi)
%2 = 1.7320508075688772935274463415058723670*I
? [G,chi] = znchar(5);
? znchargauss(G,chi) \\ sqrt(5)
%2 = 2.2360679774997896964091736687312762354
? G = znstar(300,1); chi = [1,1,12]~;
? znchargauss(G,chi) / sqrt(300) - exp(2*I*Pi*11/25) \\ = 0
%4 = 2.350988701644575016 E-38 + 1.4693679385278593850 E-39*I
? lfuntheta([G,chi], 1) \\ = 0
%5 = -5.79[...] E-39 - 2.71[...] E-40*I

zncharinduce(chi, N)

Let𝐺 be attached to (Z/𝑞Z)* (as per G = znstar(q,1)) and let chi be a Dirichlet character on (Z/𝑞Z)*, given
by

• a t_VEC: a standard character on bid.gen,

• a t_INT or a t_COL: a Conrey index in (Z/𝑞Z)* or its Conrey logarithm; see dirichletchar (in the PARI
manual) or ??character.

Let𝑁 be a multiple of 𝑞, return the character modulo𝑁 extending chi. As usual for arithmetic functions, the new
modulus𝑁 can be given as a t_INT, via a factorization matrix or a pair [N, factor(N)], or by znstar(N,1).

? G = znstar(4, 1);
? chi = znconreylog(G,1); \\ trivial character mod 4
? zncharinduce(G, chi, 80) \\ now mod 80
%3 = [0, 0, 0]~
? zncharinduce(G, 1, 80) \\ same using directly Conrey label
%4 = [0, 0, 0]~
? G2 = znstar(80, 1);
? zncharinduce(G, 1, G2) \\ same
%4 = [0, 0, 0]~

? chi = zncharinduce(G, 3, G2) \\ extend the nontrivial character mod 4
%5 = [1, 0, 0]~
? [G0,chi0] = znchartoprimitive(G2, chi);
? G0.mod
%7 = 4
? chi0
%8 = [1]~
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Here is a larger example:

? G = znstar(126000, 1);
? label = 1009;
? chi = znconreylog(G, label)
%3 = [0, 0, 0, 14, 0]~
? [G0,chi0] = znchartoprimitive(G, label); \\ works also with 'chi'
? G0.mod
%5 = 125
? chi0 \\ primitive character mod 5^3 attached to chi
%6 = [14]~
? G0 = znstar(N0, 1);
? zncharinduce(G0, chi0, G) \\ induce back
%8 = [0, 0, 0, 14, 0]~
? znconreyexp(G, %)
%9 = 1009

zncharisodd(chi)
Let 𝐺 be attached to (Z/𝑁Z)* (as per G = znstar(N,1)) and let chi be a Dirichlet character on (Z/𝑁Z)*,
given by

• a t_VEC: a standard character on G.gen,

• a t_INT or a t_COL: a Conrey index in (Z/𝑞Z)* or its Conrey logarithm; see dirichletchar (in the PARI
manual) or ??character.

Return 1 if and only if chi(−1) = −1 and 0 otherwise.

? G = znstar(8, 1);
? zncharisodd(G, 1) \\ trivial character
%2 = 0
? zncharisodd(G, 3)
%3 = 1
? chareval(G, 3, -1)
%4 = 1/2

znchartokronecker(chi, flag)
Let 𝐺 be attached to (Z/𝑁Z)* (as per G = znstar(N,1)) and let chi be a Dirichlet character on (Z/𝑁Z)*,
given by

• a t_VEC: a standard character on bid.gen,

• a t_INT or a t_COL: a Conrey index in (Z/𝑞Z)* or its Conrey logarithm; see dirichletchar (in the PARI
manual) or ??character.

If 𝑓𝑙𝑎𝑔 = 0, return the discriminant 𝐷 if chi is real equal to the Kronecker symbol (𝐷/.) and 0 otherwise. The
discriminant 𝐷 is fundamental if and only if chi is primitive.

If 𝑓𝑙𝑎𝑔 = 1, return the fundamental discriminant attached to the corresponding primitive character.

? G = znstar(8,1); CHARS = [1,3,5,7]; \\ Conrey labels
? apply(t->znchartokronecker(G,t), CHARS)
%2 = [4, -8, 8, -4]
? apply(t->znchartokronecker(G,t,1), CHARS)
%3 = [1, -8, 8, -4]
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znchartoprimitive(chi)
Let G be attached to (Z/𝑞Z)* (as per G = znstar(q, 1)) and chi be a Dirichlet character on (Z/𝑞Z)*, of
conductor 𝑞0‖𝑞.

? G = znstar(126000, 1);
? [G0,chi0] = znchartoprimitive(G,11)
? G0.mod
%3 = 126000
? chi0
%4 = 11
? [G0,chi0] = znchartoprimitive(G,1);\\ trivial character, not primitive!
? G0.mod
%6 = 1
? chi0
%7 = []~
? [G0,chi0] = znchartoprimitive(G,1009)
? G0.mod
%4 = 125
? chi0
%5 = [14]~

Note that znconreyconductor is more efficient since it can return 𝜒0 and its conductor 𝑞0 without needing to
initialize 𝐺0. The price to pay is a more cryptic format and the need to initalize 𝐺0 later, but that needs to be
done only once for all characters with conductor 𝑞0.

znconreychar(m)

Given a znstar 𝐺 attached to (Z/𝑞Z)* (as per G = znstar(q,1)), this function returns the Dirichlet character
attached to 𝑚 ∈ (Z/𝑞Z)* via Conrey’s logarithm, which establishes a “canonical” bijection between (Z/𝑞Z)*

and its dual.

Let 𝑞 =
∏︀

𝑝 𝑝
𝑒𝑝 be the factorization of 𝑞 into distinct primes. For all odd 𝑝 with 𝑒𝑝 > 0, let 𝑔𝑝 be the element in

(Z/𝑞Z)* which is

• congruent to 1 mod 𝑞/𝑝𝑒𝑝 ,

• congruent mod 𝑝𝑒𝑝 to the smallest positive integer that generates (Z/𝑝2Z)*.

For 𝑝 = 2, we let 𝑔4 (if 2𝑒2 >= 4) and 𝑔8 (if furthermore (2𝑒2 >= 8) be the elements in (Z/𝑞Z)* which are

• congruent to 1 mod 𝑞/2𝑒2 ,

• 𝑔4 = −1𝑚𝑜𝑑2𝑒2 ,

• 𝑔8 = 5𝑚𝑜𝑑2𝑒2 .

Then the 𝑔𝑝 (and the extra 𝑔4 and 𝑔8 if 2𝑒2 >= 2) are independent generators of (Z/𝑞Z)*, i.e. every𝑚 in (Z/𝑞Z)*

can be written uniquely as
∏︀

𝑝 𝑔
𝑚𝑝
𝑝 , where 𝑚𝑝 is defined modulo the order 𝑜𝑝 of 𝑔𝑝 and 𝑝 ∈ 𝑆𝑞 , the set of prime

divisors of 𝑞 together with 4 if 4‖𝑞 and 8 if 8‖𝑞. Note that the 𝑔𝑝 are in general not SNF generators as produced
by znstar whenever 𝜔(𝑞) >= 2, although their number is the same. They however allow to handle the finite
abelian group (Z/𝑞Z)* in a fast and elegant way. (Which unfortunately does not generalize to ray class groups or
Hecke characters.)

The Conrey logarithm of 𝑚 is the vector (𝑚𝑝)𝑝∈𝑆𝑞
, obtained via znconreylog. The Conrey character 𝜒𝑞(𝑚, .)

attached to 𝑚 mod 𝑞 maps each 𝑔𝑝, 𝑝 ∈ 𝑆𝑞 to 𝑒(𝑚𝑝/𝑜𝑝), where 𝑒(𝑥) = exp(2𝑖𝜋𝑥). This function returns the
Conrey character expressed in the standard PARI way in terms of the SNF generators G.gen.

? G = znstar(8,1);
? G.cyc

(continues on next page)
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%2 = [2, 2] \\ Z/2 x Z/2
? G.gen
%3 = [7, 3]
? znconreychar(G,1) \\ 1 is always the trivial character
%4 = [0, 0]
? znconreychar(G,2) \\ 2 is not coprime to 8 !!!
*** at top-level: znconreychar(G,2)
*** ^-----------------
*** znconreychar: elements not coprime in Zideallog:
2
8
*** Break loop: type 'break' to go back to GP prompt
break>

? znconreychar(G,3)
%5 = [0, 1]
? znconreychar(G,5)
%6 = [1, 1]
? znconreychar(G,7)
%7 = [1, 0]

We indeed get all 4 characters of (Z/8Z)*.

For convenience, we allow to input the Conrey logarithm of 𝑚 instead of 𝑚:

? G = znstar(55, 1);
? znconreychar(G,7)
%2 = [7, 0]
? znconreychar(G, znconreylog(G,7))
%3 = [7, 0]

znconreyconductor(chi, chi0)
Let G be attached to (Z/𝑞Z)* (as per G = znstar(q, 1)) and chi be a Dirichlet character on (Z/𝑞Z)*, given
by

• a t_VEC: a standard character on bid.gen,

• a t_INT or a t_COL: a Conrey index in (Z/𝑞Z)* or its Conrey logarithm; see dirichletchar (in the PARI
manual) or ??character.

Return the conductor of chi, as the t_INT bid.mod if chi is primitive, and as a pair [N, faN] (with faN the
factorization of 𝑁 ) otherwise.

If chi0 is present, set it to the Conrey logarithm of the attached primitive character.

? G = znstar(126000, 1);
? znconreyconductor(G,11) \\ primitive
%2 = 126000
? znconreyconductor(G,1) \\ trivial character, not primitive!
%3 = [1, matrix(0,2)]
? N0 = znconreyconductor(G,1009, &chi0) \\ character mod 5^3
%4 = [125, Mat([5, 3])]
? chi0
%5 = [14]~
? G0 = znstar(N0, 1); \\ format [N,factor(N)] accepted

(continues on next page)
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? znconreyexp(G0, chi0)
%7 = 9
? znconreyconductor(G0, chi0) \\ now primitive, as expected
%8 = 125

The group G0 is not computed as part of znconreyconductor because it needs to be computed only once per
conductor, not once per character.

znconreyexp(chi)
Given a znstar 𝐺 attached to (Z/𝑞Z)* (as per G = znstar(q, 1)), this function returns the Conrey exponential
of the character chi: it returns the integer 𝑚 ∈ (Z/𝑞Z)* such that znconreylog(G, :math:`m)` is chi.

The character chi is given either as a

• t_VEC: in terms of the generators G.gen;

• t_COL: a Conrey logarithm.

? G = znstar(126000, 1)
? znconreylog(G,1)
%2 = [0, 0, 0, 0, 0]~
? znconreyexp(G,%)
%3 = 1
? G.cyc \\ SNF generators
%4 = [300, 12, 2, 2, 2]
? chi = [100, 1, 0, 1, 0]; \\ some random character on SNF generators
? znconreylog(G, chi) \\ in terms of Conrey generators
%6 = [0, 3, 3, 0, 2]~
? znconreyexp(G, %) \\ apply to a Conrey log
%7 = 18251
? znconreyexp(G, chi) \\ ... or a char on SNF generators
%8 = 18251
? znconreychar(G,%)
%9 = [100, 1, 0, 1, 0]

znconreylog(m)

Given a znstar attached to (Z/𝑞Z)* (as per G = znstar(q,1)), this function returns the Conrey logarithm of
𝑚 ∈ (Z/𝑞Z)*.

Let 𝑞 =
∏︀

𝑝 𝑝
𝑒𝑝 be the factorization of 𝑞 into distinct primes, where we assume 𝑒2 = 0 or 𝑒2 >= 2. (If 𝑒2 = 1,

we can ignore 2 from the factorization, as if we replaced 𝑞 by 𝑞/2, since (Z/𝑞Z)* (Z/(𝑞/2)Z)*.)

For all odd 𝑝 with 𝑒𝑝 > 0, let 𝑔𝑝 be the element in (Z/𝑞Z)* which is

• congruent to 1 mod 𝑞/𝑝𝑒𝑝 ,

• congruent mod 𝑝𝑒𝑝 to the smallest positive integer that generates (Z/𝑝2Z)*.

For 𝑝 = 2, we let 𝑔4 (if 2𝑒2 >= 4) and 𝑔8 (if furthermore (2𝑒2 >= 8) be the elements in (Z/𝑞Z)* which are

• congruent to 1 mod 𝑞/2𝑒2 ,

• 𝑔4 = −1𝑚𝑜𝑑2𝑒2 ,

• 𝑔8 = 5𝑚𝑜𝑑2𝑒2 .

Then the 𝑔𝑝 (and the extra 𝑔4 and 𝑔8 if 2𝑒2 >= 2) are independent generators of Z/𝑞Z*, i.e. every𝑚 in (Z/𝑞Z)*

can be written uniquely as
∏︀

𝑝 𝑔
𝑚𝑝
𝑝 , where 𝑚𝑝 is defined modulo the order 𝑜𝑝 of 𝑔𝑝 and 𝑝 ∈ 𝑆𝑞 , the set of prime

divisors of 𝑞 together with 4 if 4‖𝑞 and 8 if 8‖𝑞. Note that the 𝑔𝑝 are in general not SNF generators as produced
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by znstar whenever 𝜔(𝑞) >= 2, although their number is the same. They however allow to handle the finite
abelian group (Z/𝑞Z)* in a fast and elegant way. (Which unfortunately does not generalize to ray class groups or
Hecke characters.)

The Conrey logarithm of 𝑚 is the vector (𝑚𝑝)𝑝∈𝑆𝑞 . The inverse function znconreyexp recovers the Conrey
label 𝑚 from a character.

? G = znstar(126000, 1);
? znconreylog(G,1)
%2 = [0, 0, 0, 0, 0]~
? znconreyexp(G, %)
%3 = 1
? znconreylog(G,2) \\ 2 is not coprime to modulus !!!
*** at top-level: znconreylog(G,2)
*** ^-----------------
*** znconreylog: elements not coprime in Zideallog:
2
126000
*** Break loop: type 'break' to go back to GP prompt
break>
? znconreylog(G,11) \\ wrt. Conrey generators
%4 = [0, 3, 1, 76, 4]~
? log11 = ideallog(,11,G) \\ wrt. SNF generators
%5 = [178, 3, -75, 1, 0]~

For convenience, we allow to input the ordinary discrete log of 𝑚, 𝑖𝑑𝑒𝑎𝑙𝑙𝑜𝑔(,𝑚, 𝑏𝑖𝑑), which allows to convert
discrete logs from bid.gen generators to Conrey generators.

? znconreylog(G, log11)
%7 = [0, 3, 1, 76, 4]~

We also allow a character (t_VEC) on bid.gen and return its representation on the Conrey generators.

? G.cyc
%8 = [300, 12, 2, 2, 2]
? chi = [10,1,0,1,1];
? znconreylog(G, chi)
%10 = [1, 3, 3, 10, 2]~
? n = znconreyexp(G, chi)
%11 = 84149
? znconreychar(G, n)
%12 = [10, 1, 0, 1, 1]

zncoppersmith(N, X, B)
Coppersmith’s algorithm. 𝑁 being an integer and 𝑃 ∈ Z[𝑡], finds in polynomial time in log(𝑁) and 𝑑 = 𝑑𝑒𝑔(𝑃 )
all integers 𝑥 with ‖𝑥‖ <= 𝑋 such that

gcd(𝑁,𝑃 (𝑥)) >= 𝐵.

This is a famous application of the LLL algorithm meant to help in the factorization of 𝑁 . Notice that 𝑃 may be
reduced modulo 𝑁Z[𝑡] without affecting the situation. The parameter 𝑋 must not be too large: assume for now
that the leading coefficient of 𝑃 is coprime to 𝑁 , then we must have

𝑑 log𝑋 log𝑁 < log2𝐵,
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i.e., 𝑋 < 𝑁1/𝑑 when 𝐵 = 𝑁 . Let now 𝑃0 be the gcd of the leading coefficient of 𝑃 and 𝑁 . In applications to
factorization, we should have 𝑃0 = 1; otherwise, either 𝑃0 = 𝑁 and we can reduce the degree of 𝑃 , or 𝑃0 is a
non trivial factor of 𝑁 . For completeness, we nevertheless document the exact conditions that 𝑋 must satisfy in
this case: let 𝑝 := log𝑁 𝑃0, 𝑏 := log𝑁 𝐵, 𝑥 := log𝑁 𝑋 , then

• either 𝑝 >= 𝑑/(2𝑑− 1) is large and we must have 𝑥𝑑 < 2𝑏− 1;

• or 𝑝 < 𝑑/(2𝑑− 1) and we must have both 𝑝 < 𝑏 < 1− 𝑝+ 𝑝/𝑑 and 𝑥(𝑑+ 𝑝(1− 2𝑑)) < (𝑏− 𝑝)2. Note that
this reduces to 𝑥𝑑 < 𝑏2 when 𝑝 = 0, i.e., the condition described above.

Some 𝑥 larger than 𝑋 may be returned if you are very lucky. The routine runs in polynomial time in log𝑁 and
𝑑 but the smaller 𝐵, or the larger 𝑋 , the slower. The strength of Coppersmith method is the ability to find roots
modulo a general composite 𝑁 : if 𝑁 is a prime or a prime power, polrootsmod or polrootspadic will be
much faster.

We shall now present two simple applications. The first one is finding nontrivial factors of𝑁 , given some partial
information on the factors; in that case 𝐵 must obviously be smaller than the largest nontrivial divisor of 𝑁 .

setrand(1); \\ to make the example reproducible
[a,b] = [10^30, 10^31]; D = 20;
p = randomprime([a,b]);
q = randomprime([a,b]); N = p*q;
\\ assume we know 0) p | N; 1) p in [a,b]; 2) the last D digits of p
p0 = p % 10^D;

? L = zncoppersmith(10^D*x + p0, N, b \ 10^D, a)
time = 1ms.
%6 = [738281386540]
? gcd(L[1] * 10^D + p0, N) == p
%7 = 1

and we recovered 𝑝, faster than by trying all possibilities 𝑥 < 1011.

The second application is an attack on RSA with low exponent, when the message 𝑥 is short and the padding 𝑃
is known to the attacker. We use the same RSA modulus 𝑁 as in the first example:

setrand(1);
P = random(N); \\ known padding
e = 3; \\ small public encryption exponent
X = floor(N^0.3); \\ N^(1/e - epsilon)
x0 = random(X); \\ unknown short message
C = lift( (Mod(x0,N) + P)^e ); \\ known ciphertext, with padding P
zncoppersmith((P + x)^3 - C, N, X)

\\ result in 244ms.
%14 = [2679982004001230401]

? %[1] == x0
%15 = 1

We guessed an integer of the order of 1018, almost instantly.

znlog(g, o)
This functions allows two distinct modes of operation depending on 𝑔:

• if 𝑔 is the output of znstar (with initialization), we compute the discrete logarithm of 𝑥 with respect to the
generators contained in the structure. See ideallog for details.
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• else 𝑔 is an explicit element in (Z/𝑁Z)*, we compute the discrete logarithm of 𝑥 in (Z/𝑁Z)* in base 𝑔. The
rest of this entry describes the latter possibility.

The result is [] when 𝑥 is not a power of 𝑔, though the function may also enter an infinite loop in this case.

If present, 𝑜 represents the multiplicative order of 𝑔, see DLfun (in the PARI manual); the preferred format for
this parameter is [ord, factor(ord)], where ord is the order of 𝑔. This provides a definite speedup when the
discrete log problem is simple:

? p = nextprime(10^4); g = znprimroot(p); o = [p-1, factor(p-1)];
? for(i=1,10^4, znlog(i, g, o))
time = 163 ms.
? for(i=1,10^4, znlog(i, g))
time = 200 ms. \\ a little slower

The result is undefined if 𝑔 is not invertible mod 𝑁 or if the supplied order is incorrect.

This function uses

• a combination of generic discrete log algorithms (see below).

• in (Z/𝑁Z)* when 𝑁 is prime: a linear sieve index calculus method, suitable for 𝑁 < 1050, say, is used for
large prime divisors of the order.

The generic discrete log algorithms are:

• Pohlig-Hellman algorithm, to reduce to groups of prime order 𝑞, where 𝑞‖𝑝−1 and 𝑝 is an odd prime divisor
of 𝑁 ,

• Shanks baby-step/giant-step (𝑞 < 232 is small),

• Pollard rho method (𝑞 > 232).

The latter two algorithms require 𝑂(
√
𝑞) operations in the group on average, hence will not be able to treat cases

where 𝑞 > 1030, say. In addition, Pollard rho is not able to handle the case where there are no solutions: it will
enter an infinite loop.

? g = znprimroot(101)
%1 = Mod(2,101)
? znlog(5, g)
%2 = 24
? g^24
%3 = Mod(5, 101)

? G = znprimroot(2 * 101^10)
%4 = Mod(110462212541120451003, 220924425082240902002)
? znlog(5, G)
%5 = 76210072736547066624
? G^% == 5
%6 = 1
? N = 2^4*3^2*5^3*7^4*11; g = Mod(13, N); znlog(g^110, g)
%7 = 110
? znlog(6, Mod(2,3)) \\ no solution
%8 = []

For convenience, 𝑔 is also allowed to be a 𝑝-adic number:

? g = 3+O(5^10); znlog(2, g)
%1 = 1015243

(continues on next page)
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? g^%
%2 = 2 + O(5^10)

znorder(o)
𝑥must be an integer mod 𝑛, and the result is the order of 𝑥 in the multiplicative group (Z/𝑛Z)*. Returns an error
if 𝑥 is not invertible. The parameter o, if present, represents a nonzero multiple of the order of 𝑥, see DLfun (in the
PARI manual); the preferred format for this parameter is [ord, factor(ord)], where ord = eulerphi(n)
is the cardinality of the group.

znprimroot()

Returns a primitive root (generator) of (Z/𝑛Z)*, whenever this latter group is cyclic (𝑛 = 4 or 𝑛 = 2𝑝𝑘 or
𝑛 = 𝑝𝑘, where 𝑝 is an odd prime and 𝑘 >= 0). If the group is not cyclic, the result is undefined. If 𝑛 is a prime
power, then the smallest positive primitive root is returned. This may not be true for 𝑛 = 2𝑝𝑘, 𝑝 odd.

Note that this function requires factoring 𝑝 − 1 for 𝑝 as above, in order to determine the exact order of elements
in (Z/𝑛Z)*: this is likely to be costly if 𝑝 is large.

znstar(flag)
Gives the structure of the multiplicative group (Z/𝑛Z)*. The output 𝐺 depends on the value of flag:

• 𝑓𝑙𝑎𝑔 = 0 (default), an abelian group structure [ℎ, 𝑑, 𝑔], where ℎ = 𝜑(𝑛) is the order (G.no), 𝑑 (G.cyc) is a
𝑘-component row-vector 𝑑 of integers 𝑑𝑖 such that 𝑑𝑖 > 1, 𝑑𝑖‖𝑑𝑖−1 for 𝑖 >= 2 and

(Z/𝑛Z)*
𝑘∏︁

𝑖=1

(Z/𝑑𝑖Z),

𝑎𝑛𝑑 : 𝑚𝑎𝑡ℎ : ‘𝑔‘(: 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 : ‘𝐺.𝑔𝑒𝑛‘)𝑖𝑠𝑎 : 𝑚𝑎𝑡ℎ : ‘𝑘‘ − 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑟𝑜𝑤𝑣𝑒𝑐𝑡𝑜𝑟𝑔𝑖𝑣𝑖𝑛𝑔𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟𝑠𝑜𝑓𝑡ℎ𝑒𝑖𝑚𝑎𝑔𝑒𝑜𝑓𝑡ℎ𝑒𝑐𝑦𝑐𝑙𝑖𝑐𝑔𝑟𝑜𝑢𝑝𝑠 : 𝑚𝑎𝑡ℎ : ‘Z/𝑑𝑖Z‘.

• 𝑓𝑙𝑎𝑔 = 1 the result is a bid structure; this allows computing discrete logarithms using znlog (also in the
noncyclic case!).

? G = znstar(40)
%1 = [16, [4, 2, 2], [Mod(17, 40), Mod(21, 40), Mod(11, 40)]]
? G.no \\ eulerphi(40)
%2 = 16
? G.cyc \\ cycle structure
%3 = [4, 2, 2]
? G.gen \\ generators for the cyclic components
%4 = [Mod(17, 40), Mod(21, 40), Mod(11, 40)]
? apply(znorder, G.gen)
%5 = [4, 2, 2]

For user convenience, we define znstar(0) as [2, [2], [-1]], corresponding to Z*, but 𝑓𝑙𝑎𝑔 = 1 is not
implemented in this trivial case.

cypari2.gen.objtogen(s)
Convert any SageMath/Python object to a PARI Gen.

For SageMath types, this uses the __pari__() method on the object. Basic Python types like int are converted
directly. For other types, the string representation is used.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()
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>>> pari(0)
0
>>> pari([2,3,5])
[2, 3, 5]

>>> a = pari(1)
>>> a, a.type()
(1, 't_INT')

>>> from fractions import Fraction
>>> a = pari(Fraction('1/2'))
>>> a, a.type()
(1/2, 't_FRAC')

Conversion from reals uses the real’s own precision:

>>> a = pari(1.2); a, a.type(), a.bitprecision()
(1.20000000000000, 't_REAL', 64)

Conversion from strings uses the current PARI real precision. By default, this is 64 bits:

>>> a = pari('1.2'); a, a.type(), a.bitprecision()
(1.20000000000000, 't_REAL', 64)

Unicode and bytes work fine:

>>> pari(b"zeta(3)")
1.20205690315959
>>> pari(u"zeta(3)")
1.20205690315959

But we can change this precision:

>>> pari.set_real_precision(35) # precision in decimal digits
15
>>> a = pari('Pi'); a, a.type(), a.bitprecision()
(3.1415926535897932384626433832795029, 't_REAL', 128)
>>> a = pari('1.2'); a, a.type(), a.bitprecision()
(1.2000000000000000000000000000000000, 't_REAL', 128)

Set the precision to 15 digits for the remaining tests:

>>> pari.set_real_precision(15)
35

Conversion from basic Python types:

>>> pari(int(-5))
-5
>>> pari(2**150)
1427247692705959881058285969449495136382746624
>>> import math
>>> pari(math.pi)

(continues on next page)
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3.14159265358979
>>> one = pari(complex(1,0)); one, one.type()
(1.00000000000000, 't_COMPLEX')
>>> pari(complex(0, 1))
1.00000000000000*I
>>> pari(complex(0.3, 1.7))
0.300000000000000 + 1.70000000000000*I

>>> pari(False)
0
>>> pari(True)
1

The following looks strange, but it is what PARI does:

>>> pari(["print(x)"])
x
[0]
>>> pari("[print(x)]")
x
[0]

Tests:

>>> pari(None)
Traceback (most recent call last):
...
ValueError: Cannot convert None to pari
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THREE

MEMORY MANAGEMENT FOR GENS ON THE PARI STACK OR THE
HEAP

class cypari2.stack.DetachGen

Destroy a Gen but keep the GEN which is inside it.

The typical usage is as follows:

1. Creates the DetachGen object from a :class`Gen`.

2. Removes all other references to that Gen.

3. Call the detach method to retrieve the GEN (or a copy of it if the original was not on the stack).
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FOUR

CONVERT PYTHON FUNCTIONS TO PARI CLOSURES

AUTHORS:

• Jeroen Demeyer (2015-04-10): initial version, Sage ticket #18052.

Examples:

>>> def the_answer():
... return 42
>>> import cypari2
>>> pari = cypari2.Pari()
>>> f = pari(the_answer)
>>> f()
42

>>> cube = pari(lambda i: i**3)
>>> cube.apply(range(10))
[0, 1, 8, 27, 64, 125, 216, 343, 512, 729]

cypari2.closure.objtoclosure(f )
Convert a Python function (more generally, any callable) to a PARI t_CLOSURE.

Note: With the current implementation, the function can be called with at most 5 arguments.

Warning: The function f which is called through the closure cannot be interrupted. Therefore, it is advised
to use this only for simple functions which do not take a long time.

Examples:

>>> from cypari2.closure import objtoclosure
>>> def pymul(i,j): return i*j
>>> mul = objtoclosure(pymul)
>>> mul
(v1,v2)->call_python(v1,v2,0,0,0,2,...)
>>> mul(6,9)
54
>>> mul.type()
't_CLOSURE'
>>> mul.arity()

(continues on next page)

771

https://trac.sagemath.org/18052


CyPari2 Documentation, Release 2.1.3

(continued from previous page)

2
>>> def printme(x):
... print(x)
>>> objtoclosure(printme)('matid(2)')
[1, 0; 0, 1]

Construct the Riemann zeta function using a closure:

>>> from cypari2 import Pari; pari = Pari()
>>> def coeffs(n):
... return [1 for i in range(n)]
>>> Z = pari.lfuncreate([coeffs, 0, [0], 1, 1, 1, 1])
>>> Z.lfun(2)
1.64493406684823

A trivial closure:

>>> f = pari(lambda x: x)
>>> f(10)
10

Test various kinds of errors:

>>> mul(4)
Traceback (most recent call last):
...
TypeError: pymul() ...
>>> mul(None, None)
Traceback (most recent call last):
...
ValueError: Cannot convert None to pari
>>> mul(*range(100))
Traceback (most recent call last):
...
PariError: call_python: too many parameters in user-defined function call
>>> mul([1], [2])
Traceback (most recent call last):
...
PariError: call_python: ...
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FIVE

HANDLING PARI ERRORS

AUTHORS:

• Peter Bruin (September 2013): initial version (Sage ticket #9640)

• Jeroen Demeyer (January 2015): use cb_pari_err_handle (Sage ticket #14894)

exception cypari2.handle_error.PariError

Error raised by PARI

errdata()

Return the error data (a t_ERROR gen) corresponding to this error.

EXAMPLES:

>>> import cypari2
>>> pari = cypari2.Pari()
>>> try:
... pari('Mod(2,6)')**-1
... except PariError as e:
... E = e.errdata()
>>> E
error("impossible inverse in Fp_inv: Mod(2, 6).")
>>> E.component(2)
Mod(2, 6)

errnum()

Return the PARI error number corresponding to this exception.

EXAMPLES:

>>> import cypari2
>>> pari = cypari2.Pari()
>>> try:
... pari('1/0')
... except PariError as err:
... print(err.errnum())
31

errtext()

Return the message output by PARI when this error occurred.

EXAMPLES:
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>>> import cypari2
>>> pari = cypari2.Pari()
>>> try:
... pari('pi()')
... except PariError as e:
... print(e.errtext())
not a function in function call
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CONVERT PARI OBJECTS TO/FROM PYTHON/C NATIVE TYPES

This modules contains the following conversion routines:

• integers, long integers <-> PARI integers

• list of integers -> PARI polynomials

• doubles -> PARI reals

• pairs of doubles -> PARI complex numbers

PARI integers are stored as an array of limbs of type pari_ulong (which are 32-bit or 64-bit integers). Depending
on the kernel (GMP or native), this array is stored little-endian or big-endian. This is encapsulated in macros like
int_W(): see section 4.5.1 of the PARI library manual.

Python integers of type int are just C longs. Python integers of type long are stored as a little-endian array of type
digit with 15 or 30 bits used per digit. The internal format of a long is not documented, but there is some information
in longintrepr.h.

Because of this difference in bit lengths, converting integers involves some bit shuffling.

cypari2.convert.gen_to_integer(x)
Convert a PARI gen to a Python int or long.

INPUT:

• x – a PARI t_INT, t_FRAC, t_REAL, a purely real t_COMPLEX, a t_INTMOD or t_PADIC (which are lifted).

Examples:

>>> from cypari2.convert import gen_to_integer
>>> from cypari2 import Pari
>>> pari = Pari()
>>> a = gen_to_integer(pari("12345")); a; type(a)
12345
<... 'int'>
>>> gen_to_integer(pari("10^30")) == 10**30
True
>>> gen_to_integer(pari("19/5"))
3
>>> gen_to_integer(pari("1 + 0.0*I"))
1
>>> gen_to_integer(pari("3/2 + 0.0*I"))
1
>>> gen_to_integer(pari("Mod(-1, 11)"))
10
>>> gen_to_integer(pari("5 + O(5^10)"))

(continues on next page)
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5
>>> gen_to_integer(pari("Pol(42)"))
42
>>> gen_to_integer(pari("u"))
Traceback (most recent call last):
...
TypeError: unable to convert PARI object u of type t_POL to an integer
>>> s = pari("x + O(x^2)")
>>> s
x + O(x^2)
>>> gen_to_integer(s)
Traceback (most recent call last):
...
TypeError: unable to convert PARI object x + O(x^2) of type t_SER to an integer
>>> gen_to_integer(pari("1 + I"))
Traceback (most recent call last):
...
TypeError: unable to convert PARI object 1 + I of type t_COMPLEX to an integer

Tests:

>>> gen_to_integer(pari("1.0 - 2^64")) == -18446744073709551615
True
>>> gen_to_integer(pari("1 - 2^64")) == -18446744073709551615
True
>>> import sys
>>> if sys.version_info.major == 3:
... long = int
>>> for i in range(10000):
... x = 3**i
... if long(pari(x)) != long(x) or int(pari(x)) != x:
... print(x)

Check some corner cases:

>>> for s in [1, -1]:
... for a in [1, 2**31, 2**32, 2**63, 2**64]:
... for b in [-1, 0, 1]:
... Nstr = str(s * (a + b))
... N1 = gen_to_integer(pari(Nstr)) # Convert via PARI
... N2 = int(Nstr) # Convert via Python
... if N1 != N2:
... print(Nstr, N1, N2)
... if type(N1) is not type(N2):
... print(N1, type(N1), N2, type(N2))

cypari2.convert.gen_to_python(z)
Convert the PARI element z to a Python object.

OUTPUT:

• a Python integer for integers (type t_INT)

• a Fraction (fractions module) for rationals (type t_FRAC)
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• a float for real numbers (type t_REAL)

• a complex for complex numbers (type t_COMPLEX)

• a list for vectors (type t_VEC or t_COL). The function gen_to_python is then recursively applied on
the entries.

• a list of Python integers for small vectors (type t_VECSMALL)

• a list of list``s for matrices (type ``t_MAT). The function gen_to_python is then recursively
applied on the entries.

• the floating point inf or -inf for infinities (type t_INFINITY)

• a string for strings (type t_STR)

• other PARI types are not supported and the function will raise a NotImplementedError

Examples:

>>> from cypari2 import Pari
>>> from cypari2.convert import gen_to_python
>>> pari = Pari()

Converting integers:

>>> z = pari('42'); z
42
>>> a = gen_to_python(z); a
42
>>> type(a)
<... 'int'>

>>> gen_to_python(pari('3^50')) == 3**50
True
>>> type(gen_to_python(pari('3^50'))) == type(3**50)
True

Converting rational numbers:

>>> z = pari('2/3'); z
2/3
>>> a = gen_to_python(z); a
Fraction(2, 3)
>>> type(a)
<class 'fractions.Fraction'>

Converting real numbers (and infinities):

>>> z = pari('1.2'); z
1.20000000000000
>>> a = gen_to_python(z); a
1.2
>>> type(a)
<... 'float'>
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>>> z = pari('oo'); z
+oo
>>> a = gen_to_python(z); a
inf
>>> type(a)
<... 'float'>

>>> z = pari('-oo'); z
-oo
>>> a = gen_to_python(z); a
-inf
>>> type(a)
<... 'float'>

Converting complex numbers:

>>> z = pari('1 + I'); z
1 + I
>>> a = gen_to_python(z); a
(1+1j)
>>> type(a)
<... 'complex'>

>>> z = pari('2.1 + 3.03*I'); z
2.10000000000000 + 3.03000000000000*I
>>> a = gen_to_python(z); a
(2.1+3.03j)

Converting vectors:

>>> z1 = pari('Vecsmall([1,2,3])'); z1
Vecsmall([1, 2, 3])
>>> z2 = pari('[1, 3.4, [-5, 2], oo]'); z2
[1, 3.40000000000000, [-5, 2], +oo]
>>> z3 = pari('[1, 5.2]~'); z3
[1, 5.20000000000000]~
>>> z1.type(), z2.type(), z3.type()
('t_VECSMALL', 't_VEC', 't_COL')

>>> a1 = gen_to_python(z1); a1
[1, 2, 3]
>>> type(a1)
<... 'list'>
>>> [type(x) for x in a1]
[<... 'int'>, <... 'int'>, <... 'int'>]

>>> a2 = gen_to_python(z2); a2
[1, 3.4, [-5, 2], inf]
>>> type(a2)
<... 'list'>
>>> [type(x) for x in a2]
[<... 'int'>, <... 'float'>, <... 'list'>, <... 'float'>]
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>>> a3 = gen_to_python(z3); a3
[1, 5.2]
>>> type(a3)
<... 'list'>
>>> [type(x) for x in a3]
[<... 'int'>, <... 'float'>]

Converting matrices:

>>> z = pari('[1,2;3,4]')
>>> gen_to_python(z)
[[1, 2], [3, 4]]

>>> z = pari('[[1, 3], [[2]]; 3, [4, [5, 6]]]')
>>> gen_to_python(z)
[[[1, 3], [[2]]], [3, [4, [5, 6]]]]

Converting strings:

>>> z = pari('"Hello"')
>>> a = gen_to_python(z); a
'Hello'
>>> type(a)
<... 'str'>

Some currently unsupported types:

>>> z = pari('x')
>>> z.type()
't_POL'
>>> gen_to_python(z)
Traceback (most recent call last):
...
NotImplementedError: conversion not implemented for t_POL

>>> z = pari('12 + O(2^13)')
>>> z.type()
't_PADIC'
>>> gen_to_python(z)
Traceback (most recent call last):
...
NotImplementedError: conversion not implemented for t_PADIC

cypari2.convert.integer_to_gen(x)
Convert a Python int or long to a PARI gen of type t_INT.

Examples:

>>> from cypari2.convert import integer_to_gen
>>> from cypari2 import Pari
>>> pari = Pari()
>>> a = integer_to_gen(int(12345)); a; type(a)
12345

(continues on next page)
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(continued from previous page)

<... 'cypari2.gen.Gen'>
>>> integer_to_gen(float(12345))
Traceback (most recent call last):
...
TypeError: integer_to_gen() needs an int or long argument, not float
>>> integer_to_gen(2**100)
1267650600228229401496703205376

Tests:

>>> import sys
>>> if sys.version_info.major == 3:
... long = int
>>> assert integer_to_gen(long(12345)) == 12345
>>> for i in range(10000):
... x = 3**i
... if pari(long(x)) != pari(x) or pari(int(x)) != pari(x):
... print(x)
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